
Revista Brasileira de Computação Aplicada, July, 2020

DOI: 10.5335/rbca.v12i2.10120
Vol. 12, No 2, pp. 93–102
Homepage: seer.upf.br/index.php/rbca/index

O R I G I N A L P A P E R

Evaluation of a Network-on-Chip designed to deal with
multiple processors in a nanosatellite

Liz Cristine Moreira Coutinho1 and Marcelo Daniel Berejuck ,2
1,2Federal University of Santa Catarina - UFSC

*lizcmoreira@hotmail.com; marcelo.berejuck@ufsc.br
Received: 2019-10-23. Revised: 2020-06-05. Accepted: 2020-06-30.

Abstract
Nanosatellites are part of a category of artificial satellites with two essential characteristics: reduced sizeand low cost of raw material for their construction. They usually have between four and five boards withembedded electronics, which control all their functions. As an alternative to further minimize its costs is thedevelopment of a System-on-Chip or SoC, which may use a commercially available programmable logic device(or COTS – Commercial-Off-The-Shelf component), as an FPGA. To use this type of device is necessary to addmechanisms that can avoid problems arising from cosmic radiation in its electronic components, characteristic inthe nanosatellites’ space environment. This work presents the proposal of a Network-on-Chip (called NoC) thatconnects up to four soft-core processors, forming an SoC. The Network-on-Chip, supported by the Hammingcodes technique, provides mechanisms that allow it to re-establish a temporary failure of the types Single EventUpset and Single Event Transient. This protection was confirmed by simulations carried out with a software thatallows the injection of faults, named ModelSim. Results of lower silicon consumption, concomitant to economiesin design and reduction of sensitivity to cosmic ionization, can be observed after the elaborated experiments.
Keywords: Network-on-Chip; Nanosatellite; Hamming Code; Single Event Effect; Single Event Upset; SingleEvent Transient.
Resumo
Nanossatélites fazem parte de uma categoria de satélites artificiais com duas características importantes: tamanhoreduzido e baixo custo de matéria prima para sua construção. Eles, normalmente, possuem entre quatro e cincoplacas com eletrônica embarcada, as quais controlam todas as suas funções. Uma alternativa para minimizar aindamais seus custos é o desenvolvimento de um sistema intra-chip (também conhecido como System-on-Chip ou SoC),que pode utilizar um dispositivo lógico programável, tipo FPGA, de uso comercial (ou COTS, acrônimo do inglês
Commercial Off-The-Shelf component). Para utilizar este tipo de dispositivo, é necessário acrescentar mecanismosque possam evitar problemas decorrentes da radiação cósmica que atinge os componentes eletrônicos, o que écomum no ambiente espacial por onde circulam os nanossatélites. Este trabalho apresenta a proposta de uma rede
intra-chip que conecta até quatro processadores do tipo soft-core, formando um SoC. A rede, amparada pela técnicados códigos de Hamming, oferece mecanismos que permitem a ela seu restabelecimento de uma falha temporáriados tipos Single Event Upset e Single Event Transient. Esta proteção foi confirmada com simulações realizadas comum software que possibilita a injeção de falhas, denominado ModelSim. Resultados de menor consumo de silício,concomitante a economias no projeto e redução da sensibilidade à ionização cósmica, podem ser observados apósos experimentos elaborados.
Palavras-Chave: Rede intra-chip; Nanossatélite; Código de Hamming; Evento de efeito único; Único evento
alterado; Único evento transiente.
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1 Introduction

Satellite communications are a result of researchat communication and space technologies, with themain target to achieve different orbits and reducingcosts (Maral and Bousquet, 2011). However, bigsatellites demand heavy rockets and a significantamount of money for their launching. It means thatthe development of space technologies always wasrestricted to a few countries, and the commercialexploration still yet a privilege for a minority (Casarilet al., 2018).
In this context, the development of nanosatelliteshas been growing in the space communication market.Nanosatellites have lower technology complexity, andtheir launching cost is significantly smallest thanregular satellites. Their small size, low cost, and short-time development allow them to be widely selectedin Scientific Applications, Signal Monitoring, or Earthobservation, for instance (de Carvalho et al., 2012).
Nanosatellites usually are composed by a mechanicalstructure, an On-Board Computer (OBC - thenanosatellite’s brain), an Energy Power System (EPS)to control the production and energy storage system(solar panels, battery, management card, etc.), and aTelecommunications System (antennae, radio, etc.).One way to reduce the raw material cost of ananosatellite is the adoption of Commercial Off-The-Shelf components (COTS) to build its electronic controlboards. Another way is to reduce the number of boards,and hence the number of electronic devices. It may beachieved using the System-on-Chip (SoC) concept thatmay be applied using a Field Programmable Gate Array(FPGA).
A critical issue related to the adoption of COTS isthat electronic devices are exposed to harsh radiationenvironments and can suffer from hardware faults dueto cosmic radiations. These faults can be temporaryor permanent. Temporary faults may be classified asSingle Event Upset (SEU) and Single Event Transient(SET). A SEU happens every time an energetic particledirectly hits a storage element (e.g., memory cell,register, latch, and flip-flop) causing enough chargedisturbance to modify the stored value (Baumann,2005). In contrast with SEUs, which have an errorrate independent of the circuit clock frequency, a SETmay only generate a soft error if the transient pulsearrives at the input of the memory element during thelatching edge of the clock.
To be considered reliable, the nanosatellite’structure must apply fault-tolerant techniques tokeep its electronics systems working. For multi-core systems, the reliability is achieved by applyingthose techniques to the processing elements andinterconnection architecture. An alternative is toprotect the device with redundancy, i.e., extrafunctionalities with the sole purpose of detecting andcorrecting errors, that would not be necessary in a fault-free environment. In the case of FPGAs, redundancy-based strategies are often preferred, as they can beused with COTS components. This way, not requiringthe development and fabrication of custom devices,

consequently providing a lower cost and better time tomarket.
This paper introduces the evaluation of a Network-on-Chip (NoC) that connects up to four soft-coreprocessors, forming an SoC. The Network-on-Chip wasimplemented using two techniques: Hamming codeand TRM. Our focus was to evaluate these techniques,checking the silicon consumption and the capabilityto recover from temporary faults. The protectionagainst transient faults was confirmed by simulationscarried out with a software script, done for theModelSim simulator, that allows the injection of errorsin different parts of the network. When compared tothe triple modular redundancy (TMR), the Hammingcode strategy proved to be efficient. It provides similarlevels of fault tolerance with a much lower silicon areacost.
This document was organized as follow: Section 2introduces the related work about fault-toleranttechniques; Section 3 describes the network proposed,in terms of topology, packet format, physicalchannels, and adopted mechanisms to deal with faults;Section 4 introduces experimental results related to thenetwork latency, and Section 5 introduces the siliconconsumption for the proposed network; Section 6presents the outcome related to faults simulated withthe ModelSim tool. Section 7 finish the paper outliningthe main features of the proposed network.

2 Related work

Redundancy-based strategies are very flexible.Implementations can be made at different levels of thecircuit design flow, with varying degrees of protection.Most of the developed strategies found in literaturefall into four main categories: hardware redundancy,information redundancy, time redundancy, andsoftware redundancy (Goloubeva et al., 2006). Thissection reports studies that cover some of thesecategories.
Samudrala et al. (2004) have proposed a techniquefor hardening combinational circuits mapped ontoan FPGA from Xilinx manufacturer (Virtex’ family).Their focus was to develop a solution for SEUs. Thestrategy, called “Selective Triple Modular Redundancy”(STMR), was based on the traditional TMR approach.However, to obtain reduced silicon area overhead,they selectively employ the redundancy in only themost sensitive circuits. The identification of the mostsensitive circuits was made by analyzing the signalprobabilities of each logic gate within the digital circuit.According to the authors, the experimental resultsshowed that the technique provided immunity againstSEUs comparable to the full TMR when used along withother mitigation features of the Virtex FPGA. The areaoverhead of the STMR strategy may reach nearly 70%of results giving by TMR.
Pratt et al. (2006) also explore the idea of protectingonly the most critical sections of a design. Theymitigated the effects of SEUs in the configurationmemory of the FPGA, instead of the combinational
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logic. The authors labeled the configuration bits, usedby design mapped onto the FPGA, as sensitive bitsand suggested that the sensitive bits could be splitinto two categories: persistent and non-persistent.A non-persistent configuration bit is a sensitiveconfiguration bit that may introduce functional errorswhen upset by radiation. However, it can be repairedwith configuration scrubbing, and the functionalerrors disappear. On the other hand, a persistentconfiguration bit is a sensitive configuration bit which,even after configuration scrubbing, can not repairthe introduced functional errors. The authors havedeveloped a software tool, called BYU-LANL PartialTMR (BLTmr), that classifies the circuit structures.According to those authors, the experimental resultsshowed that for a specific design the number offaults in the configuration bits that led to non-repairable functional errors were reduced in two ordersof magnitude with a hardware cost of 40% over theunmitigated design.
Gomes et al. (2015) explore the concept ofapproximate logic circuits to reduce the silicon areaoverhead of the TMR technique. The idea consistsof using approximate logic modules to compose theredundant modules of the TMR. The approximatecircuits were modified versions of the original circuitwith a smaller silicon area, and also differs its outputfrom the original circuit for a small set of input vectors.Nevertheless, this technique imposes a condition on theapproximate circuits: only one of the modules can bedifferent from the original circuit at each input vectorscenario, therefore allowing the majority voters to stillselect two-match outputs out of three for any inputvector. According to the authors, the experimentalresults showed that for a 4-bit ripple carry adder thefault coverage could go up to 93% with 136% of siliconarea overhead and 96% with 168% of silicon areaoverhead. The circuits are mapped using the ABC logicsynthesis tool and an academic cell library.
Sanchez-Clemente et al. (2015) have presentedanother study that also explores the approximate logicapproach. However, the technique developed by themaimed at FPGA implementations. In this sense, thevaluable logic approximations are the ones that reducethe number of Lookup Tables (LUTs) in the circuit,either by eliminating LUTs or by merging contiguousLUTs. Otherwise, the result is a degradation of thelogic function of the circuit. It means that there are nobenefits in terms of resource utilization.
Feng et al. (2010) have developed a software-basedapproach, called Shoestring. That software providesprobabilistic soft error reliability. The purpose of thetechnique was to present high soft error coveragewith very little overhead. To achieve these goals,the authors proposed a strategy that combines low-weight symptom-based fault detection schemes withsoftware-based instruction duplication. Symptom-based detection schemes recognize that applicationsoften exhibit abnormal behavior in the presence ofsoft errors. Although symptom-based detection isinexpensive, it has a limited fault coverage, requiringthe use of other techniques concurrently. The main

contribution of the Shoestring technique is to efficientlyselect between relying on symptoms or applyinginstruction duplication to each part of the programcode. The selection analysis runs at compile-time,by introducing new reliability-aware code generationpasses into the standard compiler flow. Accordingto the authors, the technique achieved an overalluser-visible failure rate of 1.6%, with a performanceoverhead of 15.8%.
Rebaudengo et al. (2003) have introduced a studycase that analyzes the effects of SEUs in the softprocessor called LEON. The authors have comparedtwo alternative fault injection techniques: a software-based approach and an emulation-based approach. Forthe emulation-based approach, the authors have usedan FPGA-based platform. For running the injectionexperiments, a host computer was used as a FaultInjection Manager and communicated with the FPGAboard. The authors state that the emulation techniquehad an accuracy much higher than the software one(up to 13 times higher), concluding that the softwareapproach may lead to significant errors during the errorrate estimation.
Touloupis et al. (2007) also introduced the resultsover a soft processor, called LEON2. In that paper,the authors adopted a simulation-based fault injectionapproach. In the technique, the primary fault injectionsupport is implemented through a non-synthesizableVHDL entity that has access to all registers and canalter their contents at specified times. The entiresystem is simulated in a commercial VHDL simulator(ModelSim). They have used the simulator’s ForeignLanguage Interface (FLI) to implement various entitiesthat deal with the fault injection, monitoring, anddata collection. In the results, the authors introduceda detailed analysis of the fault effects in the LEON2processor, particularly in the pipeline unit. Accordingto them, there was an inefficacy of the LEON2 exceptionmechanism for detecting injected faults, as well as thedependence between the observed fault effects and theprocessor’s workload.
Travessini et al. (2018) analyzed a fault injectioncampaign in some registers of the LEON3 soft-processor. They injected the faults using simulationscripts that force a bit flip while the processor isrunning a set of three different workloads. The scriptwas written for the ModelSim simulator, and thestudy was restricted to single bit upsets (SBU). Theyinvestigated the effects of these injected faults and howthey propagate to the CPU core boundaries. Accordingto the authors, the obtained results showed that themajority of the failures were due to faults injectedin only a small number of the processor registers.Furthermore, in that study, it was proposed a partialtriple modular redundancy approach to protecting onlythe CPU’s most sensitive registers, achieving a 99.25%SBU tolerance with a marginal increase in area.
Villa et al. (2018) introduced a fault-tolerancetechnique, based on the concept of temporalredundancy, with checkpoints and recovery for soft-core processors. They also worked with LEON3 soft-processor. The proposed modified architecture was
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aimed at embedded systems for spatial applications,based on FPGAs. According to them, the experimentalresults showed that the Checkpoint and Recovery (CR)technique was a valid alternative to TMR and evenDual Modular Redundancy (DMR). These results areessential when considering the limited logic area andpower budget present on a satellite. The resultshave comparable levels of reliability to the moreconventional fault-tolerance techniques. They statethat their approach does not require modifications tothe software source code or compiler.
Fuchs et al. (2019) proposed solution fornanosatellites. They developed a software-fault-tolerance-approach based upon thread-level coarse-grain lockstep, which was validated using fault-injection. To offer strong long-term fault coverage,their architecture was implemented as tiled MPSoC onan FPGA, utilizing partial reconfiguration, as well asmixed critically. According to them, that architecturecan satisfy the high performance requirements ofcurrent and future scientific and commercial spacemissions at very low cost, while offering the strongfault-coverage guarantees necessary for platformcontrol even for missions with a long duration.

2.1 Conclusion about related work

In this section, we introduced some of the redundancy-based techniques to deal with temporary faults. Mostof them work with hardware, software, soft-processor,and temporal redundancy. So far, we did notfound papers about Network-on-Chip, applied tonanosatellites, and with protection against temporaryerrors caused by spacial radiation. The only referenceis the paper proposed by Fuchs et al. (2019). However,their solution was based on software and partialreconfiguration. We understand that our proposalfulfills this gap because it does not involve partialreconfiguration nor software solutions.

3 Network proposal

The Network-on-Chip proposed in this document wasdesigned to be a communication fabric capable ofinterconnecting up to four soft-processors, and tobuild a System-on-Chip for nanosatellites. For thedevelopment, we based on the following assumptions:
1) the network must support up to four soft-processors;2) the processors must have their own mechanisms todeal with faults due to cosmic radiation;3) the FPGA configuration memory must be updated byan protection mechanism and external of FPGA; and4) the silicon consumption must be minimized toreduce the probability of fault occurrences.

The first assumption is related to the referencenanosatellite. The SoC design will replace four boards

that control the Floripasat1 nanosatellite. It is aCubeSat 1U with 10 cm3. Each board of Floripasat hasa microcontroller: OBDH (On-Board Data Handling),TT&C (Telemetry, Tracking, and Command), EPS(Electric Power System), and Payload. These boardsare depicted in Fig. 1, and they are interconnected by
industrial standard connectors called PC-1042.

Figure 1: Image of FloripaSat internal boards.Source: Available at https://floripasat.ufsc.br

The OBDH acts as the Central Processing Unit.The TT&C board has radio-frequency modules andis responsible for the communication between thenanosatellite and the ground station. The EPSboard controls the charge of the batteries and thephoto-voltaic panels that collect the energy from thesun. The Payload board is responsible for dealingwith experiments that are running in the spacialenvironment.The second and third assumptions are essentialto establish the boundaries of this work. A periodicreconfiguration on FPGA and the adoption of soft-processors with protection against cosmic radiationwill ensure that the protection proposed for the NoC willbe enough for the correct working of the nanosatellite.Finally, the fourth assumption was based on thelogic that fewer silicon areas naturally will imply thelower probability of fault occurrences. Based on this,there are four routers in the network, and the data flowsonly though clockwise from one router to another one.
3.1 Topology

Based on the first assumption stated at the beginningof Section 3, the Network-on-Chip must connect fourprocessing elements. Our choice was a direct ringnetwork in which each processor is connected in arouter. The routers will be responsible for sending andreceiving data among processors. The deterministicrouting was adopted, in which the path is definedaccording to the origin and destination of each message,and uni-cast because all messages have only one

1Available at https://floripasat.ufsc.br.2Available at https://pc104.org/hardware-specifications/pc104/
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destination router. Fig. 2 depicts the NoC composed byfour routers (R0, R1, R2, and R3), and four processingelements (PE).

PE

PE

R0 R1

R3 R2

PE

PE

Figure 2: Proposed Network with four router andprocessors.

3.2 Packet format

A packet is a set of “flits” (flit is acronym of FlowControl Unit). Flit is the smaller data unit in whichthe flow control is applied. Each flit has 32 bits, ofwhich the two most significant bits indicate if the flitis the beginning of the packet (header), the payloadof the packet, or the last flit of the packet (tail). Thethird and fourth bits indicate the destination router forthe packet. The remaining bits are the data, in itself.Table 1 introduces some examples of flits from a packet,and Fig. 3 shows the position of each bit in the flit.

Table 1: Definition for the most significant bits.
1º and 2º mostsignificant bits 3º and 4º mostsignificant bits

00 Payload Router 0
01 Payload Router 1
10 Tail Router 2
11 Header Router 3

31 30 29 28 27 26 25 24 23 3 2 1 0bit

Position
in the
packet

Destination DataSource

Figure 3: The relation between bits and flits.
The routing of packets in the proposed network

is similar to a “token-ring”3. There is a token

3Token Ring local area network (LAN) technology is acommunications protocol for local area networks. This tokenpassing is a channel access method providing fair access for

continuously be sending through the network. Thistoken was defined as 7FFFFFFEh, and when the powergoes up, router 0 starts the communication. It has twooptions: send a valid packet to router 1 or pass thetoken to the router 1 if it does not need to transmitvalid data. The same situation happens to router 1: itcan send valid data or send the token to router 2 (andso on). The token is checked; meanwhile, there is novalid packet been transmitted. Token sent after headerflit and before tail flit are considered valid data.
3.3 Physical channels and Routers

We evaluated two versions of Network-on-Chip.The first one adopts the TMR (acronym of TripleModular Redundancy) technique, meanwhile, anotherone employees a Hamming Code technique. Thesilicon consumption change, for each one ofthese implementations. Details about the siliconconsumption will be in Section 4. This section beginsexplaining the basic structure of the routers, andfollowing introducing the overhead that each approachdemand.
3.3.1 Router for TMR approach
Every Processing Element (PE) depicted in Fig. 2 injectdata that will be sent through the routers up to thedestination PE. The internal structure of the routerswas designed to be simple; that is, fewer electronicscircuits result in a lower faults probability. The internalstructure of the router is shown in Fig. 4. This router isadopted for the network builds with the TMR technique.

NETWORK BUFFER

LOCAL BUFFER

STATE MACHINE DEMUX MUX

0 0

1 1

i_DATA_N

i_DATA_L

o_DATA_N

o_DATA_L

i_ADD_N
i_HDR_N

i_ADD_L
i_HDR_L

33

33

33

33

33

2

2
2

2
1

1

33

Figure 4: Internal structure of a router.

Data coming from the network gets into the routerby the channel i_DATA_N (Fig. 4). The state machinechecks if bits 33 and 32 are “11”. If yes, it checks the bits31 and 30 to identify the flit’s destination (o_DATA_Nor o_DATA_L) and select the proper output of theDEMUX and MUX. A flit from PE connected in the

all Processing Elements, and eliminating the collisions ofcontention-based access methods.
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local channel i_DATA_L will be sent to the networkselecting “1” for the MUX.
3.3.2 Router for Hamming approach
The router designed for the Network-on-Chip basedon Hamming code is different from the one introducedin Section 3.3.1. For the Network with Hamming codewe implemented an Encoder and a Decoder inside therouter. Fig. 5 depicts the differences between bothrouters, in which the Hamming Encoder and Decoderare squares colored by dark Grey color.
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2

2
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1
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ENCODER

DECODER

DECODER

3832

32

383832

Figure 5: Internal structure of the router withHamming encoder and decoder.

Hamming codes can detect up to two-bit errorsor correct one-bit errors without the detection ofuncorrected errors. It adopts extra bits in it, and eachflit is transformed into a code-word, which has itslength (total bits of coded flit) established by the Eq. (1):

N = m + x (1)
in which m is the number of bits of data flit and x afixed amount of control bits. For our implementation,the data traffic flows through the network with 38 bits.It happens because 6 extra bits must be inserted to theoriginal flit, according to Hamming code rules for 32data bits (Tomlinson et al., 2017). The decoders checkthis extra bits to verify if there were some error in thedata received, and extract the extra bits from Hammingcode.

3.3.3 Triple Modular Redundancy - TMRTMR is a passive hardware redundancy, and theredundant elements are used to “mask” the faults. Itmeans that all three elements perform a process, andthe result is processed by a majority-voting systemto produce a single output. If anyone of the threesystems fails, the other two can correct and mask thefault (Goloubeva et al., 2006). Fig. 6 shows a genericexample of TMR.It is essential to take into account that redundancyincreases the number of components in the system.The more it increases, the more the fault probability(Weber, 2003). Fig. 7 depicts a voter implementationusing registers and logic gates. We are assuming thatthe combinational circuit is triplicated, and each one

Module 1

Module 2

Module 3

VoterInput Output

Figure 6: Voter circuit in TMR implementation.
Source: Adapted from Goloubeva et al. (2006).

of its outputs is connected to a register (flip-flop),vulnerable elements for SEU in the voter.

Combinational
circuit

D Q

D Q

D Q

and

and

and

or

...

VoterSequential
circuit

Figure 7: “Voter” circuit - Internal implementation.
Source: Adapted from Kastensmidt et al. (2006)

TMR implementation could be done in two differentways. The first one would be triplicate each internalcomponents of routers. The second one would betriplicate the number of routers because if an internalcomponent of one of the routers had SEE, the othertwo routers would vote correctly. The first approachwould expend more silicon than the second one. Basedon this, we decided to implement the second approach,as shown in Fig. 8.
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Figure 8: NoC with TMR technique.
Section 4 will introduce the results related to siliconconsumption for this implementation.

3.3.4 Hamming code
In this approach, the network was built with fourrouters, which is entirely different from the TMR
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approach in which twelve routers were used, furtherthe voters’ circuits. Here we added a Hamming Encoderat the output bus of each router. The channels wereconnected at the input of the subsequent router that hasan external Hamming Decoder, as shown in Fig. 9. Theamount of signal in each physical channel is given bythe expression: (n +m), in which n = 32 is the amountof data bits and m = 6 are the bits related to Hammingcoding.

Roteador
0

Roteador
1

Roteador
2

Roteador
3

(n+m)Hamming
Encoder

Hamming
Decoder

Hamming
Encoder

Hamming
Decoder

Hamming
Encoder

Hamming
Decoder

Hamming
Encoder

Hamming
Decoder

(n+m)

(n+m) (n+m)(n+m)(n+m)

(n+m)(n+m)

(n+m) (n+m) (n+m) (n+m)

Router Router

Router Router

Figure 9: Network-on-Chip with Hammingtechnique.

4 Experimental Results
This section introduces the experimental results interms of latency, silicon consumption, and faulttolerance. To do the experiments we used a FPGA fromIntel Manufacturer, called EP4CGX22CF19C6, CycloneIV family. The fault tolerance was done with a scriptrunning in Modelsim software tool. Next subsectionswill introduce these results.
4.1 Evaluation of traffic and network latency

Every flit sent from a router into the network takesfour clock cycles to reach the next router. It means thata flit sent from Router 0 to Router 3 will takes twelveclock cycles. Fig. 10 shows a sequence of flits sent fromRouter 0 (i_DAT_L0) up to Router 2 (o_DATA_L2).As expected, it takes eight clock cycles due to theirpositions in the network (Fig. 2).
Several controls in a nanosatellite demand theknowledge of response time because they areconsidered critical for the nanosatellite operations.Thus, it is essential to know the worst-case latency(WCL) for all communications through the network thatwill interconnect the soft-processors. For this reason,we decided to establish some assumptions to guaranteethe WCL for all flows in the Network-on-Chip we areproposing:

• the maxim packet size is 42 flits, with one headerflit, one tail flit and 40 payload flits; and• every router can send only one packet when itreceives the token, with a maximum of 42 flits perpacket. After sending the packet, it must send thetoken to the adjacent router.

Figure 10: One packet was sent from router 0 (R0) torouter 2 (R2).

Let’s call Tclock the system clock period, and Trouterthe time required by a router to transmit a flit in thenetwork. As mentioned earlier, a router demands fourclock cycles to rotate a flit. Thus, the Trouter can bewritten as Eq. (2):

Trouter = 4 × Tclock (2)
The latency to send a packet from a router to anotherone is giving by the following Eq. (3):

L = (Nrouters – 1) × Trouter × Psize (3)
in which Nrouters is the number of routers involved incommunication, and Psize is the number of flits in thepacket. For example, consider the Processing Elements(PE) connected in the router depicted in Fig. 2. If thePE connected in Router 0 need to send a packet with16 flits to the PE connected in Router 2, the latency ofthis packet is calculated as Eq. (4):

LPE0 = (3 – 1)× Trouter × 16 = 32× Trouter = 128.Tclock (4)
So, this packet will take 128 clock cycles to betransmitted from Router 0 up to Router 2. We canuse the Eq. (3) to predict the worst case latency (WCL)for a packet in the proposed NoC. The WCL will happenwhen the Router 0 must send a packet with 42 flits(maximum allowed for each transfer according ourassumptions) to Router 3. The expression for WCLis given as Eq. (5):

LWCL = (4 – 1) × Trouter × 42 = 504.Tclock (5)
We are assuming that the latency inside each PE toprocess the packet is well known, and is out of ourscope.
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5 Silicon consumption

We used the reports from the Quartus II tool, fromIntel manufacturer, to check the silicon consumptionfor three different implementations (without fault-tolerant technique, using TMR and using Hamming).These reports introduce silicon consumption interms of Logic Elements (LE) and registers. Bothnetworks were implemented in the FPGA, part numberEP4CGX22CF19C6. A Logic Element is composed of thefollowing electronics components: a memory calledLUT (acronym of Look Up Table), some flip-flops,some multiplexers, and some combinational logic.Fig. 11 depicts a block diagram with these electronicscomponents.

Figure 11: The diagram shows a Logic Element for theFPGA family called Cyclone IV, from Intelmanufacturer.Source: Available at: https://www.intel.com/content/www/us/en/
products/programmable/fpga/cyclone-iv.html

The total of Logic Elements available inEP4CGX22CF19C6 FPGA is 109,424 LE. The networkwithout fault-tolerant technique consumed 1,032 LE,which is less than 1% of the total LE available. Table 2shows the silicon consumption for the three versions ofthe NoC: a Noc without fault-tolerant technique, a Nocwith TMR, and an NoC with Hamming code technique.Note that the silicon consumption for the NoC withHamming code almost doubled (99%), when comparedwith the regular NoC. Even so that consumption ismuch lower than the version implemented with theTMR technique (233%). Fig. 12 depicts graphicallythese silicon consumption.
Table 2: Silicon consumption for three versions ofnetworks: regular, with TMR, and with Hammingcode.

NoC Logic Elements
(LE) Registers % (LE)

NoC 1.032 602 •
NoC TMR 3.437 2.005 233

NoC Hamming 2.050 942 99

Another silicon consumption evaluation was done,taking into account the internal components of a
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Figure 12: Silicon consumption for the NoCs: regular,with TMR technique, and with Hamming code.

single Router, and including the Hamming encoder anddecoder. Table 3 shows the silicon consumption for thiscase. Note that the encoder and the decoder have highersilicon consumption than the internal components ofthe router. Fig. 13 depicts graphically these siliconconsumption. The Hamming encoder was implementedwith only combinational logic, so the consumption ofregisters for this encoder was zero.
Table 3: Silicon consumption for internal componentsof a Router and Hamming modules.

Components Logic Elements (LE) Registers
Router 456 160

State machine 60 19
Encoder 84 0
Decoder 882 310
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machine

Encoder Decoder
0

100
200
300
400
500
600
700
800
900

1000

Units

Silicon consumption - per router' components

(LE)

Registers

Figure 13: Silicon consumption for internalcomponents of Router and Hamming coding.
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6 Fault simulation with ModelSim
There are two ways to verify if the fault-tolerantmechanisms we are evaluating work well for temporaryfaults due to cosmic radiation. The first one is:to submits an FPGA to receive direct radiation ata specialized laboratory, such as Peletron4 (USP -University of São Paulo - Brasil). Another way is usinga specific tool capable of simulating those faults.We decided to adopt a technique to inject randomfaults in the FPGA using the ModelSim software tool.We used a script written in VHDL language, similar tothe work did by Travessini (2018). We let the networkalways sending data. Flits were sent from Router 1 toRouter 3, and from Router 2 to Router 0.Our focus was on generating one fault and verify theregular NoC (without fault-tolerant mechanism), theTMR, and the Hamming. It was expected that TMR andHamming NoCs were able to identify and correct theerror injected in one of the routers. Each test consists ofgenerating one fault, inverting the value of one logicalbit, randomly. These fault injections were done for allrouters connected in the network. Fig. 14 shows thescript we used in fault simulations.

Figure 14: TCL Procedure that traverses a root signaland lists all the internal signals bit-wise.
Source: adapted from Travessini (2018).

Next subsection, we will discuss more the Networkwith Hamming encoding because it is the solution withlower silicon consumption, which is a crucial issue fornanosatellites.

4Access at http://portal.if.usp.br/fnc/pt-br/acelerador-pelletron

6.1 Fault simulation in NoC with Hamming
encoding

We are assuming one temporary fault at a time. A Faultwas injected at each simulation, at random routers,inside the packet transmission period. As expected,for all simulations, the right packet arrives at itsdestination router, and without any error.Let us check one of these experiments. The originalbit was 0, and it was changed to 1 in a flit. Note that,even the noise happening and changing the value ofeighth bit, changing the flit from “0A11FBBD43” into“0A11FBBDC3” (see Table 4, the changing bits are atorange color), the network was able to delivery to thedestination the same packet coming from the Router 1.
Table 4: Fault injection at eighth bit.

Hexadecimal packet Binary packet
0A11FBBD43 00 1010 0001 0001 1111 10111011 1101 0100 0011
0A11FBBDC3 00 1010 0001 0001 1111 10111011 1101 1100 0011

Thus, considering the Fig. 4, if an SEU strikes one ofthe internal storage components of the router (NetworkBuffer or Local Buffer), is possible to note that thedestination address (i_ADDR) and the signal relatedto the beginning and end of packets (i_HDR) will besent correctly to the state machine. It happens becausethey do not come from the buffers. The flit will beforwarded through the network with a error in one ofits bits. When this flit achieves the destination router,first, it passes through the Hamming decoder that willfind the error, and it will be revised.If the cosmic radiation strikes a Bit in combinationallogic, what configures a SET will be more difficultto generate a soft error because its necessary thatthe transient pulse reaches the input of the memoryelement during the rising edge of the clock. Eventhough, when the data pass through the Hammingdecoder (at the local output, or the global input),the error will be noted and fixed. Furthermore, theprobability of a temporary fault that happens twicein the same flit is extremely low; we understand thatonly the treatment done by this mechanism is enoughto ensure reliability for these categories of failure(temporary).

7 Conclusion
Our work focused on the development of a Network-on-Chip (NoC) capable of interconnecting up to fourprocessing elements. The NoC is fault-tolerant againstcosmic radiation, for nanosatellite at low Earth orbit(LEO).The NoC’s design was the most simple as possiblebecause a small silicon area implies the lowerprobability of cosmic radiation strike. It has a2D topology, and the packets flows are sending inclockwise. The adoption of a token-ring mechanism
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with a limitation for the packet size and one packet ata time allows knowing the worst-case latency for allcommunication through the Network. We evaluatedtwo different mechanisms to protect the Networkagainst temporary faults: a TMR and Hamming code.We did an extensive fault injection campaign to confirmthe efficiency of both mechanisms. The fault injectionwas done using a script wrote to change the status ofa Bit in the network, random. The software tool usedto do these simulations was the ModelSim, from theMentor company.Our focus was on temporary faults because themajority of nanosatellites do not have propulsionengines. They usually are released at LEO using a rocketand keep on that orbit for two years before getting intothe atmosphere and burn. We understand that the NoCwith Hamming coding proposed in this document isefficient for nanosatellites that work on this context,and we believe that this is the first Network-on-Chipconceived for nanosatellites.
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