
Revista CIATEC – UPF, vol.3 (1), p.p.48-64, 2011

doi: 10.5335/ciatec.v3i1.2190 48

A DATA EXCHANGE NEUTRAL FORMAT FOR FINITE ELEMENT C ODES
USING AN INTELLIGENT ELEMENT CLASSIFICATION

Gray F. Moita1 , Paulo Eduardo M. Almeida2, Denise M.L.M. Oliveira3, Marden C. Pinheiro4
1Centro Federal de Educação Tecnológica de Minas Gerais, E-mail: gray@dppg.cefetmg.br

2Centro Federal de Educação Tecnológica de Minas Gerais, E-mail: paulo@dppg.cefetmg.br
3Centro Federal de Educação Tecnológica de Minas Gerais, E-mail: deniseoliveira@civil.cefetmg.br

4Universidade FUMEC, E-mail: marden@fumec.br

ABSTRACT

This work presents the basis of the Finite Element Markup Language (FEML) proposal and also an
intelligent tool for the recognition and classification of finite elements families used in conjunction
with the above XML schema. The need for the classification becomes clear due to the necessity of a
mapping between the several elements in a given code and the FEML format. A tree-type search
could be used but it can lead to a lengthy if-then-else sequence to perform the matching. The use of a
database-type classification could also be an option; however the search mechanism would still be
required. Moreover, the use of an intelligent-type classification is also able to accommodate changes
in the element families to be classified and new elements can be added with minimum effort. Here,
the so-called intelligent classification uses the technology of artificial neural networks, specifically
through of application the Self-organizing Map Networks and the Learning Vector Quantization. To
carry out this task, the network receives the attributes of the elements and makes its classification, in
terms of equivalent (or similar, less specialised) elements. At the end, it allows for the interface
programs to “translate” between a specific (proprietor) format and the neutral format, in an intelligent
way, minimizing errors due to manual data transcription and eliminating the necessity of searching
the entire tree of elements. Keywords: Classification; finite elements; artificial neural network; self-
organizing map; learning vector quantization; XML schema.

1. INTRODUCTION

Structure analysis software that use the Finite Element Method (FEM) are programs that handle physical
phenomena which are expressed by means of fairly complex models and tend to output great volume of data
within their descriptions. Also, the difficulty of data interchange between FEM programs is notorious, since
each of the programs features particular sets of elements, originated from distinct formulations, frequently used
for the solution of one particular problem. The lack of a standard format for data interchange between these
programs is notable and makes the multi-application work to solve or to model such a problem much harder.
The purpose of this present work is to ease the information exchange between several of the existing finite
element programs. For this, one could make use of a standard output to feed other systems’ input, thus
maintaining data integrity and turning their processing into a more dynamic event.
In the field of Information Systems, the process of importing and exporting data has been facilitated by the
usage of the Extensible Markup Language (XML). This language is a natural candidate to allow for the creation
of a vast lexicon for the description of both data and structures to be used on the input and output interfaces of
each FEM system. Its usage has been growing considerably in environments in and outside the Internet, as a
basis for languages and vocabularies for the conception of neutral, non-proprietary and extensible formats,
aiming at the electronic data interchange between distinct applications. Within this context, the Finite Element

Revista CIATEC – UPF, vol.3 (1), p.p.48-64, 2011

49

Markup Language (FEML) scheme for data interchange between finite element software is an innovative and
flexible proposal to the solution of such problems, since these programs work with families of elements, which
can be mapped, at their majority, into equivalent elements in all other programs [1].
The usage of the Artificial Neural Networks (ANN) technology in the resolution of problems by classification
has been widely spread. Some of the typical examples are voice, characters and image recognition [2]. Other
examples are in complex systems capable of capturing important statistically intrinsic characteristics within an
input space (data), describing collective sorting phenomena from a given initial disorder and forming groupings
of similar patterns in a map of self-organizing characteristics.
The current work presents a brief description of the FEML tool, proposed by Pinheiro [3], which is a
proposition of a neutral format for the structuring and data interchange between FE programs. The FEML was
created with the aid of the XML and XML schema technologies. It also presents a tool, constructed with ANN,
specifically by self-organizing networks and a Learning Vector Quantization (LVQ) algorithm, to be run in
conjunction with the FEML. The network allows for the interface software between the many existing FEM
programs to execute the data interchange operations in an intelligent and dynamic way from the FEML itself.

2 . THE FINITE MARKUP LANGUAGE – FEML

The XML was initially suggested as a complement to the HTML language, given the increasing demand for
new tags, formats and data types available on the web. Connolly et al. [4] had already pointed out such demand,
even before the first formal W3C (World Wide Web Consortium) recommendation, in 1998. Nowadays, the
XML has rapidly grown to the point of holding a much higher level than that of a mere data displaying
language for the Internet [5].
As mentioned above, the present work deals with the possibility of creating a XML vocabulary for the finite
element data interchange applications. In general, these kinds of vocabularies are considered XML applications,
created from a document model verifiable by any given syntactic analyser. From this concept, a way of
validating an XML document can be created, once its structure and its element possible content are known. In
this way, there is still the possibility of validating the content and the structure of a given document from a
descriptor, creating, thus, a family of documents which complies with that determined descriptor. These
families of documents many times gain their own denominations, like the MathML (Mathematical Markup
Language), destined to the description of mathematical formulas and equations, the CML (Chemical Markup
Language) for the description of chemistry formulas, the MatML (Material Markup Language), which
characterizes materials, or the FEML(Finite Element Markup Language) itself, also an object of this study. The
FEML is a XML Schema [6, 7].
The main goal of the FEML is to produce a vocabulary which described syntactic and semantically the data
structure required by a FEM program, so that its export and import tools could be facilitated. In this way, a
structure that has been modelled by a given program can have its data exported to another program using a
neutral format. This avoids data re-entrance, a step that can take way too much time, given the amount of data
in a typical model, and may also add typing errors. The proposal of this tool is illustrated in Figure 1, which
also indicates another of the focus of the present study, that is, the application of ANN.

Figure 1: FEML’s primary proposal

FEM program A

FEML

(neutral format)

FEM program B

Export Import

ANN

Revista CIATEC – UPF, vol.3 (1), p.p.48-64, 2011

50

Most programs generate exportation files, but they do it in proprietary formats. Thus, to obtain the portability
between these programs, each one should have several importation interfaces, basically one for each exporting
program. As the number of programs increases, the viability of this approach weakens. Therefore, the creation
of a standard export file becomes fundamental when using more than one program to run a specific analysis.
This format could be shared between the software developers. However, it would be difficult to come up with a
format which gathered all of the XML intrinsic facilities, such as its capability of syntactic and semantic
description, as well as its hierarchical structuring, allied to the power of a Validation Scheme with the strong
type setting and definition of content of a XML Scheme.
With that in mind, Pinheiro [3] proposed the basic XML Scheme FEML, as well as a suggestion of the tree
structuring for the primary elements used by the LUSAS commercial software [8], here used as the basis for the
present development. The FEML, in its initial proposal, creates a document which should basically describe the
finite element topology of the model, the material of each element and the loading and boundary conditions to
which the model is subjected, alongside with some control variables. This information, along with options for
the project documentation (author, date, source of information, etc), should be sufficient, so that a second MEF
program could be totally fed with the necessary data for the calculation straight out of them, having to have
only a few additional data supplied, such as processing options or comments.
To achieve this initial proposition, it was necessary to dispose the elements in a hierarchically structured way,
so that each program would not take the element characteristic name, as it is known in its original environment,
but its primary characteristics and, from these, be able to define which of its implemented elements could be
used on that case. In other words, as possibly there is not a one-to-one equivalence between the many
implemented elements in each environment, the element type setting must be done through its characteristics,
not by specific identifications from its original environment. This shows that the adoption of a data portability
standard demands the adoption of other standards, such as this basic tree for the element’s hierarchicalisation.
An example is shown below:
 <Example Family=“2D”
 Shape=“Triangular”
 Application=“static”
 Order=“quadratic”
 ElementType=“plane stress”
 Name=“TPM6”/>
Thus, a tree was sought (Figure 2) which, from a basic grouping of families, was subdivided by their primary
forms, their application, the order and, finally, the element type.
In this way, each program could implement this hierarchy and organise its elements through it. The data
received by FEML could then be identified from within this hierarchy, thus sufficing to the program to import
the data referring to the topologies, materials, boundary conditions and loading, relieving the user from the
responsibility of inputting all the data for that environment.

Revista CIATEC – UPF, vol.3 (1), p.p.48-64, 2011

51

Figure 2: Continuous bi-dimensional space family hierarchy

3. ARTIFICIAL NEURAL NETWORKS

The ANN are mathematical models inspired after the biological neural structure and which possess
computational capacity acquired by means of learning and generalization [2, 9]. They are constituted by a large
number of simple processing elements, with many connections among themselves (synapses), which are prone
to the storage of the experimental knowledge and to make it available for later use. The knowledge is acquired
through the process of training.
The networks training methods can be arranged in two basic types: supervised learning (response monitoring)
and unsupervised learning (unknown answer). Other two types are also very commonly used: reinforcement
learning (the intermediate case between the supervised and the unsupervised learning methods) and the
competition learning method (particular case of unsupervised learning).
On the supervised learning, the networks response is monitored by the supervisor. The learning set is formed by
input and output pairs (xi,yid), where xi represents the input pattern and yid represents the expected output to the
supplied xi pattern. In this case, the network response to each xi input is already known. The weight adjustment
represented by ∆w is done in such a way that the network yi response to the xi pattern approximates the desired
yid output.

Revista CIATEC – UPF, vol.3 (1), p.p.48-64, 2011

52

As for the unsupervised learning method, the training is formed by the xi input patterns and the weight
adjustment, ∆w, is only obtained through the values of the input pattern. The knowledge is acquired through the
existing harmony with the statistical regularities in the network input pattern and through the redundancy of the
data that it receives. This is how the network develops the ability to form internal representations to codify the
characteristics perceived in the input and automatically creates new classes or groups.
The competition learning method is characterised by receiving the pattern from the “disputing” inputs, and only
one of these will actually come out as the winner. These inputs are directly connected to the outputs, which can
also be connected among themselves through lateral inhibitor (or negative) connections. The output with the
greatest initial activation will have the best chance to score the dispute with the other outputs and these will,
along the time, lose their inhibition power over the output with the biggest activation, rendering them
completely inactive – except the winner. This method is known as Winner-Takes-All.
The solution of problems through classification in ANN occurs through the attribution of patterns such as the
input to be identified from within a set of previously known classes. On the other hand, the solution by
categorisation happens when the network finds some harmony with the statistical regularities of the input set,
being, thus, able to group patterns through the codification of the supplied characteristics.
In this work, the results of three different network models, built to perform pattern classification using the
supervised and unsupervised learning paradigms, are presented. The first case uses the supervised learning
method, in which the input and output vectors are previously presented to the network, which performs their
respective association. On the second case, the information is supplied through the set of patterns which the
network receives as input, from which it then self-organises, defining its own parameters without any external
aid, and that forms the concept of unsupervised learning. On the third case, the supervised algorithm corrects
the parameters defined by the unsupervised method, aiming a gain in the overall performance of the network
for the purpose of classification.

3.1 – Multi-Layer Perceptron – MLP

The MLP networks are characterised by presenting a unidirectional signal flux, one input layer, one or more
layers hidden and an output layer. One of its primary advantages is the capacity of approximation of non-linear
functions.
Learning in an MLP network occurs through a set of training patterns, composed of input arrays and their
respective expected outputs, which will be presented to the network. The output and the error between the
expected and obtained outputs are calculated, enabling the tuning of the patterns.
The training algorithm for the MLP networks is built as described in Table 1.

3.2 – Self-organizing Map – SOM

The SOM network was developed by Teuvo Kohonen during the eighties. It is neuro-physiologically inspired
and was primarily based on the topological map present within the cerebral cortex. The neurons have lateral
connection forces, which depend on their distances. This topological ordering is the result of the usage of lateral
“refeeding” between the cerebral cortex cells [2].

Revista CIATEC – UPF, vol.3 (1), p.p.48-64, 2011

53

Table 1: The training algorithm for MLP networks

The lateral refeeding of a SOM network is modelled by a popularly known function named the Mexican Hat.
According to this function, each neuron influences the activation states of its neighbours in three ways:
excitatory (close neighbours – within the ray ranging from 50 to 100 µm), inhibitory (within a second
intermediate area) and lightly excitatory (most external area – ranging from the ray of 200 to 500 µm) [2].
The set of patterns supplied as the network input – which correspond the network nodes – is organized in a
grid, generally bi-dimensional. Each node in the network receives all the inputs which are also connected to the
neighbouring nodes (closest ones). The more similar the weight vector’s input from a determined node, the
bigger its output value will be. During the learning period, the nodes specialize themselves to the detection of a
set of input patters; in other words, the nodes are topologically organised throughout the network, making the
patterns detected by a given node relate to the coordinates of the node on the grid. Hence, the map of auto-
sorting characteristics about the input patterns is formed, whereby the similar patterns are detected as being the
closest nodes inside the grid.
The SOM training algorithm is built through competition. When a network node wins the competition, not only
itself, but its neighbouring nodes will have their weights adjusted, a similar result as that of the Mexican Hat
function.
The functioning of the SOM network happens basically when a certain pattern p is presented. The network will
then search for p’s most similar node. During the training, the network magnifies the resemblance of the chosen
node and of its neighbouring nodes to p. In this way, the network builds the topological map, where the
neighbouring nodes respond similarly to similar input patterns.
A node activation state is determined by the euclidian distance between the weight and the input patter, as
described in the Equation (1):

∑
=

−=
n

i
jii wxy

1

2||||

(1)

in which xi is the input pattern, wji is the connection weight, n is the quantity of nodes in the network.

1. Initialisation
 1.1 randomly initialise the wij weights;
 1.2 initialise the threshold variables θi;

2. Activation
 2.1 process the MLP network by the application of the xi inputs;
 2.1.1 calculate the yi outputs ;
 2.1.2 increment the 1 (p=1) iteration;
 2.1.3 calculate the outputs of the hidden layer for the j neuron;
 2.1.4 calculate the MLP network’s output for all of its neurons.

3. Weight adjustments in the output layer
3.1 calculate the error gradient committed in the current iteration for the

 neurons in the output layer;
 3.2 update the weights of the output layer.

4. Weight adjustments in the occult layer
 4.1 calculate the error gradient committed in the current iteration for the
 neurons in the occult layer;
 4.2 update the weights of the hidden layer.

5. Iterative repetition
 5.1 increment the p iteration counter;
 5.2 return to step 2.

6. Repeat until the conclusive criteria has been reached.

Revista CIATEC – UPF, vol.3 (1), p.p.48-64, 2011

54

The neighbouring criteria shows how many nodes around the winner node will have their weights adjusted, that
is, where the influence area of the winner node is defined. The neighbouring region may present different
magnitudes and forms. Generally the forms used are linear, square, hexagon, circle and others, being the square
the most commonly used. The definition of the most adequate form depends on the problem in question and on
how the data will be distributed, normally defined by trial and error.
The size of the neighbourhood around the winning node is changed throughout the training process; it is
initially wide, but is progressively reduced until the predefined limit, where the reduction rate is the linear
function of the number of cycles. After the training, the network forms groupings, which will be labelled to
indicate the class which they represent and thus allowing for classifications of unknown patterns.
The Equation 2 refers to the weight updating of the winner node and its neighbours.





 ∆∈−+

=+
otherwise),(

)(if)),()()(()(
)1(

tw

tjtwtxttw
tw

ji

jiiji

ji

η

(2)

in which wji is the connection weight in the moment t, between the input element xi(t) and the j node and η(t) is
the learning rate.
Table 2 shows the training algorithm for the SOM networks.

Table 2: Training algorithm for the SOM networks

3.3 – Learning Vector Quantization – LVQ

The LVQ algorithm is a supervised learning technique which uses the information about the classes to lightly
move the weight vector, aiming at the increasing the quality of the classifier’s decision regions for each
supplied pattern as an input to the network. That is, because it is supervised, the LVQ algorithm can, after the
SOM training, evaluate the classification generated by the network for each pattern [10, 11]. It is through this
evaluation that the LVQ algorithm proceeds, adjusting the weights, so that there can be a better classification of
the pattern.
The adjustment of the map of characteristics can be seen as the first of two stages – using the SOM network –
to adaptively solve a problem of classification by patterns. The second stage will use an LVQ algorithm to
perform an even finer tuning of the map of characteristics.
The training occurs when some pattern x is randomly obtained from the input space. Thereafter, if the class
labels of the input pattern x e and if the weight vector w are in conformity, then the weight vector is moved
towards the pattern x. Otherwise, the weight vector is moved away from the pattern x.
During the classification, the LVQ algorithm sets the weights of the winner node and those of its neighbours,
making the comparison between each of the network’s input and output pattern and the expected output.

1. Initialisation
 1.1 initialise all the weights and parameters

2. Iterative repetition
 2.1 for each x training pattern do
 2.1.1 define the winner node;
 2.1.2 update the winner node and its neighbour weights;
 2.1.3 if the number of the cycle is a multiple of N

 then reduce its learning rate along with its neighbours rates.
3. Until the characteristics map does not suffer significant changes.

Revista CIATEC – UPF, vol.3 (1), p.p.48-64, 2011

55







−−

−+
=+

classincorrect)),()()(()(

classcorrect)),()()(()(
)1(

twtxttw

twtxttw
tw

jiiji

jiiji

ji η
η

(3)

where η(t) is the learning rate.

Table 3 briefly describes the training steps according to the LVQ algorithm.

Table 3: LVQ training algorithm

4. CLASSIFICATION MODELS

As mentioned, the purpose of the FEML is to facilitate the data interchange between the many existing FEM
programs, by using hierarchical models to map a set of elements, typical of each family and present in the
interface programs developed by many manufacturers, according to their basic characteristics. From the
hierarchical models, interface sub-routines must be created by the finite element programs using the FEML to
allow for the data importation and exportation processes.

4.1 – FEML Updating

With the goal of increasing FEML applicability and robustness, the inclusion of other families of elements to
the model proposed by Pinheiro [3] and Moita and Pinheiro [1] was necessary. Consequently, the proposed
model was updated with the addition of a continuous tri-dimensional space family and the complementation of
the bi-dimensional continuous space family with the addition of new elements which have not yet been
contemplated [10, 11]. As a result a new version of the hierarchical model is achieved, as depicted in figures 3
and 4.
The current hierarchical model had an increase of 225% over the previous one, which represents only three of
the ten families within the LUSAS commercial program. Naturally, this hierarchy tends to grow even further
with the addition of the other families. Therefore it is believed that a lot of processing time will be spent with
the search routines to move from generalisation (the element family) towards specialisation (the element
classification), so that the equivalent (or similar) element to the searched one can be found. Hence, the
implementation of intelligent routines becomes necessary, to allow a more dynamic access to the specialisations
from the generalisations.

1. Initialisation
 1.1 initialise all the weights and parameters

2. Iterative repetition
 2.1 for each x training pattern x do
 2.1.1 define the winner node;
 2.1.2 update the winner node and its neighbours weights;
 2.1.3 decrease the learning rate.

3. Until the error is smaller than a given value.

Revista CIATEC – UPF, vol.3 (1), p.p.48-64, 2011

56

Figure 3: The bi-dimensional family hierarchy

Revista CIATEC – UPF, vol.3 (1), p.p.48-64, 2011

57

Figure 4: The tri-dimensional family hierarchy.

Revista CIATEC – UPF, vol.3 (1), p.p.48-64, 2011

58

4.2 – Codification of the Finite Elements Characteristics

The data that feeds an ANN and which represents the set of its supplied patterns is numeric. Therefore, it was
necessary to numerically codify the basic characteristics of the elements to be supplied as the input for the
network constructed. The array x that feeds the network input has a dimension of five (5), which describe the
element in a more orderly way: Family, Shape, Application, Order and Type, according to tables 4 to 6. Further
ahead, Table 7 was created to perform the associations between the input patterns and the name of the element
that is to be identified after its classification with the desired values of the output y [10].

Table 4: Codification of the families of elements

Cod_1 Family
2 Bidimensional (2D)
3 Tridimensional (3D)

Table 5: Codification of shape, application, order and element type

Cod_2 Shape Cod_3 Application Cod_4 Order Cod_5 Element_Type (2D) Element_Type(3D)
1 Triangular 1 Dynamic 1 N/A 1 Plane Stress Solid
2 Quadrilateral 2 Static 2 Linear 2 Plane Strain Solid
3 Tetrahedral 3 Field 3 Quadratic 3 Axisymmetric Solid
4 Pentahedral
5 Hexahedral

Table 6: Codification of the element names

Cod Name Cod Name Cod Name Cod Name Cod Name Cod Name Cod Name Cod Name
1 N/A 10 TAX6 19 N/A 28 QAX4 37 QXK8 46 N/A 55 PN12 64 HX8
2 TPM3E 11 TPK6 20 TXF6 29 QPM4M 38 QFD4 47 TH4E 56 PN15 65 HX8M
3 TPN3E 12 TNK6 21 TAX6F 30 QPN4M 39 N/A 48 TH4 57 PN12L 66 HX16
4 TAX3E 13 TXK6 22 N/A 31 QAX4M 40 QXF4 49 TH10 58 PF6 67 HX20
5 TPM3 14 TFD3 23 QPM4E 32 QPM8 41 QAX4F 50 TF4 59 PF12 68 HX16L
6 TPN3 15 N/A 24 QPN4E 33 QPN8 42 QFD8 51 TF10 60 PF15 69 HF8
7 TAX3 16 TXF3 25 QAX4E 34 QAX8 43 N/A 52 N/A 61 PF12C 70 HF16
8 TPM6 17 TAX3F 26 QPM4 35 QPK8 44 QXF8 53 PN6E 62 N/A 71 HF20
9 TPN6 18 TFD6 27 QPN4 36 QNK8 45 QAX8F 54 PN6 63 HX8E 72 HF16C

The following notation is used the tables 4 to 7:

- Network input: Vector x – F: Cod_1 (Family); S: Cod_2 (Shape); A: Cod_3 (Application); O:
Cod_4 (Order); T: Cod_5 (Element_Type).

- Network output: Vector y – Class: Identifying label of the set of grouped patterns.
- Classification: Cod – Identifying code of the element name in the classification; Name – Element

name in the classification.

Next, three network models are presented: classEF, somEF and lvqEF, constructed with the goal of validating
this present proposal. For the creation of these three programs, MatLab Version 6.5 (Neural Network Toolbox)
[11] was used.

Revista CIATEC – UPF, vol.3 (1), p.p.48-64, 2011

59

Table 7: Classification of the elements basic characteristics

F S A O T Class Cod Name F S A O T Class Cod Name
2 1 1 1 1 1 1 N/A 2 2 2 3 6 10 37 QXK8
2 1 1 2 1 2 2 TPM3E 2 2 3 2 1 11 38 QFD4
2 1 1 2 2 2 3 TPN3E 2 2 3 2 2 11 39 N/A
2 1 1 2 3 2 4 TAX3E 2 2 3 2 3 11 40 QXF4
2 1 2 2 1 3 5 TPM3 2 2 3 2 4 11 41 QAX4F
2 1 2 2 2 3 6 TPN3 2 2 3 3 1 12 42 QFD8
2 1 2 2 3 3 7 TAX3 2 2 3 3 2 12 43 N/A
2 1 2 3 1 4 8 TPM6 2 2 3 3 3 12 44 QXF8
2 1 2 3 2 4 9 TPN6 2 2 3 3 4 12 45 QAX8F
2 1 2 3 3 4 10 TAX6 3 3 1 1 1 13 46 N/A
2 1 2 3 4 4 11 TPK6 3 3 1 2 1 14 47 TH4E
2 1 2 3 5 4 12 TNK6 3 3 2 2 1 15 48 TH4
2 1 2 3 6 4 13 TXK6 3 3 2 3 1 16 49 TH10
2 1 3 2 1 5 14 TFD3 3 3 3 2 1 17 50 TF4
2 1 3 2 2 5 15 N/A 3 3 3 3 1 18 51 TF10
2 1 3 2 3 5 16 TXF3 3 4 1 1 1 19 52 N/A
2 1 3 2 4 5 17 TAX3F 3 4 1 2 1 20 53 PN6E
2 1 3 3 1 6 18 TFD6 3 4 2 2 1 21 54 PN6
2 1 3 3 2 6 19 N/A 3 4 2 3 1 22 55 PN12
2 1 3 3 3 6 20 TXF6 3 4 2 3 2 22 56 PN15
2 1 3 3 4 6 21 TAX6F 3 4 2 3 3 22 57 PN12L
2 2 1 1 1 7 22 N/A 3 4 3 2 1 23 58 PF6
2 2 1 2 1 8 23 QPM4E 3 4 3 3 1 24 59 PF12
2 2 1 2 2 8 24 QPN4E 3 4 3 3 2 24 60 PF15
2 2 1 2 3 8 25 QAX4E 3 4 3 3 3 24 61 PF12C
2 2 2 2 1 9 26 QPM4 3 5 1 1 1 25 62 N/A
2 2 2 2 2 9 27 QPN4 3 5 1 2 1 26 63 HX8E
2 2 2 2 3 9 28 QAX4 3 5 2 2 1 27 64 HX8
2 2 2 2 4 9 29 QPM4M 3 5 2 2 2 27 65 HX8M
2 2 2 2 5 9 30 QPN4M 3 5 2 3 1 28 66 HX16
2 2 2 2 6 9 31 QAX4M 3 5 2 3 2 28 67 HX20
2 2 2 3 1 10 32 QPM8 3 5 2 3 3 28 68 HX16L
2 2 2 3 2 10 33 QPN8 3 5 3 2 1 29 69 HF8
2 2 2 3 3 10 34 QAX8 3 5 3 3 1 30 70 HF16
2 2 2 3 4 10 35 QPK8 3 5 3 3 2 30 71 HF20
2 2 2 3 5 10 36 QNK8 3 5 3 3 3 30 72 HF16C

4.3 – Description of the ClassEF Network

The goal here is to perform the classification of the finite element through the attribution of the input patterns to
be identified from within a set of previously known classes.

4.3.1 Implementation of the classEF

The classEF.m program is a network of the MLP type. It uses the backpropagation supervised learning method,
based on the approximation between the ideal known behaviour and a real adjustable behaviour, through a set
of input data and their respective classifications.
The following data was supplied to the network: a set of patterns representing the finite elements according to
the codification described in Section 5.2 to the network input vector x and a set of classes to the vector y as an
expected output to this network – also codified according to Table 7 – to be associated after the training of the
initially informed vector x. Thus, this network was created containing five input elements, thirty intermediate
layers and five output elements.

Revista CIATEC – UPF, vol.3 (1), p.p.48-64, 2011

60

During the training stage, the learning rate was initially high, close to one (1), and it is gradually decreased until
it reaches a given acceptable and previously informed value. In this case, up to five hundred (500) iteration
cycles were necessary, so that this network could reach a learning rate of the expect order of 0.01, which is
equivalent to 1 percent (1%) of errors in the result during the execution of the training stage.

4.3.2 Results of the classEF

The tests performed to verify this network model presented a one hundred percent (100%) satisfactory solution,
once the input and output were previously informed and the trained network merely related the input and output
vectors, in a one-to-one basis, which ought to be expected for a supervised network. In other words, the
network was capable of associating the patterns it knew to the corresponding classes, which were already know
as well. In the opposite side, the network was incapable of associating the new and unknown patterns with a
representative class, in accordance to the resemblances between the known and trained patterns, presenting a
result of zero percent (0%) hits on the unknown elements.
It was verified that this network presented, to the problem in question, a limitation facing an unknown answer
to a new pattern supplied as its input. It was concluded that this network could not classify a new pattern by the
similarities with the other already known patterns. Due to this limitation, the somEF model, described in the
following section, was tested.

4.4 – Description of the SomEF Network

The goal now is to perform the classification of the finite elements, from which all that is known are the input
data, forcing the network to find the class that is most similar to the set of supplied data. Therefore, this
network is a SOM model with unsupervised learning.

4.4.1 Implementation of the somEF

The following data was supplied to the network: a set of patterns which represent the finite elements in
compliance with the codification given in Section 5.2; the initial values for the weights were obtained
randomly; and the neighbouring shape was rectangular, in compliance with the description in Section 4.2.
For the training of the SOM networks, an initially high training rate, close to one (1), was used, that should be
gradually decreased until a certain acceptable or previously informed value. Up to five hundred (500) iteration
cycles were necessary, so that this network could achieve the expected learning rate of the order of 0.01 and
equivalent to the one percent (1%) error rate in the results during its execution. This network topology needed a
total of fifty thousand (50,000) iteration cycles to reach the proper performance. For this training stage, a
sample of fifty percent (50%) of the total elements was used as the set of the network supplied input patterns, to
represent the finite elements of the continuous bi-dimensional and tri-dimensional space families shown in
Table 7.
After the training, the network should be able to: (a) perform the classification, in terms of equivalent of similar
elements (less specialised) over the new element presented to it, according to the equivalence between the
already existing patterns; and (b) to present as an answer the class that represents the grouping of the patterns
which is identified.

4.4.2 Results of the somEF

During the test performing stages, it was verified that this network was capable of performing many kinds of
groupings, according to its own similarity criteria which are based on the characteristics of the self-
classification topology. Tables 8 and 9 show some of the groupings this network could perform.
Table 8 shows the classification of the elements according to the last three positions of the input vector x, i.e.,
according to the application, order and element type found, in compliance with the codification described in
Section 5.2. This network grouping criteria seems to be related with the identification of patterns which posses

Revista CIATEC – UPF, vol.3 (1), p.p.48-64, 2011

61

the same values ("1;1;1") on the three last positions and which present different values on the first row. Thus,
the grouped patterns were classified as similar patterns by this topology.

Table 8: Grouping of the similar elements by application, order and element type

Elements
P=[2;1;1;1;1]
P=[2;2;1;1;1]
P=[3;3;1;1;1]
P=[3;4;1;1;1]
P=[3;5;1;1;1]

Table 9 shows the classification of the elements according to the first two positions of the input vector x, i.e.,
according to the common family and shape found, in conformity with the codification described in Section 5.2.
In this table, the classification by similarity between the patterns was identified by the equality of the values on
the first two positions of the vector x ("2;1") and by the difference between the other three.

Table 9: Grouping of the similar elements by family and shape

Elements
P=[2;1;2;2;1]
P=[2;1;1;2;2]

According to the needs and goals of the classification of the elements present in FEML, this network should be
able to classify the characteristics which describe the patterns with better approximation, considering the values
present in the five positions of which the input vector x is constituted, i.e., the values of the first three positions
of the vector should be equivalent and the two last positions could present some more flexibility between the
equivalence or approximation of the values, as described in tables 10 and 11. Such characteristics can be
observed in figures 3 and 4 which show the finite element hierarchy which was employed.

Table 10: Grouping of the equivalent elements by family, shape, application and order

Elements
P=[2;1;2;2;1]
P=[2;1;2;2;4]

Table 11: Grouping of the similar elements by shape

Elements
P=[2;1;2;2;1]
P=[2;2;2;2;1]

Thus, according to the results obtained about the tests performed on this network, it was verified that it was
capable of recognizing only forty percent (40%) of the elements presented, based on the similarities between
the elements which it had already known and trained. According to the same results, it could be concluded that
this network still could not find a suitable level of learning and that the training stages performed were not
sufficient to the network to present satisfactory results complying with the needs of this research. Moreover, it

Revista CIATEC – UPF, vol.3 (1), p.p.48-64, 2011

62

was verified that, if new cycles were performed during the training – even ten more iterations – the results
would get even worse, i.e., they tend to decrease until ten percent (10%) of the recognition of the new patterns.
From this limitation, it is clear that the SOM network is indicated for grouping, visualizing and abstraction of
known patterns, but that it is not suitable for the recognition of unknown patterns. Thus, for the recognition or
classification of patterns to be performed in a more efficient way, it is advisable that network to be projected be
used in conjunction with a supervised learning model.

4.5 – Description of the LvqEF Algorithm

The lvqEF program was created with the goal of performing the classification of the elements from which the
input data and a set of classes are known, which represent the universe in question, forcing the network to
associate classes and patterns which are the most similar to the set of supplied data.
This network is a SOM model with supervised learning.

4.5.1 Implementation of the lvqEF

The following data was supplied to this network: a set of patterns which represent the finite elements in
compliance with the codification described in Section 5.2; a set of representative classes elaborated by the
network’s Supervisor to be transformed into the classes vector, in compliance with the codification described in
Table 7; the weights were randomly initialized; one thousand and fifty hundred (1,500) iteration cycles were
used, so that the learning rate of the order of 0.01 could be achieved at each training stage; and a total of four
thousand and fifty hundred (4,500) iterations, so that the network could achieve an adequate performance.
For the training stage, again a sample of fifty percent (50%) of the total elements was used as the set of the
network supplied input patterns, to represent the finite elements of the continuous bi-dimensional and tri-
dimensional space families shown in Table 7. The set of supplied classes, also numerically coded in compliance
with Table 7, was obtained through the network’s Supervisor, i.e., by a human specialist who holds the
knowledge about the domain of the problem. The criteria used by the network’s Supervisor to choose this
representative classes for the grouping of the patterns performed by the network was based on common
characteristics about the family, shape, application and order among the classified finite elements, in
compliance with the hierarchical model presented in figures 3 and 4 and also associated in accordance with
Table 7.

4.5.2 Results of the lvqEF

The tests performed on the lvqEE tool were a one hundred percent (100%) satisfactory. It was verified that this
network was capable of performing the classification with greater efficiency in terms of equivalent or similar
elements (less specialised), in relation to the new elements to which it was presented and, also, according to the
equivalence between the already existing patterns, obtaining the class which represents the groupings which it
identified as the answer. Figure 5 synthesises the practical result of this evaluation.

Figure 5: Practical results of the lvqEF

Revista CIATEC – UPF, vol.3 (1), p.p.48-64, 2011

63

By presenting a new pattern ([3;4;2;3;4]T) to this network, the answer obtained is the number of the class (22)
which represents the grouping of patterns that it recognises and which posses characteristics similar to those of
the new supplied pattern. According to the semantic descriptions (Code and Name) of the elements from Table
7, the new pattern can be classified as a kind of pattern similar to those grouped and labelled by the class that
was found, which testifies the generalisation capacity of the trained model.
In Table 12 a better display of the pattern ([3;5;3;3;2]T), identified by the network, can be seen, presented as an
answer the number of the class (30) which represents the grouping of the patterns which it knows and that
posses characteristics similar to those of the supplied pattern. According to the descriptions (Code and Name)
of the elements from Table 7, it is possible to classify the pattern recognised by the network with precision.

Table 12: Groupings of the equivalent elements

Classification Supplied Pattern Network Answer

(class) Code Name
[3;5;3;3;2]T 30 71 HF20

5. FINAL CONSIDERATIONS

The problem of data transportation between different formats and platforms requires the constant application of
new technologies, processing agility and trustworthiness on the information transport. These are plausible
arguments to the appearance of new proposals of research. In this sense, there is still much to do beyond what
has already been done until the present days.
As it was displayed in this present work, the classEF network was not capable of classifying the unknown
patterns (new patterns) in accordance to the similarities with the patterns that the network knows. The results
prove that this kind of network (MLP) has better applicability in classification when the information about the
problem's domains and its relations are previously owned, not showing itself as applicable to the solution of the
problem in question.
The somEF network has poorly recognized the elements to which it was presented according to their
equivalence with the elements which it has trained and has been previously exposed to, and, therefore, it is
inadequate according to FEML necessities. However, the capacity of this type of network to perform many
kinds of groupings, which emphasises its applicability in problems which require visualisation and abstraction
of the data between a set of known patterns, was certified.
The results and the analyses performed state that the lvqEF network is the most applicable among the
topologies presented here. It was capable of efficiently recognise groupings of similar or equivalent patterns in
a same class, allowing for the inclusion of new patterns and, therefore, readily taking care of the necessities and
the classification goals of the finite elements pointed by the FEML.
It is expected, as a result, that this tool can contribute, giving greater applicability to the FEML language as an
effective data interchange standard for FEM programs, allowing to the interface programs of the finite element
software to dynamically optimise the importation process between the proprietary and the neutral formats.

6. REFERENCES

[1] Moita GF, Pinheiro MC. Towards a standard for finite element data exchange using XML. CD-Rom
Conference Proceedings of the 7th U.S. National Congress on Computational Mechanics, Albuquerque, USA,
2003.

Revista CIATEC – UPF, vol.3 (1), p.p.48-64, 2011

64

[2] Zurada JM, Introduction to Artificial Neural Systems. Boston, MA: PWS Publishing Company, 1995.

[3] Pinheiro MC. A Proposition of a XML Schema for the Interchange of data between Finite Element
Programs, M.Sc. Dissertation, Program in Technology, CEFET-MG, Belo Horizonte, Brazil, 2003 (in
Portuguese).

[4] Connolly D, Khare R, Rifkin A. The evolution of Web documents: the ascent of XML. World Wide Web
Journal 1997; 2 (4): 119-128.

[5] Marchal B, XML by example. 1a Edition. Indianapolis, EUA, 2000.

[6] W3C – World Wide Web Consortium. A Conversion Tool from DTD to XML Schema. 2000. Available in
<http://www.w3.org/2000/04/ schema_hack>. Access: Mar 2006.

[7] Lee D, Chu WW. Comparative Analysis of Six Schema Languages. ACM Sigmod Record 2000; 29 (3).

[8] LUSAS. User Guide. FEA Ltd. United Kingdom, 2004.

[9] Meireles MRG, Almeida PEM, Simões MG. A Comprehensive Review About Industrial Applicability of
Artificial Neural Networks. IEEE Trans. on Industrial Electronics 2003; 50 (3): 585-601.

[10] Oliveira DMLM. An Intelligent Hierarchical Classification of Finite Elements within a XML Schema,
M.Sc. Dissertation, Program in Mathematical and Computational Modeling, CEFET-MG, Belo Horizonte,
Brazil, 2005 (in Portuguese).

[11] Oliveira DMLM, Pinheiro MC, Moita GF. On the Development of a Neutral Format with Intelligent
Element Classification for Data Sharing Among FE Programs. CD Rom Conference Proceedings of ECT 2006
- The Fifth International Conference on Engineering Computational Technique, B.H.V. Topping, (Editor),
Civil-Comp Press, Stirling, United Kingdom, 2006.

[12] MATLAB. MathWorks Products Used. Available in: <www.mathworks.com>. Access: Sept. 2008.

