AVALIAÇÃO DE INDICADORES AMBIENTAIS EM UMA AGROINDÚSTRIA DE ABATE DE SUÍNOS DO ESTADO DO RIO GRANDE DO SUL

ASSESSMENT OF ENVIRONMENTAL INDICATORS IN A SWINE SLAUGHTER AGROINDUSTRY IN THE STATE OF RIO GRANDE DO SUL

Pietra Taize Bueno¹, Leandro Doro Tagliari²

¹Universidade de Passo Fundo, Faculdade de Engenharia e Arquitetura, Graduação em Engenharia Ambiental, Pós-Graduanda em Engenharia de Segurança do Trabalho, BR 285, Bairro São José, 99001-970 - Passo Fundo – RS – Brasil. E-mail: pietrataize@hotmail.com

²Universidade de Passo Fundo, Docente da graduação em Engenharia Mecânica, Faculdade de Engenharia e Arquitetura, BR 285, Bairro São José, 99001-970 - Passo Fundo – RS – Brasil. E-mail: leandrotagliari@upf.br

RESUMO

As indústrias alimentícias têm grande responsabilidade ambiental perante a lei, devido à produção em grande escala e o alto potencial poluidor em virtude dos efluentes gerados, fumos de gases resíduos sólidos e da relevância socioeconômica que apresenta. Diante deste cenário, o presente estudo teve como objetivo avaliar indicadores ambientais em uma Agroindústria de Abate de Suínos do Estado do Rio Grande do Sul com a finalidade de utilização dos indicadores ambientais como parâmetros para priorização de oportunidades de Produção mais Limpa em uma Unidade Produtiva. Desse modo, foram analisados os balanços hídrico, energético e de massa dos resíduos sólidos. Com as avaliações verificou-se que o setor de abate apresenta maior representatividade nos impactos ambientais quando combinados os indicadores. Concluiu-se que a verificação dos indicadores ambientais contribui para a tomada de decisão e aplicação de oportunidades de Produção mais Limpa. Possibilitando que os setores e atividades se tornem mais eficientes, ambientalmente corretos e economicamente atrativos, avaliando os setores de acordo com as suas prioridades e urgências particulares e propondo para a gestão ações de Produção mais limpa.

Palavras-chave: Indicadores Ambientais; Suínos; Balanço de Massa; Impacto Ambiental.

ABSTRACT

The food industries have great environmental responsibility under the law, due to large-scale production and the high polluting potential due to the effluents generated, solid waste gas fumes and the socioeconomic relevance it presents. Given this scenario, this study aimed to evaluate environmental indicators in a Swine Slaughter Agroindustry in the State of Rio Grande do Sul with the purpose of using environmental indicators as parameters for prioritizing opportunities for Cleaner Production in a Production Unit. Thus, the water, energy and solid waste mass balances were analyzed. With the evaluations, it was verified that the slaughter sector presents greater representation in the environmental impacts when the indicators are combined. It was concluded that the verification of environmental indicators contributes to decision making and application of Cleaner Production opportunities. Enabling sectors and activities to become more efficient, environmentally correct and economically attractive, evaluating sectors according to their priorities and particular urgencies and proposing cleaner production actions for management.

Keywords: Environmental Indicators; Swine; Mass balance; Environmental impact.

1. INTRODUÇÃO

A produção animal apresenta sistemas complexos e variados, suas interações fazem com que haja a necessidade de uma análise criteriosa entre produção animal e meio ambiente. Por meio do gerenciamento ambiental, algumas empresas vêm adotando medidas para mitigar os impactos de suas

atividades. Diante do agravamento das questões ligadas ao meio ambiente, a sociedade encontra-se em fase de mudanças de hábitos e comportamentos, em resultado, principalmente, do fácil acesso a informação nota-se uma crescente preocupação e debate sobre os problemas ambientais e sociais, temas como o esgotamento de recursos naturais, aquecimento global, poluição, deterioração e contaminação da água, ar e solo, além da erosão, problemas de saúde, saneamento básico, dentre outros, tem chamado a atenção para a necessidade de melhora na gestão de recursos a fim de evitar processos que intensifiquem a degradação do meio ambiente e que afetem a qualidade de vida e saúde de todos. Logo, a adoção das oportunidades de Produção mais Limpa tem como finalidade a obtenção de resultados ambientais satisfatórios, de forma contínua e perene, ao contrário da adoção de ações pontuais de controle corretivo. Os indicadores ambientais em uma empresa são utilizados para mensurar e monitorar a gestão ambiental empresarial. No entanto, também podem ser utilizados como uma ferramenta para análise de oportunidades de melhoria e priorização de ações de correção e mitigação.

2. METODOLOGIA

2.1 Local de Estudo

O estudo foi desenvolvido em uma agroindústria de abate de suínos de grande porte. Na Unidade Produtiva, estabelecida no Estado do Rio Grande do Sul, são abatidos cerca de 2.100 suínos/dia. A área de estudo deste trabalho delimita-se à avaliação da linha de produção, setores de apoio e do restaurante, tendo como prioridade avaliar os indicadores ambientais através dos balanços hídrico, energético e de massa dos resíduos sólidos gerados no empreendimento.

2.2 Avaliação dos Indicadores

Para a avaliação dos setores foi realizado um mapeamento através de diagnóstico com entrevistas *in loco* com colaboradores e supervisores, foram utilizados dados que já estavam sendo monitorados nos próprios setores e outros foram mensurados durante as visitas técnicas. Os setores avaliados neste estudo foram: Caldeira; Sala de Máquinas e Manutenção: Abate; Pocilga; Sangria; Miúdos Internos; Miúdos Externos; Sala de Cabeças; Espostejamento; Beneficiamento de tripas; Preparação de Massas e Frescais; Restaurante Industrial; Estação de Tratamento de Água e Efluentes. Para a definição dos indicadores foram selecionados os parâmetros onde são perceptíveis os maiores consumos e/ou produções de materiais, resíduos, efluentes entre outros. Além disso, foram observados os setores que apresentam maior consumo de energia elétrica, água e geração de resíduos sólidos.

2.3 Balanço de Massa

A avaliação do consumo de água foi realizada através da elaboração do balanço hídrico da Unidade pelo fato de que a mesma não apresenta hidrômetros que indiquem o consumo de cada setor. Dessa forma, foram realizadas medições in loco das vazões de água de cada equipamento, mangueiras, chuveiros e torneiras por setor, tempo de trabalho e volume de água utilizada nos tanques a fim de estimar o consumo hídrico da empresa contribuindo para a avaliação da representatividade de cada setor no consumo de água e posterior identificação de oportunidades de melhoria. Quanto à verificação do consumo de energia elétrica, também foi elaborado o balanço energético da Unidade de estudo sendo necessária a utilização de um equipamento, o amperímetro, dispositivo graduado em amperes que tem como finalidade medir a intensidade da corrente elétrica para a verificação da corrente elétrica de todos os painéis elétricos da empresa a fim de calcular o consumo de energia.

A quantificação da geração de resíduos sólidos foi realizada através do balanço de massa dos

resíduos gerados na Unidade que teve como alvo principal verificar os resíduos que tem maior representatividade na empresa. Para tanto, os resíduos foram pesados e catalogados de acordo com a NBR 10004. Os dados foram expressos por gráficos facilitando a compreensão do balanço de massa. Por fim, após a realização do balanço hídrico, energético e de resíduos sólidos. Com isso, foi possível desenvolver oportunidades de Produção mais limpa que foram propostas para os setores analisados.

3. RESULTADOS E DISCUSSÕES

3.1 Balanço Hídrico

Á água é um bem comum e abundante. Contudo, é dotada de valor econômico e tendo significativa importância como insumo produtivo para indústrias e empreendimentos diversos, necessita de boa gestão de seus recursos (Flores et al, 2015). Segundo a ANA a média anual para o total de água consumida no Brasil por finalidade, dados do senso de 2017-2018 pode ser observada no Gráfico 1. Verifica-se que para o setor industrial em estudo é possível inferir que é consumido 19,6% dos recursos hídricos distribuídos no Brasil sendo considerado o consumo da indústria mais o do abastecimento animal.

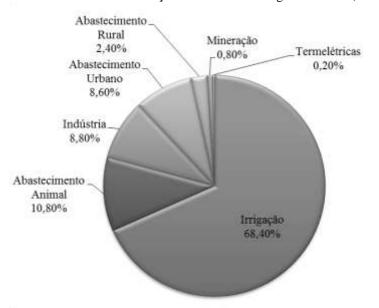


Gráfico 1 - Distribuição do Consumo de Água no Brasil (2018)

Fonte: Adaptado de ANA, (2018).

Para a realização da estimativa do balanço hídrico foi necessária a realização da medição in loco do consumo de água, pelo fato de que na unidade não há hidrômetros separados por setor, somente um hidrômetro geral que mede a quantidade de água utilizada na indústria. Para a área externa, os valores obtidos para o consumo de água da caldeira, sala de máquinas, Estação de Tratamento de Água e do consumo oriundo da Companhia Rio-grandense de Saneamento (CORSAN), que inclui o restaurante, derivou-se através do controle realizado por parte da Unidade dos hidrômetros. Para o setor da Estação de Tratamento de Efluentes foram realizadas medições à campo, para isso, foram medidas as vazões de cada equipamento utilizado, mangueira e torneira, bem como, o volume dos tanques encontrados em diversos setores e tempo de uso da água. O Gráfico 2 apresenta a distribuição do consumo geral de água.

Representatividade (%)

Fonte: Autores, (2021).

Como resultado do balanço hídrico geral percebe-se que o setor de Abate é o que demanda maior quantidade de água, para compreender melhor esse consumo, foi realizado outro estudo, apresentado no Gráfico 3 que expressa a distribuição do consumo nos principais equipamentos do setor.



Gráfico 3 - Distribuição do Consumo de Água no Setor de Abate (%)

Representatividade (%) Fonte: Autores, (2021).

Ao todo o setor de abate conta com 51 esterilizadores, com renovação contínua de água, gerando um alto consumo. Além dos lavadores de carcaça que são utilizados de forma contínua durante todo o período de abate.

O procedimento padrão de higiene operacional (PPHO) tem como objetivo realizar a limpeza e

desinfecção dos setores. A higienização compreende o PPHO Pré e Operacional, o operacional é caracterizado pela higienização dos setores em sua pausas durante o processo produtivo realizado pelo enxágue, remoção de resíduos do piso, limpeza dos equipamentos e retirada de utensílios para higienização, já o pré-operacional é caracterizado pela limpeza e sanitização ao final das atividades do estabelecimento tendo maior representatividade de consumo de água, pois seu procedimento de limpeza exige maior período de tempo demandando também grandes volumes de água. O Gráfico 4 abaixo, apresenta o consumo de cada setor na higienização do PPHO Operacional:

PPHO operacional Espostejamento **■** 51,63% PPHO operacional Frescais **15,30%** PPHO operacional Abate 10.52% PPHO operacional Embalagens 4,78% PPHO operacional Benef./Rebob. de tripas 4,78% PPHO operacional miúdos externos 3.82% 2,87% PPHO operacional Miúdos Internos Cozidos PPHO Operacional preparação de Massas 2,49% PPHO operacional Sala de cabeças **1,91%** PPHO operacional Miúdos Internos 1,91% Representatividade (%)

Gráfico 4 - Consumo de Água nos PPHO Operacional (%)

Fonte: Autores, (2021).

Para a verificação do PPHO Operacional foram verificadas as vazões das mangueiras de alta pressão, o tempo de utilização e a quantidade de mangueiras utilizadas para a higienização do setor. Verifica-se que o setor do espostejamento tem o maior consumo de água, isso se deve ao fato de que é o setor com maior área e equipamentos, além de serem utilizadas mais mangueiras para limpeza que os demais setores. O Gráfico 5 compara o volume de água utilizado para o PPHO Pré-Operacional e Operacional:

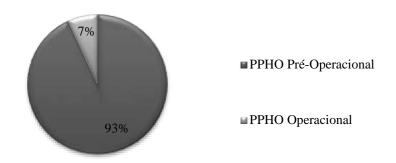


Gráfico 5 - Comparação do Consumo de Água PPHO Pré-Operacional e Operacional (%)

Fonte: Autores, (2021).

Para a estimativa do consumo do PPHO Pré-Operacional foi verificado nas leituras dos hidrômetros o volume de água consumido no horário desta higienização específica, como a mesma

ocorre em um horário diferente do processo produtivo foi possível a coleta de dados mais específicos e consequente aferição de que a higienização pré-operacional consome cerca de 93% de todo o consumo destinado para limpeza e sanitização dos setores e o restante 7% é oriundo da limpeza realizada nas pausas do processo.

O Gráfico 6 identifica a distribuição do consumo de água na indústria, considerando apenas os setores localizados na parte interna da fábrica:

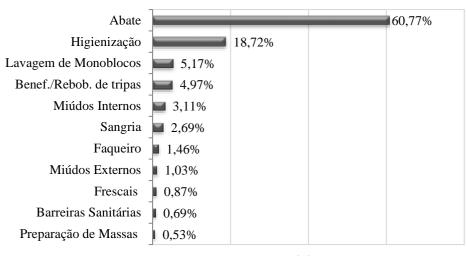


Gráfico 6 - Distribuição do Consumo de Água da Indústria (%)

Representatividade (%)

Fonte: Autores, (2021).

Já o Gráfico 7, apresenta o consumo de água das áreas externas, a finalidade da elaboração de ambos os gráficos foi diferenciar os setores internos dos externos em relação a representatividade de consumo de água e verificar quais setores apresentam maiores índices de consumo nas suas realidades, diferente do Gráfico 5 que apresenta o consumo geral.

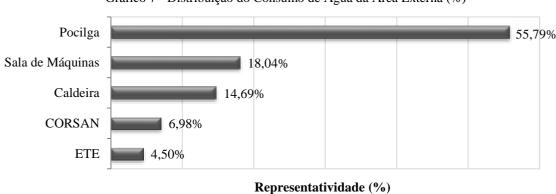


Gráfico 7 - Distribuição do Consumo de Água da Área Externa (%)

Fonte: Autores, (2021).

A Pocilga tem destaque em consumo de água na área externa, em consequência da demanda hídrica do setor que é caracterizada pela lavagem e condução dos suínos, essa que ocorre desde a chegada dos suínos e posteriores descarregamentos dos animais até a condução ao setor de Sangria. A sala de máquinas tem seu consumo de água devido à sua função para realização das trocas de calor através dos condensadores, os quais são necessários para retirar o calor da amônia em forma de gás que

retorna do processo, transformando-a em líquido novamente, através do contato da tubulação com a água, que ao circular pelo condensador cai sobre os dutos onde circula a amônia. O calor transferido para a água é perdido para o meio externo através dos exaustores e a água resultante do processo é coletada para um reservatório que fica embaixo dos condensadores. A água de resfriamento necessita de renovação constante, pois há a tendência de saturação de sais minerais o que pode ocasionar a incrustação dos equipamentos e tubulações. O consumo de água da caldeira representa a geração de vapor da Unidade. A CORSAN engloba a área administrativa, vestiários, banheiros e restaurante. Para o consumo da Estação de Tratamento de Efluentes foram consideradas as limpezas das peneiras que retém os resíduos e o volume de água necessário para a preparação dos produtos para tratamento.

3.2 Balanço Energético

O cenário do balanço energético nacional de 2019 pode ser observado no Gráfico 8 onde é apresentada a distribuição da energia e sua representatividade em porcentagem, segundo o estudo da EPE. O empreendimento, objeto de estudo, está incluído no consumo destinado a indústrias que apresenta um percentual de 31,70% de todo o consumo energético do Brasil.

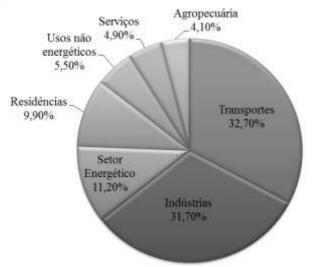


Gráfico 8 - Consumo Energético no Brasil (2018-2019)

Fonte: Adaptado EPE, (2019).

Para a realização do balanço energético na empresa foi necessário o acompanhamento de um profissional capacitado, um eletricista, para realizar a medição dos painéis elétricos existentes na Unidade Produtiva. As medições foram realizadas com auxílio de um equipamento chamado de Amperímetro medindo a corrente em amperes. A dificuldade encontrada para a realização do balanço energético se deu principalmente, pois na Unidade não há quadros elétricos específicos para cada setor, muitas medições realizadas mostram um compilado de consumo de diversos setores. No entanto, foi possível verificar os setores que mais consomem energia elétrica, a demanda para o processo produtivo e oportunidades de melhoria.

A tensão utilizada na parte majoritária do empreendimento é de 380 Volts para a produção. No entanto, para setores administrativos, pocilga, restaurante, vestiário, Serviços Especializados em Segurança e em Medicina do Trabalho (SESMT) e Serviço de Inspeção Federal (SIF) que demandam de energia para lâmpadas, tomadas e outras necessidades mais básicas a voltagem utilizada é de 220 Volts. Para o diagnóstico de consumo, foi necessária a verificação de horas trabalhadas com energia elétrica por setor para estimar o consumo total.

Dessa forma, o Gráfico 9 apresenta a representatividade da demanda energética da empresa, sendo que o setor que mais consome energia é a sala de máquinas. A mesma representa mais de 80% do consumo de toda a empresa, devido a sua importância e quantidade de máquinas, motores e equipamentos.

Sala de Máquinas

■ Sala de Máquinas

■ Restante da Agroindústria de Abate de Suínos

Gráfico 9 - Consumo de Energia Elétrica na Unidade Produtiva (%)

Fonte: Autores, (2021).

A medição do setor de abate foi realizada em 3 painéis elétricos, sendo dois deles unificados para representatividade do gráfico, quando comparado aos demais tem o maior impacto no consumo da indústria, quando se desconsidera a sala de máquinas. Setores caracterizados como Vestiários, SESMT e SIF apresentaram os menores consumos tendo representatividade no balanço de 0,02%. No Gráfico 10, abaixo é possível verificar que o painel 1, que compreende os setores de Frescais, Miúdos Internos e Beneficiamento de Tripas, obteve o maior índice de consumo energético.

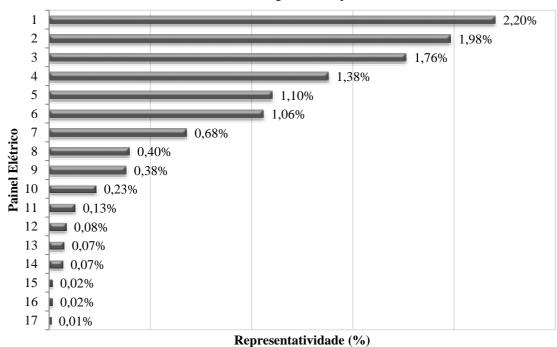


Gráfico 10 - Consumo de Energia Elétrica por Painel Elétrico

Painel elétrico: (1) Frescais, Miúdos Internos e Beneficiamento de Tripas; (2) Abate; (3) ETA, Manutenção e Cisterna; (4) Aeradores; (5) Caldeira; (6) Preparação de Massas, Miúdos Externos, Abate e Embalagem; (7) Lâmpadas Externas; (8) ETE; (9) Pocilga; (10) Espostejamento; (11) Restaurante Industrial; (12) Administrativo; (13) Embalagem; (14) Lavagem de Monoblocos; (15) SIF; (16) SEMST; (17) Vestiários.

Fonte: Autores, (2021).

No entanto, o painel 2 que se caracteriza apenas pelo consumo de uma parte do abate também obteve significativo índice sendo observado apenas 0,22% de diferença entre o painel 1 e o painel 2. Dessa forma, é possível inferir que o setor de abate é o setor mais representativo, após a sala de máquinas, na Unidade Produtiva, pelo fato de que representa consumo em mais de um painel elétrico, painel 1 e painel 6, com representativos consumos quando comparado aos demais.

3.3 Balanço de Massa/Resíduos Sólidos

Uma problemática recente se trata da geração e disposição de resíduos sólidos, esses que se apresentam como um dos principais problemas nas áreas urbanas, pois sua disposição inadequada provoca diversos impactos ambientais, sociais, econômicos e de saúde pública.

A Política Nacional dos Resíduos Sólidos apresenta diretrizes e estabelece princípios para a gestão integrada dos resíduos sólidos, indicando também a responsabilidade dos geradores sejam eles fabricantes, importadores, distribuidores, comerciantes, consumidores e serviços públicos de limpeza urbana, todos tem direitos e deveres quanto a temática. Bem como, apresenta princípios importantes para a responsabilidade compartilhada, indicando instrumentos para prevenção e precaução visando a não geração (Brasil, 2010).

Em relação às empresas, compete o recolhimento e disposição adequada dos resíduos gerados nas unidades, além da constante busca por soluções visando à redução no consumo e consequente geração.

Com o aumento nas taxas de crescimento da economia do Brasil nos últimos anos, acompanhadas pela inclusão social, ofertas e possibilidades de consumo verificou-se como consequência o acréscimo na demanda de extração de matéria-prima, processamento, produção, distribuição, geração de resíduos, tratamento e disposição final. Apesar do progresso socioeconômico verifica-se o aumento nos impactos ambientais. Dessa forma, empresas podem contribuir significativamente para o gerenciamento adequado dos resíduos sólidos, promovendo a sensibilização dos colaboradores, a segregação e disposição adequada dos resíduos, além de adotar práticas para reduzir a geração de resíduos e consumo de materiais.

Para a realização do balanço de massa dos resíduos sólidos gerados na Unidade Produtiva de estudo, foi necessária a identificação dos resíduos e sua referente geração no ano de 2019 em toneladas. O objetivo deste balanço de massa é verificar oportunidades de Produção mais Limpa, redução de geração de resíduos e alternativas viáveis de implantação visando contribuir para a não geração ou reaproveitamento de materiais.

O Gráfico 11 apresenta os índices de representatividade em porcentagem de cada resíduo. O item caracterizado como "Outros*", representa a soma da representatividade dos resíduos: óleo de cozinha usado, óleo contaminado em isolação ou refrigeração, sucata de metais não ferrosos (latão e cobre), material têxtil contaminado (panos, estopas, filtro, mangas entre outros), embalagem metálica contaminada, vidro, lâmpadas e material de serviço de saúde, ao total representam menos que 0,01% do total de resíduos gerados na Unidade Produtiva. É possível verificar que cerca de 98% dos resíduos gerados na Unidade são classificados como resíduos orgânicos, com destaque para ossos e carcaças condenadas que representam 67,78% do total dos resíduos gerados. Apesar de sangue (11,18%) e mucosa (1,66%) serem intitulados como resíduos do processo produtivo são comercializados como subproduto para formulação de medicamentos e fabricação de ração animal.

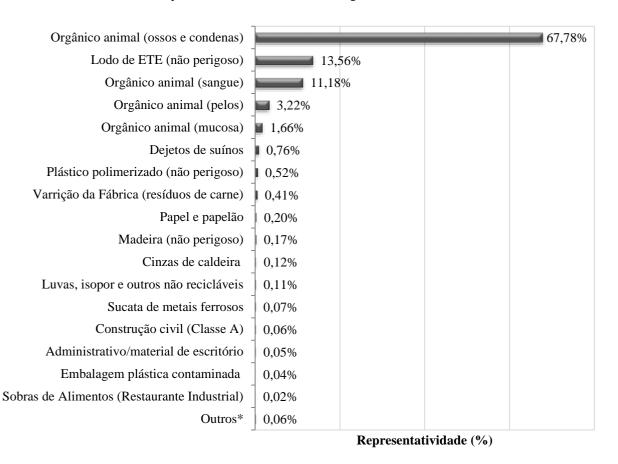


Gráfico 1 - Representatividade dos Resíduos Orgânicos na Unidade Produtiva

Fonte: Autores, (2021).

O cumprimento da legislação ambiental, através da obtenção da licença ambiental, tem como objetivo estabelecer condições para que a atividade cause o menor impacto possível ao meio ambiente e está relacionada ao desempenho da gestão ambiental nos empreendimentos. Segundo a ABRAELPE no ano de 2017 a disposição de resíduos sólidos em Aterros Sanitários representou 59,1% contabilizando 115.801 toneladas por dia (t/d), já em Aterros Controlados 22,9% com 44.881 t/d e em lixões 18% 35.368 t/d. No entanto, ainda há a necessidade de políticas internas em empresas para tentar diminuir o volume gerado, bem como as estatísticas dos resíduos que são dispostos em locais indevidos.

O Gráfico 12 apresenta dados de geração de resíduos sólidos industriais perigosos por regiões do Brasil. Verifica-se que o Sul representa aproximadamente 4,76% do total dos resíduos perigosos cadastrados por indústrias nos Estados brasileiros, o empreendimento em questão está incluído na pesquisa no Estado do Rio Grande do Sul, no entanto, foi verificado na elaboração do balanço de massa.

GO **27,31%** MG 21,64% PR **16,58%** SP 14,00% RJ 7,68% RS 4,76% CE 4,06% PE 2,13% MT **1,21%** AP 0.37% AC0.14% RN 0.09% PB 0,02%

Gráfico 12 - Índice de Geração de Resíduos Sólidos Industriais Perigosos por Estado Brasileiro.

Representatividade (%)

Fonte: Adaptado IPEA, (2011).

Quanto a representatividade da geração de resíduos sólidos industriais não perigosos no Brasil, observa-se no o Gráfico 13:

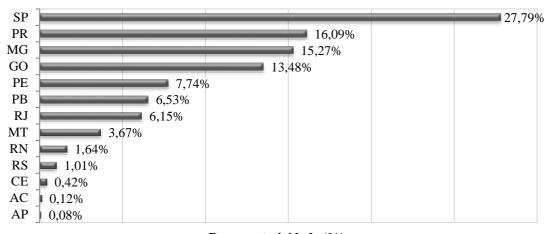


Gráfico 2 - Índice de Geração de Resíduos Sólidos Industriais Não Perigosos por Estado Brasileiro.

Representatividade (%)

Fonte: Adaptado IPEA, (2011).

O cenário do Estado do Rio Grande do Sul é pouco representativo com índice de 1,01%, não condizendo com a realidade do empreendimento em questão, os resíduos não perigosos representam cerca de 98% do total de resíduos gerados.

4. LACUNAS DA PESQUISA

A pesquisa realizada, utilizou-se do estudo de caso de uma Indústria de Abate de Suínos do Estado do Rio Grande do Sul, para a obtenção de informações técnicas através dos índices ambientais

de consumo de água, energia e resíduos sólidos, possibilitando a mitigação destas e proporcionar ações de produção mais limpa para a gestão da empresa.

Estas ações podem ser adotadas pela gestão ou programadas para ações futuras de curto, médio e longo prazo conforme demandas e disponibilidade financeira. A importância da pesquisa relaciona-se em obter para a empresa, a partir do estudo de caso as ações de produção mais limpa que podem ser aplicadas em outras empresas e melhorados os resultados com as ações sustentáveis de produção mais limpa ambiental.

5. APLICAÇÃO DA PRODUÇÃO MAIS LIMPA

5.1 Redução de consumo de água:

O consumo de água apresentou ser um dos principais problemas ambientais devido à alta demanda. Como consequência desse alto consumo, há também como problemática a geração de efluentes industriais que necessitam ser tratados e destinados com qualidade de água Classe 2 conforme Resolução CONAMA 357. Dessa forma, são problemas proporcionais. Com a consequente diminuição do consumo de água no processo produtivo é possível a geração de menor volume de efluentes decorrentes do processo, ocasionando melhora econômica e ambiental.

Através da realização do balanço hídrico avaliou-se que o abate é o setor mais expressivo quanto ao consumo de água principalmente pela utilização de esterilizadores e lavadores de carcaças, seguido da higienização e na área externa o setor que mais consome água é a pocilga.

Ações de produção mais limpa, no intuito de mitigação seria mensurar exatamente as quantidades de água necessárias para cada atividade e adaptar ao sistema válvulas de controle de vazão com temporização durante a execução das atividades.

Outra ação de produção mais limpa seria a instalação de sistema de captação da água da chuva para utilização nos sanitários da empresa.

5.2 Consumo de Resíduos Sólidos

Já o balanço de massa dos resíduos gerados na Unidade apresentou que cerca de 98% dos resíduos gerados são de origem orgânica e estima-se que 67,78% do total são apenas ossos e carcaças condenadas.

Ações de produção mais limpa seria a venda destes resíduos para outras empresas de transformação, tais como: o orgânico animal que representa (67,78% ossos), (11,18% sangue), para empresas que aproveitam estes resíduos para utilização como ração animal e os demais resíduos devem ser estudados no intuito de obter-se a venda e o reaproveitamento destes resíduos. Para Jasch, (2001) o resíduo de uma empresa pode ser a matéria-prima para outra empresa.

5.3 Consumo de Energia Elétrica

O terceiro principal problema verificado se caracteriza pelo elevado consumo de energia elétrica, principalmente pela demanda energética oriunda da sala de máquinas.

Através do balanço energético foi verificado que 88% do consumo da Unidade é proveniente do consumo da sala de máquinas e o restante 12% aos demais setores, sendo que esse percentual foi obtido através da avaliação de 17 painéis elétricos que contribuíram para a interpretação de que o abate é o segundo setor que mais consome energia elétrica.

Como ação de produção mais limpa, seria a substituição de todos os motores por motores de alto rendimento que consomem menos energia, substituição de lâmpadas convencionais por lâmpadas de

LED, Instalação de telhas translúcidas nas áreas de processo produtivo para se obter luminosidade natural, instalação de sistemas fotovoltaicos e sistemas eólicos, caso haja necessidade para que se utilize na empresa energias sustentáveis e obtenha-se ganhos econômicos.

6. CONCLUSÕES

As oportunidades de Produção mais Limpa surgem de demandas específicas de cada empresa. No entanto, seguem o mesmo princípio: redução de custos e viabilidade de projeto para parâmetros ambientais e técnicos. São exigências mundiais em consequência do uso irracional de recursos naturais e o aumento populacional, que toda indústria esteja de acordo com os instrumentos legais. As legislações apresentam a cada mais adequações que aliem parâmetros técnicos com a garantia da qualidade ambiental. Logo, se todo empreendimento realizasse a avaliação constante de seus aspectos e impactos ambientais através dos indicadores ambientais, verificando seus problemas prioritários e buscando aplicar a ferramenta de Produção mais Limpa teríamos como perspectiva futura apenas empreendimentos com tecnologias verdes, processos com melhor fluidez, redução de desperdícios e organizações com logísticas inteligentes.

Desse modo, os indicadores ambientais podem ser utilizados como parâmetros de avaliação e monitoramento do desempenho ambiental e econômico dentro de um setor industrial, contribuindo para que a tomada de decisão quanto às ações corretivas e de mitigação de impactos seja realizada de acordo com as necessidades específicas para cada tipo de indústria e atividade.

7. REFERÊNCIAS

ABRAELPE. Panorama dos Resíduos Sólidos no Brasil 2017. Publicação Setembro 2018.

ANEEL. **Resumo Estadual de Geração de Energia Elétrica.** Disponível em:http://www2.aneel.gov.br/aplicacoes/ResumoEstadual/ResumoEstadual.cfm Acesso em: 30 set. 2019.

EPE. **Balanço Energético Nacional 2019 – Relatório Síntese Ano Base 2018.** Disponível em:http://epe.gov.br/sites-pt/publicacoes-dados abertos/publicacoes/PublicacoesArquivos/publicacao-377/topico-470/Relat%C3%B3rio%20S%C3%ADntese%20BEN%202019%20Ano%20Base%202018.pdf> Acesso em: 30 set. 2019.

FLORES, R. K.; MISOCZKY, M. C. **Dos antagonismos na apropriação capitalista da água à sua concepção como bem comum**. Organizações & Sociedade, v. 22, p. 237-250, 2015.

IPEA. **Caderno Diagnóstico dos Resíduos Sólidos Industriais**. Disponível em:https://sinir.gov.br/images/cadernos_de_diagnostico/05_CADDIAG_Res_Sol_Industriais.pdf. Acesso em: 20 Nov. 2019.

JASCH, Contabilidade da gestão Ambiental procedimentos e Princípios. Nações Unidas, Nova Iorque, 2001. 126p.

KUBOTA, F. I., & ROSA, L. C. (2013). **Identification and conception of cleaner production opportunities with the theory of inventive problem solving**. *Journal of Cleaner Production*, 47, 199-210. http://dx.doi.org/10.1016/j.jclepro.2012.07.059.

MALDANER, T.L. Levantamento das alternativas de minimização de impactos gerados pelos efluentes de abatedouros e frigoríficos. 2008. 69f. Monografia (Pós-graduação em lato sensu em Higiene e Inspeção de Produtos de Origem Animal) — Universidade Castelo Branco, Brasília, 2008.

PACHECO, J. W.; YAMANAKA, H. T. Guia técnico ambiental de abates (bovino e suíno). CETESB. São Paulo, 2008.

REZENDE, J. H. et al. Composição gravimétrica e peso específico dos resíduos sólidos urbanos em **Jaú (SP).** Eng. Sanit. Ambient., v. 18, n. 1, p. 1-8, 2013.

RIVA K. L. Proposta de um programa de gerenciamento de resíduos e efluentes adaptado a um frigorífico de suínos, visando o uso racional, 2018. Trabalho de Conclusão de Curso (Engenharia Química) - Universidade Federal do Pampa, Bagé. 2018.

RTA, Revista de Tecnologia Aplicada- **Resíduos sólidos em restaurante comercial: um estudo de caso na cidade de Santos/SP**. Faculdade Campo Limpo Paulista, v.6, n.2, p.44- 61,2012 (Mai/Ago).

SÁNCHEZ, L.E. **Avaliação de Impacto Ambiental: Conceitos e Métodos**. 2 ed. São Paulo: Oficina de Textos, 2013.

SENAI/RS. **Princípios Básicos de Produção mais Limpa em Matadouros Frigoríficos**. Porto Alegre, UNIDO, UNEP, Centro Nacional de Tecnologias Limpas SENAI, 2003. 59 p. il. (Série Manuais de Produção mais Limpa).

SOUZA, A. C. et al. Consumo de água e de energia: uma análise sob a ótica do licenciamento ambiental na indústria de abate de animais do estado da Bahia. 2015.

ZHOU, M., PAN, Y., CHEN, Z., YANG, W., LI, B., 2012. Selection and evaluation of green production strategies: analytic and simulation models. Journal of Cleaner Production, 26, 9-17.