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Abstract

Coordinated Checkpointing is a fault-tolerance strategy proposed for Data Streams Processing systems, which
handles a continuous, potentially unbounded flow of data under Quality of Service requirements. Although
traditional in large-scale distributed systems, there is a lack of study on how a Coordinated Checkpointing may
impact the stream processing in both failure-free and failure-prone environments, especially considering the
inherent requirement of analyzing and processing data in real-time. This paper presents a study that used a
discrete simulation model to investigate the impacts of the Coordinated Checkpoint fault tolerance strategy on a
Data Stream Processing System. The results show Coordinated Checkpointing should be avoided since it critically
impacts the stream processing and the real-time analyzes of data, increasing latency up to 120%, and discarding
up 95% of the processing window during a global checkpoint when a rollback-recovery is required.

Keywords: Data Streams; Fault-Tolerance; Coordinated Checkpoint; Rollback-Recovery; Simulation Analysis

Resumo

Checkpoint Coordenado é uma estrategia de tolerdncia a falhas proposta para Sistemas de Processamento de Fluxos
de Dados, que processam um fluxo de dados continuo e potencialmente infinito dentro dos requerimentos da
Qualidade de Servigo. Embora tradicional em sistemas distribuidos de larga-escala, existe uma falta de estudos
em como o Checkpoint Coordenado pode afetar o processamento de fluxos de dados em cenarios com e sem falhas,
especialmente considerando a necessidade inerente de analise e processamento em tempo real dos dados nesse
tipo de sistema. Esse trabalho apresenta um estudo que usou um modelo de simulacacao discreto para investigar
os impactos da estratégia de tolerancia a falhas de Checkpoint Coordenado em um Sistema de Processamento
de Fluxos de Dados. Os resultados demonstram que o Checkpoint Coordenado deve ser evitado, visto que afeta
criticamente o processamento de fluxos e a analise em tempo real dos dados, aumentando a laténcia em até
120% e descartando até 95% dos dados da janela de processamento durante um checkpoint global quando um
rollback-recovery é necessario.

Palavras-Chave: Fluxos de Dados; Tolerancia a Falhas; Checkpoint Coordenado; Recuperacdo por Retorno; Analise
de Simulacao

1 Introduction processed under Quality of Service (QoS) requirements
(de Matteis and Mencagli, 2017). These streams are
potentially unbounded data transmitted at high volume

Data Stream Processing (DaSP) systems are a and high velocities. Some of them require real-time

computing paradigm for online analysis of data streams
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processing and analysis, such as disaster management,
network attack and anomaly detection, financial
market, trend analysis, social media, web analytics,
Internet of Things (IoT), operational infrastructure
monitoring, and online advertising (de Assuncdo et al.,
2018, Gradvohl et al., 2014).

DaSP systems have to process data streams
uninterruptedly to provide real-time analysis. The
system must be fault-tolerant to achieve this level of
dependability. One of the proposed fault-tolerance
used for DaSP systems is the Checkpoint Rollback-
Recovery. It consists of periodically saving the
application’s state to restart from the last safe
state in case of a system failure. The checkpoint
can be coordinated (synchronous) or uncoordinated
(asynchronous). In the coordinated checkpoint, all
components take a checkpoint at the same time. In
turn, in the uncoordinated checkpoint, each component
decides when to perform its checkpoint (Casanova et al.,
2015).

Although most DaSP systems run in distributed
process architectures, where the checkpoint-rollback-
recovery strategy is intensely studied (Levy et al., 2014,
Oldfield et al., 2007, Moody et al., 2010, Monnet et al.,
2004), there is a lack of studies about the impact of this
checkpoint strategy on DaSP systems. Nevertheless,
practical evaluation of fault-tolerance mechanisms
in large-scale applications such as DaSP systems is
challenging.

At the hardware level, the challenges include the
requirement to study machines that are either larger
than those currently available or have hypothetical
architectures. Other challenges in this level include
the study of more advanced machines, which are not
accessible yet; and the lack of analytical models to
predict performance and compare to other results
accurately (Levy et al., 2014).

Besides, at the application level, the system expects
uncertainties, such as changes in arrival rate, arrival
distribution, and others since data stream processing
is potentially unbounded. Therefore, tests concerning
failure issues and how the adopted fault-tolerance
strategy interferes in stream processing are relevant
as well.

Simulations are quite useful for performance
analysis in parallel and distributed programs
(Albertsson, 2006, Hoefler et al., 2010, Tikotekar
et al., 2007) as well as in large and extreme-scale
applications (Levy et al., 2014, Ferreira et al., 2011,
Mubarak et al., 2012, Bohm and Engelmann, 2011).
Besides, a simulation holds several benefits such as
providing a risk-free environment, high accuracy
compared to analytic models and the ability to handle
uncertainty scenarios such as failure occurrences.

Therefore, we propose a simple discrete event
simulation model built on ARENA simulation software
to verify the impact of the Coordinated Checkpoint
Rollback-Recovery (CCRR) strategy on the DaSP
systems. The primary goal of this work is to simulate
different situations in both failure-free and failure-
prone scenarios. Also, we provide an application-
driven simulation model capable of evaluating different

QoS metrics such as latency, throughput, and mean
waiting time; and integrity metrics such as the amount
of information loss and unprocessed tuples.

The specific contributions of this paper are the
following:

- a simple and easy to use a discrete event simulation
model of the Coordinated Checkpoint-Rollback-
Recovery in Stream Processing Systems;

+ an evaluation of our model’s performance showing
an error of less than 1% and 11% against analytic
models for both failure-free and failure-prone
environments;

- a simulation analysis showing that the Coordinated
Checkpointing could be impracticable in failure-
prone DaSP systems due to high information loss,
an increase in latency and a decrease in throughput
reaching 95%;

+ two analytic models to predict information loss in
failure-free and failure-prone environments using
CCRR.

We organized the remaining of this paper as follows:
Section 2 presents the fundamental concepts. Section 3
shows the related work; Section 4 introduces the
proposed computational model; Section 5 compares the
simulation results and the analytic models; Section 6
describes the experiments; Section 7 discusses the
results; and, finally, Section 8 presents the conclusions.

2 Fundamental Concepts

There are different architectures for online data
processing and analysis. However, most of them are
multi-tiered systems with loosely coupled components
combined to form a single processing framework. This
organization improves maintainability, scalability, and
availability (de Assuncado et al., 2018).

The multi-tiered architecture of DaSP systems
comprises different components. Fig. 1 shows an
overview of these components. For instance, there are
Data Sources responsible for data streams generation,
such as RFID readers, wireless sensors, mobile devices
and GPS, among others. Also, there are Data Collectors,
for instance, network clients, JSON readers, protocol
buffers, and others, to gather the data streams and
transmits them to the stream processing engine.
Messaging systems are generally present as well.
Examples of such message systems are IoT hubs
queuing systems and publish-subscribe messages that
receive the stream and manages it (de Assuncgao et al.,
2018).

There are also Stream Processing Engines that will
effectively process the streams and Data Deliveries,
such as Web Interfaces, Dashboards, RESTful APISs,
which will receive the processed information. The
architecture also requires Data Storage components,
like relational databases, NoSQL databases, or in-
memory storage. However, using all components are
not mandatory, and an actual system may have only
some of these features. The communication between
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Figure 1: Basic architecture of a DaSP system.

components often uses TCP/IP protocols (Gradvohl
et al., 2014).

The Stream Processing Engine uses several
software components known as operators, running
on processing nodes (hardware components). Each
operator runs on a single node, although a single node
can hold one or more operators. The engine connects
the operators forming a directed acyclic graph (DAG),

which we will refer to as a topology (Gradvohl, 2016).

The operators are responsible for tuples processing and
analyzing, and can execute a series of procedures such
as data cleaning, classification and feature selection,
among others.

We classify operators according to their ability to
maintain their state, i.e., internal data structures,
intermediary results, and tuples routing information,
among others. We classify an operator as stateless if
it does not gather or keep any information about the
previously processed streams or the operator state. On
the other hand, the output of the stateful operators
depends on the processing of the previous streams and
its previous state (Gradvohl, 2018).

Operators are components responsible for data
stream processing. Beyond the requirement for
real-time processing, data streams have other
characteristics that distinguish them from traditional
static data processing. They are potentially infinite,
which makes them impractical for storing in the
system’s main memory; the system must analyze each
tuple a limited number of times and discard them later
to reduce the computational costs, to avoid queuing
and offer a real-time response (Ramirez-Gallego et al.,
2017).

Also, we formally define an input stream as a
sequence of data elements {s, S5, ...}, which each s; =
(t;,D;), t; is the time stamp, and D; = (di, da, ...) is the
payload for each element i. In this paper, we consider
s; as a tuple. Second, we consider that the probabilistic

distribution of the data may change over time. This
phenomenon is well known and well studied in the
data streams environment due to its non-stationary
nature. We refer to this phenomenon as Concept Drift
(Gama et al., 2014).

2.1 Coordinated Checkpointing

The system implements a coordinated or synchronous
checkpoint by exchanging messages between the
operators in a DaSP system. We can formally define a
global checkpoint (or a snapshot) of a system composed
by nodes (ny, na, ns3,...,nn) at an instant t as a storage
of events at each n; at the instant t and also a
storage of the communications logs (send and receive
messages) between operators in the instant ¢t (Goswami
and Sahu, 2005). Therefore, for global consistency,

checkpoints are (C’l‘, C§, ck, ..., ck), where Cz‘ is the k®
local checkpoint at node n;.

Fig. 2 illustrates a simplified flowchart of the CCRR
in DaSP systems. When the checkpoint interval expires,
the model triggers the CCRR strategy. First, the
strategy blocks all operators for stream processing,
which results in information loss since the system
discards all received tuples discarded. Then, the
initiator sends a checkpoint request to the operators.
All available operators reply to a message informing the
initiator that they are active. If the system detects no
failure, the initiator waits for all operators to perform
their respective and local checkpoints. After this
procedure, the initiator sends a message to all active
operators informing that the system performed a global
checkpoint successfully. This whole process is known

as Commit Time.
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Figure 2: Flowchart of the Coordinated Checkpoint
Rollback-Recovery strategy.
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At the checkpoint request, if an operator does not
respond, the initiator usually waits an extra time. If the
initiator still receives no response, this indicates that
a failure occurred. This process triggers the rollback
recovery phase when the system waits until the node
resumes and then recovers the last checkpoint of the
failed operator. When the rollback-recovery process
finishes, all operators take the checkpoint, and the
initiator commits them to a stable storage device.

3 Related Work

In this section, we present works that approach
stream processing simulators. Hoefler et al.
(2010) divide simulators into different categories,
such as application, application-communication, and
architectures simulators. Application simulators
focus on the performance of a given algorithm, a
system, or an application. Users employ application-
communications to simulate critical components of an
application, such as its relation to other components
presented in the topology. Finally, architecture
simulators represent a detailed model of one or more
components of a parallel architecture. The model
presented in this paper is an application model.

Due to the high computational cost of a detailed
simulation, simulations commonly focus on a limited
group of components (Hoefler et al.,, 2010). A
simulation model has to be accurate enough and
yet avoid unnecessary features (Levy et al., 2014).
Therefore, the work presented in the literature focuses
on specific aspects of the distributed discrete event
simulation.

Concerning failure tolerance aspects, Ferreira et al.
(2011) has studied the benefits of the process replication
as a primary fault-tolerance mechanism for large-scale
distributed systems. They used different simulators
to run the experiments. On the other hand, Levy et al.
(2014) proposed a framework on the LogOPS simulator
to evaluate the performance of the CCRR in large-scale
systems.

On performance evaluation, Zheng et al. (2005) used
BigSim as a simulation tool to develop a performance-
modeling environment to predict performance issues
on large parallel machines. In turn, Shchur and
Shchur (2015) studied the benefits of using parallel
discrete event simulation as a paradigm for large-
scale modeling systems, including the requirement
of analyzing important metrics such as scalability, CPU
time, and storage issues.

For online processing, there are few works
addressing simulations. For instance, CEPSim
(Higashino et al., 2016) is a simulator for cloud-based
systems that can model different DaSP systems by
transforming them into user queries based on DAG
representation. CEPSim allows some customizations
of operators’ execution, placement, and schedule
while providing important metrics such as latency and
throughput. However, CEPSim does not support fault-
tolerance simulations.

In turn, Flow is a simulator primarily focused on the
large-scale simulation of stream processing systems

(Park et al., 2010). It is capable of working with
millions of kernels and data flows, and the automatic
parallelization of different models. As CEPSim, Flow
also does not support fault-tolerance simulations.
Table 1 presents a comparison table with CEPSim, Flow
and our model.

Table 1: Comparison table of simulators for stream
processing

Simulator Evaluated metrics Fault-Tolerance

Latency, Throughput,

CEPSim Execution Time, No
Memory Consumption

Hardware performances,

Flow Scalability No
Latency, Throughput,

Our model Mean Waiting Time, Yes

Unprocessed Tuples, Information Loss

Concerning discrete event simulation software, there
are many options available. For distributed systems, for
instance, there are BigSim (Zheng et al., 2004), LAM-
MPS (Plimpton, 1995), xSim (Bohm and Engelmann,
2011) and LogGOPSim (Hoefler et al., 2010), among
others. In turn, ARENA has embedded components
such as resource allocation, queue management, and
failure modules, which simplify the modeling of
both DaSP system topology and the CCRR strategy.
Researchers have already been using it for simulation
of distributed systems (Christine and Emilie, 2005) and
fault-tolerance strategies (Mehresh et al., 2010).

Therefore, although there are many works in
discrete-event simulations of distributed systems,
none of them addresses the specific and dynamic
environment of the DaSP systems, except for CEPSim
and Flow. Also, since both CEPSim and Flow do
not support any fault-tolerance simulations, we
find a lack of studies about the impact a fault-
tolerance mechanism has on DaSP systems. This paper
contributes to the proposition of a novel simulation
model capable of performance and simulation analysis
of the CCRR strategy in DaSP systems in both failure-
free and failure-prone environments.

4 Computational Model

This section presents the simulation model and the
input, control, and output parameters regarding our
proposed approach.

4.1 System Model

Fig. 3 shows the simulation model. Since ARENA is a
drag-and-drop simulation software, each component
is a block that performs a specific computation. We
modeled the data sources as Create blocks. The time
in seconds (s) between arrivals follows a Normal
Distribution of mean p=3.2x1073s and standard
deviation o =5x107%. Beyond the probabilistic
distribution, the simulation user can set the number of
entities per arrival, which defines the arrival rate. The
default rate is 1, which is equivalent to 1250 tuples/s.
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Figure 3: Proposed simulation model.

On the other hand, data collectors are the Dispose
blocks. The stream-processing level sends the
tuples, and the data collectors discard them from the
simulation. It is important to observe that, since data
streams are potentially infinite, the user must use
a processing window to verify the system during a
predetermined period. This period may be time-based
when the system achieves a predefined amount of time,
or tuple-based, calculated based on how many tuples
the data collectors received. This work uses a tuple-
based processing window by setting a termination
condition on the execution setup with the number of
tuples that the collectors successfully discarded.

At the stream-processing level, each operator
receives tuples from the previous operator (except
Operator 1, which receives tuples directly from data
sources) through an Input Queue I and then sends them
to the next operator throughout an Output Queue 0. An
operator communicates only with the next operator,
except when it detects a failure. If it is the case,
the model sends tuples to the next active operator.
The Decision blocks before every node represent this
condition, and the record blocks immediately classify
all the tuples directly sent to the next operator as
unprocessed.

Streams usually flow throughout the model.
However, the stream-processing level receives the
tuples, and a Decision block verifies if the simulation
time is higher than the checkpoint expected time. In

the affirmative case, it means the checkpoint time has
expired, and the system has to take a global checkpoint.
The model immediately stops the processing, and sends
every received tuple to the loss area, increasing the
counter for this metric.

Then, the model verifies if a node has failed. If this is
the case, it triggers the recovery phase. A Process block
models the recovery phase, which takes a constant
user-applied variable of time (R) to recover. After the
recovery, the initiator commits the checkpoint to the
stable storage. The commit process is also a Process
block, which takes a user-applied constant of time (&)
to execute. If it detects no failures, the system only
performs the commit. Then, the model increments
the checkpoint time, resume the processing and stops
losing tuples. We modeled the failures as time-based
on a Poisson distribution of mean M, and we can attach
it to any node.

Fig. 4 shows the architecture level. There are four
processing nodes, each one with three CPUs. There is
only one operator in each processing node to simplify
the model. We modeled the processing nodes as
resources and the CPUs as Process blocks. They operate
in a size, delay, and release procedure and process each
tuple in a Normal Distribution of mean n = 8 x 107%s
and standard deviation of o = 1075s. Therefore, the
proposed simulation model consists of four processing
nodes. To increase the model scalability, a user can
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model more processing nodes by simply adding more
Process blocks.

We can use several heuristics approaches to estimate
the CPU time (Zheng et al., 2005). It can be a user-
supplied expression, a suitable multiplier such as a
scaling factor, a hardware performance counter to
count floating-point, integer, and branch instructions
on the simulation machine or a hardware simulator,
which cycles a target machine processor. The proposed
model uses a user-supplied expression since it is the
less complex and highly flexible approach.

Figure 4: Sample DaSP architecture.

4.2 Input, control and output parameters

Fig. 5 shows a black box approach to the simulation
model. Input parameters are entities generated and
processed throughout the simulation. The model
uses Control parameters to simulate distinct scenarios.
Finally, output parameters are the metrics a simulation
model intends to provide.

Arrival rate WTBF #failures

(e >
T
(e >

# unprocessed

L

I

Node failed Optimal checkpoint

Lo

Processing window

Figure 5: Simulation model black box.

Latencies are the main QoS parameters that a DaSP
must attend. System Latency is the time a system
takes to process and analyze a certain amount of

data (Gradvohl, 2018). Therefore, the model requires
low latency. There are other types of latency, such
as Maximum peak latency, Post-peak latency, and
Operator latency, which we do not address in this paper,
but the model can measure them. In our model, the
latency is equivalent to the simulation time since the
model will stop when the system computes the number
of tuples defined in the processing window.

Another QoS metric frequently observed in DaSP
systems is the throughput, the rate of successfully
processed tuples given a predetermined period
(Gradvohl, 2016). In this paper, we use the seconds (s)
as the adopted period. The simulation model requires
high throughput.

Finally, we also account for the mean waiting time
in the queue. Since data streams require real-time
processing, failures, or the adopted fault-tolerance
strategy must not substantially increase queuing time
as it would increase both computational cost and
latency.

Concerning integrity metrics, unprocessed tuples
are the ones who did not pass through one or
more operators. In DaSP systems, when a node
fails, the system forwards the tuples that the failed
operator would receive to the next active operator.
This procedure is fundamental to maintain system
availability. Considering that each operator may
implement critical procedures (e.g., data cleaning,
normalization, or classification), a high number of
unprocessed tuples could lead to inaccurate decisions.

Information loss is also a crucial integrity metric.
This metric computes the number of tuples discarded
during the checkpoints. Critical information could
have missed during this activity since coordinated
checkpoint blocks all operators for stream processing.
Besides the commit time, if a failure has occurred,
the simulation will also account for the recovery time,
which provokes an even severe situation.

All values set to process and create blocks were
empirically defined to simulate the same arrival rate
and processing time presented by Apache Storm, a
real-world DaSP system, on the work presented by
Chintapalli et al. (2016).

4.3 Limitations and Assumptions

Simulations are known as computationally expensive
(Levy et al., 2014). In order to construct an efficient and
accurate simulation model, we only modeled features
that are relevant to the performance of the DaSP system
and the adopted fault-tolerance strategy. Therefore,
we made the following assumptions:

« The operators receive, process and send tuples based
on a First-In-First-Out (FIFO) nature;

+ Nodes work under the fail-stop model;

- We assume reliable message delivery; therefore, no
message is lost;

+ CPUs are identical.

Since the proposed simulation model is application-
oriented, and we assume reliable message delivery,
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the simulation ignores failures in the network and the
communication between operators. Besides, we do not
directly address memory consumption.

5 Analytic Models

This section introduces the analytic models presented
in the literature to predict execution time and the
proposed analytic models to predict information loss,

in both failure-free and failure-prone environments.

In this section, we also compare the predicted with the
obtained results in the simulation model.

5.1 Simulation time

Levy et al. (2014) proposes Eq. (1) for execution time
prediction in failure-free environments.

TW:T5+E><6 (1)
T

where Ty is the predicted execution time; Ts is
the execution time without any fault-tolerance
mechanisms; 7 is the optimal checkpoint interval time;
and 6 is the commit time to the stable storage. For
the cases where the CCRR shares the stable storage
device, the authors propose the commit time expressed
in Eq. (2).

_ N x ||Cavg||

5
B

(2)

where N is the number of processing nodes; ||Cavgl| is

the average checkpoint size for each node, and 3 is the

aggregate write bandwidth for the stable storage.
However, in failure-prone environments, we cannot

use Eq. (1) since it does not consider failure occurrence.

Therefore, we use Eq. (3) proposed by Daly (2006),
which accounts for both failure occurrence and the
required recovery time by using the mean time between
failures (MTBF) and a constant R, described as follows:

+9 +9
TfailzTaPP+(’<‘1)><5+k><(7—2 +R)X<TM ) (3)

In Eq. (3), M is the mean time between failures
(MTBF); k is the number of performed checkpoints;
and R is the node recovery time. According to Daly
(2006), we assume Tapp = k x 7,k € N.

Both (Egs. (1) and (3)) use the variable 7, the optimal
interval checkpoint time. Assuming § < 2M, we
calculated this time using Eq. (4) as proposed by Daly
(2006).

T:(\/m>x[l+lx 5+1X<2§VI)} (4)

5.2 Information loss

We can use Eq. (5) to predict information loss in a
failure-free state.

Q=ex(kx¥é) (5)

where Q is the number of tuples lost; ¢ is the arrival
rate; k the number of checkpoints; and § the commit
time.

However, Eq. (5) is not adequate for a failure-
prone environment since it ignores failure occurrence.
Therefore, we propose Eq. (6) to predict information
loss in situations where failures occur.

Q:ex(kx6)+e<f']f\jlﬂ+1J><R) (6)

where Q is the number of tuples lost; ¢ is the arrival
rate; k the number of checkpoints; § the commit time;
R is the recovery time; M is the MTBF; and Ty, is the
execution time for a failure-prone environment.

On the other hand, unprocessed tuples are
challenging to predict. We can calculate this metric
using the exact time between a failure and the
remaining time to the next checkpoint times the
arrival rate. However, since researchers modeled them
based on the MTBF and a predefined probabilistic
distribution, values can change substantially even
inside a simulation model. Therefore, using a
simulation model is a practical approach to measure
this metric.

Figs. 6 and 7 show the comparison between analytic
models and the obtained results in the simulation. We
considered the same values for each comparison, which
were M = 600s, R = 60s, 6 = 74s and ¢ = 5000. The error
for the latency prediction in failure-free environments
was 1.5% and for failure-prone 10.5% in the worst case.
The error for information loss prediction was less than
1% for failure-free environments and less than 11.6%
for failure-prone environments. These results show
that our model is accurate to simulate both latency and
information loss.

6 Experimental Evaluation

In this section, we present four case studies applied
to evaluate our proposed simulation model. We
evaluated all cases on different arrival rates, and we
replicated each experiment 10 times for each arrival
rate. Therefore, we consider the mean for each value
and a 10 million tuples processing window for all case
studies.

Case 1is the baseline test, a failure-free environment
without the CCRR strategy. It is essential to verify
the model performance running on a clean scenario to
compare it to the remaining case studies. Since it is a
failure-free environment, the only control parameter
we used was the arrival rate.
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Case 2 is a failure-free environment with the
implementation of the CCRR strategy. Therefore, no
failure occurs. In this case, we want to verify how CCRR
affects the system performance even if the system
detects no failures. Concerning control parameters,
we considered § = 15, M = 600s and the calculated
checkpoint interval was 7 = 74s.

Case 3 is a failure-prone environment where a single
node (Node 1) experiences a failure. The experiment
relies on the investigation of the model performance in
case of failures. We considered § = 1s, M = 600s, R = 60s
and the calculated checkpoint interval was 7 = 74s.

Case 4 is an emergency mode where two nodes (Node
1 and Node 3) fails at the same time. We increased the
recovery time in 100%, and we reduced the MTBF in
half to force more failures occurrences. Therefore, we
considered § = 1s, M = 300s, R = 120s and the calculated
checkpoint interval was 7 = 45s.

7 Results and Discussion

Fig. 8a depicts the results for the latency metric.
Results show that the increase in latency with
the adoption of the CCRR strategy in failure-free
environments is relatively low, with a maximum of
2%. A failure in a single node (Case 3) resulted in an
increase in latency up to 10% compared to a failure-
free environment (Case 2). For Case 4, the increased
latency was up to 120% in the worst case.

Fig. 8b shows the results for the throughput metric.
Given a certain arrival rate, it measures how much time
the system takes to process and analyze all the received
data from the first to the final processing node. Using
the CCRR strategy also does not severely affect this
metric in failure-free environments, with a decrease
up to 2%. Case 3 showed a decrease up to 12%, and
Case 4 showed a decrease up to 109%.

Therefore, evidence shows that the adoption of the
CCRR strategy does not profoundly affect latency and
throughput in failure-free environments. However, in
emergencies, the CCRR strategy critically affects these
metrics, reaching an increase of up to 120% in some
cases. An increase of this magnitude could damage the
real-time processing characteristics of a DaSP system.

Tables 2 to 5 show the mean waiting time (in
seconds) that a tuple in the queue waited for processing
in each operator in the four studied cases. In Case 1
and Case 2, there was almost no difference between
values, except for operators 3 and 4 in arrival rates
5000 and 6250. Therefore, evidence shows there is no
substantial increase in mean waiting time in failure-
free environments with the adoption of the CCRR
strategy.

Table 2: Mean waiting time in seconds for Case 1.
Dashed cells represent values so close to zero that
could not be measured by the ARENA software.

Arrival rate Operator 1 Operator 2 Operator 3 Operator 4
1250 0.000288 - - -
2500 0.000180 0.000072 0.000108 0.000108
3750 0.000468  0.000288 0.000180 0.000108
5000 0.000612 0.000288 0.000324 0.000252
6250 0.000828  0.000288 0.000360 0.000324
7500 0.001080 0.000324 0.000396 0.000396
8750 0.001368 0.000324 0.000468 0.000432
10000 0.001692 0.000324 0.000468 0.000432

Table 3: Mean waiting time in seconds for Case 2.
Dashed cells represent values so close to zero that
could not be measured by the ARENA software.

Arrival rate  Operator 1 Operator 2 Operator 3  Operator 4
1250 0.000288 - - -
2500 0.000396 0.000108 0.000108 0.000108
3750 0.000468  0.000288 0.000144 0.000108
5000 0.000612 0.000288 0.000324 0.000180
6250 0.000828  0.000288 0.000360 0.000360
7500 0.001080 0.000324 0.000432 0.000360
8750 0.001368 0.000324  0.000468 0.000432
10000 0.001692 0.000324  0.000468 0.000432
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Figure 8: Latency and throughput versus arrival rate.

Table 4: Mean waiting time in seconds for Case 3.
Dashed cells represent values so close to zero that
could not be measured by the ARENA software.

Arrival rate Operator 1 Operator 2 Operator 3  Operator 4
1250 0.000288 0.000288 - -
2500 0.000396 0.000360 0.000108 0.000108
3750 0.000504 0.000396 0.000180 0.000108
5000 0.000612 0.000468 0.000360 0.000252
6250 0.000900 0.000576 0.000396 0.000360
7500 0.001152 0.000684 0.000396 0.000360
8750 0.001548 0.000756 0.000468 0.000432

10000 0.001908 0.000828 0.000504 0.000432

Table 5: Mean waiting time in seconds for Case 4.
Dashed cells represent values so close to zero that
could not be measured by the ARENA software.

Arrival rate  Operator 1 Operator 2 Operator 3  Operator 4
1250 0.000288 0.000288 - -
2500 0.000396 0.000324 0.000108 0.000108
3750 0.000540 0.000396 0.000144 0.000108
5000 0.000684 0.000468 0.000360 0.000360
6250 0.001008 0.000576 0.000396 0.000360
7500 0.001296 0.000612 0.000468 0.000396
8750 0.001548 0.000720 0.000576 0.000432
10000 0.002016 0.000864 0.000540 0.000468

Concerning Case 3, there was an increase in time
up to 12% for Operator 1, 121% for Operator 2, and
8% for Operator 3. For Operator 4, the results were
almost the same, except for a 29% increase in time for
5000 tuples/s, when compared with the failure-free
environments.

In Case 4, the increase was up to 27%, 125%, 14%,

and 8% for operators 1, 2, 3, and 4, respectively.

Therefore, it shows a relation between a failure (which
we implemented in nodes 1 and 3 where operators
1 and 3 were running) and an increase in the mean
waiting time on the next operators, especially on the
closest one. However, although expressive, none of
these increases were high enough to affect the stream
processing critically.

Concerning integrity metrics, Fig. 9a shows the
number of unprocessed tuples. Since there are no
failures in Case 1 and Case 2, this metric for both cases
is zero. For Case 3, the average number of unprocessed
tuples was around 530 thousand tuples, equivalent to
5.3% of the processing window. For Case 4, the average
was around 1.2 million tuples, equal to 10.2% of the
processing window.

Using Eq. (4) to define an optimal checkpoint
interval time is one approach to reduce this number.
Less time between checkpoints implies a smaller period
that an operator remains inactive and, consequently, it
will process more tuples. However, frequent checkpoint
increases overhead during failure-free executions
(Casanova et al., 2015). Besides, an increase in the
number of checkpoints directly affects tuple loss.

Another approach to alleviating this impact is to use
the uncoordinated version of the Checkpoint Rollback-
Recovery strategy. In this asynchronous approach,
each node decides when to take its checkpoint
independently (Goswami and Sahu, 2005), which
avoids the requirement for blocking nodes. This
procedure implies a reduced computational power
during the node checkpoint, but there would be
no information loss. However, the asynchronous
checkpoint is risky due to the domino effect, when the
recovery of a node depends on another node recovery
(Gradvohl et al., 2014). Guermouche et al. (2011)
present a solution for an uncoordinated checkpoint
without a domino effect in applications that uses
the Message Passing Interface (MPI) as its standard
message exchange system between operators.

In turn, Fig. 9b presents the number of tuple losses.
Due to the absence of fault-tolerance mechanisms
in Case 1, there is no loss in this case. For Case 2,
the average loss was 133 thousand tuples, equivalent
to 1.33% of the processing window. The average
loss for Case 3 was 1.1 million tuples, 10.1% of the
processing window. Finally, for Case 4, the average
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Figure 9: Information loss and unprocessed tuples versus arrival rate.

loss was around 9.5 million tuples, equal to 95% of the
processing window.

The following situation is one of the critical aspects
of using CCRR in DaSP systems. In an emergency, the
system could lose almost the same amount of tuples
it processed. The system would lose one of two tuples.
Due to the concept drift phenomenon, data streams are
subject to changes in their probabilistic distribution
that could occur in different types, such as gradual,
sudden, incremental, or recurrent. For instance,
sudden drifts appear abruptly and can completely
change the data (Ramirez-Gallego et al., 2017). Discard
all these tuples could result in losing a new or crucial
change in the data probabilistic distribution that could
lead to radically inaccurate decisions.

The combination of CCRR and Replication of
Components (Gradvohl et al., 2014) could be a more
reliable, long-term, and suitable approach to reduce
these impacts. In this case, several operators running
on different nodes would perform the same stream
processing synchronously, in such a way that a failure
in one node would not imply in unprocessed tuples.
Then, on the checkpoint time, the system could recover
the failed node as usual. This approach implies the
increase in the computing power investment due to
the necessity of at least duplicating operators, and the
wasting of resources in failure-free executions, which
could reduce the CCRR poor scalability (Casanova et al.,
2015). Besides, it would also decrease stream loss since
the system would not have to wait for a node recovery
to resume stream processing.

As a final observation, researchers can use our
model for the simulation of the CCRR strategy in DaSP
systems. Results from the comparison with analytic
models in Section 5 and the experiments in Section 6
demonstrated that the model is accurate to determine
the performance and the impact the CCRR strategy has
on DaSP systems. Also, since we built it in a user-
friendly software such as ARENA, it enables the user’s
full control of the simulation, by changing different

control parameters such as MTBF, arrival rate, recovery
time, optimal checkpoint interval and whose operator
will fail.

8 Conclusions

This paper presented a simulation model for evaluating
the Coordinated Checkpoint-Rollback Recovery fault-
tolerance strategy for Distributed Data Streams
Processing Systems in both failure-free and failure-
prone environments. With an error lower than 1.5%
and 10.5% in these environments, respectively, we
demonstrated that the simulation model is accurate to
evaluate the proposed scenario. We also proposed two
analytic models to predict information loss in failure-
free and failure-prone environments, with an error
lower than 1% and 11%, respectively.

Furthermore, we discussed how the CCRR negatively
affects stream processing. We demonstrated through
four case studies that using this strategy does not imply
a severe impact in system performance in failure-free
environments since the increase in mean waiting time,
latency, and decrease in throughput was around 2%.

However, in emergencies, this strategy critically
affects latency and throughput, and a high loss of
information due to the system freezing during a global
checkpoint. Therefore, we do not recommend using
a pure coordinated checkpointing in the DaSP system.
The use of process replication, in conjunction with
this strategy or its asynchronous approach, with the
attention to the domino effect, would be a more reliable
approach to reduce both unprocessed and lost tuples.

Therefore, our work provides a reliable study on how
much a coordinated checkpoint could affect the stream
processing on a DaSP system, without the necessity
to implement this strategy on a real architecture.
Also, it provides an easy-to-use simulation model
flexible enough to study different aspects of a DaSP
environment, including fault-tolerance strategies.
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