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Abstract

Nanosatellites are part of a category of artificial satellites with two essential characteristics: reduced size
and low cost of raw material for their construction. They usually have between four and five boards with
embedded electronics, which control all their functions. As an alternative to further minimize its costs is the
development of a System-on-Chip or SoC, which may use a commercially available programmable logic device
(or COTS - Commercial-Off-The-Shelf component), as an FPGA. To use this type of device is necessary to add
mechanisms that can avoid problems arising from cosmic radiation in its electronic components, characteristic in
the nanosatellites’ space environment. This work presents the proposal of a Network-on-Chip (called NoC) that
connects up to four soft-core processors, forming an SoC. The Network-on-Chip, supported by the Hamming
codes technique, provides mechanisms that allow it to re-establish a temporary failure of the types Single Event
Upset and Single Event Transient. This protection was confirmed by simulations carried out with a software that
allows the injection of faults, named ModelSim. Results of lower silicon consumption, concomitant to economies
in design and reduction of sensitivity to cosmic ionization, can be observed after the elaborated experiments.

Keywords: Network-on-Chip; Nanosatellite; Hamming Code; Single Event Effect; Single Event Upset; Single
Event Transient.

Resumo

Nanossatélites fazem parte de uma categoria de satélites artificiais com duas caracteristicas importantes: tamanho
reduzido e baixo custo de matéria prima para sua construcdo. Eles, normalmente, possuem entre quatro e cinco
placas com eletronica embarcada, as quais controlam todas as suas fun¢des. Uma alternativa para minimizar ainda
mais seus custos é o desenvolvimento de um sistema intra-chip (também conhecido como System-on-Chip ou SoC),
que pode utilizar um dispositivo 16gico programavel, tipo FPGA, de uso comercial (ou COTS, acrénimo do inglés
Commercial Off-The-Shelf component). Para utilizar este tipo de dispositivo, é necessario acrescentar mecanismos
que possam evitar problemas decorrentes da radiagdo cdsmica que atinge os componentes eletrénicos, o que é
comum no ambiente espacial por onde circulam os nanossatélites. Este trabalho apresenta a proposta de uma rede
intra-chip que conecta até quatro processadores do tipo soft-core, formando um SoC. A rede, amparada pela técnica
dos cédigos de Hamming, oferece mecanismos que permitem a ela seu restabelecimento de uma falha temporaria
dos tipos Single Event Upset e Single Event Transient. Esta protecdo foi confirmada com simula¢ées realizadas com
um software que possibilita a inje¢do de falhas, denominado ModelSim. Resultados de menor consumo de silicio,
concomitante a economias no projeto e reducdo da sensibilidade a ioniza¢do césmica, podem ser observados apds
os experimentos elaborados.

Palavras-Chave: Rede intra-chip; Nanossatélite; Cédigo de Hamming; Evento de efeito nico; Unico evento
alterado; Unico evento transiente.
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1 Introduction

Satellite communications are a result of research
at communication and space technologies, with the
main target to achieve different orbits and reducing
costs (Maral and Bousquet, 2011). However, big
satellites demand heavy rockets and a significant
amount of money for their launching. It means that
the development of space technologies always was
restricted to a few countries, and the commercial
exploration still yet a privilege for a minority (Casaril
et al., 2018).

In this context, the development of nanosatellites
has been growing in the space communication market.
Nanosatellites have lower technology complexity, and
their launching cost is significantly smallest than
regular satellites. Their small size, low cost, and short-
time development allow them to be widely selected
in Scientific Applications, Signal Monitoring, or Earth
observation, for instance (de Carvalho et al., 2012).

Nanosatellites usually are composed by a mechanical
structure, an On-Board Computer (OBC the
nanosatellite’s brain), an Energy Power System (EPS)
to control the production and energy storage system
(solar panels, battery, management card, etc.), and a
Telecommunications System (antennae, radio, etc.).
One way to reduce the raw material cost of a
nanosatellite is the adoption of Commercial Off-The-
Shelf components (COTS) to build its electronic control
boards. Another way is to reduce the number of boards,
and hence the number of electronic devices. It may be
achieved using the System-on-Chip (SoC) concept that
may be applied using a Field Programmable Gate Array
(FPGA).

A critical issue related to the adoption of COTS is
that electronic devices are exposed to harsh radiation
environments and can suffer from hardware faults due
to cosmic radiations. These faults can be temporary
or permanent. Temporary faults may be classified as
Single Event Upset (SEU) and Single Event Transient
(SET). A SEU happens every time an energetic particle
directly hits a storage element (e.g., memory cell,
register, latch, and flip-flop) causing enough charge
disturbance to modify the stored value (Baumann,
2005). In contrast with SEUs, which have an error
rate independent of the circuit clock frequency, a SET
may only generate a soft error if the transient pulse
arrives at the input of the memory element during the
latching edge of the clock.

To be considered reliable, the nanosatellite’
structure must apply fault-tolerant techniques to
keep its electronics systems working. For multi-
core systems, the reliability is achieved by applying
those techniques to the processing elements and
interconnection architecture. An alternative is to
protect the device with redundancy, i.e., extra
functionalities with the sole purpose of detecting and
correcting errors, that would not be necessary in a fault-
free environment. In the case of FPGAs, redundancy-
based strategies are often preferred, as they can be
used with COTS components. This way, not requiring
the development and fabrication of custom devices,

consequently providing a lower cost and better time to
market.

This paper introduces the evaluation of a Network-
on-Chip (NoC) that connects up to four soft-core
processors, forming an SoC. The Network-on-Chip was
implemented using two techniques: Hamming code
and TRM. Our focus was to evaluate these techniques,
checking the silicon consumption and the capability
to recover from temporary faults. The protection
against transient faults was confirmed by simulations
carried out with a software script, done for the
ModelSim simulator, that allows the injection of errors
in different parts of the network. When compared to
the triple modular redundancy (TMR), the Hamming
code strategy proved to be efficient. It provides similar
levels of fault tolerance with a much lower silicon area
cost.

This document was organized as follow: Section 2
introduces the related work about fault-tolerant
techniques; Section 3 describes the network proposed,
in terms of topology, packet format, physical
channels, and adopted mechanisms to deal with faults;
Section 4 introduces experimental results related to the
network latency, and Section 5 introduces the silicon
consumption for the proposed network; Section 6
presents the outcome related to faults simulated with
the ModelSim tool. Section 7 finish the paper outlining
the main features of the proposed network.

2 Related work

Redundancy-based strategies are very flexible.
Implementations can be made at different levels of the
circuit design flow, with varying degrees of protection.
Most of the developed strategies found in literature
fall into four main categories: hardware redundancy,
information redundancy, time redundancy, and
software redundancy (Goloubeva et al., 2006). This
section reports studies that cover some of these
categories.

Samudrala et al. (2004) have proposed a technique
for hardening combinational circuits mapped onto
an FPGA from Xilinx manufacturer (Virtex’ family).
Their focus was to develop a solution for SEUs. The
strategy, called “Selective Triple Modular Redundancy”
(STMR), was based on the traditional TMR approach.
However, to obtain reduced silicon area overhead,
they selectively employ the redundancy in only the
most sensitive circuits. The identification of the most
sensitive circuits was made by analyzing the signal
probabilities of each logic gate within the digital circuit.
According to the authors, the experimental results
showed that the technique provided immunity against
SEUs comparable to the full TMR when used along with
other mitigation features of the Virtex FPGA. The area
overhead of the STMR strategy may reach nearly 70%
of results giving by TMR.

Pratt et al. (2006) also explore the idea of protecting
only the most critical sections of a design. They
mitigated the effects of SEUs in the configuration
memory of the FPGA, instead of the combinational
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logic. The authors labeled the configuration bits, used
by design mapped onto the FPGA, as sensitive bits
and suggested that the sensitive bits could be split
into two categories: persistent and non-persistent.
A non-persistent configuration bit is a sensitive
configuration bit that may introduce functional errors
when upset by radiation. However, it can be repaired
with configuration scrubbing, and the functional
errors disappear. On the other hand, a persistent
configuration bit is a sensitive configuration bit which,
even after configuration scrubbing, can not repair
the introduced functional errors. The authors have
developed a software tool, called BYU-LANL Partial
TMR (BLTmr), that classifies the circuit structures.
According to those authors, the experimental results
showed that for a specific design the number of
faults in the configuration bits that led to non-
repairable functional errors were reduced in two orders
of magnitude with a hardware cost of 40% over the
unmitigated design.

Gomes et al. (2015) explore the concept of
approximate logic circuits to reduce the silicon area
overhead of the TMR technique. The idea consists
of using approximate logic modules to compose the
redundant modules of the TMR. The approximate
circuits were modified versions of the original circuit
with a smaller silicon area, and also differs its output
from the original circuit for a small set of input vectors.
Nevertheless, this technique imposes a condition on the
approximate circuits: only one of the modules can be
different from the original circuit at each input vector
scenario, therefore allowing the majority voters to still
select two-match outputs out of three for any input
vector. According to the authors, the experimental
results showed that for a 4-bit ripple carry adder the
fault coverage could go up to 93% with 136% of silicon
area overhead and 96% with 168% of silicon area
overhead. The circuits are mapped using the ABC logic
synthesis tool and an academic cell library.

Sanchez-Clemente et al. (2015) have presented
another study that also explores the approximate logic
approach. However, the technique developed by them
aimed at FPGA implementations. In this sense, the
valuable logic approximations are the ones that reduce
the number of Lookup Tables (LUTSs) in the circuit,
either by eliminating LUTs or by merging contiguous
LUTs. Otherwise, the result is a degradation of the
logic function of the circuit. It means that there are no
benefits in terms of resource utilization.

Feng et al. (2010) have developed a software-based
approach, called Shoestring. That software provides
probabilistic soft error reliability. The purpose of the
technique was to present high soft error coverage
with very little overhead. To achieve these goals,
the authors proposed a strategy that combines low-
weight symptom-based fault detection schemes with
software-based instruction duplication. Symptom-
based detection schemes recognize that applications
often exhibit abnormal behavior in the presence of
soft errors. Although symptom-based detection is
inexpensive, it has a limited fault coverage, requiring
the use of other techniques concurrently. The main

contribution of the Shoestring technique is to efficiently
select between relying on symptoms or applying
instruction duplication to each part of the program
code. The selection analysis runs at compile-time,
by introducing new reliability-aware code generation
passes into the standard compiler flow. According
to the authors, the technique achieved an overall
user-visible failure rate of 1.6%, with a performance
overhead of 15.8%.

Rebaudengo et al. (2003) have introduced a study
case that analyzes the effects of SEUs in the soft
processor called LEON. The authors have compared
two alternative fault injection techniques: a software-
based approach and an emulation-based approach. For
the emulation-based approach, the authors have used
an FPGA-based platform. For running the injection
experiments, a host computer was used as a Fault
Injection Manager and communicated with the FPGA
board. The authors state that the emulation technique
had an accuracy much higher than the software one
(up to 13 times higher), concluding that the software
approach may lead to significant errors during the error
rate estimation.

Touloupis et al. (2007) also introduced the results
over a soft processor, called LEON2. In that paper,
the authors adopted a simulation-based fault injection
approach. In the technique, the primary fault injection
support is implemented through a non-synthesizable
VHDL entity that has access to all registers and can
alter their contents at specified times. The entire
system is simulated in a commercial VHDL simulator
(ModelSim). They have used the simulator’s Foreign
Language Interface (FLI) to implement various entities
that deal with the fault injection, monitoring, and
data collection. In the results, the authors introduced
a detailed analysis of the fault effects in the LEON2
processor, particularly in the pipeline unit. According
to them, there was an inefficacy of the LEON2 exception
mechanism for detecting injected faults, as well as the
dependence between the observed fault effects and the
processor’s workload.

Travessini et al. (2018) analyzed a fault injection
campaign in some registers of the LEON3 soft-
processor. They injected the faults using simulation
scripts that force a bit flip while the processor is
running a set of three different workloads. The script
was written for the ModelSim simulator, and the
study was restricted to single bit upsets (SBU). They
investigated the effects of these injected faults and how
they propagate to the CPU core boundaries. According
to the authors, the obtained results showed that the
majority of the failures were due to faults injected
in only a small number of the processor registers.
Furthermore, in that study, it was proposed a partial
triple modular redundancy approach to protecting only
the CPU’s most sensitive registers, achieving a 99.25%
SBU tolerance with a marginal increase in area.

Villa et al. (2018) introduced a fault-tolerance
technique, based on the concept of temporal
redundancy, with checkpoints and recovery for soft-
core processors. They also worked with LEON3 soft-
processor. The proposed modified architecture was
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aimed at embedded systems for spatial applications,
based on FPGAs. According to them, the experimental
results showed that the Checkpoint and Recovery (CR)
technique was a valid alternative to TMR and even
Dual Modular Redundancy (DMR). These results are
essential when considering the limited logic area and
power budget present on a satellite. The results
have comparable levels of reliability to the more
conventional fault-tolerance techniques. They state
that their approach does not require modifications to
the software source code or compiler.

Fuchs et al. (2019) proposed solution for
nanosatellites. They developed a software-fault-
tolerance-approach based upon thread-level coarse-
grain lockstep, which was validated using fault-
injection. To offer strong long-term fault coverage,
their architecture was implemented as tiled MPSoC on
an FPGA, utilizing partial reconfiguration, as well as
mixed critically. According to them, that architecture
can satisfy the high performance requirements of
current and future scientific and commercial space
missions at very low cost, while offering the strong
fault-coverage guarantees necessary for platform
control even for missions with a long duration.

2.1 Conclusion about related work

In this section, we introduced some of the redundancy-
based techniques to deal with temporary faults. Most
of them work with hardware, software, soft-processor,
and temporal redundancy. So far, we did not
found papers about Network-on-Chip, applied to
nanosatellites, and with protection against temporary
errors caused by spacial radiation. The only reference
is the paper proposed by Fuchs et al. (2019). However,
their solution was based on software and partial
reconfiguration. We understand that our proposal
fulfills this gap because it does not involve partial
reconfiguration nor software solutions.

3 Network proposal

The Network-on-Chip proposed in this document was
designed to be a communication fabric capable of
interconnecting up to four soft-processors, and to
build a System-on-Chip for nanosatellites. For the
development, we based on the following assumptions:

1) the network must support up to four soft-
processors;

2) the processors must have their own mechanisms to
deal with faults due to cosmic radiation;

3) the FPGA configuration memory must be updated by
an protection mechanism and external of FPGA; and

4) the silicon consumption must be minimized to
reduce the probability of fault occurrences.

The first assumption is related to the reference
nanosatellite. The SoC design will replace four boards

that control the Floripasat! nanosatellite. It is a
CubeSat 1U with 10 cm3. Each board of Floripasat has
a microcontroller: OBDH (On-Board Data Handling),
TT&C (Telemetry, Tracking, and Command), EPS
(Electric Power System), and Payload. These boards
are depicted in Fig. 1, and they are interconnected by
industrial standard connectors called PC-1042.

Figure 1: Image of FloripaSat internal boards.
Source: Available at https://floripasat.ufsc.br

The OBDH acts as the Central Processing Unit.
The TT&C board has radio-frequency modules and
is responsible for the communication between the
nanosatellite and the ground station. The EPS
board controls the charge of the batteries and the
photo-voltaic panels that collect the energy from the
sun. The Payload board is responsible for dealing
with experiments that are running in the spacial
environment.

The second and third assumptions are essential
to establish the boundaries of this work. A periodic
reconfiguration on FPGA and the adoption of soft-
processors with protection against cosmic radiation
will ensure that the protection proposed for the NoC will
be enough for the correct working of the nanosatellite.

Finally, the fourth assumption was based on the
logic that fewer silicon areas naturally will imply the
lower probability of fault occurrences. Based on this,
there are four routers in the network, and the data flows
only though clockwise from one router to another one.

3.1 Topology

Based on the first assumption stated at the beginning
of Section 3, the Network-on-Chip must connect four
processing elements. Our choice was a direct ring
network in which each processor is connected in a
router. The routers will be responsible for sending and
receiving data among processors. The deterministic
routing was adopted, in which the path is defined
according to the origin and destination of each message,
and uni-cast because all messages have only one

1Available at https://floripasat.ufsc.br.
2Available at https://pc104.org/hardware-specifications/pc104/
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destination router. Fig. 2 depicts the NoC composed by
four routers (Ro, R1, R2, and R3), and four processing
elements (PE).

N

Figure 2: Proposed Network with four router and
processors.

RO

R3 R2

3.2 Packet format

A packet is a set of “flits” (flit is acronym of Flow
Control Unit). Flit is the smaller data unit in which
the flow control is applied. Each flit has 32 bits, of
which the two most significant bits indicate if the flit
is the beginning of the packet (header), the payload
of the packet, or the last flit of the packet (tail). The
third and fourth bits indicate the destination router for

the packet. The remaining bits are the data, in itself.

Table 1 introduces some examples of flits from a packet,
and Fig. 3 shows the position of each bit in the flit.

Table 1: Definition for the most significant bits.

1° and 2° most 3° and 4° most
significant bits significant bits
00 Payload Router 0
o1 Payload Router 1
10 Tail Router 2
1 Header Router 3
hit | 31|30 |29 |28|27(26|25|24 (23| ®®® |3 | 2| 1|0
Pusition
inthe | Destination| Source Deta
padet

Figure 3: The relation between bits and flits.

The routing of packets in the proposed network
is similar to a “token-ring”3. There is a token

3Token Ring local area network (LAN) technology is a
communications protocol for local area networks. This token
passing is a channel access method providing fair access for

continuously be sending through the network. This
token was defined as 7FFFFFFEy, and when the power
goes up, router 0 starts the communication. It has two
options: send a valid packet to router 1 or pass the
token to the router 1 if it does not need to transmit
valid data. The same situation happens to router 1: it
can send valid data or send the token to router 2 (and
so on). The token is checked; meanwhile, there is no
valid packet been transmitted. Token sent after header
flit and before tail flit are considered valid data.

3.3 Physical channels and Routers

We evaluated two versions of Network-on-Chip.
The first one adopts the TMR (acronym of Triple
Modular Redundancy) technique, meanwhile, another
one employees a Hamming Code technique. The
silicon consumption change, for each one of
these implementations. Details about the silicon
consumption will be in Section 4. This section begins
explaining the basic structure of the routers, and
following introducing the overhead that each approach
demand.

3.3.1 Router for TMR approach

Every Processing Element (PE) depicted in Fig. 2 inject
data that will be sent through the routers up to the
destination PE. The internal structure of the routers
was designed to be simple; that is, fewer electronics
circuits result in a lower faults probability. The internal
structure of the router is shown in Fig. 4. This router is
adopted for the network builds with the TMR technique.

NETWORK BUFFER

33

STATE MACHINE

2 i_ADD_N
i_HDR_N

ipATAN B

2
i_ADD_L
i_HDR_L

2
LOCAL BUFFER

i_DATA_L 33

Figure 4: Internal structure of a router.

Data coming from the network gets into the router
by the channel i DATA_N (Fig. 4). The state machine
checks if bits 33 and 32 are “11”. If yes, it checks the bits
31 and 30 to identify the flit’s destination (o_ DATA N
or o_DATA L) and select the proper output of the
DEMUX and MUX. A flit from PE connected in the

all Processing Elements, and eliminating the collisions of
contention-based access methods.
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local channel i DATA_ L will be sent to the network
selecting “1” for the MUX.

3.3.2 Router for Hamming approach

The router designed for the Network-on-Chip based
on Hamming code is different from the one introduced
in Section 3.3.1. For the Network with Hamming code
we implemented an Encoder and a Decoder inside the
router. Fig. 5 depicts the differences between both
routers, in which the Hamming Encoder and Decoder
are squares colored by dark Grey color.

NETWORK BUFFER

ENCODER

STATE MACHINE DEMUX MUX
DECODER —
2 i_ADD_N

38
i_DATAN THORN

2
3 iADL
HDR L

2
LOCAL BUFFER

ENCODER
iDATAL 32 32 38 AN 38 DECODER
B

Figure 5: Internal structure of the router with
Hamming encoder and decoder.

Hamming codes can detect up to two-bit errors
or correct one-bit errors without the detection of
uncorrected errors. It adopts extra bits in it, and each
flit is transformed into a code-word, which has its
length (total bits of coded flit) established by the Eq. (1):

N=m+x (1)

in which m is the number of bits of data flit and x a
fixed amount of control bits. For our implementation,
the data traffic flows through the network with 38 bits.
It happens because 6 extra bits must be inserted to the
original flit, according to Hamming code rules for 32
data bits (Tomlinson et al., 2017). The decoders check
this extra bits to verify if there were some error in the
data received, and extract the extra bits from Hamming
code.

3.3.3 Triple Modular Redundancy - TMR

TMR is a passive hardware redundancy, and the
redundant elements are used to “mask” the faults. It
means that all three elements perform a process, and
the result is processed by a majority-voting system
to produce a single output. If anyone of the three
systems fails, the other two can correct and mask the
fault (Goloubeva et al., 2006). Fig. 6 shows a generic
example of TMR.

It is essential to take into account that redundancy
increases the number of components in the system.
The more it increases, the more the fault probability
(Weber, 2003). Fig. 7 depicts a voter implementation
using registers and logic gates. We are assuming that
the combinational circuit is triplicated, and each one

38 32 o pATAL

[ Mot
Input —>
Moduls3 |

Figure 6: Voter circuit in TMR implementation.
Source: Adapted from Goloubeva et al. (2006).

Output

of its outputs is connected to a register (flip-flop),
vulnerable elements for SEU in the voter.

Sequential Voter
circuit
D
Q and
:| Combinational
: P D Q
circuit and or
D Q
and

Figure 7: “Voter” circuit - Internal implementation.
Source: Adapted from Kastensmidt et al. (2006)

TMR implementation could be done in two different
ways. The first one would be triplicate each internal
components of routers. The second one would be
triplicate the number of routers because if an internal
component of one of the routers had SEE, the other
two routers would vote correctly. The first approach
would expend more silicon than the second one. Based
on this, we decided to implement the second approach,
as shown in Fig. 8.

r n I n

n
Rogter n Ro;ner n Voter
n n
L I
n n
n h n H
n n
Voter n | Router Router
3 2
n
Ll o
| |

Figure 8: NoC with TMR technique.

Section 4 will introduce the results related to silicon
consumption for this implementation.

3.3.4 Hamming code
In this approach, the network was built with four
routers, which is entirely different from the TMR
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approach in which twelve routers were used, further
the voters’ circuits. Here we added a Hamming Encoder
at the output bus of each router. The channels were
connected at the input of the subsequent router that has
an external Hamming Decoder, as shown in Fig. 9. The
amount of signal in each physical channel is given by
the expression: (n + m), in which n = 32 is the amount
of data bits and m = 6 are the bits related to Hamming
coding.

Hamming| ("™ | Router |(1*m) |Hamming | "*™) | Hamming| ("*™) | Router |("*™) | Hamming

Decoder 0 Encoder Decoder 1 Encoder
(n+m) (+m)
A,

Hamming (m*m) Router |(n+m) Hamming | ("1 | Hamming | (™| Router | ("*M) | jamming

Encoder 3 Encoder [ Decoder [ 2 Decoder

Figure 9: Network-on-Chip with Hamming
technique.

4 Experimental Results

This section introduces the experimental results in
terms of latency, silicon consumption, and fault
tolerance. To do the experiments we used a FPGA from
Intel Manufacturer, called EP4CGX22CF19C6, Cyclone
IV family. The fault tolerance was done with a script
running in Modelsim software tool. Next subsections
will introduce these results.

4.1 Evaluation of traffic and network latency

Every flit sent from a router into the network takes
four clock cycles to reach the next router. It means that
a flit sent from Router 0 to Router 3 will takes twelve
clock cycles. Fig. 10 shows a sequence of flits sent from

Router 0 (i_DAT Lo) up to Router 2 (o_DATA_ L2).

As expected, it takes eight clock cycles due to their
positions in the network (Fig. 2).

Several controls in a nanosatellite demand the
knowledge of response time because they are

considered critical for the nanosatellite operations.

Thus, it is essential to know the worst-case latency
(WCL) for all communications through the network that
will interconnect the soft-processors. For this reason,
we decided to establish some assumptions to guarantee
the WCL for all flows in the Network-on-Chip we are
proposing:

- the maxim packet size is 42 flits, with one header
flit, one tail flit and 40 payload flits; and

- every router can send only one packet when it
receives the token, with a maximum of 42 flits per
packet. After sending the packet, it must send the
token to the adjacent router.

ftb_networkfi_CLK
ftb_network/fi_RST
ftb_network/i_DATA_LO
ftb_network/i_DATA_L1
ftb_network/i_DATA_L2

Jth_network/i_DATA_L3

Jth_networkjo_DATA_LD
fth_networkjo_DATA_L1
[th_networkjo_DATA_LZ
[th_networkjo_DATA_L3

8 clock cycles

Figure 10: One packet was sent from router o (R0) to
router 2 (R2).

Let’s call T, the system clock period, and Tyoyter
the time required by a router to transmit a flit in the
network. As mentioned earlier, a router demands four
clock cycles to rotate a flit. Thus, the Tyoyter can be
written as Eq. (2):

Trouter = 4 % Tejock (2)
The latency to send a packet from a router to another
one is giving by the following Eq. (3):

(3)

L = (Nyouters = 1) % Trouter X Pgize

in which Nygyters is the number of routers involved in
communication, and P;;,, is the number of flits in the
packet. For example, consider the Processing Elements
(PE) connected in the router depicted in Fig. 2. If the
PE connected in Router 0 need to send a packet with
16 flits to the PE connected in Router 2, the latency of
this packet is calculated as Eq. (4):

Lpg, = (3 = 1) x Trouter x 16 = 32 X Trouter = 128.T¢joc (4)

So, this packet will take 128 clock cycles to be
transmitted from Router 0 up to Router 2. We can
use the Eq. (3) to predict the worst case latency (WCL)
for a packet in the proposed NoC. The WCL will happen
when the Router 0 must send a packet with 42 flits
(maximum allowed for each transfer according our
assumptions) to Router 3. The expression for WCL
is given as Eq. (5):

(5)

Lyt = (4 = 1) x Trouter x 42 = 504.Tjock

We are assuming that the latency inside each PE to
process the packet is well known, and is out of our
scope.
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5 Silicon consumption

We used the reports from the Quartus II tool, from
Intel manufacturer, to check the silicon consumption
for three different implementations (without fault-
tolerant technique, using TMR and using Hamming).
These reports introduce silicon consumption in
terms of Logic Elements (LE) and registers. Both
networks were implemented in the FPGA, part number
EP4CGX22CF19C6. A Logic Element is composed of the
following electronics components: a memory called
LUT (acronym of Look Up Table), some flip-flops,
some multiplexers, and some combinational logic.
Fig. 11 depicts a block diagram with these electronics
components.

LuT Carry Carry Register
chain In0 In chain
Local
routing
In1
In2 General
In3 LT routing
Ind4
Clock General
routing
Carry Carry Register

Out0  Outt chain

Figure 11: The diagram shows a Logic Element for the
FPGA family called Cyclone IV, from Intel

manufacturer.
Source: Available at: https://www.intel.com/content/www/us/en/
products/programmable/fpga/cyclone-iv.html

The total of Logic Elements available in
EP4CGX22CF19C6 FPGA is 109,424 LE. The network
without fault-tolerant technique consumed 1,032 LE,
which is less than 1% of the total LE available. Table 2
shows the silicon consumption for the three versions of
the NoC: a Noc without fault-tolerant technique, a Noc
with TMR, and an NoC with Hamming code technique.
Note that the silicon consumption for the NoC with
Hamming code almost doubled (99%), when compared
with the regular NoC. Even so that consumption is
much lower than the version implemented with the
TMR technique (233%). Fig. 12 depicts graphically
these silicon consumption.

Table 2: Silicon consumption for three versions of
networks: regular, with TMR, and with Hamming

code.
NoC Logic Elements Registers | % (LE)
(LE)
NoC 1.032 602 .
NoC TMR 3.437 2.005 233
NoC Hamming 2.050 942 99

Another silicon consumption evaluation was done,
taking into account the internal components of a

Silicon consumption for EPACGX22CF19C6 FPGA

4000
3500
3000
2500

m (LE)

2000 .
M Registers

1500
1000

NoC NoC TRM NoC Hamming

Figure 12: Silicon consumption for the NoCs: regular,
with TMR technique, and with Hamming code.

single Router, and including the Hamming encoder and
decoder. Table 3 shows the silicon consumption for this
case. Note that the encoder and the decoder have higher
silicon consumption than the internal components of
the router. Fig. 13 depicts graphically these silicon
consumption. The Hamming encoder was implemented
with only combinational logic, so the consumption of
registers for this encoder was zero.

Table 3: Silicon consumption for internal components
of a Router and Hamming modules.

Components | Logic Elements (LE) | Registers
Router 456 160
State machine 60 19
Encoder 84 0
Decoder 882 310

Silicon consumption - per router' components

L.

State
machine

1000
900
800
700
600
500
400
300
200
100

0

o (LE)

Router Encoder Decoder

Figure 13: Silicon consumption for internal
components of Router and Hamming coding.
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6 Fault simulation with ModelSim

There are two ways to verify if the fault-tolerant
mechanisms we are evaluating work well for temporary
faults due to cosmic radiation. The first one is:
to submits an FPGA to receive direct radiation at
a specialized laboratory, such as Peletron* (USP -
University of Sdo Paulo - Brasil). Another way is using
a specific tool capable of simulating those faults.

We decided to adopt a technique to inject random
faults in the FPGA using the ModelSim software tool.
We used a script written in VHDL language, similar to
the work did by Travessini (2018). We let the network
always sending data. Flits were sent from Router 1 to
Router 3, and from Router 2 to Router 0.

Our focus was on generating one fault and verify the
regular NoC (without fault-tolerant mechanism), the
TMR, and the Hamming. It was expected that TMR and
Hamming NoCs were able to identify and correct the
error injected in one of the routers. Each test consists of
generating one fault, inverting the value of one logical
bit, randomly. These fault injections were done for all
routers connected in the network. Fig. 14 shows the
script we used in fault simulations.

# Arguments:
# - root root signal that will be traversed, it can be a vhdl record, a
# vector, or only a bit.
#  listName the 1list variable where the result signals will be written
proc splitSignal {root listName} {
upvar $listName list
set signalValue [examine &root]
if {[string length $signalvalue] == 1} {
# The the signal is only one bit.. add to list
lappend list S$root
} elseif {[string match *\{* $signalvalue]} {
# The signal may be a record or an array
if {[llength [find signals -internal -r ${root}.*]]} {
# Record
set children ${roct}.*
} elseif {[1length [find signals -internal -r ${root}(*)]]} {
# Array
set children S${roct}(*)
} else {
error "Invalid signal type"

# Traverse the record/array

foreach child [find signals -internal -r $children] {
splitSignal $child list

}

}else {

# The signal is a vector, traverse through each bit

set bits ${root}(*)

foreach bit [find signals -internal -r $bits] {
splitSignal $bit list

}

return

}

Figure 14: TCL Procedure that traverses a root signal
and lists all the internal signals bit-wise.
Source: adapted from Travessini (2018).

Next subsection, we will discuss more the Network
with Hamming encoding because it is the solution with
lower silicon consumption, which is a crucial issue for
nanosatellites.

4Access at http://portal.if.usp.br/fnc/pt-br/acelerador-pelletron

6.1 Fault simulation in NoC with Hamming
encoding

We are assuming one temporary fault at a time. A Fault
was injected at each simulation, at random routers,
inside the packet transmission period. As expected,
for all simulations, the right packet arrives at its
destination router, and without any error.

Let us check one of these experiments. The original
bit was 0, and it was changed to 1 in a flit. Note that,
even the noise happening and changing the value of
eighth bit, changing the flit from “0A11FBBD43” into
“0A11FBBDC3” (see Table 4, the changing bits are at
orange color), the network was able to delivery to the
destination the same packet coming from the Router 1.

Table 4: Fault injection at eighth bit.
Hexadecimal packet
0A11FBBD/3

Binary packet
00 1010 0001 0001 1111 1011
1011 1101 0100 0011
00 1010 0001 0001 1111 1011
1011 1101 1100 0011

0A11FBBDC3

Thus, considering the Fig. 4, if an SEU strikes one of
the internal storage components of the router (Network
Buffer or Local Buffer), is possible to note that the
destination address (i_ADDR) and the signal related
to the beginning and end of packets (i_HDR) will be
sent correctly to the state machine. It happens because
they do not come from the buffers. The flit will be
forwarded through the network with a error in one of
its bits. When this flit achieves the destination router,
first, it passes through the Hamming decoder that will
find the error, and it will be revised.

If the cosmic radiation strikes a Bit in combinational
logic, what configures a SET will be more difficult
to generate a soft error because its necessary that
the transient pulse reaches the input of the memory
element during the rising edge of the clock. Even
though, when the data pass through the Hamming
decoder (at the local output, or the global input),
the error will be noted and fixed. Furthermore, the
probability of a temporary fault that happens twice
in the same flit is extremely low; we understand that
only the treatment done by this mechanism is enough
to ensure reliability for these categories of failure
(temporary).

7 Conclusion

Our work focused on the development of a Network-
on-Chip (NoC) capable of interconnecting up to four
processing elements. The NoC is fault-tolerant against
cosmic radiation, for nanosatellite at low Earth orbit
(LEO).

The NoC’s design was the most simple as possible
because a small silicon area implies the lower
probability of cosmic radiation strike. It has a
2D topology, and the packets flows are sending in
clockwise. The adoption of a token-ring mechanism
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with a limitation for the packet size and one packet at
a time allows knowing the worst-case latency for all
communication through the Network. We evaluated
two different mechanisms to protect the Network

against temporary faults: a TMR and Hamming code.

We did an extensive fault injection campaign to confirm
the efficiency of both mechanisms. The fault injection
was done using a script wrote to change the status of
a Bit in the network, random. The software tool used
to do these simulations was the ModelSim, from the
Mentor company.

Our focus was on temporary faults because the
majority of nanosatellites do not have propulsion
engines. They usually are released at LEO using a rocket
and keep on that orbit for two years before getting into
the atmosphere and burn. We understand that the NoC
with Hamming coding proposed in this document is
efficient for nanosatellites that work on this context,
and we believe that this is the first Network-on-Chip
conceived for nanosatellites.
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