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RESUMO 
 

Metaheurísticas inspiradas na natureza são largamente utilizadas para resolver problemas de otimização. No 
entanto, essas técnicas devem ser adaptadas ao resolver problemas de otimização com restrições, que são comuns 
em situações do mundo real. Aqui uma abordagem de penalização adaptativa (chamada Método de Penalização 
Adaptativa, APM) é combinada com uma técnica de Otimização por Enxame de Partículas (PSO) para resolver 
problemas de otimização com restrições. Esta abordagem é analisada utilizando um conjunto de problemas teste e 5 
problemas de engenharia mecânica. Além disso, três variantes do APM são consideradas nos experimentos 
computacionais. A comparação dos resultados mostrou que o algoritmo proposto obteve um desempenho promissor 
na maioria dos problemas teste. 
Palavras-chave: Otimização por Enxame de Partículas. Otimização com Restrições. Método de Penalização 
Adaptativa. 

 
ABSTRACT 

 
Nature inspired meta-heuristics are largely used to solve optimization problems. However, these techniques should 
be adapted when solving constrained optimization problems, which are common in real world situations. Here an 
adaptive penalty approach (called Adaptive Penalty Method, APM) is combined with a particle swarm optimization 
(PSO) technique to solve constrained optimization problems. This approach is analyzed using a benchmark of test-
problems and 5 mechanical engineering problems. Moreover, three variants of APM are considered in the 
computational experiments. Comparison results show that the proposed algorithm obtains a promising performance 
on the majority of the test problems.  
Keywords: Particle Swarm Optimization. Constrained Optimization. Adaptive Penalty Method. 
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1. INTRODUCTION 
 

Optimization has been applied in many fields such as business, science, and engineering. Effective 
optimization techniques are important for improving the performance of applications and processes. A 
typical optimization problem has an objective function, equality/inequality constraints and upper/lower 
bounds on its decision variables. Most of the practical optimization problems are nonlinear and non-
convex in either the objective and/or constraints, and so optimization of such problems requires a global 
optimization method (Zhang & Rangaiah, 2012). 

In constrained optimization problems, one aims to minimize (or maximize) a function searching 
for the values of the design variables from a set of options (continuous, discrete, or mixed) which satisfy 
the set of constraints. 

Evolutionary Algorithms (EAs) are stochastic optimization methods based on the principles of 
natural biological evolution (Han & Kim, 2002) and they are commonly applied to solve real-world 
optimization problems (Deb et al., 2002). An EA that has been obtained good results in several problems 
in the literature is Particle Swarm Optimization (PSO) (Eberhart & Kennedy, 1995), which is a 
population-based algorithm for optimization based on a simplified social model that is closely tied to 
swarming theory. The algorithm was developed based on the social behavior of some species of birds 
when searching for food (Eberhart & Kennedy, 1995). The PSO approach has a simple concept and this is 
easily implemented. Compared with other EAs, the main advantages of PSO are its robustness in 
controlling parameters and its high computational efficiency (Kennedy et al., 2001). A modified PSO 
called CRPSO and proposed by (Kar et al., 2012) is adopted here in order to avoid premature 
convergence. The CRPSO’s main feature is a new velocity expression and an operator called “craziness 
velocity". 

Despite its robustness and global searching capacity, EAs were (originally) designed to be applied 
to unconstrained optimization problems. Thus, a constraint handling technique is necessary when this type 
of technique is applied to a constrained optimization problem. 

The penalty function method has been the most popular constraint-handling technique in EAs due 
to its simple principle and easy implementation. The main difficulty of using a static penalty function lies 
in choosing appropriate values of penalty factors, which are problem-dependent (Kaveh & Talatahari, 
2009). Many works in the literature discuss techniques to handle constraints with parameters chosen by 
the user, such as (Barbosa, 1999), (Koziel & Michalewicz, 1998), (Koziel & Michalewicz, 1999), (Orvosh 
& Davis, 1994) and (Runarsson & Yao, 2000). The presence of constraints significantly affects the 
performance of many optimization algorithms, including PSO. 

APM (Adaptive Penalty Method), proposed by (Barbosa & Lemonge, 2002), is an adaptive 
approach to handle with constraints. APM does not require any type of user-defined penalty parameter 
and its penalty coefficients are calculated based on information obtained from the population, such as the 
average of objective function values and the level of violation of each constraint. Many works can be 
found in the literature where APM is used within EAs, for instance: Genetic Algorithms (Barbosa & 
Lemonge, 2002), Differential Evolution (Vargas et al., 2013)], and PSO (Carvalho et al., 2015). In 
addition to the original APM, several variants were proposed and analyzed by (Carvalho et al., 
2015) when solving constrained structural optimization problems. 

The performance of APM and some of its variants are analyzed here when coupled to the CRPSO 
algorithm solving constrained optimization problems. Several experiments are performed and the results 
are analyzed and compared to those obtained by other techniques from the literature. 

The paper is organized as follows. In the next section the general constrained optimization 
problem is described. Section 3 presents a particle swarm algorithm. A brief discussion of techniques to 



Revista CIATEC – UPF, vol.8 (1), 39-56, 2016 

 

 

41 
 

handle constrained optimization problems is presented in Section 4. Numerical experiments, with several 
test problems from the literature, are presented in Section 5. Finally, in Section 6, the conclusions and 
proposed future works are presented. 
 

2. CONSTRAINED OPTIMIZATION PROBLEMS 
 

A standard constrained optimization problem in  can be defined as  
 
   (1) 
subject to  
 
  (2) 
 
  (3) 
 

  (4) 
 
where m is the number of constraints, n is the number of design variables, and  and  are the 
inequality and equality constraints, respectively. Usually, equality constraints are transformed into 
inequality ones as  
 

                                                   (5) 
 

where  is the allowed tolerance of the equality constraints. 
 

3. PARTICLE SWARM OPTIMIZATION 
 

Particle Swarm Optimization (PSO) was proposed by (Eberhart & Kennedy, 1995). It is a 
population-based algorithm which has been inspired by the social behavior of animals, such as fish 
schooling, insects swarming and bird flocking. PSO was first applied to optimization problems with 
continuous variables (Parsopoulos & Vrahatis, 2002). The algorithm shows a faster convergence rate than 
other EAs for solving some optimization problems (Kennedy et al., 2001).  
In PSO, each particle of the swarm represents a potential solution of the optimization problem. The 
particles fly through the search space and their positions are updated based on the best positions of 
individual particles in each iteration. The objective function is evaluated for each particle and the fitness 
values of particles are obtained in order to determine which position in the search space is the best one. 

In each iteration, the swarm is updated using the following equations (Eberhart & Kennedy, 1995)  
 

                (6) 
 

  (7) 
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where  and  represent the current velocity and the current position of the jth design variable of the 

ith particle, respectively.  is the best position of the ith particle (called pbest) and  is the best 
global position among all the particle in the swarm (called gbest); and  are coefficients that control 
the influence of cognitive and social information, respectively, and  and  are two random values 
generated with uniform distribution between 0 and 1. 

The basic PSO algorithm can be briefly described using the following steps:  
1. Initialize randomly a particle swarm (positions) and velocities.  

2. Initialize  and .  
3. Calculate the objective function value of each particle of the swarm.  

4. Update  and .  
5. Update the position and velocity (Equations (6) and (7)).  
6. Repeat the steps 3 to 5 until a stop condition is satisfied.  

PSO has undergone many changes since its introduction in 1995. As researchers have learned about the 
technique, they have derived new versions, developed new applications, and published theoretical studies 
of the effects of the various parameters and aspects of the algorithm (Poli et al., 2007). An improved 
particle swarm optimization technique called Craziness based Particle Swarm Optimization (CRPSO), 
proposed by (Kar et al., 2012), is used here in order to get rid of the limitations of original PSO. The 
authors have modified the PSO by introducing an entirely new velocity expression  associated with 
many random numbers and an operator called “craziness velocity”. 

In CRPSO the velocity can be expressed as (Kar et al., 2012)  
 

  

                     (8) 
 

where , , , and  are random values uniformly taken from the interval [0,1),  is a function 
defined as   

               (9) 
 

, the craziness velocity, is a user define parameter from the interval [ , ], 

and  are defined, respectively, as  
 

  (10) 
 

  (11) 
 

and  is a predefined probability of craziness. One can notice that while  is a fixed value,  
varies every time the velocity is calculated. 
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4. AN ADAPTIVE PENALTY TECHNIQUE 
 

The majority of engineering design problems involves constraints. Thus, appropriate methods for 
constraint handling are important. Evolutionary Algorithms can be seen as unconstrained search 
techniques since, in their original form, they do not incorporate any explicit mechanism to handle 
constraints. Because of this, several authors have proposed a variety of constraint-handling techniques 
explicitly designed for evolutionary algorithms (Coello, 2002), (Efren, 2009) and (Kicinger et al., 2005). 

The most common approach in the EA community to handle constraints (particularly, inequality 
constraints) is to use penalty functions (Coello & Carlos, 1999). Several researchers have studied 
heuristics on the design of penalty functions. Probably the most well-known of these studies is the one 
conducted in (Richardson, 1989). The main idea is to transform a constrained optimization problem into 
an unconstrained one by adding a penalty function. 

Penalty methods, although quite generally, require considerable domain knowledge and 
experimentation in each particular application in order to be effective. They can be also classified as 
static, dynamic and adaptive. Static penalty depends on the definition of an external factor to be added to 
or multiplied by the objective function. Dynamic penalty methods, in general, have penalty coefficients 
directly related to the number of generations, and the adaptive penalty considers the level of violation of 
the population by constraints during the evolutionary process. This paper does not attempt to cover the 
current literature on constraint handling and the reader is referred to survey papers or book chapters of e.g. 
(Barbosa et al., 2015), (Coello, 2002), (Mezura-Montes & Coello, 2011), (Michalewicz, 1995) and 
(Michalewicz & Schoenauer, 1996). 

An adaptive penalty method (APM) was originally introduced by (Barbosa & Lemonge, 2002). 
The method uses information from the population, such as the average of the objective function and the 
level of violation of each constraint during the evolution. When using APM, the fitness function can be 
written as  

 

  (12) 
where  
 

  (13) 
 
and  is the average of the objective function values in the current population. 

The penalty parameter  is defined at each generation as  
 

  (14) 
 
where  is the violation of the jth constraint averaged over the current population.  

Three variants of APM are analyzed here:  
• Variant 3 (Barbosa & Lemonge, 2008): no penalty coefficient kj is allowed to have its value 

reduced along the evolutionary process, if  then .  
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• Variant 5 (Carvalho et al., 2015):  is modified as  
 

  (15) 
 
where  is the value of the objective function of the worst feasible individual (the average of the 
objective function values is used when no feasible individual exist).  

• Variant 7 (Carvalho et al., 2015): , which originally represented the average of the 
violations of all individuals at each constraint, is defined here as the sum of the violation of all 
individuals which violate the j-th constraint divided by the number of individuals which violate this 
constraint. Also, , which represented the average of the objective function values, now denoted 
by , is the sum of the objective function values of all individuals in the current population 
divided by the number the infeasible individuals. Thus,  is defined in Variant 7 as  
 

 . (16) 

 

5. NUMERICAL EXPERIMENTS 
 

In this section, the performance of the CRPSO when using APM or one of its variants is 
investigated on well-known and widely used test problems. The test-functions used in the computational 
experiments includes a set of 24 functions known as G-Suite (Liang et al., 2006) and 5 mechanical 
engineering optimization problems (Bernardino et al., 2007). Only feasible solutions were found in the 35 
independents runs. 

The parameters which were used for the CRPSO algorithm was a swarm size equal to 50, 

, , and . For Variant 3, the penalty parameter k is updated 
every 10 generations. It should be understood that discrete or integer design variables are considered as 
the nearest integer of the corresponding variable of the vector solution (particle). It points to either an 
index of a table of discrete values or an integer.  

 

5.1. Performance analysis of experiments 
 

The experiments are compared using the performance profiles proposed by (Dolan & Moré, 2002), 
an analytical resource for the visualization and interpretation of the results obtained in the numerical 
experiments. 

Given a set  of test problems , with , a set of algorithm  with , 
and  a performance metric (for instance, computational time), the performance ratio is defined as  

 

 . (17)
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Thus, the performance profile of the algorithm a is defined as  
 

  (18) 
 

where  is the probability that the performance ratio  of algorithm  is within a factor  
of the best possible ratio. If the set P is a good representation of problems to be addressed, then algorithms 
with larger  are to be preferred. The performance profiles have a number of useful 
properties (Barbosa et al., 2010) and (Dolan & Moré, 2002). Other studies using performance profiles in 
performance analysis of algorithms can be found in (Barbosa et al., 2010) and (Bernardino et al., 2011). 
 
5.2. G-Suite 
 

The first experiment is based in a popular suite of function presented in (Liang et al., 2006). The 
experiments were performed considering three levels of evaluations of the objective function: 5000, 
50000 and 500000, commonly used in the literature for these experiments. The summary of the 24 test 

problems is given in Table 1 where n is the number of design variables,  is the estimated rate between 
the feasible region and the search space, and ni and ne are the number of inequality and equality 
constraints, respectively.  

 
Table 1: Summary of the 24 functions of G-Suite. 

Problem N Type of   (%) ni ne 

G01 13 quadratic 0.0111 9 0 
G02 20 non-linear 99.9971 2 0 
G03 10 polynomial 0.0000 0 1 
G04 5 quadratic 52.1230 6 0 
G05 4 cubic 0.0000 2 3 
G06 2 cubic 0.0066 2 0 
G07 10 quadratic 0.0003 8 0 
G08 2 non-linear 0.8560 2 0 
G09 7 polynomial 0.5121 4 0 
G10 8 linear 0.0010 6 0 
G11 2 quadratic 0.0000 0 1 
G12 3 quadratic 4.7713 1 0 
G13 5 non-linear 0.0000 0 3 
G14 10 non-linear 0.0000 0 3 
G15 3 quadratic 0.0000 0 2 
G16 5 non-linear 0.0204 38 0 
G17 6 non-linear 0.0000 0 4 
G18 9 quadratic 0.0000 12 0 
G19 15 non-linear 33.4761 5 0 
G20 24 linear 0.0000 6 14 
G21 7 linear 0.0000 1 5 
G22 22 linear 0.0000 1 19 
G23 9 linear 0.0000 2 4 
G24 2 linear 79.6556 2 0 
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The average of the objective function values is used here as performance metric for the three levels 

of budget. Figure 1(a) shows the performance profiles in the range  when 5000 

objective function evaluations are allowed. In this case, Variant 5 presented the highest value of , 
indicating that this variant obtained the best performance in a larger number of problems. In Figure 1(b) it 

is possible to see that Variant 5 obtained the lowest value of  such as  assumes the largest value in 
that plot; this suggests that Variant 5 is also the most robust method between those analyzed here.  

  

 

 

 

 

 

 

                                          (a) 

 

(b)   
                                             

Figure 1: Performance profiles of the results obtained when solving G-Suite – 5000 objective function evaluations. 
  

The performance profiles of the results obtained when using the 50000 objective function 
evaluations can be found in Figure 2(a) in which one can note that Variant 5 presented the best 
performance in the majority of the 24 test-problems. In Figure 2(b), one can seen that Variant 7 obtained 
the most robust solutions.  
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     (a)            (b)  

Figure 2: Performance profiles of the results obtained when solving G-Suite – 50000 objective function evaluations. 

Finally, according to the performance profiles shown in Figure 3(a), Variant 3 presented the best 
performance in the majority of problems. On the other hand, Variant 7 presented more robustness, as one 
can see in Figure 3(b).  

  

  
     (a)                                            (b)  

Figure 3: Performance profiles of the results obtained when solving G-Suite – 500000 objective function evaluations. 

Besides the identification of the best performing technique in the majority of problems and the 
robustness one, performance profiles can be also used to indicate the method with the best performance in 
general; this can be made by means of the area under of the performance profiles curves (higher values are 
preferable). Table 2 present the normalized areas under the performance profiles curves for G-Suite, 
where nfe means the number of function evaluations. It can be observed that the best variant (in general) 
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for this set of 24 test-problems is Variant 7 which achieved 1 when using the 50000 and 500000 objective 
function evaluations, followed by the Variant 5 which achieved 1 when using 5000.  

  
Table 2: Normalized areas under the performance profiles curves for G-Suite with 5000, 50000 and 500000 objective function 

evaluations. 

  Area 
  5000 nfe 50000 nfe 500000 nfe 

APM 0.99992 0.89736 0.95185 
Variant 3 0.94439 0.99995 0.90824 
Variant 5 1 0.894736 0.92695 
Variant 7 0.94437 1 1 

  

5.3. Mechanical engineering problems 
 

Five mechanical engineering problems are also used in this paper to evaluate the performance of 
the algorithm when using APM or one of its variants. Table 3 presents some details of each test problem 
where n is the number of design variables, ni and ne are the number of inequality and equality constraints, 
respectively and nfe is the number of function evaluations.  

  
Table 3: Mechanical engineering problems. 

Problem n Type of  ni ne nfe  

Welded Beam (WB) 4 quadratic 5 0 32000  

Pressure Vessel (PV) 4 cubic 4 0 80000  

Cantilever Beam (CB) 10 quadratic 11 0 35000  

Speed Reducer (SR) 7 quadratic 11 0 36000  

T./C. Spring (TCS) 3 non-linear 4 0 36000  

  

In reference (Bernardino et al., 2007) it is possible obtain the description of the mechanical 
engineering problems used here. Figs. 4 to 8 illustrate each test-problem.  

  

  
Figure 4:  The Welded Beam. 
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Figure 5:  The Pressure Vessel. 

  

  
Figure 6:  The Cantilever Beam. 

  

  
Figure 7:  The Speed Reducer. 

  

  
Figure 8:  The Tension/Compression Spring. 
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The results obtained for the mechanical engineering problems are presented in Tables 4, 6, 8, 10 
and 12, where the best ones are displayed in boldface, and std means the standard deviation and nesf 
means the total number of independent runs in which feasible solutions were found. A hybridization of a 
Genetic Algorithm with an Artificial Immune System is proposed in (Bernardino et al., 2008) and its 
results are used here in the comparisons. It can be observed that in four of the five test-problems the APM 
or one of its variants achieved the best solution. Tables 5, 7, 9, 11 and 13 presents the design variables 
considering the best result for each problem for “This study” and reference (Bernardino et al., 2008). 

  

 
Table 4: Values found for Tension/Compression Spring design. 

Method Best Median Average Std Worst nesf 
APM 0.01267 0.01311 0.01354 6.9509e-03 0.01742 35/35 

Variant 3 0.01266 0.01306 0.01392 8.6313e-03 0.01734 35/35 
Variant 5 0.01267 0.01288 0.01393 9.6090e-03 0.01777 35/35 
Variant 7 0.01266 0.01312 0.01389 9.1731e-03 0.01777 35/35 

(Bernardino et al., 2008) 0.01266 0.01289 0.01313 6.2800e-04 0.01531 50/50 
 
 
 
 

 Table 5: Comparison of results for Tension/Compression Spring design. 

 d D N Volume 
This study 0.05406 0.41655 8.48436 0.01266 

(Bernardino et al., 2008) 0.05143 0.35053 11.6612 0.01267 

 
Table 6: Values found for Speed Reducer design. 

 Method Best Median Average std Worst nesf 
APM 2996.3592 2996.3837 2998.8105 2.6529e+01 3007.4698 35/35 

Variant 3 2996.3631 3005.7006 3003.6417 4.4687e+01 3016.7882 35/35 
Variant 5 2996.3654 2996.3927 3002.1440 4.2637e+01 3016.7988 35/35 
Variant 7 2996.3622 2996.3780 2999.6083 3.4911e+01 3016.7808 35/35 

(Bernardino et al., 2008) 2996.3483 2996.3495 2996.3501 7.4500e-03 2996.3599 50/50 
  
 
 

 Table 7: Comparison of results for Speed Reducer design. 

 b m n l1 l2 d1 d2 Weight 
This study 3.5000 0.7000 17 7.3009 8.2999 3.3502 5.2868 2996.3592 

(Bernardino et al., 2008) 3.5000 0.7000 17 7.3000 7.8000 3.3502 5.2868 2996.3483 
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Table 8: Values found for Welded Beam design. 

Method Best Median Average Std Worst nesf 
APM 2.38113 2.77504 2.81474 2.2005e+00 3.69870 35/35 

Variant 3 2.38118 2.51280 3.14079 1.3686e+01 16.30031 35/35 
Variant 5 2.38115 2.66995 2.70019 1.8796e+00 3.32986 35/35 
Variant 7 2.38114 2.43315 2.67102 2.0656e+00 3.46638 35/35 

(Bernardino et al., 2008) 2.38335 2.92121 2.99298 2.0200e-01 4.05600 50/50 
  
 
 

 Table 9: Comparison of results for Welded Beam design. 

 h l t b Cost 

This study 0.2444 6.2183 8.2912 0.2444 2.3811 
(Bernardino et al., 2008) 0.2443 6.2186 8.2914 0.2443 2.3833 

 
 

Table 10: Values found for Pressure Vessel design. 

Method Best Median Average std Worst nesf 
APM 6059.7143 6090.5263 6474.8760 3.1086e+03 7544.4925 35/35 

Variant 3 6059.7143 6090.5263 6352.0563 2.5773e+03 7544.4925 35/35 
Variant 5 6059.7143 6318.9481 6359.9781 2.2021e+03 7544.4925 35/35 
Variant 7 6059.7143 6370.7797 6427.6676 2.6221e+03 7544.4925 35/35 

(Bernardino et al., 2008) 6059.8546 6426.7100 6545.1260 1.2400e+02 7388.1600 50/50 
 
 
  

 Table 11: Comparison of results for Pressure Vessel design. 

 Ts Th R L Weight 
This study 0.8750 0.4375 45.3367 140.2538 6059.7143 

(Bernardino et al., 2008) 0.8125 0.4375 42.0973 176.6509 6059.8546 

 
 
 

Table 12: Values found for Cantilever beam design. 

Method Best Median Average Std Worst nesf 
APM 64965.071 67943.462 67901.329 1.6162e+04 75143.537 35/35 

Variant 3 64584.132 68673.296 70516.546 4.2187e+04 106637.832 35/35 
Variant 5 64578.229 67943.452 68240.218 1.6177e+04 73943.453 35/35 
Variant 7 64578.271 68294.702 71817.816 1.0431e+05 173520.325 35/35 

(Bernardino et al., 2008) 64834.700 74987.160 76004.240 6.9300e+03 102981.060 50/50 
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Table 13: Comparison of results for Cantilever beam design. 

 b1 h1 b2 h2 b3 h3 b4 h4 b5 h5 Volume 

This study 4 60 3.1 55 2.6 50 2.204 44.091 1.749 34.995 64578.229
(Bernardino et al., 2008) 3   60 3.1 55 2.6 50 2.294 42.215 1.825 35.119 64834.700

 
 

The average of the results obtained by the variants is also used as performance metric in 

mechanical engineering problems. It can be observed in Figure 9(a), in the range , that APM 
is the variant with better performance in the majority of problems. Also, one can see that although Variant 
5 obtained the best average value in none of the engineering optimization problems considered here 
(Figure 9(a)), this achieved the most robust results (Figure 9(b)).  

  

  
(a)                                          (b)  

Figure 9: Performance profiles for mechanical engineering problems. 

Table 9 present the normalized areas under the performance profiles curves for mechanical 
engineering problem. Variant 5 presented the high value for the normalized area under the performance 
profiles curves, followed by APM.  

  
Table 9: Normalized areas under the performance profiles curves for mechanical engineering problems. 

Method Area 

APM 0.96866 

Variant 3 0.76332 

Variant 5 1 

Variant 7 0.94193 
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5.4. Summary of the results 
 

One can observe that the standard version of APM and its variants performed well when applied to 
both, G-Suite and mechanical engineering problems. Variant 7 is the best performing technique (in 
general) when solving the G-Suite test-function (Table 2). Also, it is important to highlight that Variant 5 
presented better results (in general) when this is compared to other APM variants and solving mechanical 
engineering problems (Table 9). Finally, one can notice that Variant 5 achieved the largest area under the 
performance profiles curves when only 5000 objective function evaluations are allowed. 

 

6. CONCLUSION 
 

A particle swarm optimization algorithm coupled with a method to handle with constraints called 
APM and three of its variants are tested in a well known set of constrained optimization problems in 
mathematical and mechanical engineering. A comparison with an alternative approach from the literature 
was performed and the PSO presented here provided competitive results in the computational 
experiments. 

The results of the computational experiments for G-Suite demonstrate that Variant 7 and Variant 5 
are more robust than Variants 3 and APM. Considering an analysis using the performance profiles, 
Variant 7 performed better than to the others variants for G-Suite. For the mechanical engineering 
problems, Variant 5 showed better results compared to the other variants. 

For future works the proposed method is going to be applied to real world problems from 
engineering considering more complexity with respect to objective functions and constraints. 
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