Revista CIATEC — UPF, vol.3 (1), p.p.48-64, 2011

A DATA EXCHANGE NEUTRAL FORMAT FOR FINITE ELEMENT C ODES
USING AN INTELLIGENT ELEMENT CLASSIFICATION

Gray F. Moita® , Paulo Eduardo M. Almeid&, Denise M.L.M. Oliveira®, Marden C. Pinheiro*
Centro Federal de Educagédo Tecnoldgica de Minaai&&t-mail: gray@dppg.cefetmg.br
“Centro Federal de Educac&o Tecnolégica de Minaai§é-mail: paulo@dppg.cefetmg.br
3Centro Federal de Educac&o Tecnolégica de Minaai§é-mail: deniseoliveira@civil.cefetmg.br
“Universidade FUMEC, E-mail: marden@fumec.br

ABSTRACT

This work presents the basis of the Finite ElenMatkup Language (FEML) proposal and also an
intelligent tool for the recognition and classitica of finite elements families used in conjunatio
with the above XML schema. The need for the clasgibn becomes clear due to the necessity of a
mapping between the several elements in a giver eod the FEML format. A tree-type search
could be used but it can lead to a lengthy if-tbl® sequence to perform the matching. The use of a
database-type classification could also be an optiowever the search mechanism would still be
required. Moreover, the use of an intelligent-tgtessification is also able to accommodate changes
in the element families to be classified and nesyments can be added with minimum effort. Here,
the so-called intelligent classification uses tbehhology of artificial neural networks, specifigal
through of application the Self-organizing Map Netlss and the Learning Vector Quantization. To
carry out this task, the network receives thelaitas of the elements and makes its classificaition,
terms of equivalent (or similar, less specialise@®ments. At the end, it allows for the interface
programs to “translate” between a specific (prdprieformat and the neutral format, in an intellige
way, minimizing errors due to manual data transicnipand eliminating the necessity of searching
the entire tree of elementseywords: Classification; finite elements; artificial neuratwork; self-
organizing map; learning vector quantization; XMihema.

1. INTRODUCTION

Structure analysis software that use the FinitenElg Method (FEM) are programs that handle physical
phenomena which are expressed by means of faimplex models and tend to output great volume o& dat
within their descriptions. Also, the difficulty afata interchange between FEM programs is notorisinsge
each of the programs features particular setsemhehts, originated from distinct formulations, fieqgtly used

for the solution of one particular problem. Theklad a standard format for data interchange betwbere
programs is notable and makes the multi-applicatiork to solve or to model such a problem much @ard

The purpose of this present work is to ease thernmdtion exchange between several of the exisiimtg f
element programs. For this, one could make use sfandard output to feed other systems’ input, thus
maintaining data integrity and turning their pragiag into a more dynamic event.

In the field of Information Systems, the processmoporting and exporting data has been facilitdigdhe
usage of the Extensible Markup Language (XML). Taigyuage is a hatural candidate to allow for tieation

of a vast lexicon for the description of both datal structures to be used on the input and outpertfaces of
each FEM system. Its usage has been growing caabigen environments in and outside the Interasta
basis for languages and vocabularies for the cdimcepf neutral, non-proprietary and extensiblenfats,
aiming at the electronic data interchange betwestindt applications. Within this context, the FenElement

doi: 10.5335/ciatec.v3i1.2190 48

Revista CIATEC — UPF, vol.3 (1), p.p.48-64, 2011

Markup Language (FEML) scheme for data interchamefeveen finite element software is an innovative an
flexible proposal to the solution of such problesiace these programs work with families of eleragnhich
can be mapped, at their majority, into equivaléetnents in all other programs [1].

The usage of the Atrtificial Neural Networks (ANNSchnology in the resolution of problems by clasation
has been widely spread. Some of the typical exasrgule voice, characters and image recognitionQgjer
examples are in complex systems capable of cagturiportant statistically intrinsic characteristigghin an
input space (data), describing collective sortihgrmena from a given initial disorder and formgngupings
of similar patterns in a map of self-organizing refederistics.

The current work presents a brief description af FEML tool, proposed by Pinheiro [3], which is a
proposition of a neutral format for the structurengd data interchange between FE programs. The Fid4l
created with the aid of the XML and XML schema taealogies. It also presents a tool, constructed WitiN,
specifically by self-organizing networks and a lréag Vector Quantization (LVQ) algorithm, to be rim
conjunction with the FEML. The network allows fdretinterface software between the many existing FEM
programs to execute the data interchange operatiarsintelligent and dynamic way from the FEM&ellf.

2 . THE FINITE MARKUP LANGUAGE - FEML

The XML was initially suggested as a complementh® HTML language, given the increasing demand for
new tags, formats and data types available on #ite @onnolly et al. [4] had already pointed outhsdemand,
even before the first formal W3C (World Wide WebrGortium) recommendation, in 1998. Nowadays, the
XML has rapidly grown to the point of holding a nfubigher level than that of a mere data displaying
language for the Internet [5].

As mentioned above, the present work deals withptissibility of creating a XML vocabulary for thimite
element data interchange applications. In gendrede kinds of vocabularies are considered XMLiagpbns,
created from a document model verifiable by anyegiwyntactic analyser. From this concept, a way of
validating an XML document can be created, oncetitscture and its element possible content argvknén

this way, there is still the possibility of valitag the content and the structure of a given docurfrem a
descriptor, creating, thus, a family of documentsicw complies with that determined descriptor. Ehes
families of documents many times gain their ownaeimations, like the MathML (Mathematical Markup
Language), destined to the description of mathemlaformulas and equations, the CML (Chemical Marku
Language) for the description of chemistry formult#tse MatML (Material Markup Language), which
characterizes materials, or the FEML(Finite Elemdatkup Language) itself, also an object of thigdgt The
FEML is a XML Schema [6, 7].

The main goal of the FEML is to produce a vocalulahich described syntactic and semantically thiea da
structure required by a FEM program, so that itsoeixand import tools could be facilitated. In thvay, a
structure that has been modelled by a given programhave its data exported to another prograngusin
neutral format. This avoids data re-entrance, p stat can take way too much time, given the amotiaata

in a typical model, and may also add typing errdtse proposal of this tool is illustrated in Figurewhich
also indicates another of the focus of the prestmly, that is, the application of ANN.

ANN
FEM program A

ﬂ -
e —
Export Import
FEML

(neutral format)

FEM program B

Figure 1: FEML's primary proposal

49

Revista CIATEC — UPF, vol.3 (1), p.p.48-64, 2011

Most programs generate exportation files, but ttheyt in proprietary formats. Thus, to obtain thatpbility
between these programs, each one should have kwpaatation interfaces, basically one for eacpating
program. As the number of programs increases, iti®lity of this approach weakens. Therefore, theaton
of a standard export file becomes fundamental wiséng more than one program to run a specific aigly
This format could be shared between the softwaveldpers. However, it would be difficult to come wijih a
format which gathered all of the XML intrinsic féties, such as its capability of syntactic and aatit
description, as well as its hierarchical structgyiallied to the power of a Validation Scheme wtik strong
type setting and definition of content of a XML Safe.
With that in mind, Pinheiro [3] proposed the baXiL Scheme FEML, as well as a suggestion of the tre
structuring for the primary elements used by the&SI$ commercial software [8], here used as the lhasthe
present development. The FEML, in its initial pregl creates a document which should basicallyritesthe
finite element topology of the model, the matedfkach element and the loading and boundary dondito
which the model is subjected, alongside with som@rol variables. This information, along with apts for
the project documentation (author, date, sourgafofmation, etc), should be sufficient, so thatemond MEF
program could be totally fed with the necessarydat the calculation straight out of them, havinghave
only a few additional data supplied, such as pringsoptions or comments.
To achieve this initial proposition, it was necegda dispose the elements in a hierarchicallycttned way,
so that each program would not take the elemenmtactaxistic name, as it is known in its original/ieanment,
but its primary characteristics and, from theseable to define which of its implemented elememsid be
used on that case. In other words, as possiblyetiemot a one-to-one equivalence between the many
implemented elements in each environment, the eletgpe setting must be done through its charaatiesi
not by specific identifications from its originahdronment. This shows that the adoption of a getaability
standard demands the adoption of other standards,as this basic tree for the element’s hieraadisiation.
An example is shown below:
<Example Family="2D"

Shape=“Triangular”

Application="static”

Order="quadratic”

ElementType="plane stress”

Name="TPM6"/>
Thus, a tree was sought (Figure 2) which, from sidogrouping of families, was subdivided by thdiingary
forms, their application, the order and, finallyetelement type.
In this way, each program could implement this drielny and organise its elements through it. The dat
received by FEML could then be identified from wuiththis hierarchy, thus sufficing to the programirtgport
the data referring to the topologies, materialgyyniolary conditions and loading, relieving the ugent the
responsibility of inputting all the data for thatveronment.

50

Revista CIATEC — UPF, vol.3 (1), p.p.48-64, 2011

Family:
2D
Shape: Shape:
Triangular Quadrilateral
I]] I]]
Application: Application: Application: Application: Application: Application:
Dynamic Static Field Dynamic Static Field

Order:
Linear

Order:
[Quadratic|

QOrder: Order:

Order: T)
Linear Linear

Order: Order: T
Linear

Linear Linear

Order:

Order:
[Quadratic

[Quadratic

Element-Type: Element-Type: Element-Type: Element-Type:| Element-Type: Element-Type:
Plane Stréss Plane Stréss Plane Stress Plane Stréss Plane Stréss Plane Stréss

Element-Type:

Element-Type:]
b Plane Strain

Element-Type:
Plane Strain

Element-Type:
Plane Strain

Plane Strain

Element-Type:| Element-Type:| Element-Type| Element-Type:|
Plane Stress | | Plane Stress | | Plane Stress | | Plane Stress | |

Element-Type: Element-Type: Element-Type: Element-Type:
Plane Strain | | Plane Strain | | Plane Strain | | Plane Strain | |

Element-Type:| Element-Type:| Element-Type:| Element-Type:|
|Axisgmm§||?ic | |Axisgmmé'n'?ic | |Axisgmm§||?ic | |Axisgmm$pic |

Figure 2: Continuous bi-dimensional space famigraichy

3. ARTIFICIAL NEURAL NETWORKS

The ANN are mathematical models inspired after thelogical neural structure and which possess
computational capacity acquired by means of legraimd generalization [2, 9]. They are constitutgd tharge
number of simple processing elements, with manyeotions among themselves (synapses), which are pro
to the storage of the experimental knowledge andake it available for later use. The knowledgadgquired
through the process of training.

The networks training methods can be arranged inkasic types: supervised learning (response nramgjo
and unsupervised learning (unknown answer). Otertypes are also very commonly used: reinforcement
learning (the intermediate case between the sugsetvand the unsupervised learning methods) and the
competition learning method (particular case ofupesvised learning).

On the supervised learning, the networks respans®hitored by the supervisor. The learning s&irimed by
input and output pairs«(yq), wherex; represents the input pattern apdrepresents the expected output to the
suppliedx; pattern. In this case, the network response th gaoput is already known. The weight adjustment
represented byw is done in such a way that the netwgrkesponse to the pattern approximates the desired
Yig output.

51

Revista CIATEC — UPF, vol.3 (1), p.p.48-64, 2011

As for the unsupervised learning method, the tnginis formed by the input patterns and the weight
adjustmentAw, is only obtained through the values of the ingattern. The knowledge is acquired through the
existing harmony with the statistical regularitieghe network input pattern and through the recumag of the
data that it receives. This is how the network tgyethe ability to form internal representatioosodify the
characteristics perceived in the input and autaralyi creates new classes or groups.

The competition learning method is characterisedelogiving the pattern from the “disputing” inpuasid only
one of these will actually come out as the winiiérese inputs are directly connected to the outpehigsh can
also be connected among themselves through latdmditor (or negative) connections. The outputhaiihe
greatest initial activation will have the best cbaro score the dispute with the other outputsthede will,
along the time, lose their inhibition power overe tbutput with the biggest activation, renderingnthe
completely inactive — except the winner. This metfeknown as Winner-Takes-All.

The solution of problems through classificationANN occurs through the attribution of patterns sashthe
input to be identified from within a set of previaby known classes. On the other hand, the solubipn
categorisation happens when the network finds doamsony with the statistical regularities of theun set,
being, thus, able to group patterns through thé&icaton of the supplied characteristics.

In this work, the results of three different netlvonodels, built to perform pattern classificatiogsing the
supervised and unsupervised learning paradigmsprasented. The first case uses the supervisedirigar
method, in which the input and output vectors amvipusly presented to the network, which perfothmesr
respective association. On the second case, thariafion is supplied through the set of patterngciwithe
network receives as input, from which it then setjanises, defining its own parameters without extgrnal
aid, and that forms the concept of unsuperviserhileg. On the third case, the supervised algoritomects
the parameters defined by the unsupervised methioting a gain in the overall performance of thenmek
for the purpose of classification.

3.1 — Multi-Layer Perceptron — MLP

The MLP networks are characterised by presentingidirectional signal flux, one input layer, oneraore
layers hidden and an output layer. One of its prynaalvantages is the capacity of approximationarf-linear
functions.

Learning in an MLP network occurs through a setraining patterns, composed of input arrays and the
respective expected outputs, which will be preskemtethe network. The output and the error betwien
expected and obtained outputs are calculated, ieagahk tuning of the patterns.

The training algorithm for the MLP networks is @it described in Table 1.

3.2 — Self-organizing Map — SOM

The SOM network was developed by Teuvo Kohonennduittie eighties. It is neuro-physiologically inguir
and was primarily based on the topological map erewithin the cerebral cortex. The neurons haterda
connection forces, which depend on their distanthkis. topological ordering is the result of the gessaf lateral
“refeeding” between the cerebral cortex cells [2].

52

Revista CIATEC — UPF, vol.3 (1), p.p.48-64, 2011

Table 1: The training algorithm for MLP networks

1. Initialisation
1.1 randomly initialise they; weights
1.2 initialise the threshold variabl@s
2. Activation
2.1 process the MLP network by the applicatiothefx; inputs;
2.1.1 calculate thg outputs;
2.1.2 increment the (p=1)iteration;
2.1.3 calculate the outputs of the hidden lagettiej neuron;
2.1.4 calculate the MLP network’s output forefllits neurons.
. Weight adjustments in the output layer
3.1 calculate the error gradient committed in therent iteration for the
neurons in the output layer;
3.2 update the weights of the output layer.
. Weight adjustments in the occult layer
4.1 calculate the error gradient committed indberent iteration for the
neurons in the occult layer;
4.2 update the weights of the hidden layer.
. Iterative repetition
5.1 increment the iteration counter;
5.2 return to step 2.

w

N

ol

The lateral refeeding of a SOM network is modelvyda popularly known function named the Mexican.Hat
According to this function, each neuron influendke activation states of its neighbours in three/sva
excitatory (close neighbours — within the ray rawggifrom 50 to 100um), inhibitory (within a second
intermediate area) and lightly excitatory (moseexal area — ranging from the ray of 200 to ff9) [2].

The set of patterns supplied as the network inpwhieh correspond the network nodes — is organiaeal
grid, generally bi-dimensional. Each node in thevogk receives all the inputs which are also cotedto the
neighbouring nodes (closest ones). The more sirthiarweight vector’s input from a determined noithe,
bigger its output value will be. During the leamiperiod, the nodes specialize themselves to ttexiien of a
set of input patters; in other words, the nodest@pelogically organised throughout the networkking the
patterns detected by a given node relate to thedowdes of the node on the grid. Hence, the magutd-
sorting characteristics about the input patterrierisied, whereby the similar patterns are deteatedeing the
closest nodes inside the grid.

The SOM training algorithm is built through compiet. When a network node wins the competition, ardy
itself, but its neighbouring nodes will have theieights adjusted, a similar result as that of thexighn Hat
function.

The functioning of the SOM network happens basjocaten a certain pattemis presented. The network will
then search fgp's most similar node. During the training, the netkvmagnifies the resemblance of the chosen
node and of its neighbouring nodespoln this way, the network builds the topologicahpm where the
neighbouring nodes respond similarly to similarninpatterns.

A node activation state is determined by the eiaiidlistance between the weight and the input pedte
described in the Equation (1):

n

yzz 1% = w; I 1)

in whichx; is the input pattermy; is the connection weighn,is the quantity of nodes in the network.

53

Revista CIATEC — UPF, vol.3 (1), p.p.48-64, 2011

The neighbouring criteria shows how many nodesratdbe winner node will have their weights adjustedt

is, where the influence area of the winner noddeBned. The neighbouring region may present difier
magnitudes and forms. Generally the forms usediregar, square, hexagon, circle and others, béiagtuare
the most commonly used. The definition of the namktquate form depends on the problem in questidroan
how the data will be distributed, normally definwgdtrial and error.

The size of the neighbourhood around the winnindenis changed throughout the training processs it i
initially wide, but is progressively reduced uritile predefined limit, where the reduction ratehs tinear
function of the number of cycles. After the traigirthe network forms groupings, which will be ldedlto
indicate the class which they represent and tHawialg for classifications of unknown patterns.

The Equation 2 refers to the weight updating ofwirener node and its neighbours.

W, (44D :{wji () +nt)(x () —w; (1), if jOA®) o

w; (t), otherwise

in whichw; is the connection weight in the moménibetween the input elemexft) and thg node andy(t) is
the learning rate.
Table 2 shows the training algorithm for the SOMwmzks.

Table 2: Training algorithm for the SOM networks

1. Initialisation
1.1 initialise all the weights and parameters
2. lterative repetition
2.1 for eackx training pattern do
2.1.1 define the winner node;
2.1.2 update the winner node and its neighboigs
2.1.3 if the number of the cycle is a multipleNbf
then reduce its learning rate along wismitighbours rates.
3. Until the characteristics map does not suffgnificant changes.

3.3 — Learning Vector Quantization — LVQ

The LVQ algorithm is a supervised learning techaigthich uses the information about the classemholy
move the weight vector, aiming at the increasing tluality of the classifier's decision regions fegich
supplied pattern as an input to the network. Thabécause it is supervised, the LVQ algorithm edter the
SOM training, evaluate the classification generdtgdhe network for each pattern [10, 11]. It isotigh this
evaluation that the LVQ algorithm proceeds, adngsthe weights, so that there can be a betterifitas®n of
the pattern.

The adjustment of the map of characteristics caselea as the first of two stages — using the SOivrark —
to adaptively solve a problem of classification gtterns. The second stage will use an LVQ algorith
perform an even finer tuning of the map of chandsties.

The training occurs when some patteris randomly obtained from the input space. Theeeaff the class
labels of the input patterae and if the weight vectar are in conformity, then the weight vector is moved
towards the pattem Otherwise, the weight vector is moved away frbm patterrx.

During the classification, the LVQ algorithm selie tweights of the winner node and those of its himigrs,
making the comparison between each of the netwarngist and output pattern and the expected output.

54

Revista CIATEC — UPF, vol.3 (1), p.p.48-64, 2011

(D) + @) (x (1) —w. (1)), tcl
):{W,.() n(t)(x (t)—w, (t)), correctclass -

W (t+1 :
. w; (1) =n7(t)(% (t) —w; (1)), incorrectclass

wherer(t) is the learning rate.
Table 3 briefly describes the training steps adogrtb the LVQ algorithm.

Table 3: LVQ training algorithm

1. Initialisation
1.1 initialise all the weights and parameters
2. lterative repetition
2.1 for eackx training pattern x do
2.1.1 define the winner node;
2.1.2 update the winner node and its neighboeights;
2.1.3 decrease the learning rate.
3. Until the error is smaller than a given value.

4. CLASSIFICATION MODELS

As mentioned, the purpose of the FEML is to faamiétthe data interchange between the many exiGti
programs, by using hierarchical models to map aot&lements, typical of each family and presenthi@
interface programs developed by many manufacturaesprding to their basic characteristics. From the
hierarchical models, interface sub-routines mustreated by the finite element programs using tBME to
allow for the data importation and exportation @sges.

4.1 — FEML Updating

With the goal of increasing FEML applicability anabustness, the inclusion of other families of elata to
the model proposed by Pinheiro [3] and Moita anchPiro [1] was necessary. Consequently, the prapose
model was updated with the addition of a continunbdimensional space family and the complemeatatf

the bi-dimensional continuous space family with #ueidition of new elements which have not yet been
contemplated [10, 11]. As a result a new versiothefhierarchical model is achieved, as depictdtyires 3
and 4.

The current hierarchical model had an increase2682 over the previous one, which represents ombetlof
the ten families within the LUSAS commercial pragraNaturally, this hierarchy tends to grow everttar
with the addition of the other families. Therefarés believed that a lot of processing time wid bpent with
the search routines to move from generalisatioe @lement family) towards specialisation (the eleme
classification), so that the equivalent (or similetement to the searched one can be found. Hehee,
implementation of intelligent routines becomes Bsaey, to allow a more dynamic access to the Spgatians
from the generalisations.

55

Revista CIATEC — UPF, vol.3 (1), p.p.48-64, 2011

c
Euiugu E
SEEHUEL g
.)
™
c
]
HAHIEIHIEE]
P slel sl el VR ELL2LELL 2T g
5!3!2:' - £t 'g' %
a ']
:
AHIHEBNHE
ECELLELELL R FL oL e] <]l] 5] s
2|t e|F||2]E -
:
HHIEHHIREIEER a =
HIETHIEHIBL E
4H
" c
LG |
AHIHUIE g_
.)
™
alu “ -
AHIEIHIEE
-
F T
g &
o
dlul|a a _—
alu alu alal | %[F i|F B g E
A ETEHHIHEIHOHE E‘ 8,
E a
alu el 21ellalu ullal
A U ERIHOIHHIEE .
:
HEATHBIHBEIEEH =
HIETEHIEIIHE ’§
alu
4l

Figure 3: The bi-dimensional family hierarchy

12

56

Revista CIATEC — UPF, vol.3 (1), p.p.48-64, 2011

FETTE]

W

-
T
|

1.1
FETTE]

T3
TUPATA
|

amimny

FETE]

Ll

armimn

Figure 4: The tri-dimensional family hierarchy.

1 E__ g "
HHIHHIHE 7] E 5 N
R B = HE
e[| 2] 2]E g
B
}E’ .
sle| | ElEf|z|E g E:
B
I E}g_
SHEIFTHIHE

57

Revista CIATEC — UPF, vol.3 (1), p.p.48-64, 2011

4.2 — Codification of the Finite Elements Charactstics

The data that feeds an ANN and which representsdhef its supplied patterns is numeric. Therefitreras
necessary to numerically codify the basic charaties of the elements to be supplied as the ifiputhe
network constructed. The arraythat feeds the network input has a dimensionw& b), which describe the
element in a more orderly way: Family, Shape, Aggilon, Order and Type, according to tables 4 teusther
ahead, Table 7 was created to perform the assmusabietween the input patterns and the name aflémaent
that is to be identified after its classificatioitiwthe desired values of the outgtLO].

Table 4: Codification of the families of elements

Cod 1 Family
2 Bidimensional (2D)
3 Tridimensional (3D)

Table 5: Codification of shape, application, orded element type

Cod_2 Shape Cod_3 Applicaton Cod 4 Orde Cod 5 ElememeT2D)| Element Type(3D)
1 Triangular 1 Dynamic 1 N/A 1 Plane Stress Solid
2 Quadrilateral 2 Static 2 Linear 2 Plane Strain lidSo
3 Tetrahedral 3 Field 3 Quadratic 3 Axisymmetric licco
4 Pentahedral
5 Hexahedral
Table 6: Codification of the element names
Cod| Name| Cofi Name | Cod Name | Cod Name Cod Name | Coq Name | Cod Name | Cod Name
1 N/A 10 | TAX6 | 19 N/A 28 QAX4 37| QXK8| 46 N/A 55 PN1Z 64 HX8
2 |TPM3E| 11 | TPK6 | 20| TXF6| 29 QPM4AM 38 QFD4 47 TH4E 56 PN15 |65IX8M
3 TPN3E| 12| TNK6| 21| TAX6H 30 QPN4M 39 N/A 48 THA4 57PN12L | 66 HX16
4 | TAX3E| 13 | TXK6 | 22 N/A 31| QAX4M| 40 QXF4| 49 TH10 5 PF6| 67 XBD
5 TPM3 14 TFD3 23| QPMAE 32 QPM8 41| QAX4H 50 TF4 59 PF12 68 HXI16L
6 TPN3 | 15 N/A 24 | QPN4E 33 QPN8 42 QFD8 5§51 TF10 50 PF[L5 |6HF8
7 TAX3 16 TXF3 25| QAX4H 34 QAX8 43 N/A 52 N/A 61| PF12Q 7 HF16
8 TPM6 17| TAX3F| 26 | QPM4 | 35 QPK8 44 QXF8§ 538 PN6E 62 N/A 71 HF20
9 TPN6 | 18| TFD6| 27| QPN4 36 QNKS8| 45 QAX8F54 PN6 63| HX8E| 72| HF16(

The following notation is used the tables 4 to 7:

- Network input: Vectorx — FE Cod_1 (Family);S Cod_2 (Shape)A: Cod_3 (Application);O:
Cod_4 (Order)T: Cod_5 (Element_Type).

- Network output: Vectoy — Classldentifying label of the set of grouped patterns.

- Classification:Cod — Identifying code of the element name in the sifasmtion; Name— Element
name in the classification.

Next, three network models are presented: classé#tREF and IvQEF, constructed with the goal of \aiit

this present proposal. For the creation of thessetprograms, MatLab Version 6.5 (Neural Networkllbox)
[11] was used.

58

Revista CIATEC — UPF, vol.3 (1), p.p.48-64, 2011

Table 7: Classification of the elements basic attaréstics

F S A O| T Class | Cod Name F S A O T Class| Cod Name
21 1 1 1 1 1 N/A 2 2,2 3 6 10 37 QXK8
2 1 1 2 1 2 2 TPM3E 2 23 2 1 11 38 QFD4
2 1 1 2 2 2 3 TPN3E 2 21 3 2 2 11 39 N/A
21 1 2 3 2 4 TAX3E 2 2,3 2 3 11 40 QXF4
2 1 2 2 1 3 5 TPM3 2 21 3 2 4 11 41 QAXA4F
2.1 2 2 2 3 6 TPN3 212 3] 31 12 42 QFD8
2 1 2 2 3 3 7 TAX3 2 21 3 3 2 12 43 N/A
21 2 3 1 4 8 TPM6 212 3] 3 3 12 44 QXF8
2 1 2 3 2 4 9 TPN6 2 21 3 3 4 12 45 QAX8F
21| 2 3 3 4 10 TAX6 3 3.1, 1 1 13 46 N/A

2 1 2 3 4 4 11 TPK6 3 31 2 1 14 47 TH4E
21| 2 3 5 4 12 TNK6 3 3,2 2 1 15 48 TH4
2 1 2 3 6 4 13 TXK6 3 32 3 1 16 49 TH10
2, 1| 3 2 1 5 14 TFD3 3 3,3 2 1 17 50 TF4
2 1 3 2 2 5 15 N/A 3 33 3 1 18 51 TF10
2 1 3 2 3 5 16 TXF3 3 41 1 1| 1 19 52 N/A

2, 1| 3 2 4 5 17 TAX3F 3 4,1 2 1 20 53 PNG6E
2 1 3 3 1 6 18 TFD6 3 41 2 2| 1 21 54 PN6
21 3 3 2 6 19 N/A 3 4,2 3 1 22 55 PN12
2 1 3 3 3 6 20 TXF6 3 4| 2 3| 2 22 56 PN15
2, 1] 3 3 4 6 21 TAX6F 3 4 2 3 3 22 57 PN12L
2 2 1 1 1 7 22 N/A 3 4 3 2| 1 23 58 PF6
2.2 1 2 1 8 23 QPM4E 3 4, 3 3 1 24 59 PF12
2 2 1 2 2 8 24 QPN4E 3 4| 3 3| 2 24 60 PF15
2.2 1 2 3 8 25 QAX4E 3 4, 3 3 3 24 61 PF12C
2 2 2 2 1 9 26 QPM4 3 51 1 1 25 62 N/A
2.2 2 2 2 9 27 QPN4 3 5 1 2 1 26 63 HX8E
2 2 2 2 3 9 28 QAX4 3 52 2 1 27 64 HX8
2 2 2 2 4 9 29 QPM4M 3 52 2 2 27 65 HX8M
2.2 2 2 5 9 30 QPN4M 3 5 2 3 1 28 66 HX16
2 2 2 2 6 9 31 QAX4AM 3 5 2 3 2 28 67 HX20
2.2 2 3 1 10 32 QPM8 3 5 2 3 3 28 68 HX16L
2 2 2 3 2 10 33 QPNS8 3 5 3 2 1 29 69 HF8
22 2 3 3 10 34 QAX8 3 5 3 3 1 30 70 HF16
2 2 2 3 4 10 35 QPK8 3 5 3 3 2 30 71 HF20
2.2 2 3 5 10 36 QNKS8 3 5 3 3 3 30 72 HF16C

4.3 — Description of the ClasseF Network

The goal here is to perform the classificationhaf finite element through the attribution of thpuhpatterns to
be identified from within a set of previously knowlasses.

4.3.1 Implementation of the classEF

The classEF.m program is a network of the MLP typases the backpropagation supervised learnirthade
based on the approximation between the ideal knmetraviour and a real adjustable behaviour, thraught
of input data and their respective classifications.

The following data was supplied to the networkeadf patterns representing the finite elementemiag to
the codification described in Section 5.2 to thewoeek input vectorx and a set of classes to the vegtas an
expected output to this network — also codifiedoadimg to Table 7 — to be associated after thaitrgiof the
initially informed vectorx. Thus, this network was created containing fiveuinelements, thirty intermediate
layers and five output elements.

59

Revista CIATEC — UPF, vol.3 (1), p.p.48-64, 2011

During the training stage, the learning rate wésaily high, close to one (1), and it is graduallgcreased until
it reaches a given acceptable and previously inddrivalue. In this case, up to five hundred (50&)aiion
cycles were necessary, so that this network caeddhr a learning rate of the expect order of 0.(0ichvis
equivalent to 1 percent (1%) of errors in the reduting the execution of the training stage.

4.3.2 Results of the classEF

The tests performed to verify this network modelgented a one hundred percent (100%) satisfaaibrias,
once the input and output were previously inforraed the trained network merely related the inpat @utput
vectors, in a one-to-one basis, which ought to tmeeted for a supervised network. In other wortls, t
network was capable of associating the patterkiseitv to the corresponding classes, which were @yreaow
as well. In the opposite side, the network waspabte of associating the new and unknown patteitis av
representative class, in accordance to the resegddabetween the known and trained patterns, pgiegem
result of zero percent (0%) hits on the unknowmelets.

It was verified that this network presented, to piheblem in question, a limitation facing an unkmoanswer
to a new pattern supplied as its input. It was tated that this network could not classify a newgya by the
similarities with the other already known patterBsie to this limitation, the somEF model, descriliedhe
following section, was tested.

4.4 — Description of the SomEF Network

The goal now is to perform the classification o finite elements, from which all that is known &ne input
data, forcing the network to find the class thatrigst similar to the set of supplied data. Theesfahis
network is a SOM model with unsupervised learning.

4.4.1 Implementation of the somEF

The following data was supplied to the network:ed sf patterns which represent the finite elements
compliance with the codification given in Sectior2;5the initial values for the weights were obtaine
randomly; and the neighbouring shape was rectangalaompliance with the description in SectioB.4.

For the training of the SOM networks, an initiatligh training rate, close to one (1), was used, gshauld be
gradually decreased until a certain acceptable@rigusly informed value. Up to five hundred (5@@yation
cycles were necessary, so that this network cocihiege the expected learning rate of the order.@f @nd
equivalent to the one percent (1%) error rate énrésults during its execution. This network topgloeeded a
total of fifty thousand (50,000) iteration cycles rieach the proper performance. For this trainitages a
sample of fifty percent (50%) of the total elements used as the set of the network supplied ipatterns, to
represent the finite elements of the continuouditmiensional and tri-dimensional space families sthom
Table 7.

After the training, the network should be able(&):perform the classification, in terms of equérdlof similar
elements (less specialised) over the new elemearstepted to it, according to the equivalence betvtken
already existing patterns; and (b) to present asnsmwer the class that represents the groupinigeopatterns
which is identified.

4 .4.2 Results of the somEF

During the test performing stages, it was verifiledt this network was capable of performing mamgdki of
groupings, according to its own similarity critenghich are based on the characteristics of the- self
classification topology. Tables 8 and 9 show softb@groupings this network could perform.

Table 8 shows the classification of the element®miing to the last three positions of the inputteex, i.e.,
according to the application, order and elemene tigund, in compliance with the codification debked in
Section 5.2. This network grouping criteria seembé related with the identification of patternsiethposses

60

Revista CIATEC — UPF, vol.3 (1), p.p.48-64, 2011

the same values ("1;1;1") on the three last posstiand which present different values on the fogt. Thus,
the grouped patterns were classified as similaepe by this topology.

Table 8: Grouping of the similar elements by aggilan, order and element type

Elements
P=[2;11:1;1]
P=[2;21:1;1]
P=[3;31:1,1]
P=[3;41:1;1]
P=[3;51:1;1]

Table 9 shows the classification of the elementeming to the first two positions of the input ta@rc, i.e.,
according to the common family and shape foundpirformity with the codification described in Secti5.2.
In this table, the classification by similarity ixeten the patterns was identified by the equalitthefvalues on
the first two positions of the vector x ("2;1") abg the difference between the other three.

Table 9: Grouping of the similar elements by fanaihd shape

Elements
P=[2;1;2;2;1]
P=[2,1;1;2;2]

According to the needs and goals of the classifinatf the elements present in FEML, this netwdrkidd be
able to classify the characteristics which desdtileepatterns with better approximation, considgtire values
present in the five positions of which the inputtegx is constituted, i.e., the values of the firsethpositions
of the vector should be equivalent and the two pasitions could present some more flexibility bedw the
equivalence or approximation of the values, as ritest in tables 10 and 11. Such characteristics bman
observed in figures 3 and 4 which show the finieenent hierarchy which was employed.

Table 10: Grouping of the equivalent elements loyilig shape, application and order

Elements
P=[2;1,2,2;1]
P=[2;1;2;2;4]

Table 11: Grouping of the similar elements by shape

Elements
P=[2;1;2;2;1]
P=[2;2;2;2;1]

Thus, according to the results obtained about ¢bts tperformed on this network, it was verifiedt thavas
capable of recognizing only forty percent (40%)tlué elements presented, based on the similarigaseen
the elements which it had already known and traidedording to the same results, it could be coetuthat
this network still could not find a suitable levafl learning and that the training stages performwede not
sufficient to the network to present satisfactagults complying with the needs of this researcbrddver, it

61

Revista CIATEC — UPF, vol.3 (1), p.p.48-64, 2011

was verified that, if new cycles were performedinlyirthe training — even ten more iterations — thgults
would get even worse, i.e., they tend to decreatkten percent (10%) of the recognition of thevrgatterns.
From this limitation, it is clear that the SOM netik is indicated for grouping, visualizing and abstion of
known patterns, but that it is not suitable for teeognition of unknown patterns. Thus, for theogeation or
classification of patterns to be performed in aenefficient way, it is advisable that network togrejected be
used in conjunction with a supervised learning rhode

4.5 — Description of the LvqEF Algorithm

The IvgEF program was created with the goal ofgrening the classification of the elements from vhibe
input data and a set of classes are known, whiptesent the universe in question, forcing the ndtwo
associate classes and patterns which are the imilstrao the set of supplied data.

This network is a SOM model with supervised leagnin

4.5.1 Implementation of the IvQEF

The following data was supplied to this networkset of patterns which represent the finite elemémts
compliance with the codification described in Sattb.2; a set of representative classes elaboiatettie
network’s Supervisor to be transformed into thes®ts vector, in compliance with the codificatiosatided in
Table 7; the weights were randomly initialized; dheusand and fifty hundred (1,500) iteration cgoleere
used, so that the learning rate of the order of @duld be achieved at each training stage; amdahdf four
thousand and fifty hundred (4,500) iterations,hsd the network could achieve an adequate perfarean

For the training stage, again a sample of fiftycpat (50%) of the total elements was used as thefdbe
network supplied input patterns, to represent thief elements of the continuous bi-dimensional &md
dimensional space families shown in Table 7. Theksupplied classes, also numerically coded mm@nce
with Table 7, was obtained through the network'p&uisor, i.e., by a human specialist who holds the
knowledge about the domain of the problem. Theegatused by the network’s Supervisor to choosg thi
representative classes for the grouping of theepwtt performed by the network was based on common
characteristics about the family, shape, applicatimd order among the classified finite elements, i
compliance with the hierarchical model presentefignres 3 and 4 and also associated in accordaitbe
Table 7.

4.5.2 Results of the IvgEF

The tests performed on the IvQEE tool were a omalted percent (100%) satisfactory. It was veritieat this
network was capable of performing the classificatiath greater efficiency in terms of equivalentsamilar
elements (less specialised), in relation to the elmments to which it was presented and, also,rdrmpto the
equivalence between the already existing pattetotsining the class which represents the groupivigsh it
identified as the answer. Figure 5 synthesisegtaetical result of this evaluation.

C5d | Home

\[55 P12
1T s6 | PN1S
\ ' 2[57 |PN12L

AN RW

Figure 5: Practical results of the IvQEF

62

Revista CIATEC — UPF, vol.3 (1), p.p.48-64, 2011

By presenting a new pattern ([3;4;2;3)io this network, the answer obtained is the nunati¢he class (22)
which represents the grouping of patterns thadbgnises and which posses characteristics sitildnose of
the new supplied pattern. According to the sematggcriptions (Code and Name) of the elements ffabie

7, the new pattern can be classified as a kindatem similar to those grouped and labelled byciass that
was found, which testifies the generalisation capadt the trained model.

In Table 12 a better display of the pattern ([3%;J"), identified by the network, can be seen, preskatean
answer the number of the class (30) which represenat grouping of the patterns which it knows amat t
posses characteristics similar to those of the lmgpattern. According to the descriptions (Codd &lame)

of the elements from Table 7, it is possible t@sify the pattern recognised by the network witkcigion.

Table 12: Groupings of the equivalent elements

Supplied Pattern Network Answer Classification
(class) Code Name
[3;5;3;3;2] 30 71 HF20

5. FINAL CONSIDERATIONS

The problem of data transportation between diffefemmats and platforms requires the constant apfitin of
new technologies, processing agility and trustwoebss on the information transport. These are pibus
arguments to the appearance of new proposals ednes In this sense, there is still much to doohdywhat
has already been done until the present days.

As it was displayed in this present work, the d&Ssetwork was not capable of classifying the umkmo
patterns (new patterns) in accordance to the gitigis with the patterns that the network knowse Tasults
prove that this kind of network (MLP) has betteplagability in classification when the informati@bout the
problem's domains and its relations are previoagiged, not showing itself as applicable to the tsofuof the
problem in question.

The somEF network has poorly recognized the elesnémtwhich it was presented according to their
equivalence with the elements which it has traiaed has been previously exposed to, and, therefoie,
inadequate according to FEML necessities. Howether,capacity of this type of network to perform man
kinds of groupings, which emphasises its applidghih problems which require visualisation and tadstion
of the data between a set of known patterns, waified.

The results and the analyses performed state tieativgEF network is the most applicable among the
topologies presented here. It was capable of efftty recognise groupings of similar or equivalpatterns in
a same class, allowing for the inclusion of nevigrat and, therefore, readily taking care of theeasities and
the classification goals of the finite elementaped by the FEML.

It is expected, as a result, that this tool cartrdaute, giving greater applicability to the FEMariguage as an
effective data interchange standard for FEM prograatiowing to the interface programs of the firestement
software to dynamically optimise the importationgass between the proprietary and the neutral tstma

6. REFERENCES

[1] Moita GF, Pinheiro MC. Towards a standard faoité element data exchange using XML. CD-Rom
Conference Proceedings of the 7th U.S. Nationab@ess on Computational Mechanics, Albuquerque, USA,
2003.

63

Revista CIATEC — UPF, vol.3 (1), p.p.48-64, 2011

[2] Zurada JM, Introduction to Artificial Neural Sgems. Boston, MA: PWS Publishing Company, 1995.

[3] Pinheiro MC. A Proposition of a XML Schema fiwe Interchange of data between Finite Element
Programs, M.Sc. Dissertation, Program in Techngl@BFET-MG, Belo Horizonte, Brazil, 2003 (in
Portuguese).

[4] Connolly D, Khare R, Rifkin A. The evolution &¥eb documents: the ascent of XML. World Wide Web
Journal 1997; 2 (4): 119-128.

[5] Marchal B, XML by example.®Edition. Indianapolis, EUA, 2000.

[6] W3C — World Wide Web Consortium. A Conversioadl from DTD to XML Schema. 2000. Available in
<http://www.w3.0rg/2000/04/ schema_hack>. Accesar RDO6.

[7] Lee D, Chu WW. Comparative Analysis of Six SefzeLanguages. ACM Sigmod Record 2000; 29 (3).
[8] LUSAS. User Guide FEA Ltd. United Kingdom, 2004.

[9] Meireles MRG, Almeida PEM, SimbBes MG. A Compeekive Review About Industrial Applicability of
Artificial Neural Networks. IEEE Trans. on IndustrElectronics 2003; 50 (3): 585-601.

[10] Oliveira DMLM. An Intelligent Hierarchical Chksification of Finite Elements within a XML Schema,
M.Sc. Dissertation, Program in Mathematical and @atational Modeling, CEFET-MG, Belo Horizonte,
Brazil, 2005 (in Portuguese).

[11] Oliveira DMLM, Pinheiro MC, Moita GF. On thedyelopment of a Neutral Format with Intelligent
Element Classification for Data Sharing Among FEdPams. CD Rom Conference Proceedings of ECT 2006
- The Fifth International Conference on Engineef@amputational Technique, B.H.V. Topping, (Editor),
Civil-Comp Press, Stirling, United Kingdom, 2006.

[12] MATLAB. MathWorks Products Usedvailable in: <www.mathworks.com>. Access: S&fi08.

64

