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Abstract
Data acquired using low-cost depth cameras exhibits undesirable traits such as low-resolution and high amountof noise, yielding point clouds with insu�cient information from an object. This limits the use of such devicesfor 3D reconstruction of heritage artifacts. This work aims to improve low-cost depth acquisition by using a newapproach based on Super-Resolution techniques. The proposed approach has been applied to several artifacts ofthe Federal University of Bahia Museum of Archaeology and Ethnology (MAE/UFBA). The results show that ourapproach improves the quality of point clouds generated from several heritage artifacts. Our analysis concludesthat whenever additional geometry is obtained via the proposed method there is actual reconstruction of detail,while any geometry that is removed is usually related to the removal of inconsistencies or noise from the inputdata, without loss of detail.
Keywords: Digital Heritage; Low-Cost Acquisition; Point Clouds; Super-Resolution.
Resumo
Dados adquiridos através de câmeras de profundidade de baixo custo possuem características indesejáveis comobaixa resolução e forte presença de ruído, gerando nuvens de pontos com informação insu�ciente a respeitodos objetos. Assim, a aplicabilidade dessas câmeras para reconstrução 3D de artefatos culturais é limitada. Opresente trabalho visa melhorar as aquisições 3D de baixo custo através de uma proposta baseada em técnicas deSuper-Resolução. O método proposto foi aplicado a diversos artefatos do Museu de Arqueologia e Etnologia daUniversidade Federal da Bahia (MAE/UFBA). Os resultados obtidos indicam que o método proposto melhora aqualidade das nuvens de pontos obtidas a partir dos artefatos avaliados. A análise realizada indica que a geometriaadicional obtida através do método proposto representa reconstrução de detalhe real do artefato, enquanto aeventual remoção de informação geométrica geralmente indica a eliminação de ruído ou dados inconsistentes,sem que ocorra a perda de detalhes.
Palavras-Chave: Aquisição de Baixo Custo; Nuvens de Pontos; Preservação Digital; Super-Resolução.

1 Introduction

Projects such as the Digital Michelangelo (Levoyet al., 2000) and the Great Buddha (Miyazaki et al.,2000) show examples of successful 3D reconstructionsto digital heritage. However, as was the casewith these two projects, digital heritage missionsfrequently employ highly specialized, and costly,equipment and personnel. Nevertheless, some recent

reconstruction pipelines focus on using low-costacquisition technologies (Newcombe et al., 2011, Diaset al., 2006). Potential advantages of these low-cost approaches include the possibility of real-timereconstruction; GPU acceleration; and cheap, portableand lightweight equipment. The di�erence in pricebetween low-cost and traditional 3D acquisition isof at least several orders of magnitude. An IntelRealsense low-cost camera costs in range of US$100
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and a Microsoft Kinect V1 (now discontinued) costsaround US$50, whereas traditional laser scanners cancost from US$10,000 to more than US$100,000.
The Kinect V1 is the �rst version of a cheap motion-tracking device based on a infrared emitter/receiverpair. The Kinect works by projecting a pattern ofstructured infrared light (Pavlidis et al., 2007) uponthe scene, much like older low-cost reconstructionpipelines (Rocchini et al., 2001). The infrared receiverdetects the distortions caused by the reconstructedscene on the pattern; based on these distortions andthe known parameters of the acquisition hardware(distance between the sensors, etc.), it is possible toobtain the distance of the detected points to the infraredemitter and obtain depth images of the scene at a rateof 30 frames per second. Moreover, the Kinect V1 has anRGB camera which is used to capture color informationat the same rate of the depth images.
The main di�erence between using a low-costsensor and high-end acquisition hardware lies in thequality of the acquired data. The data provided bythe Kinect scanner is noisy, low-resolution (both thedepth maps and color images are captured at 640x480resolution) and inconsistent (pieces of informationappear and disappear even in successive frames).Cheaper acquisition hardware also indirectly limits thescale of the reconstruction targets, which is constrainedby factors such as scanning resolution and operationalrange.
In this context, the central contribution of thepresent research is a new approach, based on Super-Resolution (SR) techniques (Nasrollahi and Moeslund,2014), to enhance the 3D data obtained from a low-costdevice. Our approach generates a high-resolution (HR)depth image from low-resolution (LR) depth images ofthe object. The associated 3D reconstruction pipelineprocesses this HR data and generates a point cloudwith more detail and less noise compared to cloudsgenerated from the original LR observations. Theapproach has been applied in a practical context ofdigital heritage, capturing several cultural objects ofthe UFBA Museum of Archaeology and Ethnology.
An important observation is that even though aMicrosoft Kinect V1 was used during the acquisitionphase of this work, the method is not tied to a speci�cdepth sensor. Therefore, even better results couldbe possible with newer and more accurate low-costacquisition devices such as the Microsoft Kinect V2and the Intel Realsense depth cameras. Moreover, itshould be noted that while several studies work with3D meshes and point clouds directly, our method treatsthe acquired data as a grayscale 16-bit 2D image duringthe acquisition stage. This allows the usage of 2Dimage processing techniques instead of 3D geometryprocessing algorithms for tasks such as noise removaland registration, which ultimately yielded good results.Extra care was taken to never quantize the input datausing less than 16 bits, thus preserving its originalprecision.
The rest of this work is structured as follows:Section 2 shows the previous work focused onimproving data quality from low-cost acquisitions;

Section 3 details the proposed approach based on Super-Resolution; Section 4 presents experimental results,showing some cultural heritage artifacts used in thiswork; �nally, Section 5 presents the conclusions of thiswork and some directions for future research.

2 Related Work

The acquisition phase of a 3D reconstruction pipeline isconcerned with using one or more acquisition devicesto capture the data of an object (geometry, color, etc.)that will be used throughout the other phases of a3D reconstruction process (Bernardini and Rushmeier,2002). For the acquisition of geometry, there isa variety of hardware with considerable di�erences.When selecting which device to use, the acquisitiondevices have to be compared regarding characteristicssuch as precision, �exibility, reconstruction speed,portability, and operational scale (Gomes et al., 2014).Regarding low-cost acquisition technologies, there areboth active (which project some sort of light upon thescene) and passive (which use image data captured byRGB images) capture approaches, this work focuseson the former. Some arguments for the usage ofactive low-cost 3D acquisition techniques are: a) activesensors provide much faster captures because the depthinformation is calculated from one or more physicalmeasurements instead of relying on image processingand feature matching techniques; b) active sensorsare more robust regarding external factors such aschanges in lighting and focal length; and c) activesensors perform better in reconstructing texturelessand featureless surfaces.
A survey on low-cost 3D reconstruction of culturalheritage artifacts has already been proposed (Raimundoet al., 2018). Nevertheless, due to limitationsof low-cost depth cameras, the raw data thatthey provide is usually noisy, low-resolution andinaccurate (Silva et al., 2013, Cui et al., 2013). Away to improve the quality of sensor data shown inseveral studies (Zollhöfer et al., 2015, Silva et al.,2013) is the utilization of SR techniques (Park et al.,2003, Richardt et al., 2012). A comprehensive surveyand a thorough taxonomy of this area have beenproposed (Nasrollahi and Moeslund, 2014). Super-Resolution is the process of obtaining HR imagesfrom one or more LR observations of the same object,where one or several parameters of the imaging model(position, focal length, noise model, etc.) vary betweenthe LR images (Nasrollahi and Moeslund, 2014). Inthis context, resolution can refer to one or moreimage characteristics such as spatial resolution ortemporal resolution. With that said, like most SRapproaches (Nasrollahi and Moeslund, 2014, Huang andYang, 2010), the proposed SR method aims to improvethe spatial resolution of the images, increasing theamount of high-frequency information (i.e. objectdetail), by varying the position of the depth cameraslightly between the captures. This is di�erent fromsimple image interpolation because the latter onlyincreases the amount of pixels of the input image,
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without seeking to reconstruct detail.The KinectFusion system (Izadi et al., 2011,Newcombe et al., 2011) performs real-time 3Dreconstruction using the Microsoft Kinect V1 as itsacquisition hardware. KinectFusion showed a way toimprove the quality of raw data by applying a bilateral�lter (Tomasi and Manduchi, 1998) to remove noisefrom the input data while preserving its edges and�ne detail, providing cleaner input to the other stepsof the reconstruction process. Nevertheless, evenafter applying a bilateral �lter to the depth image,holes or missing detail could be generated becauseto the temporal inconsistency of Kinect. Also, giventhat real-time reconstruction reduces the viability ofour approach and is not a requirement for heritageartifact reconstruction, this constraint is removed inthe present work to allow the usage of computationallyintensive Super-Resolution techniques to improve thequality of the data of captured cultural artifacts as muchas possible.

3 Proposed Approach
For each captured artifact an acquisition protocolconsisting of the number of depth captures, the angulardisplacement between captures, and the boundariesof the capture volume is established. Consideringthe strict quality requirements associated with digitalheritage, it is also necessary to work directly withthe sensor data instead of processed or �ltered dataprovided by existing capture tools. Thus, an interactivetool (Fig. 1) which captures depth and color images andgenerates point clouds was developed to acquire theraw data from the depth sensor. This application canalso be con�gured to capture a user-de�ned numberof images in a single burst.In an incremental fashion, two di�erent techniquesto solve the problems of low-resolution and noisepresent in data from low-cost 3D scanners weredeveloped: Smooth Accumulation and Super-Resolution, both of which leverage the burst-capturefunctionality of the developed tool. While SmoothAccumulation was eventually replaced by a customSR approach, it was used in several case studies andsome of its ideas were reused, such as the utilizationof more than one depth frame to improve the acquireddepth image.
3.1 Smooth Accumulation

Initial assessments of the depth data showed that evenafter applying a bilateral �lter (Tomasi and Manduchi,1998) to the depth map, several holes were presentand part of the geometric information was missingbecause of the temporal inconsistency of the depthstream. To tackle this issue, data from multiple depthframes was accumulated, maintaining information thatwas temporarily absent due to �uctuations in the sensormeasurements. Eq. (1) formalizes this accumulationtechnique for two grayscale input images A and Bto obtain a third image (C); as a convention, right

Figure 1: Application developed to acquire and processdepth information. The slider controls at the top areused to de�ne minimum and maximum thresholds (inmillimeters) of the capture and the clipping limits (inpixels) of the image plane, e�ectively determining thecapture volume.
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Figure 2: Smooth accumulation: an initial attempt tosolve the problems of noise and lack of detail in theacquired data. The leftmost depth image shows thecaptured data without accumulation, and therightmost one depicts the data accumulated frommultiple depth frames, with the added data presentedin white. The depth information appears as a singleshade of gray here because of the leveling necessary tomake the reconstructed object visible.

subscription is used to refer to the image element atrow i and column j of an image:

accum(A,B) = C where
{
Cij = Aij if Aij 6= 0
Cij = Bij if Aij = 0 (1)

In practice, the resulting image C can be accumulatedwith the next captured frame and so on. Fig. 2 depictsthe result of this process. The combination of thisdata accumulation technique and bilateral �ltering isreferred to as Smooth Accumulation.
3.2 Super-Resolution

The theoretical framework employed by most SRapproaches assumes that each LR image is a warped,blurred, decimated and noisy version of the originalHR image (Nasrollahi and Moeslund, 2014). Therefore,the SR problem consists of �nding the correct set oftransformations that turn each LR image back to itsHR version and fuses their information in some way.Fig. 3 illustrates the procedure of going from severalLR images to one HR image, through sequential noiseremoval, upsampling, deblurring, and image fusionoperations.After evaluating several third-party SRmethods (Mitzel et al., 2009, Farsiu et al., 2004), anew SR approach was developed speci�cally to improvethe quality of depth maps acquired using low-costdevices. The main motivation for developing a novelSR approach was that the results obtained throughthe evaluated approaches, geared towards images andvideos of real-world scenes, suggested that theseapproaches do not correctly handle some traits ofdepth data (such as temporal inconsistency and gapsin the data, which are not common in real-world

scenes), introducing artifacts in the �nal geometry.
The stages of the proposed Super-Resolutionapproach are established as follows: pre-processingstage, registration stage, upsampling stage, warpingstage, and reconstruction stage. Although the names ofthese stages are somewhat novel, this approach still lieswithin theoretical SR frameworks outlined by relatedwork (Park et al., 2003, Nasrollahi and Moeslund, 2014).Notwithstanding, this naming scheme was devised toallow the reader to further di�erentiate the proposedapproach from existing ones and drill-down on thespeci�cs of stages which are often bundled together inother studies.
Pre-processing: given the importance of using a

priori information to improve the quality in other low-cost 3D reconstruction studies (Raimundo et al., 2018).This stage was included in the proposed SR approachto calculate the bounding box of the 3D volumecorresponding to the HR image. The informationcalculated during this stage of the SR pipeline is usedin latter steps of the SR pipeline to avoid introducingextreme values (i.e. values outside of the observedvolume) and remove non-linear noise that might beintroduced when performing the subsequent imagetransformations.
Registration: due to the acquisition protocol andnature of the captured artifacts, only global motionbetween the LR frames must be compensated in thisstudy. Again, drawing from an image processingbackground, a 2D registration technique (ECC imagealignment (Evangelidis and Psarakis, 2008)) was usedto acquire a sub-pixel registration of the LR frames toa template (usually the �rst frame of the sequence).Using ECC, an a�ne model of the translation androtation between the frames is obtained, which canthen be applied to align the images (Fig. 4 – top).The key here is that the displacement between thesubsequent LR frames must be small enough tobe compensated accurately via rigid 2D alignment.The current approach yields good results with anangular displacement between 1◦ and 3◦ and lineardisplacement of about 1 cm. Despite that, the method isrobust with regards to larger displacements, as invaliddepth information generated by non-overlapping areasof the LR frames is �ltered out in the next stages ofthe SR pipeline.
Upsampling: to take advantage of the sub-pixel alignment obtained during registration on thefollowing stages of the SR pipeline, the LR imagesmust be upsampled. In the proposed approach, nearest-neighbor scaling is applied to the LR frames to avoidintroducing invalid depth data at this stage of theSR pipeline. It has been determined that a scalingfactor of 4 works well for 16 LR frames of input;nevertheless, this constant likely has to be adjustedfor other acquisition protocols and devices. Thehigher spatial resolution obtained from upsampling theimages allows the non-redundant information presenttherein to be interwoven during the alignment andreconstruction stages. Fig. 4 (middle) shows how theregistration obtained previously is still valid for theupsampled images, also due to the usage of nearest-
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Figure 3: Illustrated summary of SR. The �gure shows how multiple LR images can be mapped back to a singleHR image via a set of successive image transformations, with the triangles and squares denoting di�erentfeatures in the images.

neighbor scaling, which preserves the features of theinput data.
Warping: given the upsampled LR frames and theregistration obtained previously, it is possible toperform an a�ne warp that corresponds the matchingparts of the upsampled images (Fig. 4 – middle).Due to the higher pixel resolution obtained in theprevious step, the sub-pixel displacements obtainedvia ECC in the registration phase now correspond to“whole” pixels. Thus it is possible to align these imageswith greater precision than before, without losinginformation because of aliasing. After applying thewarp operations, the data from the LR frames is readyto be fused in the next step.
Reconstruction: following the lead of most other SRapproaches, the usage of mean and median �lters wasevaluated for the reconstruction of the HR image. Theseare some e�ective and computationally e�cient waysto fuse information from multiple images, which, insome cases, accurately reproduce the results obtainedvia complex analytical approaches (Nasrollahi andMoeslund, 2014). However, unlike what happensin general SR methods, which are geared towardsregular color or grayscale images, a simple mean fusiondid not yield good results for depth images due tothe discontinuity of the data (Fig. 5 – top-left). Asunreliable depth data is registered as a 0 or otherinvalid value by the depth sensor, simply averaging thevalues introduces additional noise on the depth map, amedian fusion improved over these results but still leftsome invalid information (Fig. 5 – top-right), with theadded disadvantage of introducing depth plateaus onthe point cloud. In the �nal reconstruction approach,these problems were solved by eliminating zeros from

Figure 4: Representation of the registration of twohypothetical LR images and their combination into asingle HR image. From top to bottom the registration,upsampling and reconstruction stages of the SRpipeline are illustrated.
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Figure 5: Visual comparison of the generated super-resolved point cloud using the mean (top-left), median(top-right) and zero-eliminating mean (bottom-left) operations during the reconstruction phase of the SRpipeline. For reference, the bottom-right shows a picture of the artifact.
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Figure 6: Photo of the experimental setup used throughout this evaluation. The setup consists of a laptop, aturntable, a Microsoft Kinect V1, and the heritage artifacts themselves, in addition to the transparent supportused to position the Kinect at an adequate height.

the mean calculations during the image fusion, whichultimately yielded good results (Fig. 5 – bottom), withvery little remaining noise (an expected side-e�ect ofthe mean operation) and smooth, credible, geometry.

4 Results
One of the main challenges faced by low-cost 3Dreconstruction pipelines is the low-resolution, lackof detail, and high amount of noise of the depth dataprovided by the hardware (Cui et al., 2013). Therefore,considerable e�ort was dedicated to improve the resultsof the acquisition phase because if better geometricdata is passed on to the next stages of a low-cost 3Dreconstruction pipeline, better 3D models are produced.Henceforth, the results of applying the developed SRmethod to captured heritage artifacts are presentedand discussed.
4.1 Experimental Setup

The main execution environment of the softwaredeveloped within this work was a laptop computer withan 2.5 GHz Intel Core i7 6500-U processor, 8 GB ofRAM and a discrete Geforce 940MX graphics card. Theacquisition devices were a Microsoft Kinect V1 scannerand a turntable. An overview of the experimental setupis provided in Fig. 6.
Software tools were developed from third-partylibraries for various purposes. OpenCV (Bradski and

Kaehler, 2000) and PCL (Rusu and Cousins, 2011) wereused to handle and process images and point clouds,OpenGL (Woo et al., 1999) was the graphics library
used for the visualization module, and the libfreenect 1driver was used in the depth acquisition application toaccess and retrieve data from the Microsoft Kinect V1.Two heritage artifacts were captured: a pot with�sh-like carvings (heretofore denominated “Fish Pot”,Fig. 7) and a turtle-shaped clay pan (“Turtle Pan”,Fig. 8). Both pieces belong to the MAE/UFBA collectionand are part of the material culture of the Waujáindigenous tribe and have been chosen for this analysisdue to their di�erences in geometry, �nishing andmotifs.
4.2 Experimental results and discussion

The objective of the proposed SR pipeline was toimprove over the smooth accumulation approach whilststill mitigating the two main traits of depth mapsacquired using low-cost RGB-D hardware: heavy noiseand low amount of detail. Fig. 9 illustrates the resultsof using the proposed SR pipeline on the Turtle Pan.With comparison to the raw depth map acquired from aMicrosoft Kinect V1, more data is present in the capture(≈ 12, 000 vs. ≈ 10, 000 captured points), several holeswere �lled, and the geometry is overall smoother.Complementing what was already shown in Fig. 9,

1https://github.com/OpenKinect/libfreenect

https://github.com/OpenKinect/libfreenect
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Figure 7: Fish Pot - Decorated clay pot crafted bymembers of the Waujá tribe. Part of the MAE/UFBAcollection.

Figure 8: Turtle Pan - Turtle-shaped clay pan madeby members of the Waujá tribe. Also part of theMAE/UFBA collection.

Fig. 10 shows further results of this approach depictingthe geometry acquired from the Turtle Pan. Thesmoothing capabilities of the SR technique are evidentin the image, as the plateaus in the data are much lessnoticeable; however, it is also important that detailshave not been lost in the operation and actually becamemore distinguishable. While in Fig. 10 – Left the shapeof the object appears somewhat �attened, on Fig. 10– Right approximates the surface of the object moreaccurately, and even presents a piece of the objectwhich had not been captured previously.
Fig. 11 shows the SR results for the Fish Pot. In thiscase, the smoothing properties of the technique arestill present, but the acquisition of additional geometryand reconstruction of details is more apparent. Theoverall shape and features of the scanned artifact areat the same time smoother and more well-de�ned.The original point cloud (without SR) also presentssome distortion, which �attens the geometry of theobject in the same way that happened to the Turtle Pan,while the SR version of the point cloud more closelyapproximates the round shape of the object.
Table 1 quantitatively presents the results of usingthe proposed SR technique on other point clouds oftested heritage pieces, the increase in captured verticesranges from 2.97% to 38.44%. These results con�rmthat more vertices are obtained using SR than without.Together with a qualitative evaluation of the �nalreconstructions, this indicates that reconstruction ofdetail is obtained via the proposed method, while a

reduction in number of vertices, if any, would indicatethe removal of noise or invalid geometry.

5 Conclusions
The depth data obtained from low-cost sensors isusually lacking in detail and consistency, which a�ectsthe quality of the models obtained in 3D reconstruction.Through the proposed Super-Resolution approach, ithas been possible to enhance this data and reconstructdetail beyond what the sensor initially provides, asindicated by our experimental results. Moreover, theproposed method also improves the overall quality ofthe data in terms of smoothness and presence of holes.Future research should focus on an extendedevaluation of the current approach through boththe reconstruction of more heritage artifacts and aquantitative analysis of the �nal 3D reconstructions,which entails the existence of some baseline groundtruth. Another interesting goal for future works is thedeployment of a complete 3D reconstruction pipelinefor the preservation of heritage artifacts by museumsta�. Such a pipeline should take the limitations oflow-cost hardware and existing heritage practice intoconsideration to be as streamlined as possible.
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