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Abstract
The technologies supporting Arti�cial Intelligence (AI) have advanced rapidly over the past few years and AI isbecoming a commonplace in every aspect of life like the future of self-driving cars or earlier health diagnosis. Forthis to occur shortly, the entire community stands in front of the barrier of explainability, an inherent problem oflatest models (e.g. Deep Neural Networks) that were not present in the previous hype of AI (linear and rule-basedmodels). Most of these recent models are used as black-boxes without understanding partially or even completelyhow di�erent features in�uence the model prediction avoiding algorithmic transparency. In this paper, we focuson how much we can understand the decisions made by an SVM Classi�er in a post-hoc model agnostic approach.Furthermore, we train a tree-based model (inherently interpretable) using labels from the SVM, called secondarytraining data to provide explanations and compare permutation importance method to the more commonly usedmeasures such as accuracy and show that our methods are both more reliable and meaningful techniques to use.We also outline the main challenges for such methods and conclude that model-agnostic interpretability is a keycomponent in making machine learning more trustworthy.
Keywords: black-box; explainable arti�cial intelligence; interpretability; explainability; transparency
Resumo
As tecnologias baseadas em Inteligência Arti�cial (IA) avançaram rapidamente nos últimos anos e a IA está setornando comum em todos os aspectos da vida, como o futuro dos carros autônomos ou agilidade em diagnósticosmédicos. Para que isso ocorra, toda a comunidade está diante da barreira da explicabilidade, um problema inerenteàs mais recentes técnicas trazidas por modelos mais complexos de aprendizado máquina (por exemplo, redesneurais profundas) que não estavam presentes na última onda de IA (modelos lineares ou baseados em regras). Amaioria desses modelos mais recentes é usada como caixa-preta, sem entender parcialmente ou até completamentecomo diferentes características in�uenciam nas predições do modelo, evitando a transparência algorítmica. Esteartigo foca na identi�cação da melhor maneira de entender as decisões tomadas por um classi�cador SVM em umaabordagem agnóstica post-hoc. Além disso, treinamos um modelo baseado em árvore de decisão (inerentementeinterpretável) usando rótulos do SVM, chamado de dado secundário de treinamento, para fornecer explicações ecomparar a importância das características por meio do método de permutação com as métricas mais usadas, comoacurácia, e mostrar que nossos métodos e técnicas são mais signi�cativos. Também delineamos os principaisdesa�os de tais métodos e concluímos que a interpretabilidade post-hoc é um componente essencial para tornar oaprendizado de máquina mais con�ável.
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1 Introduction
As intelligent systems become more widely applied(robots, automobiles, medical and legal decision-making), users and the general public are becomingincreasingly concerned with issues of explainabilityand trust. These considerations in the public discourseare partly responsible for the establishment of projectssuch as DARPA’s Explainable AI Project (Gunning,2017), European response to the General DataProtection Regulation (Goodman and Flaxman, 2017),and the recent series of Explainable Arti�cialIntelligence (XAI) Workshops and Talks at major AIconferences such as South by Southwest (SXSW) andGoogle I/O.
Explainability is not a new issue for AI systems.But it has grown along with the success and adoptionof deep learning, which has given rise both tomore diverse and advanced applications and to moreopaqueness. The current generation of IntelligentSystems based on machine learning seems to be whatwe call black-box models. Even when inputs andoutputs are known, these systems can suggest answers,but not say the "why" behind their decisions. Thismakes it di�cult for a company or the government toexplain its decision-making process to clients, boardmembers, and other stakeholders, or for doctors tohave con�dence about the results produced by somealgorithms.
"If the designers and end-users of a learning system are

to be con�dent in the performance of the system, they must
understand how it arrives at its decisions. Learning systems
may also play an important role in the process of scienti�c
discovery." (Craven and Shavlik, 1995)
It is hard to imagine a person who would feelcomfortable in blindly agreeing with a system’sdecision in such highly consequential and ethicalsituations without a deep understanding of the decisionmaking rationale of the system. To overcome thisdangerous practice, it is prudent for an AI to providenot only an output, but also a human-understandableexplanation that expresses the rationale of the machine.Analysts can turn to such explanations to evaluate if adecision is reached by rational arguments and does notincorporate reasoning steps con�icting with ethical orlegal norms.
"The current generation of AI systems o�er tremendous

bene�ts, but their e�ectiveness will be limited by the
machine’s inability to explain its decisions and actions to
users" (Gunning, 2017).
But what constitutes an explanation? TheOxford English Dictionary has no entry for theterm ‘explainable’, but has one for explanation: "A

statement or account that makes something clear; a reason
or justi�cation given for an action or belief". Do presentsystems that claim to make ‘explainable’ decisionsreally provide explanations?
Explanation is closely related to the concept ofinterpretability: systems are interpretable if theiroperations can be understood by a human. In thecase of machine learning models, explanation is oftena di�cult task since most models are not readily

interpretable. In order for humans to trust black-boxmethods, we need explainability - models that are ableto summarize the reasons for their behavior, gain thetrust of users or produce insights about the causes oftheir decisions.
The prevailing solution to this explanation problemis to use the so-called “interpretable” models, suchas decision trees, rules or linear models. Insteadof supporting models that are functionally black-boxes, such as neural networks or random forestswith thousands of trees, these approaches use modelsin which there is the possibility of meaningfullyinspecting model components directly - e.g. a pathin a decision tree, a single rule, or the weight of aspeci�c feature in a linear model. As long as themodel is accurate for the task, and uses a reasonablyrestricted number of internal components (i.e. paths,rules, or features), such approaches provide extremelyuseful insights. But these models are in generalrelatively simple and thus inadequate for capturingthe complexity of some real-world problems.
An alternative approach to interpretability inmachine learning is to be model-agnostic, i.e. toextract post-hoc explanations by treating the originalmodel as a black-box. It might be possible tohybridize an inherently explainable modeling approachwith a complex black-box method to devise a high-performance and explainable model.
In this article, we make a preliminary attemptto answer the question: what can we infer andinterpret from an already trained model that can helpto understand its decisions on test data, i.e., post-hoc interpretability. However, in this article, we donot focus on the explanations themselves. Instead,we focus on learning an interpretable model froma SVM model given we have a reasonable domainunderstanding and user expertise.
To this extent, we �rst present a set of de�nitionsand review several approaches towards interpretabilityof AI systems. In Section 2, we de�ne keyterms including “explanation”, “interpretability”,and “explainability”. In Section 3, we providea summary of related work papers highlightingdi�erences between explainable AI approaches forSVM. In Section 4, we propose a post-hoc approachusing decision trees to extract rules from a SVM model(black-box). In Section 5, we present and discuss theresults. We conclude, in Section 6, with a discussionaddressing open questions and recommend a path tothe development and adoption of explainable methodsfor arti�cial intelligence applications.

2 Background and Basic Concepts
In this section, we provide background informationabout the key concepts of explainability andinterpretability, and describe the meaningfuldi�erences between them.

https://www.sxsw.com/
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2.1 Interpretability
There is no mathematical de�nition of interpretability.A (non-mathematical) de�nition by Miller (2017)is: "Interpretability is the degree to which a human can
understand the cause of a decision". The higher theinterpretability of a machine learning model, theeasier it is for someone to comprehend why certaindecisions or predictions have been made. A model isbetter interpretable than another model if its decisionsare easier for a human to comprehend. In thispaper, we will use both the terms interpretable andexplainable interchangeably. Like Miller (2017) said,it makes sense to distinguish between the termsinterpretability/explainability and explanation. Wewill use “explanation” for explanations of individualpredictions.
2.2 What Is an Explanation?
"An explanation is the answer to a why-question" (Miller,2017).
• Why did not the treatment work on the patient?• Why was my loan rejected?
2.2.1 What Is a Good Explanation?
This section further condenses Miller’s summary on“good” explanations and includes concrete implicationsfor interpretable machine learning.Explanations are contrastive (Lipton, 1990).Humans usually do not ask why a certain predictionwas made, but why this prediction was made instead ofanother prediction. We tend to think in counterfactualcases, i.e. “How would the prediction have beenif input X had been di�erent?”. For a house priceprediction, the house owner might be interested inwhy the predicted price was high compared to thelower price they had expected. If my loan applicationis rejected, I do not care to hear all the factors thatgenerally speak for or against a rejection. I aminterested in the factors in my application that wouldneed to change to get the loan. The recognition thatcontrasting explanations matter is an important�nding for explainable machine learning.From most interpretable models, you can extractan explanation that implicitly contrasts a predictionof an instance with the prediction of an arti�cial datainstance or an average of instances.Physicians might ask: “Why did the drug not workfor my patient?”. And they might want an explanationthat contrasts their patient with a patient for whomthe drug worked and who is similar to the non-responding patient. Contrastive explanations are easierto understand than complete explanations. A completeexplanation of the physician’s question of why the drugdoes not work might include: The patient has had thedisease for 10 years, the patient’s body is very quick inbreaking the drug down into ine�ective chemicals, etc.A contrastive explanation might be much simpler: Incontrast to the responding patient, the non-respondingpatient has a certain combination of genes that make

the drug less e�ective. The best explanation is theone that highlights the greatest di�erence between theobject of interest and the reference object.Humans do not want a complete explanation for aprediction, but want to compare what the di�erenceswere to another instance’s prediction (can be anarti�cial one). Creating contrastive explanations isapplication-dependent because it requires a point ofreference for comparison. And this may depend onthe data point to be explained, but also on the userreceiving the explanation.Explanations are selected. People do not expectexplanations that cover the complete list of causes of anevent. We are used to selecting one or two causes froma variety of possible causes as the explanation. Makethe explanation very short, give only 1 to 3 reasons,even if the world is more complex.
2.3 Model-Agnostic Methods
The easiest way to achieve interpretability is to useonly a subset of algorithms that create interpretablemodels. Linear regression, logistic regression, and thedecision tree are commonly classi�ed as interpretablemodels. However, the big disadvantage is thatpredictive performance is lost compared to othermachine learningmodels and you limit yourself to a fewtypes of models. The other alternative is to use model-speci�c interpretation methods. The disadvantage ofthis is that it binds you to one model type and it willbe di�cult to switch to something else.As an alternative for these approaches is separatingthe explanations from the machine learning model(model-agnostic interpretationmethods) (Ribeiro et al.,2016a).The great advantage of model-agnosticinterpretation methods over model-speci�c ones istheir �exibility. Machine learning developers arefree to use any machine learning model they likeas the interpretation methods can be applied to anymodel. Anything that builds on an interpretationof a machine learning model, such as a graphic oruser interface, also becomes independent of theunderlying machine learning model. Typically, notjust one, but many types of machine learning modelsare evaluated to solve a task, and when comparingmodels in terms of interpretability, it is easier to workwith model-agnostic explanations, because the samemethod can be used for any type of model.As you can see in Fig. 1 (Molnar, 2017), the worldcan be captured by collecting data and it is furtherabstracted by learning to predict the data with amachine learning model. Interpretability is anotherlayer on top that helps humans understand.The �rst layers represent the World that containseverything that can be observed, such as the biology ofthe human body and how it reacts to medications.The second layer is the Data extracted fromobservations of the World and formatted to make itprocessable by computers.By �tting machine learning models based on theData layer, we get the Black-Box Model layer. Machine
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Figure 1: The big picture of explainable machinelearning. The real world goes through many layersbefore it reaches the human in the form ofexplanation (Molnar, 2017).

learning algorithms learn with data from the real worldto make predictions or �nd structures.
Above the Black-Box Model layer is theInterpretability Methods layer, which can helpto deal with the opacity of machine learning models.What were the most important features for a particulardiagnosis? Why was a �nancial transaction classi�edas a fraud?
The last layer is occupied by a Human. Humans areultimately the consumers of the explanations.
Of course, this graphic does not capture everything:Data could come from simulations. Black-box modelsalso output predictions that might not even reachhumans, but only supply other machines, and so on.But overall it is a useful abstraction to understandhow interpretability becomes this new layer on topof machine learning models.

2.4 Methods to open black-box systems
A recent survey on methods for explaining black-box models (Guidotti et al., 2018) outlined ataxonomy to provide classi�cations of the mainproblems with opaque algorithms. Their taxonomyis detailed, distinguishing small di�ering componentsin explanation approaches (e.g. Decision tree vs. singletree, SVM, etc.) Their classi�cation examines fourfeatures for each explanation method:
i. The type of problem faced.ii. The explanatory capability used to open the black-box.iii. The type of black-box model that can beexplained.iv. The type of input data provided to the black-boxmodel.
They primarily divide the explanation methodsaccording to the types of the problem faced, andidentify four groups of explanation methods as youcan see in Fig. 2 (Guidotti et al., 2018).

Figure 2: Open the black-box problemstaxonomy (Guidotti et al., 2018).
The black-box explanation problem consists inproviding a global explanation of the black-boxmodel through an interpretable and transparentmodel. Given a black-box and an input instance, theoutcome explanation problem consists in providingan explanation for the outcome of the black-boxon that instance. The model inspection problemconsists in providing a representation (visual ortextual) for understanding some speci�c propertyof the black-box model or of its predictions. And,�nally, the transparent box design problem consistsin directly providing a model that is locally or globallyinterpretable.
We �nd this work a meaningful contributionthat is useful for exploring the design space ofexplanation methods and helped to understanddi�erent approaches that are being used to achieveexplainability that we used in this article.
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3 Related Work
Due to the growing number of sub�elds, as well as thepolicy and legal rami�cations of black-box systems,the volume of research in interpretability is quicklyexpanding. In the previous sections we revieweddi�erent methods for explainability, so, in this section,we focus on papers related to post-hoc explanations.There are two cases when considering the post-hoc interpretability of decisions made by the machinelearning models - the �rst, where we are aware of theprocedure (linear models, neural networks or others)used to train the model and second where the modelis used as black-box. In the latter model agnosticscenario, it is harder to acquire a deeper understandingof the model’s behavior and how di�erent featuresin�uence the model’s predictions.During our search for related works, we found outthat explainability is not a new area of study andresearch as it may seem. Single-tree approximationsfor Neural Networks were �rst presented in 1995by Craven and Shavlik (1995). They presented analgorithm, TREPAN, that induces decision trees byquerying trained neural networks. Their algorithmrepresented a promising advance towards the goalof general methods for understanding black-boxalgorithms predictions.Recent work by Ribeiro et al. (2016b) trains a shadowinterpretable model to match the results of a given
classi�er. They suggest the use of LIME1 - an algorithmthat can explain the predictions of any classi�er in afaithful way.Recently, the rule extraction with the SVM becomesa mainstream of machine learning. Each of thetechniques to achieve explanation di�erentiates fromothers by how deep they go into the algorithm innerstructure. First, some authors propose techniques tobuild rule-based models only from the support vectorsof a trained model. This is the approach of Barakatand Bradley (2007), which proposes a method thatextracts rules directly from the support vectors ofa trained SVM using a modi�ed sequential coveringalgorithm. In another work, Barakat and Bradley(2006) propose eclectic rule extraction, still consideringonly the support vectors of a trained model.

4 Experiments, Methods and Analysis
In this work, we focus on approximating andunderstanding the global decision surface of SVMmodel by rule extraction. It is important to note thatour work shares some similarities with Barakat andBradley (2006), but it di�ers in some aspects: (i) wedo not use the area under the ROC curve (AUC) tocompare the performance and (ii) we use decision treeto compare accuracy and to explain models while theyuse the eclectic rule extraction approach.

1The lime package code in Python is available at https://github.
com/marcotcr/lime, accessed on 11-06-2019

4.1 Algorithms used
In this section, we provide an overview of the modelsused in this work considering their complexity andinterpretability.
4.1.1 Decision Trees
Decision trees are an example of a model that caneasily ful�ll every constraint for transparency. Decisiontrees are hierarchical structures for decision makingused to support regression and classi�cation problems.However, their poor generalization properties incomparison with other models make this model familyless interesting for their application to scenarios wherea balance between predictive performance is a designdriver of importance.
4.1.2 Support Vector Machines
SVM is a Machine Learning Model with a historicalpresence in literature. SVM models are more complexthan decision trees, with a much opaquer structure.As reviewed in Section 3, many implementations ofpost-hoc explainability techniques have been proposedto relate what is mathematically described internallyin these models, to what di�erent authors consideredexplanations about the problem at hand. Technically,an SVM constructs a hyperplane of a set of hyperplanesin a high or in�nite-dimensional space, which can beused for classi�cation and regression. Intuitively, agood separation is achieved by the hyperplane that hasthe largest distance to the nearest training-data pointof any class, since in general, the larger the margin, thelower the generalization error of the classi�er. SVMsare among the most used Machine Learning modelsdue to their excellent prediction and generalization.But SVM has the following disadvantages: (1) theopaqueness of the decision procedure makes it di�cultto be applied for health and �nance applications; (2)SVM originally is a binary classi�cation method andneeds further improvements in the application of themulti-class problems.
4.2 Rule Extraction from SVMs
In this article, we use a rule extraction approach. Thisapproach uses a labeled data set to train an SVMand obtain the SVM classi�cation, which producedacceptable accuracy, precision, and recall. Next, anew data set composed of the original patterns isconstructed with the target label for these patternsreplaced by the label predicted by the SVM. Rulesrepresenting the concepts learned by SVM are thenextracted from this new data set using a decisiontree. The �ow diagram steps of this work can be seenin Fig. 3.Thus, the proposed approach uses threeclassi�cation models and results. One produceddirectly by the decision tree on the dataset, oneproduced by the SVM classi�er and one produced bythe decision tree applied to the output of the SVMclassi�er. The �rst result works as the baseline ofan explainable algorithm. The second represents the

https://github.com/marcotcr/lime
https://github.com/marcotcr/lime
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Figure 3: Methodology �owchart

results of a ’black-box’ algorithm and, �nally, thethird is used to verify the ability of the decision treeto explain the SVM’s results. In this context, the �rstresult is used mainly as a measure for performancecomparison with that of the SVM algorithm, and theproduced decision tree is compared with the decisiontree produced in the third result.Experiments were performed using two benchmarkdata sets from UCI Machine Learning to assess thequality of the rules extracted using the rule-extractionapproach. The details are presented as follows.Pima Indians Diabetes2 a sample of 534 patternswere used from the original data set, after removingall patterns with a zero value for the attributes glucose,diastolic blood pressure or triceps skin thickness whichare clinically insigni�cant.
Heart Disease:3 the reduced Cleveland heartdiseases data set was used. All 303 patterns were used.In our experimental design, each of the data setswas split into disjoint training and test sets, as shownin Table 1.

Table 1: Data sets
Data set Nº Features Training set Test set
Pima Indians 8 373 161Heart Disease 13 212 91

In the next subsections, we explain how weconstructed the classi�ers used in this work. For allclassi�ers, we used Python 3.6 and Jupyter Notebook.All the code used to produce this work is availableon a public GitHub repository (https://github.com/
carlaprv/tcc-classification-xai).
4.2.1 Classi�ers
For both SVM and Decision Tree, we used the classi�ersavailable on Scikit Learn (Buitinck et al., 2013).As we intended to create a simple and explainablemodel, we trained our Decision Tree using all featuresand setting the depth to three. We used entropy to splitnodes. Entropy is the measure of Randomness in thesystem.

2Data set available at https://www.kaggle.com/uciml/
pima-indians-diabetes-database3Data set available at https://www.kaggle.com/ronitf/
heart-disease-uci

For the SVM Classi�er, we used all features andspecify the linear kernel. It is one of the most commonkernels to be used and is faster than any other kernel.
In order to achieve the primary goal of this work,i.e., to construct a rule-based classi�er that can explainthe classi�cations made by an SVM, we run the sameDecision Tree Classi�er built over the new data setconsidering the SVM Classi�er output for the originaldata sets.

5 Results
In this phase, after running all experiments, wecompare the metrics of each classi�er as well thegenerated rules for each data set.
The �rst question we intend to answer is that if weused exactly the same features used for training SVMClassi�er how close can we get to the classi�cationinduced by it.
Accuracy is the �rst factor for evaluating. Accuracyis the percentage of the correct classi�cation. It can beseen that the Extracted Rules has the highest accuracy.

Table 2: Accuracy
Data set Decision Tree SVM Extracted Rules
Pima Indians 0.75 0.80 0.88Heart Disease 0.74 0.77 0.80

The precision is the ratio tp/(tp + fp) where tp is thenumber of true positives and fp the number of falsepositives. The precision is intuitively the ability ofthe classi�er not to label as positive a sample that isnegative. The best value is 1 and the worst value is 0.
For both data sets, Extracted Rules has a betterprecision than the other classi�ers. It means that theability of the produced Decision Tree to explain thelabels produced by the SVM classi�er is better than theability of both classi�ers (Decision Trees and SVM) torepresent the original input data.

Table 3: Precision
Data set Decision Tree SVM Extracted Rules
Pima Indians 0.74 0.80 0.87Heart Disease 0.73 0.77 0.80

https://github.com/carlaprv/tcc-classification-xai
https://github.com/carlaprv/tcc-classification-xai
https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://www.kaggle.com/ronitf/heart-disease-uci
https://www.kaggle.com/ronitf/heart-disease-uci
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Figure 4: Extracted Rules from SVM for pima indians data set

The recall is the ratio tp/(tp + fn) where tp is thenumber of true positives and fn the number of falsenegatives. The recall is intuitively the ability of theclassi�er to �nd all the positive samples. The bestvalue is 1 and the worst value is 0.
Table 4: Recall

Data set Decision Tree SVM Extracted Rules
Pima Indians 0.75 0.76 0.84Heart Disease 0.74 0.76 0.79

For a better understanding of recall and precisionmetrics, we computed the F1 score, also known asbalanced F-score or F-measure. The F1 score can beinterpreted as a weighted average of the precision andrecall, where an F1 score reaches its best value at 1 andworst score at 0. The relative contribution of precisionand recall to the F1 score are equal. The formula forthe F1 score is:
F1 = 2 ∗ (precision ∗ recall)/(precision + recall)

In this case, for both data sets, the F1 Score forExtracted Rules is greater than for the other classi�ers.
Table 5: F1 Score

Data set Decision Tree SVM Extracted Rules
Pima Indians 0.74 0.77 0.85Heart Disease 0.73 0.77 0.79

The higher accuracy, precision, and recall for theExtracted Rules answers our �rst question and showsthat this model is a good representation of the SVMclassi�er for both data sets, as we intended to create.

Figs. 4 and 5 provide a better understanding of theextracted rules from SVM Classi�er. These �gures wereproduced using the module Graphviz from Scikit Learn.In this visualization, the more samples of the �rst class(0), the darker the orange color of the node; the moresamples of the second class (1), the darker the blue.Although the tree representations for SVM Classi�erprovides an explanation for the model, we used ELI5,a Python library, to extract feature importance bymeasuring how score decreases when a feature is notavailable; the method is also known as “permutationimportance” and the results are presented in Figs. 6and 7.
5.1 Pima Indians
From Figs. 4 and 6, it is possible to identify thatGlucose level, Body mass index (BMI) and diabetespedigree (a function which scores likelihood of diabetesbased on family history) have a signi�cant in�uence onthe model, especially glucose level and BMI. It is worthhighlighting the produced machine learning modelmatch what most doctors say about the subject.We can read the tree visualization in Fig. 4 as follows.In the beginning, there were 373 samples (instances),292 of class 0 and 81 of class 1. The entropy of theinitial state was E=0.755. Then, the �rst partition ofthe samples into 2 groups was made by comparing thevalue of glucose with 139.5. With that, the entropyof the left group decreased and of the right groupincreased. The process continues up to depth 3.
5.2 Heart Disease
From Figs. 5 and 7, we can see that the most importantfeatures are chest pain type, thalessemia result of‘reversable defect’ and ST depression. All these featuresmake sense considering articles about the subject.
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Figure 5: Extracted Rules from SVM for heart disease data set

Figure 6: Feature weights for extracted rules fromSVM for Pima Indians data set

We can read the tree visualization in Fig. 5 as follows.In the beginning, there were 212 samples (instances),85 of class 0 and 127 of class 1. The entropy of theinitial state was E=0.971. Then, the �rst partition ofthe samples into 2 groups was made by comparingthe value of Chest Pain Type with 0.5. With that, theentropy of the left group increased and of the rightgroup decreased. The process continues up to depth 3.
For both trees, it is important to note that someof the leaf nodes are over�tted and the entropy isE=0. Ideally, we want the leaf nodes to be as littlerandomized as possible for high accuracy and lessover�tting. But, in this case, as we intended to usethe decision tree to explain the SVM classi�er, thisover�tting can be considered a good result.

6 Conclusions
Although interpretable models provide crucialinsight into why predictions are made, they imposesome limitations. We argued that model-agnostic

Figure 7: Feature weights for extracted rules fromSVM for Heart Disease data set

explanation systems provide a generic frameworkfor interpretability that allows for �exibility in thechoice of models and representations. In this article,we described the use of Decision Trees to generaterules from an SVM. We have shown that DecisionTrees and permutation feature importance providea reliable measure for assessing the quality of theextracted rules than the commonly used measures ofaccuracy. In addition, we have shown that, on the datasets, the extracted rules have at least an equivalentperformance to the original SVM.
Once we develop better techniques to learninterpretable SVM Classi�ers, we envisage thefollowing important scenarios that require the systemto provide an explanation: (i) Explain pairs - Given achosen pair of di�erent diagnosis from the data sets,
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why is one item is classi�ed as positive and the other asnegative? (ii) Explain item vs rest - Given a diagnosis ofinterest, why is it classi�ed as positive or negative. Inthe future, we would also like to address the problemof explainability for end-users.In our point of view, as the community learns toadvance its work collaboratively by combining ideasfrom di�erent �elds, the overall state of systemexplanation will improve dramatically, resulting inmethods that build trust in machine learning systemsand provide useful insight into black-box modelsoperations enabling system behavior understandingand improvement.
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