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Abstract

The technologies supporting Artificial Intelligence (AI) have advanced rapidly over the past few years and Al is
becoming a commonplace in every aspect of life like the future of self-driving cars or earlier health diagnosis. For
this to occur shortly, the entire community stands in front of the barrier of explainability, an inherent problem of
latest models (e.g. Deep Neural Networks) that were not present in the previous hype of Al (linear and rule-based
models). Most of these recent models are used as black-boxes without understanding partially or even completely
how different features influence the model prediction avoiding algorithmic transparency. In this paper, we focus
on how much we can understand the decisions made by an SVM Classifier in a post-hoc model agnostic approach.
Furthermore, we train a tree-based model (inherently interpretable) using labels from the SVM, called secondary
training data to provide explanations and compare permutation importance method to the more commonly used
measures such as accuracy and show that our methods are both more reliable and meaningful techniques to use.
We also outline the main challenges for such methods and conclude that model-agnostic interpretability is a key
component in making machine learning more trustworthy.

Keywords: black-box; explainable artificial intelligence; interpretability; explainability; transparency

Resumo

As tecnologias baseadas em Inteligéncia Artificial (IA) avangaram rapidamente nos ultimos anos e a IA esta se
tornando comum em todos os aspectos da vida, como o futuro dos carros autonomos ou agilidade em diagndsticos
médicos. Para que isso ocorra, toda a comunidade esta diante da barreira da explicabilidade, um problema inerente
as mais recentes técnicas trazidas por modelos mais complexos de aprendizado maquina (por exemplo, redes
neurais profundas) que ndo estavam presentes na ultima onda de IA (modelos lineares ou baseados em regras). A
maioria desses modelos mais recentes é usada como caixa-preta, sem entender parcialmente ou até completamente
como diferentes caracteristicas influenciam nas predi¢gées do modelo, evitando a transparéncia algoritmica. Este
artigo foca na identificacdo da melhor maneira de entender as decisdes tomadas por um classificador SVM em uma
abordagem agnostica post-hoc. Além disso, treinamos um modelo baseado em arvore de decisdo (inerentemente
interpretavel) usando rétulos do SVM, chamado de dado secundario de treinamento, para fornecer explica¢des e
comparar a importancia das caracteristicas por meio do método de permuta¢do com as métricas mais usadas, como
acuracia, e mostrar que nossos métodos e técnicas sdo mais significativos. Também delineamos os principais
desafios de tais métodos e concluimos que a interpretabilidade post-hoc é um componente essencial para tornar o
aprendizado de maquina mais confiavel.

Palavras-Chave: caixa preta; inteligéncia artificial explicavel; interpretabilidade; explicabilidade; transparéncia
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1 Introduction

As intelligent systems become more widely applied
(robots, automobiles, medical and legal decision-
making), users and the general public are becoming
increasingly concerned with issues of explainability
and trust. These considerations in the public discourse
are partly responsible for the establishment of projects
such as DARPA’s Explainable AI Project (Gunning,
2017), European response to the General Data
Protection Regulation (Goodman and Flaxman, 2017),
and the recent series of Explainable Artificial
Intelligence (XAI) Workshops and Talks at major Al
conferences such as South by Southwest (SXSW) and
Google 1/0.

Explainability is not a new issue for Al systems.
But it has grown along with the success and adoption
of deep learning, which has given rise both to
more diverse and advanced applications and to more
opaqueness. The current generation of Intelligent
Systems based on machine learning seems to be what
we call black-box models. Even when inputs and
outputs are known, these systems can suggest answers,
but not say the "why" behind their decisions. This
makes it difficult for a company or the government to
explain its decision-making process to clients, board
members, and other stakeholders, or for doctors to
have confidence about the results produced by some
algorithms.

""If the designers and end-users of a learning system are
to be confident in the performance of the system, they must
understand how it arrives at its decisions. Learning systems
may also play an important role in the process of scientific
discovery." (Craven and Shavlik, 1995)

It is hard to imagine a person who would feel
comfortable in blindly agreeing with a system’s
decision in such highly consequential and ethical
situations without a deep understanding of the decision
making rationale of the system. To overcome this
dangerous practice, it is prudent for an Al to provide
not only an output, but also a human-understandable
explanation that expresses the rationale of the machine.
Analysts can turn to such explanations to evaluate if a
decision is reached by rational arguments and does not
incorporate reasoning steps conflicting with ethical or
legal norms.

"The current generation of Al systems offer tremendous
benefits, but their effectiveness will be limited by the
machine’s inability to explain its decisions and actions to
users" (Gunning, 2017).

But what constitutes an explanation? The
Oxford English Dictionary has no entry for the
term ‘explainable’, but has one for explanation: "A
statement or account that makes something clear; a reason
or justification given for an action or belief". Do present
systems that claim to make ‘explainable’ decisions
really provide explanations?

Explanation is closely related to the concept of
interpretability: systems are interpretable if their
operations can be understood by a human. In the
case of machine learning models, explanation is often
a difficult task since most models are not readily

interpretable. In order for humans to trust black-box
methods, we need explainability - models that are able
to summarize the reasons for their behavior, gain the
trust of users or produce insights about the causes of
their decisions.

The prevailing solution to this explanation problem
is to use the so-called “interpretable” models, such
as decision trees, rules or linear models. Instead
of supporting models that are functionally black-
boxes, such as neural networks or random forests
with thousands of trees, these approaches use models
in which there is the possibility of meaningfully
inspecting model components directly - e.g. a path
in a decision tree, a single rule, or the weight of a
specific feature in a linear model. As long as the
model is accurate for the task, and uses a reasonably
restricted number of internal components (i.e. paths,
rules, or features), such approaches provide extremely
useful insights. But these models are in general
relatively simple and thus inadequate for capturing
the complexity of some real-world problems.

An alternative approach to interpretability in
machine learning is to be model-agnostic, i.e. to
extract post-hoc explanations by treating the original
model as a black-box. It might be possible to
hybridize an inherently explainable modeling approach
with a complex black-box method to devise a high-
performance and explainable model.

In this article, we make a preliminary attempt
to answer the question: what can we infer and
interpret from an already trained model that can help
to understand its decisions on test data, i.e., post-
hoc interpretability. However, in this article, we do
not focus on the explanations themselves. Instead,
we focus on learning an interpretable model from
a SVM model given we have a reasonable domain
understanding and user expertise.

To this extent, we first present a set of definitions
and review several approaches towards interpretability
of AI systems. In Section 2, we define key
terms including “explanation”, “interpretability”,
and “explainability”. In Section 3, we provide
a summary of related work papers highlighting
differences between explainable AI approaches for
SVM. In Section 4, we propose a post-hoc approach
using decision trees to extract rules from a SVM model
(black-box). In Section 5, we present and discuss the
results. We conclude, in Section 6, with a discussion
addressing open questions and recommend a path to
the development and adoption of explainable methods
for artificial intelligence applications.

2 Background and Basic Concepts

In this section, we provide background information
about the key concepts of explainability and
interpretability, and describe the meaningful
differences between them.
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2.1 Interpretability

There is no mathematical definition of interpretability.
A (non-mathematical) definition by Miller (2017)
is: "Interpretability is the degree to which a human can
understand the cause of a decision". The higher the
interpretability of a machine learning model, the
easier it is for someone to comprehend why certain
decisions or predictions have been made. A model is
better interpretable than another model if its decisions
are easier for a human to comprehend. In this
paper, we will use both the terms interpretable and
explainable interchangeably. Like Miller (2017) said,
it makes sense to distinguish between the terms
interpretability/explainability and explanation. We
will use “explanation” for explanations of individual
predictions.

2.2 What Is an Explanation?

"An explanation is the answer to a why-question" (Miller,
2017).

- Why did not the treatment work on the patient?
- Why was my loan rejected?

2.2.1 What Is a Good Explanation?

This section further condenses Miller’s summary on
“good” explanations and includes concrete implications
for interpretable machine learning.

Explanations are contrastive (Lipton, 1990).
Humans usually do not ask why a certain prediction
was made, but why this prediction was made instead of
another prediction. We tend to think in counterfactual
cases, i.e. “How would the prediction have been
if input X had been different?”. For a house price
prediction, the house owner might be interested in
why the predicted price was high compared to the
lower price they had expected. If my loan application
is rejected, I do not care to hear all the factors that
generally speak for or against a rejection. I am
interested in the factors in my application that would
need to change to get the loan. The recognition that
contrasting explanations matter is an important
finding for explainable machine learning.

From most interpretable models, you can extract
an explanation that implicitly contrasts a prediction
of an instance with the prediction of an artificial data
instance or an average of instances.

Physicians might ask: “Why did the drug not work
for my patient?”. And they might want an explanation
that contrasts their patient with a patient for whom
the drug worked and who is similar to the non-
responding patient. Contrastive explanations are easier
to understand than complete explanations. A complete
explanation of the physician’s question of why the drug
does not work might include: The patient has had the
disease for 10 years, the patient’s body is very quick in
breaking the drug down into ineffective chemicals, etc.
A contrastive explanation might be much simpler: In
contrast to the responding patient, the non-responding
patient has a certain combination of genes that make

the drug less effective. The best explanation is the
one that highlights the greatest difference between the
object of interest and the reference object.

Humans do not want a complete explanation for a
prediction, but want to compare what the differences
were to another instance’s prediction (can be an
artificial one). Creating contrastive explanations is
application-dependent because it requires a point of
reference for comparison. And this may depend on
the data point to be explained, but also on the user
receiving the explanation.

Explanations are selected. People do not expect
explanations that cover the complete list of causes of an
event. We are used to selecting one or two causes from
a variety of possible causes as the explanation. Make
the explanation very short, give only 1 to 3 reasons,
even if the world is more complex.

2.3 Model-Agnostic Methods

The easiest way to achieve interpretability is to use
only a subset of algorithms that create interpretable
models. Linear regression, logistic regression, and the
decision tree are commonly classified as interpretable
models. However, the big disadvantage is that
predictive performance is lost compared to other
machine learning models and you limit yourself to a few
types of models. The other alternative is to use model-
specific interpretation methods. The disadvantage of
this is that it binds you to one model type and it will
be difficult to switch to something else.

As an alternative for these approaches is separating
the explanations from the machine learning model
(model-agnostic interpretation methods) (Ribeiro et al.,
2016a).

The great advantage of model-agnostic
interpretation methods over model-specific ones is
their flexibility. Machine learning developers are
free to use any machine learning model they like
as the interpretation methods can be applied to any
model. Anything that builds on an interpretation
of a machine learning model, such as a graphic or
user interface, also becomes independent of the
underlying machine learning model. Typically, not
just one, but many types of machine learning models
are evaluated to solve a task, and when comparing
models in terms of interpretability, it is easier to work
with model-agnostic explanations, because the same
method can be used for any type of model.

As you can see in Fig. 1 (Molnar, 2017), the world
can be captured by collecting data and it is further
abstracted by learning to predict the data with a
machine learning model. Interpretability is another
layer on top that helps humans understand.

The first layers represent the World that contains
everything that can be observed, such as the biology of
the human body and how it reacts to medications.

The second layer is the Data extracted from
observations of the World and formatted to make it
processable by computers.

By fitting machine learning models based on the
Data layer, we get the Black-Box Model layer. Machine
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Figure 1: The big picture of explainable machine
learning. The real world goes through many layers

before it reaches the human in the form of
explanation (Molnar, 2017).

learning algorithms learn with data from the real world
to make predictions or find structures.

Above the Black-Box Model layer is the
Interpretability Methods layer, which can help

to deal with the opacity of machine learning models.

What were the most important features for a particular
diagnosis? Why was a financial transaction classified
as a fraud?

The last layer is occupied by a Human. Humans are
ultimately the consumers of the explanations.

Of course, this graphic does not capture everything:

Data could come from simulations. Black-box models
also output predictions that might not even reach

humans, but only supply other machines, and so on.

But overall it is a useful abstraction to understand
how interpretability becomes this new layer on top
of machine learning models.

2.4 Methods to open black-box systems

A recent survey on methods for explaining black-
box models (Guidotti et al., 2018) outlined a
taxonomy to provide classifications of the main
problems with opaque algorithms. Their taxonomy
is detailed, distinguishing small differing components
in explanation approaches (e.g. Decision tree vs. single
tree, SVM, etc.) Their classification examines four
features for each explanation method:

i. The type of problem faced.

ii. The explanatory capability used to open the black-
box.

iii. The type of black-box model that can be
explained.

iv. The type of input data provided to the black-box
model.

They primarily divide the explanation methods
according to the types of the problem faced, and
identify four groups of explanation methods as you
can see in Fig. 2 (Guidotti et al., 2018).

OPEN THE BLACK
BOX PROBLEMS
TRANSPARENT
" BOX DESIGN

BLACK BOX
EXPLANATION

OUTCOME
EXPLANATION

MODEL MODEL
EXPLANATION 1 " INSPECTION

Figure 2: Open the black-box problems
taxonomy (Guidotti et al., 2018).

The black-box explanation problem consists in
providing a global explanation of the black-box
model through an interpretable and transparent
model. Given a black-box and an input instance, the
outcome explanation problem consists in providing
an explanation for the outcome of the black-box
on that instance. The model inspection problem
consists in providing a representation (visual or
textual) for understanding some specific property
of the black-box model or of its predictions. And,
finally, the transparent box design problem consists
in directly providing a model that is locally or globally
interpretable.

We find this work a meaningful contribution
that is useful for exploring the design space of
explanation methods and helped to understand
different approaches that are being used to achieve
explainability that we used in this article.
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3 Related Work

Due to the growing number of subfields, as well as the
policy and legal ramifications of black-box systems,
the volume of research in interpretability is quickly
expanding. In the previous sections we reviewed
different methods for explainability, so, in this section,
we focus on papers related to post-hoc explanations.

There are two cases when considering the post-
hoc interpretability of decisions made by the machine
learning models - the first, where we are aware of the
procedure (linear models, neural networks or others)
used to train the model and second where the model
is used as black-box. In the latter model agnostic
scenario, it is harder to acquire a deeper understanding
of the model’s behavior and how different features
influence the model’s predictions.

During our search for related works, we found out
that explainability is not a new area of study and
research as it may seem. Single-tree approximations
for Neural Networks were first presented in 1995
by Craven and Shavlik (1995). They presented an
algorithm, TREPAN, that induces decision trees by
querying trained neural networks. Their algorithm
represented a promising advance towards the goal
of general methods for understanding black-box
algorithms predictions.

Recent work by Ribeiro et al. (2016b) trains a shadow
interpretable model to match the results of a given
classifier. They suggest the use of LIME! - an algorithm
that can explain the predictions of any classifier in a
faithful way.

Recently, the rule extraction with the SVM becomes
a mainstream of machine learning. Each of the
techniques to achieve explanation differentiates from
others by how deep they go into the algorithm inner
structure. First, some authors propose techniques to
build rule-based models only from the support vectors
of a trained model. This is the approach of Barakat
and Bradley (2007), which proposes a method that
extracts rules directly from the support vectors of
a trained SVM using a modified sequential covering
algorithm. In another work, Barakat and Bradley
(2006) propose eclectic rule extraction, still considering
only the support vectors of a trained model.

4 Experiments, Methods and Analysis

In this work, we focus on approximating and
understanding the global decision surface of SVM
model by rule extraction. It is important to note that
our work shares some similarities with Barakat and
Bradley (2006), but it differs in some aspects: (i) we
do not use the area under the ROC curve (AUC) to
compare the performance and (ii) we use decision tree
to compare accuracy and to explain models while they
use the eclectic rule extraction approach.

!The lime package code in Python is available at https://github.
com/marcotcr/lime, accessed on 11-06-2019

4.1 Algorithms used

In this section, we provide an overview of the models
used in this work considering their complexity and
interpretability.

4.1.1  Decision Trees

Decision trees are an example of a model that can
easily fulfill every constraint for transparency. Decision
trees are hierarchical structures for decision making
used to support regression and classification problems.
However, their poor generalization properties in
comparison with other models make this model family
less interesting for their application to scenarios where
a balance between predictive performance is a design
driver of importance.

4.1.2  Support Vector Machines
SVM is a Machine Learning Model with a historical
presence in literature. SVM models are more complex
than decision trees, with a much opaquer structure.
As reviewed in Section 3, many implementations of
post-hoc explainability techniques have been proposed
to relate what is mathematically described internally
in these models, to what different authors considered
explanations about the problem at hand. Technically,
an SVM constructs a hyperplane of a set of hyperplanes
in a high or infinite-dimensional space, which can be
used for classification and regression. Intuitively, a
good separation is achieved by the hyperplane that has
the largest distance to the nearest training-data point
of any class, since in general, the larger the margin, the
lower the generalization error of the classifier. SVMs
are among the most used Machine Learning models
due to their excellent prediction and generalization.
But SVM has the following disadvantages: (1) the
opaqueness of the decision procedure makes it difficult
to be applied for health and finance applications; (2)
SVM originally is a binary classification method and
needs further improvements in the application of the
multi-class problems.

4.2 Rule Extraction from SVMs

In this article, we use a rule extraction approach. This
approach uses a labeled data set to train an SVM
and obtain the SVM classification, which produced
acceptable accuracy, precision, and recall. Next, a
new data set composed of the original patterns is
constructed with the target label for these patterns
replaced by the label predicted by the SVM. Rules
representing the concepts learned by SVM are then
extracted from this new data set using a decision
tree. The flow diagram steps of this work can be seen
in Fig. 3.

Thus, the proposed approach uses three
classification models and results. One produced
directly by the decision tree on the dataset, one
produced by the SVM classifier and one produced by
the decision tree applied to the output of the SVM
classifier. The first result works as the baseline of
an explainable algorithm. The second represents the
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Figure 3: Methodology flowchart

results of a ’'black-box’ algorithm and, finally, the
third is used to verify the ability of the decision tree
to explain the SVM’s results. In this context, the first
result is used mainly as a measure for performance
comparison with that of the SVM algorithm, and the
produced decision tree is compared with the decision
tree produced in the third result.

Experiments were performed using two benchmark
data sets from UCI Machine Learning to assess the
quality of the rules extracted using the rule-extraction
approach. The details are gresented as follows.

Pima Indians Diabetes* a sample of 534 patterns
were used from the original data set, after removing
all patterns with a zero value for the attributes glucose,
diastolic blood pressure or triceps skin thickness which
are clinically insignificant.

Heart Disease:3> the reduced Cleveland heart

diseases data set was used. All 303 patterns were used.

In our experimental design, each of the data sets
was split into disjoint training and test sets, as shown
in Table 1.

Table 1: Data sets

Data set N° Features Training set Test set
Pima Indians 8 373 161
Heart Disease 13 212 91

In the next subsections, we explain how we
constructed the classifiers used in this work. For all

classifiers, we used Python 3.6 and Jupyter Notebook.

All the code used to produce this work is available
on a public GitHub repository (https://github.com/
carlaprv/tcc-classification-xai).

4.2.1  Classifiers
For both SVM and Decision Tree, we used the classifiers
available on Scikit Learn (Buitinck et al., 2013).

As we intended to create a simple and explainable
model, we trained our Decision Tree using all features
and setting the depth to three. We used entropy to split
nodes. Entropy is the measure of Randomness in the
system.

2Data  set available at
pima-indians-diabetes-database
3Data set available at
heart-disease-uci

https://wuw.kaggle.com/uciml/

https://www.kaggle.com/ronitf/

For the SVM Classifier, we used all features and
specify the linear kernel. It is one of the most common
kernels to be used and is faster than any other kernel.

In order to achieve the primary goal of this work,
i.e., to construct a rule-based classifier that can explain
the classifications made by an SVM, we run the same
Decision Tree Classifier built over the new data set
considering the SVM Classifier output for the original
data sets.

5 Results

In this phase, after running all experiments, we
compare the metrics of each classifier as well the
generated rules for each data set.

The first question we intend to answer is that if we
used exactly the same features used for training SVM
Classifier how close can we get to the classification
induced by it.

Accuracy is the first factor for evaluating. Accuracy
is the percentage of the correct classification. It can be
seen that the Extracted Rules has the highest accuracy.

Table 2: Accuracy

Data set Decision Tree SVM Extracted Rules
Pima Indians 0.75 0.80 0.88
Heart Disease 0.74 0.77 0.80

The precision is the ratio tp/(tp + fp) where tp is the
number of true positives and fp the number of false
positives. The precision is intuitively the ability of
the classifier not to label as positive a sample that is
negative. The best value is 1 and the worst value is 0.

For both data sets, Extracted Rules has a better
precision than the other classifiers. It means that the
ability of the produced Decision Tree to explain the
labels produced by the SVM classifier is better than the
ability of both classifiers (Decision Trees and SVM) to
represent the original input data.

Table 3: Precision

Data set Decision Tree SVM Extracted Rules
Pima Indians 0.74 0.80 0.87
Heart Disease 0.73 0.77 0.80
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glucose = 1395
entropy = 0.755
samples = 373
value = [292, 81]
class =0

bmi = 36.0
entropy = 0.31
samples = 288

value =[272, 16]

class =0

pedigree = 1.079 )

entropy = 0.733

samples =73
value = [58, 15]
class =0

entropy = 0.569
samples = 67
value = [58, 9]

class =0

entropy = 0.61
samples = 20
value = [17, 3]

bmi = 33.05
entropy = 0.787
samples = 85
value = [20, 65]

class = 1

ol

pregnant = 4.5
entropy = 0.998
samples = 34
value =[18, 16]
class =0

entropy = 0.863
samples =7
value = [2, 5]

class =1

class =0

Figure 4: Extracted Rules from SVM for pima indians data set

The recall is the ratio tp/(tp + fn) where tp is the
number of true positives and fn the number of false
negatives. The recall is intuitively the ability of the
classifier to find all the positive samples. The best
value is 1 and the worst value is 0.

Table 4: Recall

Data set Decision Tree SVM Extracted Rules
Pima Indians 0.75 0.76 0.84
Heart Disease 0.74 0.76 0.79

For a better understanding of recall and precision
metrics, we computed the F1 score, also known as
balanced F-score or F-measure. The F1 score can be
interpreted as a weighted average of the precision and
recall, where an F1 score reaches its best value at 1 and
worst score at 0. The relative contribution of precision
and recall to the F1 score are equal. The formula for
the F1 score is:

F1 = 2 x (precision * recall)/(precision + recall)

In this case, for both data sets, the F1 Score for

Extracted Rules is greater than for the other classifiers.

Table 5: F1 Score

Data set Decision Tree SVM Extracted Rules
Pima Indians 0.74 0.77 0.85
Heart Disease 0.73 0.77 0.79

The higher accuracy, precision, and recall for the
Extracted Rules answers our first question and shows
that this model is a good representation of the SVM
classifier for both data sets, as we intended to create.

Figs. 4 and 5 provide a better understanding of the
extracted rules from SVM Classifier. These figures were
produced using the module Graphviz from Scikit Learn.
In this visualization, the more samples of the first class
(0), the darker the orange color of the node; the more
samples of the second class (1), the darker the blue.

Although the tree representations for SVM Classifier
provides an explanation for the model, we used ELI5,
a Python library, to extract feature importance by
measuring how score decreases when a feature is not
available; the method is also known as “permutation
importance” and the results are presented in Figs. 6
and 7.

5.1 Pima Indians

From Figs. 4 and 6, it is possible to identify that
Glucose level, Body mass index (BMI) and diabetes
pedigree (a function which scores likelihood of diabetes
based on family history) have a significant influence on
the model, especially glucose level and BMI. It is worth
highlighting the produced machine learning model
match what most doctors say about the subject.

We can read the tree visualization in Fig. 4 as follows.
In the beginning, there were 373 samples (instances),
292 of class 0 and 81 of class 1. The entropy of the
initial state was E=0.755. Then, the first partition of
the samples into 2 groups was made by comparing the
value of glucose with 139.5. With that, the entropy
of the left group decreased and of the right group
increased. The process continues up to depth 3.

5.2 Heart Disease

From Figs. 5 and 7, we can see that the most important
features are chest pain type, thalessemia result of
‘reversable defect’ and ST depression. All these features
make sense considering articles about the subject.
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True

chest_pain_type < 0.5
entropy = 0.971
samples = 212

value = [85, 127]

class = 1

exercise_induced_angina = 0.5

entropy = 0.799
samples = 99
value = [75, 24]
class =0

/

thalassemia < 2.5

entropy = 0.996
samples =43
value = [20, 23]

class =1

entropy = 0.706 entropy = 0.523
samples = 26 samples =17
value =[5, 21] value =[15, 2]

class =1 class=0

st_depression=< 2.2
entropy =0.918
samples = 27
value =9, 18]
class =1

)
entropy = 0.755
samples = 23
value =[5, 18]
class =1

Figure 5: Extracted Rules from SVM for heart disease data set

Weight Feature

0.2062 £ 0.0506 glucose
0.0323 £ 0.0253  bmi
0.0025 £ 0.0061  pedigree

0+0.0000 age

0+ 0.0000 insulin

0+ 0.0000 skin

0+0.0000 bp
-0.0037 £ 0.0290 pregnant

Figure 6: Feature weights for extracted rules from
SVM for Pima Indians data set

We can read the tree visualization in Fig. 5 as follows.
In the beginning, there were 212 samples (instances),
85 of class 0 and 127 of class 1. The entropy of the
initial state was E=0.971. Then, the first partition of
the samples into 2 groups was made by comparing
the value of Chest Pain Type with 0.5. With that, the
entropy of the left group increased and of the right
group decreased. The process continues up to depth 3.

For both trees, it is important to note that some
of the leaf nodes are overfitted and the entropy is
E=0. Ideally, we want the leaf nodes to be as little
randomized as possible for high accuracy and less
overfitting. But, in this case, as we intended to use
the decision tree to explain the SVM classifier, this
overfitting can be considered a good result.

6 Conclusions

Although interpretable models provide crucial
insight into why predictions are made, they impose
some limitations. We argued that model-agnostic

Weight Feature
0.0615 £ 0.0473 chest pain_type
0.0396 £ 0.0493 thalassemia

0.0264 + 0.0408
0.0000 + 0.0278

st_depression
exercise_induced_angina

0+£0.0000 num_major_vessels
0+£0.0000 st slope

0+£0.0000 max_heart rate achieved
0+0.0000 rest_ecg

0 £0.0000 fasting_blood sugar
0+£0.0000 cholesterol

0 +£0.0000 resting blood pressure
0+£0.0000 sex

0+£0.0000 age

Figure 7: Feature weights for extracted rules from
SVM for Heart Disease data set

explanation systems provide a generic framework
for interpretability that allows for flexibility in the
choice of models and representations. In this article,
we described the use of Decision Trees to generate
rules from an SVM. We have shown that Decision
Trees and permutation feature importance provide
a reliable measure for assessing the quality of the
extracted rules than the commonly used measures of
accuracy. In addition, we have shown that, on the data
sets, the extracted rules have at least an equivalent
performance to the original SVM.

Once we develop better techniques to learn
interpretable SVM Classifiers, we envisage the
following important scenarios that require the system
to provide an explanation: (i) Explain pairs - Given a
chosen pair of different diagnosis from the data sets,
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why is one item is classified as positive and the other as
negative? (ii) Explain item vs rest - Given a diagnosis of
interest, why is it classified as positive or negative. In
the future, we would also like to address the problem
of explainability for end-users.

In our point of view, as the community learns to
advance its work collaboratively by combining ideas
from different fields, the overall state of system
explanation will improve dramatically, resulting in
methods that build trust in machine learning systems
and provide useful insight into black-box models
operations enabling system behavior understanding
and improvement.
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