AVALIAÇÃO DO POTENCIAL DE QUARTZO INCOLOR PARA PRASIOLITA DO DISTRITO MINEIRO DE AMETISTA DO SUL

EVALUATION OF THE POTENTIAL OF INCOLOR QUARTZ FOR PRASIOLITE OF THE SOUTH AMETISTA MINEIRO DISTRICT

Mauricio Thadeu Fenilli de Menezes¹, Lauren da Cunha Duarte², Pedro Luiz Juchem³, Larissa Lanes Tononi⁴

Universidade Federal do Rio Grande do Sul, Instituto de Geociências, Av. Bento Gonçalves, 9500, Bairro Agronomia, 91501-970 – Porto Alegre – RS – Brasil.

E-mails: 1mauriciotfm@gmail.com, 2lauren.duarte@ufrgs.br, 3labogem@ufrgs.br, 4larissatononi@hotmail.com

RESUMO

O Distrito Mineiro de Ametista do Sul no Estado do Rio Grande do Sul é famoso como um importante fornecedor de ametista, citrino e quartzo hialino. A região é responsável pelo abastecimento do mercado mundial em geodos e pedras para lapidação. Uma minoria do quartzo hialino no mundo tem potencial para obtenção da cor verde (prasiolita) após irradiação. Para avaliação do potencial de prasiolita foi calculado o *fator ametista* (fa) a partir de espectros FTIR obtidos no Centro Nacional de Desenvolvimento da Tecnologia Nuclear (CDTN). Foram obtidos valores de 1.13 a 1.24. indicando positivamente a obtenção da cor verde após doses de radiação maiores que 900 kGy. Os principais picos de absorbância foram identificados nas bandas 3436 cm⁻¹, 3585 cm⁻¹ e 3595 cm⁻¹. O valor da banda 3436 cm⁻¹ encontrado está relacionada às ligações Al_{si}OH/Na⁺, Fe_{Si}-OH/H⁺ e Si-OH (também conhecido como silanol) em quartzo e logo às causas de cor nas amostras. Os cristais foram irradiados em doses de 200 e 900 kGy obtendo-se a cor verde para todas as amostras. Não houve diferença na tonalidade de verde entre as doses de irradiação, indicando que o uso de doses maiores que 200 kGy trazem mais custos aos empreendedores e resultado inócuo. A distribuição da cor não foi homogênea em algumas poucas amostras. Não foi identificada proporcionalidade da intensidade de cor com o *fator ametista* (f_a).

Palavras-chave: irradiação gama, prasiolita, quartzo, FTIR.

ABSTRACT

The Ametista do Sul Mining District in Rio Grande do Sul State is famous as a major supplier of amethyst, citrine and hyaline quartz. The region is responsible for supplying the world market with geodes and cut stones for jewelery. A minority of hyaline quartz in the world has the potential to obtain green color (prasiolite) after irradiation. In order to evaluate prasiolite potential, the *amethyst fator(fa)* was calculated from FTIR spectra obtained at the National Center for the Development of Nuclear Technology (CDTN - Centro Nacional de Desenvolvimento da Tecnologia Nuclear) and values from 1.13 to 1.24 were obtained, indicating the evaluation of the green color after doses of radiation higher than 900 kGy. The main absorbance peaks were identified in the bands 3436 cm⁻¹, 3585 cm⁻¹ and 3595 cm⁻¹. Al-OH/Na⁺, Fe_{Si}-OH/H⁺ and Si-OH bonds in quartz were related to the value of the band 3436 cm⁻¹ the causes of color in the samples. The crystals were irradiated in doses of 200 and 900 kGy and the green color were obtained in all samples. There was no difference in the green tint between the irradiation doses, indicating that the use of irradiation doses greater than 200 kGy brings more costs to the irradiation procedures and innocuous result. The color distribution was not homogeneous in a few samples. No proportionality of the color intensity was identified linked with the *amethyst factor* (fa).

Keywords: gamma irradiation, prasiolite, quartz, FTIR.

1. INTRODUÇÃO

O quartzo como um importante recurso mineral no Brasil, teve sua primeira menção no ano de 1797 para os depósitos de Vila de Cristalina, Estado de Goiás, por exploradores de ouro e esmeralda (Campbell, 1946). Atualmente o Brasil é o líder mundial na produção de cristais de quartzo gemológico, sendo a produção oficial entre os anos de 2011 e 2013 mensurada em 44.607 t (Drummond, 2009; MME, 2010; DNPM, 2013). No Brasil, a partir de 1997, descobriu-se que há potencialidade de se obter variedades de quartzo coloridas de regiões específicas, quando exposto a doses pré-estabelecidas de iradiação gama, de 65 a 1.000 kGy, de uma fonte de Co-60, seguidas, ou não de tratamento térmico (Lameiras, 2006). Entretanto, no ano de 2007 somente 12-24 t de quartzo foram oficialmente modificadas com irradiação no Brasil (DNPM, 2011).

O Distrito Mineiro de Ametista do Sul, no Estado do Rio Grande do Sul, é mundialmente famoso por ser o mais importante fornecedor de ametista. A região é responsável pelo abastecimento do mercado mundial em geodos, principalmente, e subordinadamente, pedras para lapidação. Ainda, há grande comércio de citrino obtido por tratamento térmico da ametista. O quartzo hialino possui algumas propriedades gemológicas interessantes, como a transparência e as dimensões dos cristais, porém acaba sendo menos importante economicamente por ser incolor. Entretanto, esta questão pode ser revertida com um tratamento de cor por irradiação gama para tonalidades que raramente são encontradas na natureza para este mineral, como o verde da prasiolita, por exemplo.

A origem dos geodos e o seu preenchimento com quartzo ainda são temas de debate. As duas principais propostas genéticas são: (1) formação epigenética e hidrotermal com temperaturas abaixo de 150°C, relacionadas a um evento explosivo com faturamento hidráulico dos basalto por fluidos originários do aquífero Guarani (Duarte et al. 2005; Duarte et al. 2009; Morteani et al. 2010), e (2) exsolução magmática de gás a partir de melt supersaturado com respectiva dissolução de voláteis, com cristalização de quartzo com temperaturas variando de 204 a 238°C (Scopel et al. 1998; Gilg et al. 2003; Proust e Fontaine 2007).

Só uma minoria do quartzo incolor pode desenvolver cores diferenciadas a partir de irradiação, O fator determinante é a presença de elementos químicos na forma de impurezas na composição desse mineral. É possível identificar através de análises não destrutivas quais garimpos possuem quartzo incolor com potencial para obtenção da cor verde, transformando-se em prasiolita após a irradiação gama.

Foram coletadas amostras de quartzo incolor de diferentes localidades dentro do Distrito Mineiro de Ametista do Sul (DMAS) para avaliação do potencial de transformação de cor para prasiolita. Por meio de análises de espectroscopia de infravermelho (FTIR), com cálculos a partir dos espectros, pode-se indicar se os cristais são positivos para obtenção de verde e a dose de irradiação necessária. Para comparação da análise com o resultado, as amostras foram submetidas a diferentes doses de irradiação gama.

2. MATERIAIS E MÉTODOS

A espectroscopia de infravermelho, utilizada neste trabalho, é uma técnica apropriada para identificar o potencial de obtenção da variedade prasiolita por irradiação gama de quartzo incolor para uso em joalheria. As análises levam apenas alguns minutos e os espectros FTIR fornecidos quando comparados aos de Nunes *et al.* (2009) indicam o potencial para obtenção de prasiolita, a dose de irradiação necessária para a transformação e as impurezas causadoras da cor. Essa última está relacionada ao contexto geológico em que as mineralizações estão alojadas.

Foi feita a irradiação em um lote de 16 amostras, com cristais de 1 a 5 cm de comprimento, sendo os requisitos para a seleção serem transparentes, hialinos, incolores e ausência de inclusões de goethita, mineral muito comum para estes depósitos.

As análises de FTIR foram realizadas em 3 amostras, no espectrômetro ABB Bomem MB102 do Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) da Universidade Federal de Minas Gerais (UFMG). O espectro FTIR para cada cristal foi obtido no intervalo entre 4000 cm⁻¹ a 2500 cm⁻¹, com a resolução de 10 cm⁻¹ e 128 *scans* (varreduras) para cada amostra.

A espessura das amostras é variável e como consequência os valores absolutos de absorbância adquiridos são relativos, mas os picos permanecem sempre no mesmo comprimento de onda, o que é mais importante. Deste modo foi realizada a normalização dos espectros para as posteriores inferências. A normalização foi embasada nas bandas de 2499 a 2771 cm⁻¹, pois estão relacionadas com a ligação Si-O presente em todas as amostras e não são afetadas pela irradiação ou aquecimento (Lameiras, 2012). Sendo assim, a altura de uma dessas bandas pode servir de referência para a normalização e ser igualada a 1 (a banda 2677 cm⁻¹ foi a escolhida por apresentar melhor resolução) e corrigir proporcionalmente a absorção em todos os demais números de onda.

Por meio de correlações dos picos dos espectros normatizados com os resultados de amplos testes de irradiação (Tabela 1), é possível determinar se há potencial de transformação de cor (Nunes *et. al.*, 2009).

Após as avaliações por FTIR as amostras foram expostas ao Irradiador Panorâmico Múltipropósito de Categoria II, equipado com fonte de Co-60, também no CDTN, em doses de 200 e 900 kGy. O tempo de permanência do material no irradiador, com distância de 30 cm da fonte, é de aproximadamente 104 horas para a dose de 200 kGy enquanto que de 520 horas para a dose de 900 kGy.

Banda (cm ⁻¹)	Observação	Correlação com a cor após irradiação	
2499	Presente em todas as amostras	Sem relação	
2600	Presente em todas as amostras	Sem relação	
2677	Presente em todas as amostras	Sem relação	
2771	Presente em todas as amostras	Sem relação	
2935	Pequena banda, presente em todas amostras	Sem relação	
3063	Pequena banda, presente em todas amostras	Sem relação	
3202	Pequena banda, presente em todas amostras, ligação Si-O	Sem relação	
3303	Pequena banda, presente em todas amostras, ligação Si-O e relacionada a Al-OH	Sem relação	
3381	relacionada a Al-OH	Fumê a preto (morion)	
3433	relacionada a Al-OH/Na ⁺	Fumê a preto (morion)	
3483	relacionada a Al-OH/Li [†]	Fumê a preto (morion)	
3404-3510 doublet	Sem atribuição	Fumê - verde oliva	
3441	3441 é uma banda larga	Vi-1-+- (+i-+-)	
and 3585		Violeta (ametista)	
3441	3441 é uma banda larga	Verde (prasiolita) ou preto (morion)	
and 3585	com forte absorção na extensão >3000 cm ⁻¹ .		
3595	A maioria das amostras não apresentam esta banda	Sem relação	

Tabela 1 - Bandas no infravermelho do quartzo natural e respectivas cores relacionadas.

Fonte: Extraído e modificado de Nunes et. al. (2009).

A Figura 1 e a Tabela 2 mostram como o *fator de ametista* (f_a) é calculado (equação 1), onde h_1 é a altura da banda a 3441 cm⁻¹, e h_2 é a altura mínima entre 3441 e 3585 cm⁻¹. Observa-se que as amostras em que $f_a > 3,3$ desenvolvem a cor violeta da ametista. Se $2,7 \le f_a \le 3,3$, as amostras têm potencial para desenvolver cores entre violeta e verde. Se $f_a < 2,7$, a amostra desenvolve a cor verde da prasiolita.

$$f_a = \frac{h_1}{h_2} \tag{1}$$

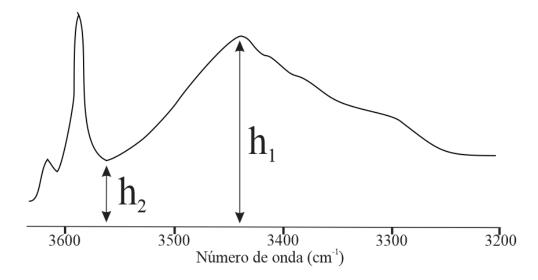


Figura 1 - Cálculo do *fator ametista*, f_a , onde h_1 e h_2 são as alturas medidas dos espectros normalizados após a subtração da linha de base (modificado de Lameiras, 2012).

Tabela 2 - Potencial de desenvolvimento de cor de acordo com o fator de ametista e área (Lameiras, 2012).

$\mathbf{f}_{\mathtt{a}}$	dose (kGy)	Desenvolvimento de cor		
< 2.7	> 600	Verde (prasiolita) após irradiação		
$2.7 \le f_a \le 3.3$	3 independente	Sem definitição entre violeta e verde		
> 2.7	> 200	Violeta (amethista) após irradiação		

Fonte: Extraído e modificado de Nunes et. al. (2009).

3. RESULTADOS E DISCUSSÃO

Os resultados das análises FTIR com seus principais picos de absorbância e respectivas frequências estão representados na Figura 2. Destacam-se as ocorrências dos picos 3436 cm⁻¹, 3585 cm⁻¹ e 3595 cm⁻¹. O valor da banda 3436 cm⁻¹ encontrado foi ajustado para 3433 cm⁻¹, conforme resolução espectral de 10 cm⁻¹ e é correspondente à ligação Al_{Si}-OH/Na⁺. A natureza das demais bandas ainda não é amplamente conhecida, porém a banda 3585 cm⁻¹ está provavelmente relacionada à ligação Fe_{Si}-OH/M⁺, onde M⁺ é um íon compensador. O ferro é um elemento traço comum em prasiolita e ametista (Lameiras *et al.*, 2006; Nunes *et al.*, 2009). Em cristais de quartzo incolor com potencial para prasiolita, porém, há um pico na banda 3441 cm⁻¹ mais acentuado que o da ametista (Alkmin, 2012; Tononi, 2019).

O *fator ametista* calculado para as amostras foi de 1.13 a 1.24, sendo que todas possuíram $f_a < 2.7$ indicando o potencial para desenvolvimento da cor verde após irradiação com doses acima de 600 kGy, conforme visto na tabela 3.

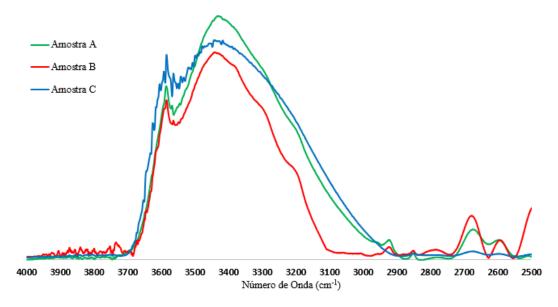


Figura 2 - Análise FTIR das amostras com indicações das frequências com picos de absorbância.

Tabela 3 - Resultados obtidos para as amostras a partir das análises das bandas de FTIR, cálculo do *fator ametista* e desenvolvimento de cor após irradiação gamma.

Amostra	Principais picos de número de onda (cm ⁻¹)	f_a	Potencial para prasiolita	Desenvolvimento de cor após dose de 200 kGy de irradiação	Desenvolvimento de cor após dose de 900 kGy de irradiação
Amostra A	3595; 3585; 3433;	1.24	Sim	Verde escuro	Verde escuro
Amostra B	3595; 3585; 3433;	1.13	Sim	Verde escuro	Verde escuro
Amostra C	3595; 3585; 3433;	1.37	Sim	Verde escuro	Verde escuro

Para avaliação dos dados as amostras foram submetidas a doses de irradiação de 200 e 900 kGy, obtendo-se para as amostras a cor verde escuro (Tabela 3, Figs. 3 e 4). Os resultados de cor respeitaram adequadamente a transformação esperada por meio do cálculo do *fator ametista* (fa), reiterando a eficácia do método para quartzo do sistema hidrotermal do Distrito Mineiro de Ametista do Sul. Observou-se que não houve diferença na cor das amostras para as doses de 200 e 900 kGy (Figura 3). Foi possível observar que em algumas poucas amostras a cor verde não foi homogeneamente distribuída, mantendo-se algumas partes incolores ou apenas com pouca intensidade de verde. As áreas verdes estão sempre concentradas nas partes menos fraturadas e mais estriadas das amostras, ou seja, nas pontas dos cristais.

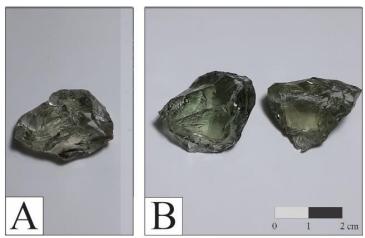


Figura 3 - Amostras de quarto originalmente incolor após a irradiação: em A) dose de 200 kGy, e em B) dose de 900 kGy. Nota-se que não ouve diferença na tonalidade tampouco na intensidade da cor nas amostras com doses distintas.

A intensidade da cor não ocorreu proporcionalmente aos valores obtidos para o f_{a.} O quartzo de origem hidrotermal, como é o caso dos depósitos do Distrito Mineiro de Ametista do Sul, incorpora em sua estrutura uma quantidade de água em sua formação e esta é a razão para a formação de radicais silanol, bem como os elementos Fe e Na dando a cor verde ao quartzo após a irradiação (Enokihara, 2013; Tononi *et al.*, 2018).

Figura 4 - Em a) amostras de quartzo natural e em b) após irradiação gamma de 900 kGy.

4. CONCLUSÕES

As análises por FTIR dos cristais de quartzo incolor forneceram gráficos com picos de absorbância nas bandas 3436 cm⁻¹, 3585 cm⁻¹ e 3595 cm⁻¹. O *fator ametista* (f_a) foi calculado para as amostras obtendo-se valores entre 1.13 e 1.24 indicando que todas possuem potencial para aquisição de cor verde após irradiação. Os picos das bandas 3433 cm⁻¹ e 3585 cm⁻¹ indicam que possivelmente as fontes causadoras de cor para quartzo incolor deste depósito em prasiolita são as ligações Al_{Si}-OH/Na⁺, Fe_{Si}-OH/H⁺ (Lameiras *et al.*, 2006; Nunes *et al.*, 2009).

A cor obtida após a irradiação foi verde escura. Algumas poucas amostras não apresentaram homogeneidade na coloração variando de acordo com o eixo c dos cristais. Ainda, nas regiões mais fraturadas dos cristais não houve desenvolvimento de nenhuma cor ou foi incipiente e, nas áreas mais estriadas e livre de defeitos, obteve-se verde mais intenso e homogêneo. Esta característica está indicando que há fatores inibidores ou ausência de elementos ativadores para gerar a cor.

Revista CIATEC - UPF, vol.11 (1), p.p.19-26, 2019

Não foi identificada relação da intensidade da cor verde com o valor obtido no *fator ametista* (f_a). Não houve diferença significativa entre o resultado de cor entre as amostras irradiadas com 200 kGy e 900 kGy, indicando que doses maiores que 200 kGy não contribuem para um resultado mais eficiente na coloração, apenas trazem mais custos ao processo já que este tipo de serviço é cotado pelo tempo de exposição à irradiação (Enokihara, 2013; Tononi *et al.*, 2018).

O quartzo incolor do Distrito Mineiro de Ametista do Sul, tem potencial para obtenção de cor verde após a irradiação, podendo adquirir maior valor comercial. A intensidade da cor verde, porém não é homogênea para todos os garimpos do DMAS. As análises por FTIR e o cálculo do fator ametista e água molecular indicam aos mineradores o potencial da amostra, a dose de irradiação necessária bem como a intensidade de verde a ser adquirida. A metodologia aqui aplicada pode ser usada para depósitos de quartzo hidrotermal em todo o mundo.

AGRADECIMENTOS

Os autores agradecem ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) pelo apoio financeiro através do Projeto de fomento à Pesquisa 454183/2014-3 — Caracterização dos materiais gemológicos do Rio Grande do Sul por FT-IR para estudos de mudança de cor por irradiação gama: irradiação seletiva para design de superfície.

5. REFERÊNCIAS

ALKMIN, D.G. Identificação do potencial de desenvolvimento de cor em quartzo natural incolor por meio da espectrometria RAMAN. 2012. 63f. Tese (Doutorado) - Comissão Nacional de Energia Nuclear, Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte.

DNPM. Quartzo Cristal In: Departamento Nacional de Mineração. **Sumário Mineral 2014**. Brasil, 2014.

DUARTE, L, C. HARTMANN, L, A. VASCONCELOS, M, A, Z. Epigenetic geode formation in the worldclass amethyst deposits of the southern Paraná basaltic province. **In: I Simpósio Brasileiro de Metalogenia**, Gramado, 2005.

DUARTE, L, C. HARTMANN, L, A. VASCONCELOS, M, A, Z. MEDEIROS, J, T, N. THEYE, T. Epigenetic formation of amethyst-bearing geodes from Los Catalanes gemological district, Artigas, Uruguay, Southern Paraná Magmatic Province. **Journal of Volcanology and Geothermal Research**, v. 184, p. 427-436, 2009.

CAMPBELL, D, F. Quartz Crystal in the state of Goiaz. **Economic Geology**, Brasil, v. 41, p. 773-799, 1946.

DNPM. Sumário Mineral In: Departamento Nacional de Mineração. **Sumário Mineral 2011**. Brasil, 2011.

DRUMMOND, N. F. **Ambientes Geológicos e Mudanças de Cor de Quartzo Hialino.** 2009. 195f. Dissertação (Mestrado) - Universidade Federal de Ouro Preto, Ouro Preto.

ENOKIHARA, C. T. Estudo do quartzo verde de origem hidrotermal tratado com radiação gama. 2013. 165 p. Tese (Doutorado) - Instituto de Pesquisas Energéticas e Nucleares – IPEN, São Paulo.

GILG, H, A. MORTEANI, G. KOSTITSYN, Y. PREINFALK, C. GATTER, I. STRIEDER, A, J. Genesis of amethyst geodes in basaltic rocks of the Serra Geral Formation (Ametista do Sul, Rio Grande do Sul, Brazil): a fluid inclusion, REE, oxygen, carbono, and Sr isotope study of basalt, quartz and calcite. **Mineralium Deposita**, n. 38, p. 1009-1025, 2003.

LAMEIRAS, F, S. NUNES, E, H, M. VAR, L. O. R. Identificação de quartzos incolores para joalheria. **REM Revista Escola de Minas**, Ouro Preto, v. 59, p. 129-133, 2006.

LAMEIRAS, F.S. The relation of FTIR signature of natural colorless quartz to color development after irradiation and heating. In: Morozhenko, V. (Ed.) **Infrared Irradiation**, InTech, 2012.

MME. Areia Industrial. Technical Report, 2010. 52p.

MORTEANI, G. KOSTITSYN, Y. PREINFALK, C. GILG, H. A. The genesis of the amethyst geodes at Artigas (Uruguay) and the paleohydrology of the Guaraní aquifer: structural, geochemical, oxygen, carbono, strtiun isotope and fluid inclusion study. **International Journal of the Earth Sciences**, n. 99, p. 927-947, 2010.

NUNES, E.H.M.; MELO, V.A.R.; LAMEIRAS, F.S.; LIZ, O.S.R.; PINHEIRO, A.M.; MACHADO, G.C.; VASCONCELOS, W.L. Determination of the potential for extrinsic color development in natural colorless quartz. **American Mineralogist**, v. 94, p. 935-941, 2009.

PROUST, D. FONTAINE, C. Amethysr-bearing lava flows in the Paraná Basin (Rio Grande do Sul): cooling, vesiculation and formation of the geodic cavities. **Geological Magazine**, n. 144, p. 53-65, 2007.

SCOPEL, R, M. GOMES, M. E. B. G, FORMOSO, M, L, L. PROUST, D. Derrames portadores de ametistas na região de Frederico Westphalen-Irai-Planalto-Ametista do Sul, RS-Brasil. **Congresso Uruguaio de Geologia**, Actas, p. 243-252, 1998.

TONONI, L, L. MENEZES, M, T, F. DUARTE, L. C. JUCHEM, P. L, ALKMIN, D, G. LAMEIRAS, F. S. **Potencialidade de geração da cor verde por radiação gamma em quartzo incolor das regiões de Progresso e Ametista do Sul/RS**. In: DONATO, M. DUARTE, L. C, VILASBÔAS, F. (Eds). Avanços Técnico-Científicos no Setor de Gemas, Joias e Mineração. Soledade: CTPEDRAS, 2018. p.34-49

TONONI, L.L. Desenvolvimento da cor por radiação gama em quartzo incolor: geodos associados à riodacitos da região de Progresso e Nova Bréscia (Rio Grande do Sul – Brasil). 2019. 86f. Dissertação (Mestrado) – Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre.