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Abstract

Data acquired using low-cost depth cameras exhibits undesirable traits such as low-resolution and high amount
of noise, yielding point clouds with insufficient information from an object. This limits the use of such devices
for 3D reconstruction of heritage artifacts. This work aims to improve low-cost depth acquisition by using a new
approach based on Super-Resolution techniques. The proposed approach has been applied to several artifacts of
the Federal University of Bahia Museum of Archaeology and Ethnology (MAE/UFBA). The results show that our
approach improves the quality of point clouds generated from several heritage artifacts. Our analysis concludes
that whenever additional geometry is obtained via the proposed method there is actual reconstruction of detail,
while any geometry that is removed is usually related to the removal of inconsistencies or noise from the input
data, without loss of detail.
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Resumo

Dados adquiridos através de cameras de profundidade de baixo custo possuem caracteristicas indesejaveis como
baixa resolugdo e forte presenca de ruido, gerando nuvens de pontos com informacao insuficiente a respeito
dos objetos. Assim, a aplicabilidade dessas cimeras para reconstrucdo 3D de artefatos culturais é limitada. O
presente trabalho visa melhorar as aquisi¢des 3D de baixo custo através de uma proposta baseada em técnicas de
Super-Resolugdo. O método proposto foi aplicado a diversos artefatos do Museu de Arqueologia e Etnologia da
Universidade Federal da Bahia (MAE/UFBA). Os resultados obtidos indicam que o método proposto melhora a
qualidade das nuvens de pontos obtidas a partir dos artefatos avaliados. A analise realizada indica que a geometria
adicional obtida através do método proposto representa reconstrucdo de detalhe real do artefato, enquanto a
eventual remoc¢do de informagdo geométrica geralmente indica a elimina¢do de ruido ou dados inconsistentes,
sem que ocorra a perda de detalhes.

Palavras-Chave: Aquisicao de Baixo Custo; Nuvens de Pontos; Preservacao Digital; Super-Resolugdo.

1 Introduction reconstruction pipelines focus on using low-cost

acquisition technologies (Newcombe et al., 2011, Dias
Projects such as the Digital Michelangelo (Levoy et al., 2006). Potential advantages of these low-
et al., 2000) and the Great Buddha (Miyazaki et al.,  cost approaches include the possibility of real-time
2000) show examples of successful 3D reconstructions  reconstruction; GPU acceleration; and cheap, portable
to digital heritage. However, as was the case and lightweight equipment. The difference in price
with these two projects, digital heritage missions between low-cost and traditional 3D acquisition is
frequently employ highly specialized, and costly, of at least several orders of magnitude. An Intel
equipment and personnel. Nevertheless, some recent  Realsense low-cost camera costs in range of US$100
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and a Microsoft Kinect V1 (now discontinued) costs
around USS$50, whereas traditional laser scanners can
cost from US$10,000 to more than US$100,000.

The Kinect V1 is the first version of a cheap motion-
tracking device based on a infrared emitter/receiver
pair. The Kinect works by projecting a pattern of
structured infrared light (Pavlidis et al., 2007) upon
the scene, much like older low-cost reconstruction
pipelines (Rocchini et al., 2001). The infrared receiver
detects the distortions caused by the reconstructed
scene on the pattern; based on these distortions and
the known parameters of the acquisition hardware
(distance between the sensors, etc.), it is possible to
obtain the distance of the detected points to the infrared
emitter and obtain depth images of the scene at a rate
of 30 frames per second. Moreover, the Kinect V1 has an
RGB camera which is used to capture color information
at the same rate of the depth images.

The main difference between using a low-cost
sensor and high-end acquisition hardware lies in the
quality of the acquired data. The data provided by
the Kinect scanner is noisy, low-resolution (both the
depth maps and color images are captured at 640x480
resolution) and inconsistent (pieces of information
appear and disappear even in successive frames).
Cheaper acquisition hardware also indirectly limits the
scale of the reconstruction targets, which is constrained
by factors such as scanning resolution and operational
range.

In this context, the central contribution of the
present research is a new approach, based on Super-
Resolution (SR) techniques (Nasrollahi and Moeslund,
2014), to enhance the 3D data obtained from a low-cost
device. Our approach generates a high-resolution (HR)
depth image from low-resolution (LR) depth images of
the object. The associated 3D reconstruction pipeline
processes this HR data and generates a point cloud
with more detail and less noise compared to clouds
generated from the original LR observations. The
approach has been applied in a practical context of
digital heritage, capturing several cultural objects of
the UFBA Museum of Archaeology and Ethnology.

An important observation is that even though a
Microsoft Kinect V1 was used during the acquisition
phase of this work, the method is not tied to a specific
depth sensor. Therefore, even better results could
be possible with newer and more accurate low-cost
acquisition devices such as the Microsoft Kinect V2
and the Intel Realsense depth cameras. Moreover, it
should be noted that while several studies work with
3D meshes and point clouds directly, our method treats
the acquired data as a grayscale 16-bit 2D image during
the acquisition stage. This allows the usage of 2D
image processing techniques instead of 3D geometry
processing algorithms for tasks such as noise removal
and registration, which ultimately yielded good results.
Extra care was taken to never quantize the input data
using less than 16 bits, thus preserving its original
precision.

The rest of this work is structured as follows:
Section 2 shows the previous work focused on
improving data quality from low-cost acquisitions;

Section 3 details the proposed approach based on Super-
Resolution; Section 4 presents experimental results,
showing some cultural heritage artifacts used in this
work; finally, Section 5 presents the conclusions of this
work and some directions for future research.

2 Related Work

The acquisition phase of a 3D reconstruction pipeline is
concerned with using one or more acquisition devices
to capture the data of an object (geometry, color, etc.)
that will be used throughout the other phases of a
3D reconstruction process (Bernardini and Rushmeier,
2002). For the acquisition of geometry, there is
a variety of hardware with considerable differences.
When selecting which device to use, the acquisition
devices have to be compared regarding characteristics
such as precision, flexibility, reconstruction speed,
portability, and operational scale (Gomes et al., 2014).
Regarding low-cost acquisition technologies, there are
both active (which project some sort of light upon the
scene) and passive (which use image data captured by
RGB images) capture approaches, this work focuses
on the former. Some arguments for the usage of
active low-cost 3D acquisition techniques are: a) active
sensors provide much faster captures because the depth
information is calculated from one or more physical
measurements instead of relying on image processing
and feature matching techniques; b) active sensors
are more robust regarding external factors such as
changes in lighting and focal length; and c) active
sensors perform better in reconstructing textureless
and featureless surfaces.

A survey on low-cost 3D reconstruction of cultural
heritage artifacts has already been proposed (Raimundo
et al., 2018). Nevertheless, due to limitations
of low-cost depth cameras, the raw data that
they provide is usually noisy, low-resolution and
inaccurate (Silva et al., 2013, Cui et al., 2013). A
way to improve the quality of sensor data shown in
several studies (Zollhofer et al., 2015, Silva et al.,
2013) is the utilization of SR techniques (Park et al.,
2003, Richardt et al., 2012). A comprehensive survey
and a thorough taxonomy of this area have been
proposed (Nasrollahi and Moeslund, 2014). Super-
Resolution is the process of obtaining HR images
from one or more LR observations of the same object,
where one or several parameters of the imaging model
(position, focal length, noise model, etc.) vary between
the LR images (Nasrollahi and Moeslund, 2014). In
this context, resolution can refer to one or more
image characteristics such as spatial resolution or
temporal resolution. With that said, like most SR
approaches (Nasrollahi and Moeslund, 2014, Huang and
Yang, 2010), the proposed SR method aims to improve
the spatial resolution of the images, increasing the
amount of high-frequency information (i.e. object
detail), by varying the position of the depth camera
slightly between the captures. This is different from
simple image interpolation because the latter only
increases the amount of pixels of the input image,
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without seeking to reconstruct detail.

The KinectFusion system (Izadi et al., 2011,
Newcombe et al., 2011) performs real-time 3D
reconstruction using the Microsoft Kinect V1 as its
acquisition hardware. KinectFusion showed a way to
improve the quality of raw data by applying a bilateral
filter (Tomasi and Manduchi, 1998) to remove noise
from the input data while preserving its edges and
fine detail, providing cleaner input to the other steps
of the reconstruction process. Nevertheless, even
after applying a bilateral filter to the depth image,
holes or missing detail could be generated because
to the temporal inconsistency of Kinect. Also, given
that real-time reconstruction reduces the viability of
our approach and is not a requirement for heritage
artifact reconstruction, this constraint is removed in
the present work to allow the usage of computationally
intensive Super-Resolution techniques to improve the
quality of the data of captured cultural artifacts as much
as possible.

3 Proposed Approach

For each captured artifact an acquisition protocol
consisting of the number of depth captures, the angular
displacement between captures, and the boundaries
of the capture volume is established. Considering
the strict quality requirements associated with digital
heritage, it is also necessary to work directly with
the sensor data instead of processed or filtered data
provided by existing capture tools. Thus, an interactive
tool (Fig. 1) which captures depth and color images and
generates point clouds was developed to acquire the
raw data from the depth sensor. This application can
also be configured to capture a user-defined number
of images in a single burst.

In an incremental fashion, two different techniques
to solve the problems of low-resolution and noise
present in data from low-cost 3D scanners were
developed: Smooth Accumulation and Super-
Resolution, both of which leverage the burst-capture
functionality of the developed tool. While Smooth
Accumulation was eventually replaced by a custom
SR approach, it was used in several case studies and
some of its ideas were reused, such as the utilization
of more than one depth frame to improve the acquired
depth image.

3.1 Smooth Accumulation

Initial assessments of the depth data showed that even
after applying a bilateral filter (Tomasi and Manduchi,
1998) to the depth map, several holes were present
and part of the geometric information was missing
because of the temporal inconsistency of the depth
stream. To tackle this issue, data from multiple depth
frames was accumulated, maintaining information that
was temporarily absent due to fluctuations in the sensor
measurements. Eq. (1) formalizes this accumulation
technique for two grayscale input images A and B
to obtain a third image (C); as a convention, right
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Figure 1: Application developed to acquire and process

depth information. The slider controls at the top are

used to define minimum and maximum thresholds (in

millimeters) of the capture and the clipping limits (in

pixels) of the image plane, effectively determining the
capture volume.
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Figure 2: Smooth accumulation: an initial attempt to
solve the problems of noise and lack of detail in the
acquired data. The leftmost depth image shows the

captured data without accumulation, and the
rightmost one depicts the data accumulated from
multiple depth frames, with the added data presented
in white. The depth information appears as a single
shade of gray here because of the leveling necessary to
make the reconstructed object visible.

subscription is used to refer to the image element at
row i and column j of an image:

Cij = AU lf AU ;/ 0

accum(4, B) = C where {Cij - B; if Aj=0 (1)

In practice, the resulting image C can be accumulated
with the next captured frame and so on. Fig. 2 depicts
the result of this process. The combination of this
data accumulation technique and bilateral filtering is
referred to as Smooth Accumulation.

3.2 Super-Resolution

The theoretical framework employed by most SR
approaches assumes that each LR image is a warped,
blurred, decimated and noisy version of the original
HR image (Nasrollahi and Moeslund, 2014). Therefore,
the SR problem consists of finding the correct set of
transformations that turn each LR image back to its

HR version and fuses their information in some way.

Fig. 3 illustrates the procedure of going from several
LR images to one HR image, through sequential noise
removal, upsampling, deblurring, and image fusion
operations.

After  evaluating several third-party SR
methods (Mitzel et al., 2009, Farsiu et al., 2004), a
new SR approach was developed specifically to improve
the quality of depth maps acquired using low-cost
devices. The main motivation for developing a novel
SR approach was that the results obtained through
the evaluated approaches, geared towards images and
videos of real-world scenes, suggested that these
approaches do not correctly handle some traits of
depth data (such as temporal inconsistency and gaps
in the data, which are not common in real-world

scenes), introducing artifacts in the final geometry.

The stages of the proposed Super-Resolution
approach are established as follows: pre-processing
stage, registration stage, upsampling stage, warping
stage, and reconstruction stage. Although the names of
these stages are somewhat novel, this approach still lies
within theoretical SR frameworks outlined by related
work (Park et al., 2003, Nasrollahi and Moeslund, 2014).
Notwithstanding, this naming scheme was devised to
allow the reader to further differentiate the proposed
approach from existing ones and drill-down on the
specifics of stages which are often bundled together in
other studies.

Pre-processing: given the importance of using a
priori information to improve the quality in other low-
cost 3D reconstruction studies (Raimundo et al., 2018).
This stage was included in the proposed SR approach
to calculate the bounding box of the 3D volume
corresponding to the HR image. The information
calculated during this stage of the SR pipeline is used
in latter steps of the SR pipeline to avoid introducing
extreme values (i.e. values outside of the observed
volume) and remove non-linear noise that might be
introduced when performing the subsequent image
transformations.

Registration: due to the acquisition protocol and
nature of the captured artifacts, only global motion
between the LR frames must be compensated in this
study. Again, drawing from an image processing
background, a 2D registration technique (ECC image
alignment (Evangelidis and Psarakis, 2008)) was used
to acquire a sub-pixel registration of the LR frames to
a template (usually the first frame of the sequence).
Using ECC, an affine model of the translation and
rotation between the frames is obtained, which can
then be applied to align the images (Fig. 4 - top).
The key here is that the displacement between the
subsequent LR frames must be small enough to
be compensated accurately via rigid 2D alignment.
The current approach yields good results with an
angular displacement between 1° and 3° and linear
displacement of about 1 cm. Despite that, the method is
robust with regards to larger displacements, as invalid
depth information generated by non-overlapping areas
of the LR frames is filtered out in the next stages of
the SR pipeline.

Upsampling: to take advantage of the sub-
pixel alignment obtained during registration on the
following stages of the SR pipeline, the LR images
must be upsampled. In the proposed approach, nearest-
neighbor scaling is applied to the LR frames to avoid
introducing invalid depth data at this stage of the
SR pipeline. It has been determined that a scaling
factor of 4 works well for 16 LR frames of input;
nevertheless, this constant likely has to be adjusted
for other acquisition protocols and devices. The
higher spatial resolution obtained from upsampling the
images allows the non-redundant information present
therein to be interwoven during the alignment and
reconstruction stages. Fig. 4 (middle) shows how the
registration obtained previously is still valid for the
upsampled images, also due to the usage of nearest-
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Figure 3: Illustrated summary of SR. The figure shows how multiple LR images can be mapped back to a single
HR image via a set of successive image transformations, with the triangles and squares denoting different
features in the images.

neighbor scaling, which preserves the features of the
input data.

Warping: given the upsampled LR frames and the
registration obtained previously, it is possible to
perform an affine warp that corresponds the matching

parts of the upsampled images (Fig. 4 - middle).

Due to the higher pixel resolution obtained in the
previous step, the sub-pixel displacements obtained
via ECC in the registration phase now correspond to
“whole” pixels. Thus it is possible to align these images
with greater precision than before, without losing
information because of aliasing. After applying the
warp operations, the data from the LR frames is ready
to be fused in the next step.

Reconstruction: following the lead of most other SR
approaches, the usage of mean and median filters was
evaluated for the reconstruction of the HR image. These
are some effective and computationally efficient ways
to fuse information from multiple images, which, in
some cases, accurately reproduce the results obtained
via complex analytical approaches (Nasrollahi and
Moeslund, 2014). However, unlike what happens
in general SR methods, which are geared towards
regular color or grayscale images, a simple mean fusion
did not yield good results for depth images due to
the discontinuity of the data (Fig. 5 - top-left). As
unreliable depth data is registered as a 0 or other
invalid value by the depth sensor, simply averaging the
values introduces additional noise on the depth map, a
median fusion improved over these results but still left
some invalid information (Fig. 5 - top-right), with the
added disadvantage of introducing depth plateaus on
the point cloud. In the final reconstruction approach,
these problems were solved by eliminating zeros from

00 KK A 4 P
Doa.A A4y
noboo -7

Figure 4: Representation of the registration of two
hypothetical LR images and their combination into a
single HR image. From top to bottom the registration,

upsampling and reconstruction stages of the SR
pipeline are illustrated.
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Figure 5: Visual comparison of the generated super-resolved point cloud using the mean (top-left), median
(top-right) and zero-eliminating mean (bottom-left) operations during the reconstruction phase of the SR
pipeline. For reference, the bottom-right shows a picture of the artifact.
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Figure 6: Photo of the experimental setup used throughout this evaluation. The setup consists of a laptop, a
turntable, a Microsoft Kinect V1, and the heritage artifacts themselves, in addition to the transparent support
used to position the Kinect at an adequate height.

the mean calculations during the image fusion, which
ultimately yielded good results (Fig. 5 — bottom), with
very little remaining noise (an expected side-effect of
the mean operation) and smooth, credible, geometry.

4 Results

One of the main challenges faced by low-cost 3D
reconstruction pipelines is the low-resolution, lack
of detail, and high amount of noise of the depth data
provided by the hardware (Cui et al., 2013). Therefore,
considerable effort was dedicated to improve the results
of the acquisition phase because if better geometric
data is passed on to the next stages of a low-cost 3D

reconstruction pipeline, better 3D models are produced.

Henceforth, the results of applying the developed SR
method to captured heritage artifacts are presented
and discussed.

4.1 Experimental Setup

The main execution environment of the software
developed within this work was a laptop computer with
an 2.5 GHz Intel Core i7 6500-U processor, 8 GB of
RAM and a discrete Geforce 940MX graphics card. The
acquisition devices were a Microsoft Kinect V1 scanner
and a turntable. An overview of the experimental setup
is provided in Fig. 6.

Software tools were developed from third-party
libraries for various purposes. OpenCV (Bradski and

Kaehler, 2000) and PCL (Rusu and Cousins, 2011) were
used to handle and process images and point clouds,
OpenGL (Woo et al., 1999) was the graphics library
used for the visualization module, and the libfreenect ?
driver was used in the depth acquisition application to
access and retrieve data from the Microsoft Kinect V1.

Two heritage artifacts were captured: a pot with
fish-like carvings (heretofore denominated “Fish Pot”,
Fig. 7) and a turtle-shaped clay pan (“Turtle Pan”,
Fig. 8). Both pieces belong to the MAE/UFBA collection
and are part of the material culture of the Wauja
indigenous tribe and have been chosen for this analysis
due to their differences in geometry, finishing and
motifs.

4.2 Experimental results and discussion

The objective of the proposed SR pipeline was to
improve over the smooth accumulation approach whilst
still mitigating the two main traits of depth maps
acquired using low-cost RGB-D hardware: heavy noise
and low amount of detail. Fig. 9 illustrates the results
of using the proposed SR pipeline on the Turtle Pan.
With comparison to the raw depth map acquired from a
Microsoft Kinect V1, more data is present in the capture
(=~ 12,000 vs. ~ 10,000 captured points), several holes
were filled, and the geometry is overall smoother.
Complementing what was already shown in Fig. 9,

Ihttps://github.com/OpenKinect/libfreenect
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Figure 7: Fish Pot - Decorated clay pot crafted by
members of the Wauja tribe. Part of the MAE/UFBA
collection.

Figure 8: Turtle Pan - Turtle-shaped clay pan made
by members of the Wauja tribe. Also part of the
MAE/UFBA collection.

Fig. 10 shows further results of this approach depicting
the geometry acquired from the Turtle Pan. The
smoothing capabilities of the SR technique are evident
in the image, as the plateaus in the data are much less
noticeable; however, it is also important that details
have not been lost in the operation and actually became
more distinguishable. While in Fig. 10 - Left the shape
of the object appears somewhat flattened, on Fig. 10
- Right approximates the surface of the object more
accurately, and even presents a piece of the object
which had not been captured previously.

Fig. 11 shows the SR results for the Fish Pot. In this
case, the smoothing properties of the technique are
still present, but the acquisition of additional geometry
and reconstruction of details is more apparent. The
overall shape and features of the scanned artifact are

at the same time smoother and more well-defined.

The original point cloud (without SR) also presents
some distortion, which flattens the geometry of the
object in the same way that happened to the Turtle Pan,
while the SR version of the point cloud more closely
approximates the round shape of the object.

Table 1 quantitatively presents the results of using
the proposed SR technique on other point clouds of
tested heritage pieces, the increase in captured vertices
ranges from 2.97% to 38.44%. These results confirm

that more vertices are obtained using SR than without.

Together with a qualitative evaluation of the final
reconstructions, this indicates that reconstruction of
detail is obtained via the proposed method, while a

reduction in number of vertices, if any, would indicate
the removal of noise or invalid geometry.

5 Conclusions

The depth data obtained from low-cost sensors is
usually lacking in detail and consistency, which affects
the quality of the models obtained in 3D reconstruction.
Through the proposed Super-Resolution approach, it
has been possible to enhance this data and reconstruct
detail beyond what the sensor initially provides, as
indicated by our experimental results. Moreover, the
proposed method also improves the overall quality of
the data in terms of smoothness and presence of holes.
Future research should focus on an extended
evaluation of the current approach through both
the reconstruction of more heritage artifacts and a
quantitative analysis of the final 3D reconstructions,
which entails the existence of some baseline ground
truth. Another interesting goal for future works is the
deployment of a complete 3D reconstruction pipeline
for the preservation of heritage artifacts by museum
staff. Such a pipeline should take the limitations of
low-cost hardware and existing heritage practice into
consideration to be as streamlined as possible.
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