
Revista Brasileira de Computação Aplicada, July, 2020

DOI: 10.5335/rbca.v12i2.10295
Vol. 12, No 2, pp. 16–27
Homepage: seer.upf.br/index.php/rbca/index

O R I G I N A L P A P E R

Evaluating the impact of a coordinated checkpointing in
distributed data streams processing systems using discrete

event simulation

Matheus Bernardelli de Moraes ,1 and André Leon Sampaio Gradvohl ,1
1School of Technology - University of Campinas
*matheuzmoraes@gmail.com; gradvohl@ft.unicamp.br

Received: 2019-11-29. Revised: 2020-05-19. Accepted: 2020-06-06.

Abstract
Coordinated Checkpointing is a fault-tolerance strategy proposed for Data Streams Processing systems, whichhandles a continuous, potentially unbounded flow of data under Quality of Service requirements. Althoughtraditional in large-scale distributed systems, there is a lack of study on how a Coordinated Checkpointing mayimpact the stream processing in both failure-free and failure-prone environments, especially considering theinherent requirement of analyzing and processing data in real-time. This paper presents a study that used adiscrete simulation model to investigate the impacts of the Coordinated Checkpoint fault tolerance strategy on aData Stream Processing System. The results show Coordinated Checkpointing should be avoided since it criticallyimpacts the stream processing and the real-time analyzes of data, increasing latency up to 120%, and discardingup 95% of the processing window during a global checkpoint when a rollback-recovery is required.
Keywords: Data Streams; Fault-Tolerance; Coordinated Checkpoint; Rollback-Recovery; Simulation Analysis
Resumo
Checkpoint Coordenado é uma estrateǵia de tolerância a falhas proposta para Sistemas de Processamento de Fluxosde Dados, que processam um fluxo de dados contínuo e potencialmente infinito dentro dos requerimentos daQualidade de Serviço. Embora tradicional em sistemas distribuídos de larga-escala, existe uma falta de estudosem como o Checkpoint Coordenado pode afetar o processamento de fluxos de dados em cenarios com e sem falhas,especialmente considerando a necessidade inerente de analise e processamento em tempo real dos dados nessetipo de sistema. Esse trabalho apresenta um estudo que usou um modelo de simulaçação discreto para investigaros impactos da estratégia de tolerância a falhas de Checkpoint Coordenado em um Sistema de Processamentode Fluxos de Dados. Os resultados demonstram que o Checkpoint Coordenado deve ser evitado, visto que afetacriticamente o processamento de fluxos e a análise em tempo real dos dados, aumentando a latência em até120% e descartando até 95% dos dados da janela de processamento durante um checkpoint global quando um
rollback-recovery é necessário.
Palavras-Chave: Fluxos de Dados; Tolerância a Falhas; Checkpoint Coordenado; Recuperação por Retorno; Análisede Simulação

1 Introduction

Data Stream Processing (DaSP) systems are acomputing paradigm for online analysis of data streams

processed under Quality of Service (QoS) requirements(de Matteis and Mencagli, 2017). These streams arepotentially unbounded data transmitted at high volumeand high velocities. Some of them require real-time

http://dx.doi.org/10.5335/rbca.v12i2.10295
http://seer.upf.br/index.php/rbca/index
https://orcid.org/0000-0002-9485-0334
https://orcid.org/0000-0002-6520-9740


de Moraes & Gradvohl | Revista Brasileira de Computação Aplicada (2020), v.12, n.2, pp.16–27 17

processing and analysis, such as disaster management,network attack and anomaly detection, financialmarket, trend analysis, social media, web analytics,Internet of Things (IoT), operational infrastructuremonitoring, and online advertising (de Assunção et al.,2018, Gradvohl et al., 2014).DaSP systems have to process data streamsuninterruptedly to provide real-time analysis. Thesystem must be fault-tolerant to achieve this level ofdependability. One of the proposed fault-toleranceused for DaSP systems is the Checkpoint Rollback-Recovery. It consists of periodically saving theapplication’s state to restart from the last safestate in case of a system failure. The checkpointcan be coordinated (synchronous) or uncoordinated(asynchronous). In the coordinated checkpoint, allcomponents take a checkpoint at the same time. Inturn, in the uncoordinated checkpoint, each componentdecides when to perform its checkpoint (Casanova et al.,2015).Although most DaSP systems run in distributedprocess architectures, where the checkpoint-rollback-recovery strategy is intensely studied (Levy et al., 2014,Oldfield et al., 2007, Moody et al., 2010, Monnet et al.,2004), there is a lack of studies about the impact of thischeckpoint strategy on DaSP systems. Nevertheless,practical evaluation of fault-tolerance mechanismsin large-scale applications such as DaSP systems ischallenging.At the hardware level, the challenges include therequirement to study machines that are either largerthan those currently available or have hypotheticalarchitectures. Other challenges in this level includethe study of more advanced machines, which are notaccessible yet; and the lack of analytical models topredict performance and compare to other resultsaccurately (Levy et al., 2014).Besides, at the application level, the system expectsuncertainties, such as changes in arrival rate, arrivaldistribution, and others since data stream processingis potentially unbounded. Therefore, tests concerningfailure issues and how the adopted fault-tolerancestrategy interferes in stream processing are relevantas well.Simulations are quite useful for performanceanalysis in parallel and distributed programs(Albertsson, 2006, Hoefler et al., 2010, Tikotekaret al., 2007) as well as in large and extreme-scaleapplications (Levy et al., 2014, Ferreira et al., 2011,Mubarak et al., 2012, Böhm and Engelmann, 2011).Besides, a simulation holds several benefits such asproviding a risk-free environment, high accuracycompared to analytic models and the ability to handleuncertainty scenarios such as failure occurrences.Therefore, we propose a simple discrete eventsimulation model built on ARENA simulation softwareto verify the impact of the Coordinated CheckpointRollback-Recovery (CCRR) strategy on the DaSPsystems. The primary goal of this work is to simulatedifferent situations in both failure-free and failure-prone scenarios. Also, we provide an application-driven simulation model capable of evaluating different

QoS metrics such as latency, throughput, and meanwaiting time; and integrity metrics such as the amountof information loss and unprocessed tuples.
The specific contributions of this paper are thefollowing:

• a simple and easy to use a discrete event simulationmodel of the Coordinated Checkpoint-Rollback-Recovery in Stream Processing Systems;• an evaluation of our model’s performance showingan error of less than 1% and 11% against analyticmodels for both failure-free and failure-proneenvironments;• a simulation analysis showing that the CoordinatedCheckpointing could be impracticable in failure-prone DaSP systems due to high information loss,an increase in latency and a decrease in throughputreaching 95%;• two analytic models to predict information loss infailure-free and failure-prone environments usingCCRR.
We organized the remaining of this paper as follows:Section 2 presents the fundamental concepts. Section 3shows the related work; Section 4 introduces theproposed computational model; Section 5 compares thesimulation results and the analytic models; Section 6describes the experiments; Section 7 discusses theresults; and, finally, Section 8 presents the conclusions.

2 Fundamental Concepts
There are different architectures for online dataprocessing and analysis. However, most of them aremulti-tiered systems with loosely coupled componentscombined to form a single processing framework. Thisorganization improves maintainability, scalability, andavailability (de Assunção et al., 2018).

The multi-tiered architecture of DaSP systemscomprises different components. Fig. 1 shows anoverview of these components. For instance, there areData Sources responsible for data streams generation,such as RFID readers, wireless sensors, mobile devicesand GPS, among others. Also, there are Data Collectors,for instance, network clients, JSON readers, protocolbuffers, and others, to gather the data streams andtransmits them to the stream processing engine.Messaging systems are generally present as well.Examples of such message systems are IoT hubsqueuing systems and publish-subscribe messages thatreceive the stream and manages it (de Assunção et al.,2018).
There are also Stream Processing Engines that willeffectively process the streams and Data Deliveries,such as Web Interfaces, Dashboards, RESTful APIs,which will receive the processed information. Thearchitecture also requires Data Storage components,like relational databases, NoSQL databases, or in-memory storage. However, using all components arenot mandatory, and an actual system may have onlysome of these features. The communication between
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Figure 1: Basic architecture of a DaSP system.

components often uses TCP/IP protocols (Gradvohlet al., 2014).The Stream Processing Engine uses severalsoftware components known as operators, runningon processing nodes (hardware components). Eachoperator runs on a single node, although a single nodecan hold one or more operators. The engine connectsthe operators forming a directed acyclic graph (DAG),which we will refer to as a topology (Gradvohl, 2016).The operators are responsible for tuples processing andanalyzing, and can execute a series of procedures suchas data cleaning, classification and feature selection,among others.We classify operators according to their ability tomaintain their state, i. e., internal data structures,intermediary results, and tuples routing information,among others. We classify an operator as stateless ifit does not gather or keep any information about thepreviously processed streams or the operator state. Onthe other hand, the output of the stateful operatorsdepends on the processing of the previous streams andits previous state (Gradvohl, 2018).Operators are components responsible for datastream processing. Beyond the requirement forreal-time processing, data streams have othercharacteristics that distinguish them from traditionalstatic data processing. They are potentially infinite,which makes them impractical for storing in thesystem’s main memory; the system must analyze eachtuple a limited number of times and discard them laterto reduce the computational costs, to avoid queuingand offer a real-time response (Ramírez-Gallego et al.,2017).Also, we formally define an input stream as asequence of data elements {s1, s2, . . .}, which each si =(ti,Di), ti is the time stamp, and Di = (d1,d2, . . .) is thepayload for each element i. In this paper, we consider
si as a tuple. Second, we consider that the probabilistic

distribution of the data may change over time. Thisphenomenon is well known and well studied in thedata streams environment due to its non-stationarynature. We refer to this phenomenon as Concept Drift(Gama et al., 2014).

2.1 Coordinated Checkpointing

The system implements a coordinated or synchronouscheckpoint by exchanging messages between theoperators in a DaSP system. We can formally define aglobal checkpoint (or a snapshot) of a system composedby nodes (n1,n2,n3, . . . ,nn) at an instant t as a storageof events at each ni at the instant t and also astorage of the communications logs (send and receivemessages) between operators in the instant t (Goswamiand Sahu, 2005). Therefore, for global consistency,
checkpoints are (Ck1 ,Ck2,Ck3, . . . ,Ckn), where Cki is the kth
local checkpoint at node ni.

Fig. 2 illustrates a simplified flowchart of the CCRRin DaSP systems. When the checkpoint interval expires,the model triggers the CCRR strategy. First, thestrategy blocks all operators for stream processing,which results in information loss since the systemdiscards all received tuples discarded. Then, theinitiator sends a checkpoint request to the operators.All available operators reply to a message informing theinitiator that they are active. If the system detects nofailure, the initiator waits for all operators to performtheir respective and local checkpoints. After thisprocedure, the initiator sends a message to all activeoperators informing that the system performed a globalcheckpoint successfully. This whole process is knownas Commit Time.

Figure 2: Flowchart of the Coordinated CheckpointRollback-Recovery strategy.
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At the checkpoint request, if an operator does notrespond, the initiator usually waits an extra time. If theinitiator still receives no response, this indicates thata failure occurred. This process triggers the rollbackrecovery phase when the system waits until the noderesumes and then recovers the last checkpoint of thefailed operator. When the rollback-recovery processfinishes, all operators take the checkpoint, and theinitiator commits them to a stable storage device.

3 Related Work
In this section, we present works that approachstream processing simulators. Hoefler et al.(2010) divide simulators into different categories,such as application, application-communication, andarchitectures simulators. Application simulatorsfocus on the performance of a given algorithm, asystem, or an application. Users employ application-communications to simulate critical components of anapplication, such as its relation to other componentspresented in the topology. Finally, architecturesimulators represent a detailed model of one or morecomponents of a parallel architecture. The modelpresented in this paper is an application model.Due to the high computational cost of a detailedsimulation, simulations commonly focus on a limitedgroup of components (Hoefler et al., 2010). Asimulation model has to be accurate enough andyet avoid unnecessary features (Levy et al., 2014).Therefore, the work presented in the literature focuseson specific aspects of the distributed discrete eventsimulation.Concerning failure tolerance aspects, Ferreira et al.(2011) has studied the benefits of the process replicationas a primary fault-tolerance mechanism for large-scaledistributed systems. They used different simulatorsto run the experiments. On the other hand, Levy et al.(2014) proposed a framework on the LogOPS simulatorto evaluate the performance of the CCRR in large-scalesystems.On performance evaluation, Zheng et al. (2005) usedBigSim as a simulation tool to develop a performance-modeling environment to predict performance issueson large parallel machines. In turn, Shchur andShchur (2015) studied the benefits of using paralleldiscrete event simulation as a paradigm for large-scale modeling systems, including the requirementof analyzing important metrics such as scalability, CPUtime, and storage issues.For online processing, there are few worksaddressing simulations. For instance, CEPSim(Higashino et al., 2016) is a simulator for cloud-basedsystems that can model different DaSP systems bytransforming them into user queries based on DAGrepresentation. CEPSim allows some customizationsof operators’ execution, placement, and schedulewhile providing important metrics such as latency andthroughput. However, CEPSim does not support fault-tolerance simulations.In turn, Flow is a simulator primarily focused on thelarge-scale simulation of stream processing systems

(Park et al., 2010). It is capable of working withmillions of kernels and data flows, and the automaticparallelization of different models. As CEPSim, Flowalso does not support fault-tolerance simulations.Table 1 presents a comparison table with CEPSim, Flowand our model.
Table 1: Comparison table of simulators for streamprocessing
Simulator Evaluated metrics Fault-Tolerance

CEPSim Latency, Throughput,Execution Time,Memory Consumption No
Flow Hardware performances,Scalability No

Our model Latency, Throughput,Mean Waiting Time,Unprocessed Tuples, Information Loss Yes

Concerning discrete event simulation software, thereare many options available. For distributed systems, forinstance, there are BigSim (Zheng et al., 2004), LAM-MPS (Plimpton, 1995), xSim (Böhm and Engelmann,2011) and LogGOPSim (Hoefler et al., 2010), amongothers. In turn, ARENA has embedded componentssuch as resource allocation, queue management, andfailure modules, which simplify the modeling ofboth DaSP system topology and the CCRR strategy.Researchers have already been using it for simulationof distributed systems (Christine and Emilie, 2005) andfault-tolerance strategies (Mehresh et al., 2010).Therefore, although there are many works indiscrete-event simulations of distributed systems,none of them addresses the specific and dynamicenvironment of the DaSP systems, except for CEPSimand Flow. Also, since both CEPSim and Flow donot support any fault-tolerance simulations, wefind a lack of studies about the impact a fault-tolerance mechanism has on DaSP systems. This papercontributes to the proposition of a novel simulationmodel capable of performance and simulation analysisof the CCRR strategy in DaSP systems in both failure-free and failure-prone environments.

4 Computational Model
This section presents the simulation model and theinput, control, and output parameters regarding ourproposed approach.
4.1 System Model

Fig. 3 shows the simulation model. Since ARENA is adrag-and-drop simulation software, each componentis a block that performs a specific computation. Wemodeled the data sources as Create blocks. The timein seconds (s) between arrivals follows a NormalDistribution of mean µ = 3.2× 10–3s and standarddeviation σ = 5× 10–5s. Beyond the probabilisticdistribution, the simulation user can set the number ofentities per arrival, which defines the arrival rate. Thedefault rate is 1, which is equivalent to 1250 tuples/s.
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Figure 3: Proposed simulation model.

On the other hand, data collectors are the Disposeblocks. The stream-processing level sends thetuples, and the data collectors discard them from thesimulation. It is important to observe that, since datastreams are potentially infinite, the user must usea processing window to verify the system during apredetermined period. This period may be time-basedwhen the system achieves a predefined amount of time,or tuple-based, calculated based on how many tuplesthe data collectors received. This work uses a tuple-based processing window by setting a terminationcondition on the execution setup with the number oftuples that the collectors successfully discarded.
At the stream-processing level, each operatorreceives tuples from the previous operator (exceptOperator 1, which receives tuples directly from datasources) through an Input Queue I and then sends themto the next operator throughout an Output Queue O. Anoperator communicates only with the next operator,except when it detects a failure. If it is the case,the model sends tuples to the next active operator.The Decision blocks before every node represent thiscondition, and the record blocks immediately classifyall the tuples directly sent to the next operator asunprocessed.
Streams usually flow throughout the model.However, the stream-processing level receives thetuples, and a Decision block verifies if the simulationtime is higher than the checkpoint expected time. In

the affirmative case, it means the checkpoint time hasexpired, and the system has to take a global checkpoint.The model immediately stops the processing, and sendsevery received tuple to the loss area, increasing thecounter for this metric.
Then, the model verifies if a node has failed. If this isthe case, it triggers the recovery phase. A Process blockmodels the recovery phase, which takes a constantuser-applied variable of time (R) to recover. After therecovery, the initiator commits the checkpoint to thestable storage. The commit process is also a Processblock, which takes a user-applied constant of time (δ)to execute. If it detects no failures, the system onlyperforms the commit. Then, the model incrementsthe checkpoint time, resume the processing and stopslosing tuples. We modeled the failures as time-basedon a Poisson distribution of mean M, and we can attachit to any node.
Fig. 4 shows the architecture level. There are fourprocessing nodes, each one with three CPUs. There isonly one operator in each processing node to simplifythe model. We modeled the processing nodes as

resources and the CPUs as Process blocks. They operatein a size, delay, and release procedure and process eachtuple in a Normal Distribution of mean µ = 8 × 10–5sand standard deviation of σ = 10–5s. Therefore, theproposed simulation model consists of four processingnodes. To increase the model scalability, a user can
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model more processing nodes by simply adding more
Process blocks.

We can use several heuristics approaches to estimatethe CPU time (Zheng et al., 2005). It can be a user-supplied expression, a suitable multiplier such as ascaling factor, a hardware performance counter tocount floating-point, integer, and branch instructionson the simulation machine or a hardware simulator,which cycles a target machine processor. The proposedmodel uses a user-supplied expression since it is theless complex and highly flexible approach.

Figure 4: Sample DaSP architecture.

4.2 Input, control and output parameters

Fig. 5 shows a black box approach to the simulationmodel. Input parameters are entities generated andprocessed throughout the simulation. The modeluses Control parameters to simulate distinct scenarios.Finally, output parameters are the metrics a simulationmodel intends to provide.

Figure 5: Simulation model black box.

Latencies are the main QoS parameters that a DaSPmust attend. System Latency is the time a systemtakes to process and analyze a certain amount of

data (Gradvohl, 2018). Therefore, the model requireslow latency. There are other types of latency, suchas Maximum peak latency, Post-peak latency, andOperator latency, which we do not address in this paper,but the model can measure them. In our model, thelatency is equivalent to the simulation time since themodel will stop when the system computes the numberof tuples defined in the processing window.Another QoS metric frequently observed in DaSPsystems is the throughput, the rate of successfullyprocessed tuples given a predetermined period(Gradvohl, 2016). In this paper, we use the seconds (s)as the adopted period. The simulation model requireshigh throughput.Finally, we also account for the mean waiting timein the queue. Since data streams require real-timeprocessing, failures, or the adopted fault-tolerancestrategy must not substantially increase queuing timeas it would increase both computational cost andlatency.Concerning integrity metrics, unprocessed tuplesare the ones who did not pass through one ormore operators. In DaSP systems, when a nodefails, the system forwards the tuples that the failedoperator would receive to the next active operator.This procedure is fundamental to maintain systemavailability. Considering that each operator mayimplement critical procedures (e. g., data cleaning,normalization, or classification), a high number ofunprocessed tuples could lead to inaccurate decisions.
Information loss is also a crucial integrity metric.This metric computes the number of tuples discardedduring the checkpoints. Critical information couldhave missed during this activity since coordinatedcheckpoint blocks all operators for stream processing.Besides the commit time, if a failure has occurred,the simulation will also account for the recovery time,which provokes an even severe situation.All values set to process and create blocks wereempirically defined to simulate the same arrival rateand processing time presented by Apache Storm, areal-world DaSP system, on the work presented byChintapalli et al. (2016).

4.3 Limitations and Assumptions

Simulations are known as computationally expensive(Levy et al., 2014). In order to construct an efficient andaccurate simulation model, we only modeled featuresthat are relevant to the performance of the DaSP systemand the adopted fault-tolerance strategy. Therefore,we made the following assumptions:
• The operators receive, process and send tuples basedon a First-In-First-Out (FIFO) nature;• Nodes work under the fail-stop model;• We assume reliable message delivery; therefore, nomessage is lost;• CPUs are identical.

Since the proposed simulation model is application-oriented, and we assume reliable message delivery,
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the simulation ignores failures in the network and thecommunication between operators. Besides, we do notdirectly address memory consumption.

5 Analytic Models
This section introduces the analytic models presentedin the literature to predict execution time and theproposed analytic models to predict information loss,in both failure-free and failure-prone environments.In this section, we also compare the predicted with theobtained results in the simulation model.
5.1 Simulation time

Levy et al. (2014) proposes Eq. (1) for execution timeprediction in failure-free environments.

Tw = Ts + Ts
τ
× δ (1)

where Tw is the predicted execution time; Ts isthe execution time without any fault-tolerancemechanisms; τ is the optimal checkpoint interval time;and δ is the commit time to the stable storage. Forthe cases where the CCRR shares the stable storagedevice, the authors propose the commit time expressedin Eq. (2).

δ = N × ||Cavg||
β

(2)
where N is the number of processing nodes; ||Cavg|| isthe average checkpoint size for each node, and β is theaggregate write bandwidth for the stable storage.

However, in failure-prone environments, we cannotuse Eq. (1) since it does not consider failure occurrence.Therefore, we use Eq. (3) proposed by Daly (2006),which accounts for both failure occurrence and therequired recovery time by using the mean time betweenfailures (MTBF) and a constant R, described as follows:

Tfail = Tapp + (k– 1)× δ + k×
(
τ + δ

2 + R
)
×
(
τ + δ
M

)
(3)

In Eq. (3), M is the mean time between failures(MTBF); k is the number of performed checkpoints;and R is the node recovery time. According to Daly(2006), we assume Tapp = k× τ , k ∈ N.
Both (Eqs. (1) and (3)) use the variable τ , the optimalinterval checkpoint time. Assuming δ ≤ 2M, wecalculated this time using Eq. (4) as proposed by Daly(2006).

τ = (√2× δ ×M)× [1 + 1
3 ×

√
δ

2M + 1
9 ×

(
δ

2M
)]

(4)

5.2 Information loss

We can use Eq. (5) to predict information loss in afailure-free state.

Ω = ε× (k× δ) (5)
where Ω is the number of tuples lost; ε is the arrivalrate; k the number of checkpoints; and δ the committime.However, Eq. (5) is not adequate for a failure-prone environment since it ignores failure occurrence.Therefore, we propose Eq. (6) to predict informationloss in situations where failures occur.

Ω = ε× (k× δ) + ε
(⌊Tfail

M + 1
⌋
× R

)
(6)

where Ω is the number of tuples lost; ε is the arrivalrate; k the number of checkpoints; δ the commit time;
R is the recovery time; M is the MTBF; and Tfail is theexecution time for a failure-prone environment.On the other hand, unprocessed tuples arechallenging to predict. We can calculate this metricusing the exact time between a failure and theremaining time to the next checkpoint times thearrival rate. However, since researchers modeled thembased on the MTBF and a predefined probabilisticdistribution, values can change substantially eveninside a simulation model. Therefore, using asimulation model is a practical approach to measurethis metric.Figs. 6 and 7 show the comparison between analyticmodels and the obtained results in the simulation. Weconsidered the same values for each comparison, whichwere M = 600s, R = 60s, δ = 74s and ε = 5000. The errorfor the latency prediction in failure-free environmentswas 1.5% and for failure-prone 10.5% in the worst case.The error for information loss prediction was less than1% for failure-free environments and less than 11.6%for failure-prone environments. These results showthat our model is accurate to simulate both latency andinformation loss.

6 Experimental Evaluation
In this section, we present four case studies appliedto evaluate our proposed simulation model. Weevaluated all cases on different arrival rates, and wereplicated each experiment 10 times for each arrivalrate. Therefore, we consider the mean for each valueand a 10 million tuples processing window for all casestudies.Case 1 is the baseline test, a failure-free environmentwithout the CCRR strategy. It is essential to verifythe model performance running on a clean scenario tocompare it to the remaining case studies. Since it is afailure-free environment, the only control parameterwe used was the arrival rate.
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Figure 6: Information loss versus processing windowsize.
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Figure 7: Latency versus processing window.

Case 2 is a failure-free environment with theimplementation of the CCRR strategy. Therefore, nofailure occurs. In this case, we want to verify how CCRRaffects the system performance even if the systemdetects no failures. Concerning control parameters,we considered δ = 1s, M = 600s and the calculatedcheckpoint interval was τ = 74s.
Case 3 is a failure-prone environment where a singlenode (Node 1) experiences a failure. The experimentrelies on the investigation of the model performance incase of failures. We considered δ = 1s, M = 600s, R = 60sand the calculated checkpoint interval was τ = 74s.
Case 4 is an emergency mode where two nodes (Node1 and Node 3) fails at the same time. We increased therecovery time in 100%, and we reduced the MTBF inhalf to force more failures occurrences. Therefore, weconsidered δ = 1s, M = 300s, R = 120s and the calculatedcheckpoint interval was τ = 45s.

7 Results and Discussion
Fig. 8a depicts the results for the latency metric.Results show that the increase in latency withthe adoption of the CCRR strategy in failure-freeenvironments is relatively low, with a maximum of2%. A failure in a single node (Case 3) resulted in anincrease in latency up to 10% compared to a failure-free environment (Case 2). For Case 4, the increasedlatency was up to 120% in the worst case.Fig. 8b shows the results for the throughput metric.Given a certain arrival rate, it measures how much timethe system takes to process and analyze all the receiveddata from the first to the final processing node. Usingthe CCRR strategy also does not severely affect thismetric in failure-free environments, with a decreaseup to 2%. Case 3 showed a decrease up to 12%, andCase 4 showed a decrease up to 109%.Therefore, evidence shows that the adoption of theCCRR strategy does not profoundly affect latency andthroughput in failure-free environments. However, inemergencies, the CCRR strategy critically affects thesemetrics, reaching an increase of up to 120% in somecases. An increase of this magnitude could damage thereal-time processing characteristics of a DaSP system.Tables 2 to 5 show the mean waiting time (inseconds) that a tuple in the queue waited for processingin each operator in the four studied cases. In Case 1and Case 2, there was almost no difference betweenvalues, except for operators 3 and 4 in arrival rates5000 and 6250. Therefore, evidence shows there is nosubstantial increase in mean waiting time in failure-free environments with the adoption of the CCRRstrategy.

Table 2: Mean waiting time in seconds for Case 1.Dashed cells represent values so close to zero thatcould not be measured by the ARENA software.
Arrival rate Operator 1 Operator 2 Operator 3 Operator 4

1250 0.000288 – – –2500 0.000180 0.000072 0.000108 0.0001083750 0.000468 0.000288 0.000180 0.0001085000 0.000612 0.000288 0.000324 0.0002526250 0.000828 0.000288 0.000360 0.0003247500 0.001080 0.000324 0.000396 0.0003968750 0.001368 0.000324 0.000468 0.00043210000 0.001692 0.000324 0.000468 0.000432

Table 3: Mean waiting time in seconds for Case 2.Dashed cells represent values so close to zero thatcould not be measured by the ARENA software.
Arrival rate Operator 1 Operator 2 Operator 3 Operator 4

1250 0.000288 – – –2500 0.000396 0.000108 0.000108 0.0001083750 0.000468 0.000288 0.000144 0.0001085000 0.000612 0.000288 0.000324 0.0001806250 0.000828 0.000288 0.000360 0.0003607500 0.001080 0.000324 0.000432 0.0003608750 0.001368 0.000324 0.000468 0.00043210000 0.001692 0.000324 0.000468 0.000432
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Figure 8: Latency and throughput versus arrival rate.

Table 4: Mean waiting time in seconds for Case 3.Dashed cells represent values so close to zero thatcould not be measured by the ARENA software.
Arrival rate Operator 1 Operator 2 Operator 3 Operator 4

1250 0.000288 0.000288 – –2500 0.000396 0.000360 0.000108 0.0001083750 0.000504 0.000396 0.000180 0.0001085000 0.000612 0.000468 0.000360 0.0002526250 0.000900 0.000576 0.000396 0.0003607500 0.001152 0.000684 0.000396 0.0003608750 0.001548 0.000756 0.000468 0.00043210000 0.001908 0.000828 0.000504 0.000432

Table 5: Mean waiting time in seconds for Case 4.Dashed cells represent values so close to zero thatcould not be measured by the ARENA software.
Arrival rate Operator 1 Operator 2 Operator 3 Operator 4

1250 0.000288 0.000288 – –2500 0.000396 0.000324 0.000108 0.0001083750 0.000540 0.000396 0.000144 0.0001085000 0.000684 0.000468 0.000360 0.0003606250 0.001008 0.000576 0.000396 0.0003607500 0.001296 0.000612 0.000468 0.0003968750 0.001548 0.000720 0.000576 0.00043210000 0.002016 0.000864 0.000540 0.000468

Concerning Case 3, there was an increase in timeup to 12% for Operator 1, 121% for Operator 2, and8% for Operator 3. For Operator 4, the results werealmost the same, except for a 29% increase in time for5000 tuples/s, when compared with the failure-freeenvironments.
In Case 4, the increase was up to 27%, 125%, 14%,and 8% for operators 1, 2, 3, and 4, respectively.Therefore, it shows a relation between a failure (whichwe implemented in nodes 1 and 3 where operators1 and 3 were running) and an increase in the meanwaiting time on the next operators, especially on theclosest one. However, although expressive, none ofthese increases were high enough to affect the streamprocessing critically.

Concerning integrity metrics, Fig. 9a shows thenumber of unprocessed tuples. Since there are nofailures in Case 1 and Case 2, this metric for both casesis zero. For Case 3, the average number of unprocessedtuples was around 530 thousand tuples, equivalent to5.3% of the processing window. For Case 4, the averagewas around 1.2 million tuples, equal to 10.2% of theprocessing window.
Using Eq. (4) to define an optimal checkpointinterval time is one approach to reduce this number.Less time between checkpoints implies a smaller periodthat an operator remains inactive and, consequently, itwill process more tuples. However, frequent checkpointincreases overhead during failure-free executions(Casanova et al., 2015). Besides, an increase in thenumber of checkpoints directly affects tuple loss.
Another approach to alleviating this impact is to usethe uncoordinated version of the Checkpoint Rollback-Recovery strategy. In this asynchronous approach,each node decides when to take its checkpointindependently (Goswami and Sahu, 2005), whichavoids the requirement for blocking nodes. Thisprocedure implies a reduced computational powerduring the node checkpoint, but there would beno information loss. However, the asynchronouscheckpoint is risky due to the domino effect, when therecovery of a node depends on another node recovery(Gradvohl et al., 2014). Guermouche et al. (2011)present a solution for an uncoordinated checkpointwithout a domino effect in applications that usesthe Message Passing Interface (MPI) as its standardmessage exchange system between operators.
In turn, Fig. 9b presents the number of tuple losses.Due to the absence of fault-tolerance mechanismsin Case 1, there is no loss in this case. For Case 2,the average loss was 133 thousand tuples, equivalentto 1.33% of the processing window. The averageloss for Case 3 was 1.1 million tuples, 10.1% of theprocessing window. Finally, for Case 4, the average
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Figure 9: Information loss and unprocessed tuples versus arrival rate.

loss was around 9.5 million tuples, equal to 95% of theprocessing window.The following situation is one of the critical aspectsof using CCRR in DaSP systems. In an emergency, thesystem could lose almost the same amount of tuplesit processed. The system would lose one of two tuples.Due to the concept drift phenomenon, data streams aresubject to changes in their probabilistic distributionthat could occur in different types, such as gradual,sudden, incremental, or recurrent. For instance,sudden drifts appear abruptly and can completelychange the data (Ramírez-Gallego et al., 2017). Discardall these tuples could result in losing a new or crucialchange in the data probabilistic distribution that couldlead to radically inaccurate decisions.The combination of CCRR and Replication ofComponents (Gradvohl et al., 2014) could be a morereliable, long-term, and suitable approach to reducethese impacts. In this case, several operators runningon different nodes would perform the same streamprocessing synchronously, in such a way that a failurein one node would not imply in unprocessed tuples.Then, on the checkpoint time, the system could recoverthe failed node as usual. This approach implies theincrease in the computing power investment due tothe necessity of at least duplicating operators, and thewasting of resources in failure-free executions, whichcould reduce the CCRR poor scalability (Casanova et al.,2015). Besides, it would also decrease stream loss sincethe system would not have to wait for a node recoveryto resume stream processing.As a final observation, researchers can use ourmodel for the simulation of the CCRR strategy in DaSPsystems. Results from the comparison with analyticmodels in Section 5 and the experiments in Section 6demonstrated that the model is accurate to determinethe performance and the impact the CCRR strategy hason DaSP systems. Also, since we built it in a user-friendly software such as ARENA, it enables the user’sfull control of the simulation, by changing different

control parameters such as MTBF, arrival rate, recoverytime, optimal checkpoint interval and whose operatorwill fail.

8 Conclusions
This paper presented a simulation model for evaluatingthe Coordinated Checkpoint-Rollback Recovery fault-tolerance strategy for Distributed Data StreamsProcessing Systems in both failure-free and failure-prone environments. With an error lower than 1.5%and 10.5% in these environments, respectively, wedemonstrated that the simulation model is accurate toevaluate the proposed scenario. We also proposed twoanalytic models to predict information loss in failure-free and failure-prone environments, with an errorlower than 1% and 11%, respectively.

Furthermore, we discussed how the CCRR negativelyaffects stream processing. We demonstrated throughfour case studies that using this strategy does not implya severe impact in system performance in failure-freeenvironments since the increase in mean waiting time,latency, and decrease in throughput was around 2%.
However, in emergencies, this strategy criticallyaffects latency and throughput, and a high loss ofinformation due to the system freezing during a globalcheckpoint. Therefore, we do not recommend usinga pure coordinated checkpointing in the DaSP system.The use of process replication, in conjunction withthis strategy or its asynchronous approach, with theattention to the domino effect, would be a more reliableapproach to reduce both unprocessed and lost tuples.
Therefore, our work provides a reliable study on howmuch a coordinated checkpoint could affect the streamprocessing on a DaSP system, without the necessityto implement this strategy on a real architecture.Also, it provides an easy-to-use simulation modelflexible enough to study different aspects of a DaSPenvironment, including fault-tolerance strategies.
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