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RESUMO

Metaheuristicas inspiradas na natureza sao largameilizadas para resolver problemas de otimiza¢dm
entanto, essas técnicas devem ser adaptadas aergsoblemas de otimizagcdo com restricdes, qoece@nuns

em situacdes do mundo real. Aqui uma abordagemedalipacdo adaptativa (chamada Método de Penatizaca
Adaptativa, APM) é combinada com uma técnica deni2d¢do por Enxame de Particulas (PSO) para rasolve
problemas de otimizagdo com restricdes. Esta aenda& analisada utilizando um conjunto de probldeste e 5
problemas de engenharia mecénica. Além disso, aéisntes do APM s&o consideradas nos experimentos
computacionais. A comparacao dos resultados mogtrew algoritmo proposto obteve um desempenhoipsom

na maioria dos problemas teste.

Palavras-chave: Otimizagdo por Enxame de Particulas. Otimizagdo ¢testrices. Método de Penalizagéo

Adaptativa.

ABSTRACT

Nature inspired meta-heuristics are largely usesbtee optimization problems. However, these teghes should

be adapted when solving constrained optimizati@blems, which are common in real world situatiddsre an
adaptive penalty approach (called Adaptive Peridiithod, APM) is combined with a particle swarm aptiation
(PSO) technique to solve constrained optimizatimblems. This approach is analyzed using a bendhofaest-
problems and 5 mechanical engineering problems.eMar, three variants of APM are considered in the
computational experiments. Comparison results sthaivthe proposed algorithm obtains a promisindoperance

on the majority of the test problems.

Keywords: Particle Swarm Optimization. Constrained OptimizatiAdaptive Penalty Method.
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1. INTRODUCTION

Optimization has been applied in many fields sucbasiness, science, and engineering. Effective
optimization techniques are important for improvimg performance of applications and processes. A
typical optimization problem has an objective fumef equality/inequality constraints and upper/lowe
bounds on its decision variables. Most of the peattoptimization problems are nonlinear and non-
convex in either the objective and/or constraiatg] so optimization of such problems requires aajlo
optimization method (Zhang & Rangaiah, 2012).

In constrained optimization problems, one aims toimize (or maximize) a function searching
for the values of the design variables from a $e&tptions (continuous, discrete, or mixed) whichis$g
the set of constraints.

Evolutionary Algorithms (EAs) are stochastic optzation methods based on the principles of
natural biological evolution (Han & Kim, 2002) anddey are commonly applied to solve real-world
optimization problems (Deét al, 2002). An EA that has been obtained good resukégveral problems
in the literature is Particle Swarm OptimizationS@®) (Eberhart & Kennedy, 1995), which is a
population-based algorithm for optimization basedaosimplified social model that is closely tied to
swarming theory. The algorithm was developed bagedhe social behavior of some species of birds
when searching for food (Eberhart & Kennedy, 199% PSO approach has a simple concept and this is
easily implemented. Compared with other EAs, thannmadvantages of PSO are its robustness in
controlling parameters and its high computatiorftiency (Kennedyet al, 2001). A modified PSO
called CRPSO and proposed by (Kar al, 2012)is adopted here in order to avoid premature
convergence. The CRPSO’s main feature is a newciglexpression and an operator called “craziness
velocity".

Despite its robustness and global searching capd&tits were (originally) designed to be applied
to unconstrained optimization problems. Thus, sstramt handling technique is necessary when yipis t
of technique is applied to a constrained optimaraproblem.

The penalty function method has been the most pomanstraint-handling technique in EAs due
to its simple principle and easy implementatione Timain difficulty of using a static penalty functiies
in choosing appropriate values of penalty factevBich are problem-dependent (Kaveh & Talatahari,
2009). Many works in the literature discuss techagto handle constraints with parameters chosen by
the user, such as (Barbosa, 1999), (Koziel & Mielatz, 1998), (Koziel & Michalewicz, 1999), (Orvosh
& Davis, 1994) and (Runarsson & Yao, 2000). Thespnee of constraints significantly affects the
performance of many optimization algorithms, inchgdPSO.

APM (Adaptive Penalty Method), proposed by (Barb@&d.emonge, 2002), is an adaptive
approach to handle with constraints. APM does rqtire any type of user-defined penalty parameter
and its penalty coefficients are calculated basedfmrmation obtained from the population, suchhees
average of objective function values and the lefeViolation of each constraint. Many works can be
found in the literature where APM is used within §4or instance: Genetic Algorithms (Barbosa &
Lemonge, 2002), Differential Evolution (Vargas$ al, 2013)], and PSO (Carvalhet al, 2015). In
addition to the original APM, several variants wgmeoposed and analyzed by (Carvalbb al,
2015) when solving constrained structural optimaraproblems.

The performance of APM and some of its variantsaar@yzed here when coupled to the CRPSO
algorithm solving constrained optimization probler8gveral experiments are performed and the results
are analyzed and compared to those obtained by w@ttieniques from the literature.

The paper is organized as follows. In the nextigecthe general constrained optimization
problem is described. Section 3 presents a padigbem algorithm. A brief discussion of techniques
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handle constrained optimization problems is presknt Section 4. Numerical experiments, with severa
test problems from the literature, are presente8dntion 5. Finally, in Section 6, the conclusi@amsl
proposed future works are presented.

2. CONSTRAINED OPTIMIZATION PROBLEMS

A standard constrained optimization problen®lh can be defined as

min £ (x) 1)
subject to
Gp)=0,p=1,..,my (2)
ha(x)=0,g=p+1, ey 11 (3)
e sx < x/(x),  i=1,..,n (4)

wherem is the number of constraints,is the number of design variables, &) andh2() are the
inequality and equality constraints, respectivdlisually, equality constraints are transformed into
inequality ones as

|hjC)|— € =0 )

where€ is the allowed tolerance of the equality constsin

3. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) was proposed Blgethart & Kennedy, 1995). It is a
population-based algorithm which has been insplygdthe social behavior of animals, such as fish
schooling, insects swarming and bird flocking. P®@s first applied to optimization problems with
continuous variables (Parsopoulos & Vrahatis, 200B¢ algorithm shows a faster convergence rate tha
other EAs for solving some optimization problemiikedyet al, 2001).

In PSO, each particle of the swarm represents anfiat solution of the optimization problem. The
particles fly through the search space and thesitipos are updated based on the best positions of
individual particles in each iteration. The objeetfunction is evaluated for each particle andfitmess
values of particles are obtained in order to deit@erwhich position in the search space is the trest

In each iteration, the swarm is updated using ¢lewing equations (Eberhart & Kennedy, 1995)

{©) N () {© {3 ()
vj {t 1] vj {t]-l_c’-.r’-(xphgsr_xj )+C= 'T: (xﬂagsr—xj ) (6)
() — o) {©)
x; {t—i—l]—xj {t]+vj t+ 1) @)
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L L
where”j“ andxj( ’ represent the current velocity and the currenitiposof thejth design variable of the
L

ith particle, respectivelfagf}:esr is the best position of théh particle (callegbes) and*gbest is the best

global position among all the particle in the swdoalledgbes}; csandcz are coefficients that control
the influence of cognitive and social informatioespectively, and: and7 are two random values
generated with uniform distribution between 0 and 1

The basic PSO algorithm can be briefly describadguthe following steps:

1. Initialize randomly a particle swarm (positioas)d velocities.
Initialize *rbest and*gbest .

Calculate the objective function value of eaaltiple of the swarm.
Updatetrbest angtgbest,

Update the position and velocity (Equationsai@d (7)).

6. Repeat the steps 3 to 5 until a stop condismatisfied.

PSO has undergone many changes since its introduntil995. As researchers have learned about the
technique, they have derived new versions, devdlogev applications, and published theoretical s&idi
of the effects of the various parameters and aspafcthe algorithm (Polet al, 2007). An improved
particle swarm optimization technique called Cragm based Particle Swarm Optimization (CRPSO),
proposed by (Kaet al, 2012), is used here in order to get rid of tmeithtions of original PSO. The
authors have modified the PSO by introducing amredgtnew velocity expressiofi associated with
many random numbers and an operator called “crsginelocity”.

In CRPSO the velocity can be expressed as éKat, 2012)

ok DN

vz.(i} =1y -sign(ry)- iﬂjm{ﬂ T (A —rd-cy-my (x Egzgst - xj(i}) +

@ -r)ca @ - (xS, — xP) + PG sign2atry)- vfraziness @®

wherers, 72, 72, and7a are random values uniformly taken from the intef0al), ig103) is a function
defined as

, —1,1, < 0.05
Sonb) =1 1,7, > 005 (9)
vi M the craziness velocity, is a user define paramitem the interval §™mF pmaxiiy
PG dandsign2G.) are defined, respectively, as
1,r, < Per
Pl = 0,1, = Per (10)
—1,r, = 0.5
sign2(r,) = 4
g 4 1,r, =05 (11)

andPer is a predefined probability of craziness. One patice that whilePcr s a fixed valueP0i)
varies every time the velocity is calculated.
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4. AN ADAPTIVE PENALTY TECHNIQUE

The majority of engineering design problems inveleenstraints. Thus, appropriate methods for
constraint handling are important. Evolutionary @éYighms can be seen as unconstrained search
techniques since, in their original form, they dot mncorporate any explicit mechanism to handle
constraints. Because of this, several authors Ipawposed a variety of constraint-handling technsque
explicitly designed for evolutionary algorithms @lo, 2002), (Efren, 2009) and (Kicinget al, 2005).

The most common approach in the EA community todieanonstraints (particularly, inequality
constraints) is to use penalty functions (CoelloGarlos, 1999). Several researchers have studied
heuristics on the design of penalty functions. B the most well-known of these studies is the on
conducted in (Richardson, 1989). The main ide® isansform a constrained optimization problem into
an unconstrained one by adding a penalty function.

Penalty methods, although quite generally, requimmsiderable domain knowledge and
experimentation in each particular application ndes to be effective. They can be also classified a
static, dynamic and adaptive. Static penalty depeamdthe definition of an external factor to beextitb
or multiplied by the objective function. Dynamicnadty methods, in general, have penalty coeffigent
directly related to the number of generations, gnredadaptive penalty considers the level of violatf
the population by constraints during the evolutrgnarocess. This paper does not attempt to cower th
current literature on constraint handling and treeder is referred to survey papers or book chapters.
(Barbosaet al, 2015), (Coello, 2002), (Mezura-Montes & Coelld12), (Michalewicz, 1995) and
(Michalewicz & Schoenauer, 1996).

An adaptive penalty method (APM) was originallyroduced by (Barbosa & Lemonge, 2002).
The method uses information from the populatiorthsas the average of the objective function and the
level of violation of each constraint during theokition. When using APM, the fithess function can b
written as

), if x is feasible
Flx)= { F{x] + Z k_j v; (x), atherwise
j=1 (12)
where
Feo = {ftxl if f&)={fE)
Vi) if f(x) = (F D) (13)

and{f ()} is the average of the objective function valuethacurrent population.
The penalty parameté&r is defined at each generation as

. = K GDKS; 6
N (TN (14)

where{d; &) is the violation of th¢th constraint averaged over the current population.
Three variants of APM are analyzed here:

» Variant 3 (Barbosa & Lemonge, 2008): no penaldyefﬁcientlﬁ is allowed to have its value

. J t r__ L
reduced along the evolutionary procesé‘,ﬁ?“ < KFTE thenk Y = kT
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* Variant 5 (Carvalhet al, 2015):)""_&] is modified as

Feoy - | FE if f(x) > If &l
e = {lff,ﬂj, otherwise, (15)

where LF &)l is the value of the objective function of the widieasible individual (the average of the
objective function values is used when no feasiidevidual exist).

« Variant 7 (Carvalhoet al, 2015): (v;&)}, which originally represented the average of the
violations of all individuals at each constrairg, defined here as the sum of the violation of all
individuals which violate th¢-th constraint divided by the number of individuatkich violate this
constraint. Also{f(x)}, which represented the average of the objectinetfon values, now denoted
by ((fCc, is the sum of the objective function values dfiadlividuals in the current population
divided by the number the infeasible individualbus,%; is defined in Variant 7 as

{v; ()

ki = _ VR
)= WMoy (16)

5. NUMERICAL EXPERIMENTS

In this section, the performance of the CRPSO whsimg APM or one of its variants is
investigated on well-known and widely used testprms. The test-functions used in the computational
experiments includes a set of 24 functions knowrGaSuite (Lianget al, 2006) and 5 mechanical
engineering optimization problems (Bernardetal, 2007). Only feasible solutions were found in 3%
independents runs.

The parameters which were used for the CRPSO #igorivas a swarm size equal to 50,

CrazZiness _

v 0001 ¢, =¢; =205 andPer =05  For Variant 3, the penalty paramekeis updated
every 10 generations. It should be understooddlsatete or integer design variables are considased
the nearest integer of the corresponding variabldh® vector solution (particle). It points to ethan
index of a table of discrete values or an integer.

5.1. Performance analysis of experiments

The experiments are compared using the performamdies proposed by (Dolan & Moré, 2002),
an analytical resource for the visualization angkrjpretation of the results obtained in the nunaéric
experiments.

Given a se of test problent?i, with/ = 1.2: 2Ty 3 set of algorithn#: withf = 1.2, ... 74 |
andfr.a = 0 a performance metric (for instance, computatidina), the performance ratio is defined as

tp.a

pa = min{tpja: a e A}_ (17)

44



Revista CIATEC — UPF, vol.8 (1), 39-56, 2016

Thus, the performance profile of the algoritans defined as

1
T)=— eliry =T
Pa@ == lp € Pira <) a8)

wherepr (@) is the probability that the performance rdfia: of algorithma € 4 is within a factofr = 1

of the best possible ratio. If the $&is a good representation of problems to be adeldesisen algorithms
with larger 2a(f) are to be preferred. The performance profiles havenumber of useful
properties (Barbosat al, 2010) and (Dolan & Moré, 2002). Other studiesiggperformance profiles in
performance analysis of algorithms can be foun@arboseaet al, 2010) and (Bernardinet al, 2011).

5.2. G-Suite

The first experiment is based in a popular suitéuattion presented in (Liangt al, 2006). The
experiments were performed considering three lewélgvaluations of the objective function: 5000,
50000 and 500000, commonly used in the literatarelese experiments. The summary of the 24 test

problems is given in Table 1 whemds the number of design variablés,is the estimated rate between
the feasible region and the search space, ranand ne are the number of inequality and equality
constraints, respectively.

Table 1: Summary of the 24 functions of G-Suite.

Problem N Type of f () P (%) ni ne
G01 13 quadratic 0.0111 9 0
G02 20 non-linear 99.9971 2 0
GO03 10 polynomial 0.0000 0 1
G04 5 quadratic 52.1230 6 0
GO05 4 cubic 0.0000 2 3
GO06 2 cubic 0.0066 2 0
GO7 10 quadratic 0.0003 8 0
G08 2 non-linear 0.8560 2 0
G09 7 polynomial 0.5121 4 0
G10 8 linear 0.0010 6 0
Gl1 2 quadratic 0.0000 0 1
Gl12 3 quadratic 4.7713 1 0
G13 5 non-linear 0.0000 0 3
Gl4 10 non-linear 0.0000 0 3
G15 3 guadratic 0.0000 0 2
G16 5 non-linear 0.0204 38 0
G17 6 non-linear 0.0000 0 4
G18 9 quadratic 0.0000 12 0
G19 15 non-linear 33.4761 5 0
G20 24 linear 0.0000 6 14
G221 7 linear 0.0000 1 5
G22 22 linear 0.0000 1 19
G23 9 linear 0.0000 2 4
G24 2 linear 79.6556 2 0
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The average of the objective function values islusge as performance metric for the three levels
of budget. Figure 1(a) shows the performance m®fiin the ranger € [1;1.0000051 when 5000
objective function evaluations are allowed. In tbése, Variant 5 presented the highest value(a?
indicating that this variant obtained the best @anance in a larger number of problems. In Figybs it

is possible to see that Variant 5 obtained the #walue off such a®(® assumes the largest value in
that plot; this suggests that Variant 5 is alsonttost robust method between those analyzed here.
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Figure 1: Performance profiles of the results ot#diwhen solving G-Suite — 5000 objective funceealuations.

The performance profiles of the results obtainedewlusing the 50000 objective function
evaluations can be found in Figure 2(a) in whicte artan note that Variant 5 presented the best
performance in the majority of the 24 test-problemsFigure 2(b), one can seen that Variant 7 olethi

the most robust solutions.
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Figure 2: Performance profiles of the results otg#diwhen solving G-Suite — 50000 objective functealuations.

Finally, according to the performance profiles shaw Figure 3(a), Variant 3 presented the best

performance in the majority of problems. On theeothiand, Variant 7 presented more robustness,&s on
can see in Figure 3(b).
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Figure 3: Performance profiles of the results atgtdiwhen solving G-Suite — 500000 objective functwealuations.

Besides the identification of the best performieghinique in the majority of problems and the
robustness one, performance profiles can be akw tosindicate the method with the best performamce
general; this can be made by means of the area ohttee performance profiles curves (higher valaes
preferable). Table 2 present the normalized aremkeruthe performance profiles curves for G-Suite,
wherenfe means the number of function evaluations. It camlbserved that the best variant (in general)
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for this set of 24 test-problems is Variant 7 whadtieved 1 when using the 50000 and 500000 otbgecti
function evaluations, followed by the Variant 5 aliniachieved 1 when using 5000.

Table 2: Normalized areas under the performancigs@urves for G-Suite with 5000, 50000 and 5@D66jective function

evaluations.
Area
5000nfe 50000nfe 500000nfe
APM 0.99992 0.89736 0.95185
Variant 3 0.94439 0.99995 0.90824
Variant 5 1 0.894736 0.92695
Variant 7 0.94437 1 1

5.3. Mechanical engineering problems

Five mechanical engineering problems are also us#us paper to evaluate the performance of
the algorithm when using APM or one of its variaritable 3 presents some details of each test proble
wheren is the number of design variables.andne are the number of inequality and equality constsai
respectively andfeis the number of function evaluations.

Table 3: Mechanical engineering problems.

Problem n Type offG)  ni ne nfe
Welded Beam (WB) 4 guadratic 5 0 32000
Pressure Vessel (PV) 4 cubic 4 0 80000
Cantilever Beam (CB) 10 guadratic 11 0 35000
Speed Reducer (SR) 7 quadratic 11 0 36000
T./C. Spring (TCS) 3 non-linear 4 0 36000

In reference (Bernardinet al, 2007) it is possible obtain the description oé ttmechanical
engineering problems used here. Figs. 4 to 8iltstach test-problem.

Figure 4: The Welded Beam.
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The results obtained for the mechanical enginegriofplems are presented in Table§48, 10
and 12, where the best ones are displayedoldface andstd means the standard deviation aresf
means the total number of independent runs in wigakible solutions were found. A hybridizationaof
Genetic Algorithm with an Artificial Immune Systera proposed in (Bernardinet al, 2008) and its
results are used here in the comparisons. It carbberved that in four of the five test-problems A&PM
or one of its variants achieved the best solutiables 5, 7, 9, 11 and 13 presents the designblesia
considering the best result for each problem fdrigTstudy” and reference (Bernardieal, 2008).

Table 4: Values found for Tension/Compression Spdesign.

Method Best Median  Average Std Worst nesf
APM 0.01267 0.01311 0.01354 6.9509e-03 0.01783/35
Variant 3 0.01266 0.01306 0.01392 8.6313e-03 0.017335/35
Variant 5 0.01267 0.01288 0.01393 9.6090e-03 0.0177735/35
Variant 7 0.01266 0.01312 0.01389 9.1731e-03 0.017735/35

(Bernardinoet al, 2008) 0.01266 0.01289 0.01313 6.2800e-04 0.01531 50/50

Table 5: Comparison of results for Tension/ConmgioesSpring design.
d D N Volume
This study 0.05406 0.41655 8.48436 0.01266
(Bernardinoet al, 2008) 0.05143 0.35053 11.6612 0.01267

Table 6: Values found for Speed Reducer design.

Method Best Median  Average std Worst nesf

APM 2996.35922996.38372998.81052.6529e+013007.4698 35/35
Variant 3 2996.36313005.70063003.64174.4687e+013016.7882 35/35
Variant 5 2996.3654996.39273002.14404.2637e+013016.7988 35/35
Variant 7 2996.3622996.37802999.60833.4911e+013016.7808 35/35

(Bernardinoet al, 2008) 2996.34832996.34952996.3501 7.4500e-032996.3599 50/50

Table 7: Comparison of results for Speed Reduesigd.
b m n | P d; dy Weight
This study 3.50000.7000 17 7.3009 8.2999 3.35025.2868 2996.3592
(Bernardinoet al, 2008)3.5000 0.7000 17 7.3000 7.8000 3.35025.2868 2996.3483
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Table 8: Values found for Welded Beam design.

Method Best Median  Average Std Worst  nesf
APM 2.38113 2.77504 2.81474 2.2005e+00 3.69875/35
Variant 3 2.38118 2.51280 3.14079 1.3686e+01 16.30033/35
Variant 5 2.38115 2.66995 2.70019 1.8796e+0(8.32986 35/35
Variant 7 2.38114 2.43315 2.67102 2.0656e+00 3.4663835/35

(Bernardinoet al, 2008) 2.38335 2.92121 2.99298 2.0200e-01 4.05600 50/50

Table 9: Comparison of results for Welded Beamgtesi
h I t b Cost

This study 0.2444 6.2183 8.2912.2444 2.3811
(Bernardinoet al, 2008) 0.2443  6.2186 8.29140.2443 2.3833

Table 10: Values found for Pressure Vessel design.

Method Best Median  Average std Worst  nesf
APM 6059.71436090.52636474.87603.1086e+037544.492535/35
Variant 3 6059.71436090.52636352.05632.5773e+037544.492535/35
Variant 5 6059.71436318.94816359.97812.2021e+037544.492535/35
Variant 7 6059.71436370.77976427.66762.6221e+037544.492535/35

(Bernardinoet al, 2008) 6059.854®%426.71006545.12601.2400e+027388.160050/50

Table 11: Comparison of results for Pressure ekssign.
Ts Th R L Weight
This study 0.8750 0.4375 45.3367 140.258859.7143
(Bernardincet al, 2008) 0.8125 0.4375 42.0973 176.65@959.8546

Table12: Values found for Cantilever beam design.

Method Best Median  Average Std Worst nesf
APM 64965.07167943.46267901.3291.6162e+04 75143.537 35/35
Variant 3 64584.13568673.29670516.5464.2187e+04106637.83235/35
Variant 5 64578.22967943.45268240.2181.6177e+04 73943.453 35/35
Variant 7 64578.27168294.70271817.8161.0431e+05173520.32535/35

(Bernardinocet al, 2008) 64834.70074987.16076004.2406.9300e+03102981.06050/50
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Table 13: Comparison of results for Cantilever basign.

bl hl b2 h2 b3 h3 b4 h4 b5 h5  Volume
This study 4 60 3.155 2.6 50 2.20444.091 1.749 34.995%64578.22'
(Bernardinoet al,, 2008) 3 60 3.155 2.650 2.29442.215 1.825 35.119%4834.70i

The average of the results obtained by the vari@gtalso used as performance metric in

mechanical engineering problems. It can be obsérvEiure 9(a), in the rangee [1; 1.004]1 that APM

is the variant with better performance in the méjasf problems. Also, one can see that althoughara

5 obtained the best average value in none of tlyggnearing optimization problems considered here
(Figure 9(a)), this achieved the most robust reqiigure 9(b)).
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Figure 9: Performance profiles for mechanical eegimg problems.
Table 9 present the normalized areas under theorpeshce profiles curves for mechanical

engineering problem. Variant 5 presented the higlnesfor the normalized area under the performance
profiles curves, followed by APM.

Table 9: Normalized areas under the performancigs@urves for mechanical engineering problems.

Method Area
APM 0.96866
Variant 3 0.76332
Variant 5 1
Variant 7 0.94193
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5.4. Summary of theresults

One can observe that the standard version of ARMtarvariants performed well when applied to
both, G-Suite and mechanical engineering problevisgiant 7 is the best performing technique (in
general) when solving the G-Suite test-functionb{€&). Also, it is important to highlight that \fant 5
presented better results (in general) when thiemspared to other APM variants and solving meclanic
engineering problems (Table 9). Finally, one caticeahat Variant 5 achieved the largest area utiter
performance profiles curves when only 5000 objectiinction evaluations are allowed.

6. CONCLUSION

A particle swarm optimization algorithm coupled kv method to handle with constraints called
APM and three of its variants are tested in a Wwebbwn set of constrained optimization problems in
mathematical and mechanical engineering. A compangth an alternative approach from the literature
was performed and the PSO presented here providedpatitive results in the computational
experiments.

The results of the computational experiments fduie demonstrate that Variant 7 and Variant 5
are more robust than Variants 3 and APM. Considedan analysis using the performance profiles,
Variant 7 performed better than to the others wasidor G-Suite. For the mechanical engineering
problems, Variant 5 showed better results comptarélde other variants.

For future works the proposed method is going toabelied to real world problems from
engineering considering more complexity with respe®bjective functions and constraints.
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