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Abstract

This paper describes a comparison between three pre-trained neural networks for the classification of chestX-ray images: Xception, Inception V3, and NasNetLarge. Networks were implemented using learning transfer;The database used was the chest x-ray data set, which contains a total of 5856 chest x-ray images of pediatricpatients aged one to five years, with three classes: Normal Viral Pneumonia and Bacterial Pneumonia. Data weredivided into three groups: validation, testing and training. A comparison was made with the work of Kermanyet al. (2018) who implemented the Inception V3 network in two ways: (Pneumonia X Normal) and (BacterialPneumonia X Viral Pneumonia). The nets used had good accuracy, being the NasNetLarge network the bestprecision, which was 95.35 % (Pneumonia X Normal) and 91.79 % (Viral Pneumonia X Bacterial Pneumonia)against 92.80 % in (Pneumonia X Normal) and 90.70 % (Viral Pneumonia X Bacterial Pneumonia) from kermany’swork, the Xception network also achieved an improvement in accuracy compared to kermany’s work, with 93.59% at (Normal X Pneumonia) and 91.03 % in (Viral Pneumonia X Bacterial Pneumonia).
Keywords: Pneumonia; NasNetLarge; Xception; Classification; Inception V3; Chest-X-Ray;
Resumo
Este artigo descreve uma comparação entre três redes neurais pré-treinadas para a classificação de imagens deradiografia de tórax: Xception, Inception V3 e NasNetLarge. As redes foram implementadas usando transferênciade aprendizado; o banco de dados utilizado foi o conjunto de dados de radiografia de tórax, que contém um totalde 5856 imagens de radiografias de pacientes pediátricos com idade entre um e cinco anos, com três classes:Normal Pneumonia Viral e Pneumonia Bacteriana. Os dados foram divididos em três grupos: validação, teste etreinamento. Foi feita uma comparação com o trabalho de Kermany et al. (2018) que implementou a rede InceptionV3 com dois modos: (Pneumonia X Normal) e (Pneumonia bacteriana X Pneumonia viral). As redes utilizadastiveram boa precisão, sendo a rede NasNetLarge a melhor, que foi de 95,35 % (Pneumonia X Normal) e 91,79 %(Pneumonia Viral X Pneumonia Bacteriana) contra 92,80 % na (Pneumonia X Normal ) e 90,70 % (Pneumoniaviral X Pneumonia bacteriana) do trabalho de kermany, a rede Xception também obteve uma melhoria na precisãoem comparação com o trabalho de kermany, com 93,59 % em (Normal X Pneumonia) e 91,03 % em (Pneumoniaviral X Pneumonia bacteriana).
Palavras-Chave: Pneumonia; NasNetLarge; Xception; Classificação; Inception V3; Chest-X-Ray;
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1 Introduction
According to the World Health Organization,pneumonia is the largest infectious cause of deathin children worldwide. Pneumonia killed 920136children under 5 by 2015, accounting for 16% of alldeaths of children under five years of age. Pneumoniaaffects children and families everywhere, but it ismore prevalent in South Asia and sub-Saharan Africa(World, 2016).Chest X-rays are often used to assess cases ofpneumonia and are the most commonly used diagnostictests for chest-related diseases. A very small dose ofionizing radiation is used to produce images of thechest (Kermany et al., 2018).Low precision in the diagnosis of pneumonia isharmful to the patient, and this leads to the excessiveprescription of antibiotics and to the waste of stocksof the same. Antibiotics also kill beneficial bacteria,causing unintended health problems in patients (Kurtet al., 2018). It is noteworthy that overuse leads to theproliferation of drug resistant bacteria, therefore theimportance of a rapid and precise diagnosis.Computational systems able to aid in the diagnosisand to identify the potential of diseases in patients areincreasingly common (Manogaran et al., 2018). Usedas a specialist support tool they can minimize errors(Malmir et al., 2017), being able to carry out a screeningof potential patients.With the increase of computational power, it becamepossible to use techniques such as Artificial NeuralNetworks (RNA) (Esteva et al., 2017), a technique thatrequires a high processing power in the training phase.RNA has its origin in a biophysical analogy to biologicalneurons (Koçer and Tümer, 2017).In this way, it inspired the development of imageclassifier childhood pneumonia images, in order todiagnose patients in an automated and fast way. Themethod chosen and implemented is in the classificationof chest x-ray images of patients, to determine if ithas pneumonia or not, and is also classified what typeof pneumonia, which may be bacterin or viral, for theclassification was used the Chest X-Ray Dataset in total5856 chest X-ray images of pediatric patients agedone to five years, provided with (Kermany, Zhang andGoldbaum, 2018).In the prediction stage the classification of theimages through artificial intelligence, consisting ofConvolutional Neural Networks (CNN), together withthe technique known as learning transference (Douarreet al., 2018). For purposes of comparison, two differentCNNs were used, these being pre-trained neuralnetworks known as NasNetLarge (Zoph et al., 2017)and Xception (Chollet, 2016), thus, an analysis is madeof which network has a better performance for theproposed system.The proposed method guaranteesrobust coverage in image recognition, in certain aspectsthat will be clarified throughout the text.The document is divided into 7 sections, in whichSection 2 is characterized by the contextualization ofthe work. The methodology applied and the validationmetrics in Section 3. The description of the database is

in Section 4, the evaluation metrics in Section 5, theresults after application of the proposal are presentedin Section 6 and Section 7 consists of the conclusion.

2 Related work
In Rajpurkar et al. (2017), an algorithm is proposedto detect pneumonia of chest radiographs, where theauthors affirm that the proposed algorithm exceedsthe performance of radiologists. The algorithm is aconvolutional neural network of 121 layers trained usingthe set of images of ChestX-ray14, containing morethan 100,000 radiographic images with 14 diseases.In Varoquaux et al. (2017), a review is made on cross-validation procedures for neuroimaging decoding, alsoincludes a didactic overview of the relevant theoreticalconsiderations. Practical aspects of common decodersare highlighted in predictions across multiple data sets.The experiments describe the large margins of error ofcross-validation in neuroimaging configurations.A clinical diagnostic tool is developed in Kermanyet al. (2018), which is based on a deep learningframework for the screening of patients with retinaldazzling diseases treatable and childhood pneumonia.Transfer learning is used, where a neural network istrained with a data set of optical coherence tomographyimages and chest X-ray images, the authors state thatthe performance of the proposed method is comparableto that of human specialists.In Zech et al. (2018), it is proposed a classificationsystem of images of pneumonia, based on deep neuralnetworks, an analysis of trained models is made usingthe junction of three sets of data. The validation wasperformed in a set of data from different hospitals,evaluated how well the trained models manage togeneralize the classification, for a pneumonia screeningtask.Deep neural network architectures are used toidentify glaucomatous optic neuropathy in Christopheret al. (2018) ,the performance of neural networksis analyzed and also the impact of learning bytransference. The author states that, in all cases,transfer learning achieved better performance, and alsoa reduction in training time.In Abiyev and Maaitah (2018), we demonstratedthe feasibility of classifying chest pathologies inchest X-rays using convolutional neural networks.For comparison, back-propagation neural networkswith supervised learning, neural networks withunsupervised learning, training and testing isperformed on the same radiographic database.We present the work of a model based on stochasticattention in Kermany et al. (2018), this model is ableto learn which regions within a chest x-ray should bevisually explored, to conclude whether the radiographcontains a specific radiological abnormality. Theproposed model is a recurrent neural network thatsequentially learns the entire radiograph and focusesonly on information areas that are likely to contain therelevant information.
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3 Methodology

According to Shahin et al. (2004), to train a machinelearning model it is necessary to divide the data intothree sets (training, test and validation). According toKrawczyk (2016) the training data set is the sample ofdata used to fit the model, where the model sees andlearns from that data.
The test dataset, however, is the data sample usedto provide an unbiased assessment of a model fitin the training data set while adjusting the modelhyperparameters (Krawczyk, 2016).
The validation data set, is the data sample used toprovide an unbiased assessment of a final model, thevalidation data set provides the gold standard used toevaluate the model. It is only used when a model isfully trained (Esteva et al., 2017).
Ideally, the model should be evaluated on samplesthat were not used to construct or fit the model so asto provide an unbiased sense of model efficacy. In thiscase, the validation sets were used for this purposewhere the implemented models were validated afterbeing trained Fig. 1.
Fig. 1a shows the number of samples selected fortraining, testing and validation for both cases, BacterialPneumonia and Viral Pneumonia. Fig. 1b shows thetotal amount of samples for training, testing andvalidation for cases of Bacterial Pneumonia and ViralPneumonia.

(a) 2488 images ofBacterial Pneumonia fortraining, 242 for testingand 50 for validation.1295 images of viralpneumonia for training,148 for test and 50 forvalidation.

(b) Dividing the datasetinto training, testing andvalidation. 3783 imagesfor training, 390 imagesfor test and 100 imagesfor validation

Figure 1: Division of the dataset for the tests ofBacterial Pneumonia and Viral Pneumonia.

In the Fig. 2 the division used to carry out the testsis represented, the comparison proposed in this papertakes into account the structure described in Fig. 2.Thus, the pre-trained networks use the same structure.

(a) 1249 normal imagesfor training, 234 for testand 100 for validation.3783 images ofpneumonia for training,390 for test and 100 forvalidation.

(b) Dividing the datasetinto training, testing andvalidation. 5032 imagesfor training, 624 imagesfor test and 200 imagesfor validation.

Figure 2: Division of the dataset for the tests ofpneumonia and normal.

Neural networks were implemented using the Kerasdeep learning API (Gulli and Pal, 2017), written inPython and capable of running on top of TensorFlow(Tang, 2016), CNTK (Seide and Agarwal, 2016), orTheano (Bergstra et al., 2010). The networks wereprocessed using an NVIDIA Quadro P6000 24 GB videocard, which has 3840 CUDA cores and an Intel Core i7processor with 12 Gigabytes of RAM, though, most ofthe processing effort is done per video card, since CNNcan run on GPUs, if available. The Table 1 shows thetime for training the NasNetLarge x Xception networks,it is possible to notice that the training times arerelatively low, however the Xception is up to 55% fasterthan the NasNetLarge, approximately.
3.1 Transfer Learning

Transfer learning is used to provide a pre-trainedstructure in a knowledge base that can be from thesame or another domain, taking advantage of theknowledge acquired to solve new problems morequickly and effectively (Weiss et al., 2016, Lu et al.,2015).
In the state of the art the transfer of learning to solveproblems is much more present, some examples are:Abidin et al. (2018), Douarre et al. (2018), Khatami et al.(2018), Baltruschat et al. (2018), Chen et al. (2018).Thetechnique consists in using a pre-trained model withdistinct classes of the problem to be solved (Wu et al.,2018), this becomes an advantage in the use of smalldata sets (Shallu and Mehra, 2018), because there isa difficulty in getting large sets of data for specificproblems (Ramalingam and Garzia, 2018).
In the transfer of learning the initial layers andintermediates remain, being that the final layer issubsisted and trained again (Ramalingam and Garzia,2018). In the Fig. 3 it is possible to visualizethe flowchart in which it represents the transfer oflearning.
For the training of neural networks, all weights are
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Table 1: Training time, between image loading and network training. All networks had 100 epochs.
Reference paper Neural network Training time

** ** Pneumonia X Normal Viral X Bacterial
This paper NasNetLarge 17.16 min 09.69 min
This paper Xception 07.09 min 04.24 min

Kermany (2018) Inception V3 Null Null

defined as non-trainable, since they were trained withthe Imagenet data set. In this way, the last layer ofthe networks is removed and four dense layers areadded, with the latter having the same number ofneurons as the number of classes to be classified. TheSofitmax function is used to activate the last layer ofthe networks Fig. 3.

Figure 3: Transfer learning Architecture.
The hyperparameters for each of the networks canbe analyzed in Table 2, the epoch parameter used forboth networks for both Pneumoia X Normal and Viral XBacterial classification was 100, this means the numberof times the dataset is analyzed in each layer of thenetwork, with this parameter the network Xceptionhad an advantage over the NasNetLarge with regard totraining time taking half the time to be trained Table 1.The Batch Size parameter (hyperparameter that definesthe number of samples to work before updating theinternal parameters of the model) is the 300 used forNasNetLarge and 200 for Xcepion.
A CNN is described as a sequence of layers, anexample is shown in the Fig. 3, which is composed ofthree main layers, the convolutional layer, the poolinglayer and the fully connected layer (Saraiva. et al.,2020), in fully connected layers, the use of ReLUfunctions demonstrated in the Eqs. (1) and (2) arecommon. These layers, when placed in sequence, forman architecture of a CNN (Salamon and Bello, 2017). Inthe output layer, the softmax function Eq. (3) is used,which is a generalization of the logistic function forvarious dimensions (Zhao, 2017)

f(x) = x+ = max(0, x) (1)

f(x) =
{0 for x < 0
x for x ≥ 0 (2)

σ(z)i = ezi∑K
j=1 ezj

(3)

Choosing the optimization algorithm for a deeplearning model can mean the difference between goodresults in minutes, hours, and days (Bottou et al., 2018).This is done using ADAM (Kingma and Ba, 2014) andSGD (Metz et al., 2018) optimizers, where they are quitepresent in the literature (Anil et al., 2018, Zoph and Le,2016, Bello et al., 2017), Adam is used in NasNetLargewith a learning rate of 0.001, since for Xception theSGD is used with a learning rate of 0.002.
3.2 NasNet Large

Zoph et al. (2017) proposed a learning model forimage recognition in the Cifrar-10 and imageNet datasets, he defends the contribution of his work as adesign of a search space in which he calls the "nasnetsearch space", which according to the author improvestransferability to the network contains about 88.9million parameters (Arend et al., 2018, Bressan et al.,2018).
3.3 Xception

The Xception network, proposed by Chollet (2016), is aderivation of the Inception V3 network (Szegedy et al.,2015) of google, that in the classification of the datasetimagenet obtained an improvement in the precision. AimageNet is a data set with 15 million labeled images(He et al., 2018). Xception has 22855952 parameters,which represents a reduction in quantity compared toInception V3 (Chollet, 2016).

4 Description of the dataset
The set of images contains 5856 X-ray images(JPEG) and 3 categories (Viral Pneumonia, BacterialPneumonia and Normal) provided by the Kermany,Zhang and Goldbaum (2018). You can see in the Fig. 5,where they are divided into Normal X pneumonia(Fig. 5a and b) and Viral Pneumonia, Bacterial andNormal Pneumonia (Fig. 5c).Chest x-ray images (anteroposterior) were selectedfrom pediatric patients aged one to five years. Theimages come from the Guangzhou Women and ChildrenMedical Center. All chest X-ray images were performedas part of the routine clinical care of the patients(Kermany, Zhang and Goldbaum, 2018).The dataset still has quality control, where garbled,
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Table 2: Training hyperparameters of NasNetLarge and Xception.
Neural Network Initial Learning Rate Optimiser Batch Size Max Epochs

NasNetLarge 0.001 Adam 300 100
Xception 0.002 SGD 200 100

low-quality images have been removed. The diagnosiswas classified by two specialist physicians and checkedby a third expert in order to extinguish the errors(Kermany, Zhang and Goldbaum, 2018).The dataset consists of 5856 images, 1583 imagesof normal patients and 2780 of patients with bacterialpneumonia and 1493 of patients with viral pneumonia.Pneumonia causes a pulmonary consolidation,this means that the pulmonary alveoli are full ofinflammatory fluid, this liquid replaces the air in thealveoli, so that the affected part of the lung does notcontain air (Iorio et al., 2018). In the radiographic,pulmonary consolidation corresponds to an opacity(whitish area).The identification of the existence of pneumonia isbased on the opacities of the radiography, ie, on theradiograph you can see the darker part near the spinethat corresponds to the bronchi (Kunz et al., 2018).The air contained in the bronchi gives this color tothe radiograph, while the outside of the lung is lighter(opaque) because the alveoli are filled with fluid Figs. 4and 5.

(a) Normal image (b) Image of pneumonia
Figure 4: Example of radiographic images divided intonormal and with pneumonia.Source: Kermany, Zhang and Goldbaum (2018),Kermany et al. (2018)

5 Metrics of the evaluation
A statistical tool is the confusion matrix that providesthe basis for describing classification accuracy andcharacterizing errors, helping to refine the ranking(Saraiva et al., 2018). The confusion matrix is formedby an array of squares of numbers arranged in rowsand columns that express the number of sample unitsof a particular category, inferred by a rule of decision,compared to the category current verified in the field.The measures derived from the confusion matrixare: the total accuracy being that chosen by the presentwork, accuracy of individual class, producer precision,user precision and Kappa index, among others. The

total accuracy is calculated by dividing the sum ofthe main diagonal of the error matrix xii, by the totalnumber of samples collected n. According to the Eq. (4).

T =
∑a
i=1 xii
n (4)

Receiver Operating Characteristic Curve (ROC curve)is a measure of performance for classification problemsin various boundary settings. The ROC is a probabilitycurve and the ROC curve represents the degree ormeasure of separability. It informs how much modelis able to distinguish between classes. the ROC curve isa curve that is drawn using the true positive rate andthe false positive rate. The ROC curve is a completesensitivity/specificity report.In a ROC curve, the true positive rate (Sensitivity) isplotted against the false positive rate (specificity of 100)for different cut-off points of a parameter. Each pointin the ROC curve represents a sensitivity / specificitypair corresponding to a given decision threshold.To evaluate the performance of the classifiers of thepresent study, the confusion matrix, accuracy, alongwith the measures given by the ROC curve are used:sensitivity, specificity.

Accuracy = TP + TN
TP + TN + FP + FN (5)

Sensitivity = TP
TP + FN (6)

Specificity = TN
TN + FP (7)

To exemplify a classification (Pneumonia X Normal),where true positive (TP) is the number of pneumoniasamples that are correctly classified and true negative(TN) is the number of normal samples that areclassified correctly. The false positive (FP) are Normalsamples classified as wrong Pneumonia, and falsenegative (FN) are Pneumonia samples classified asNormal.

6 Results
In this section we will present the performance resultsof neural networks. Accuracy data, ROC curve andmatrix of confusion will be presented. Satisfactoryresults were obtained, compared to the paper ofKermany (2018). Two pre-trained neural networks
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(a) Source: (Kermany et al., 2018)
Figure 5: Example of radiographic images divided into normal and with pneumonia. Source: (Kermany, Zhangand Goldbaum, 2018) and (Kermany et al., 2018)

Table 3: Test accuracy for the NasNetLarge, Xception and Inception V3.
Reference paper Neural network Accuracy test

** ** Pneumonia X Normal Viral X Bacterial
This paper NasNetLarge 95.35% 91.79 %
This paper Xception 93.59% 91.03 %

(Kermany, 2018) Inception V3 92.80 % 90.70 %

were implemented and the learning transfer was used,the networks used were: Xception and NasNetLarge.and showed an improvement in accuracy.Data were divided into three groups: Training,testing and validation. On the Table 3 it is possibleto visualize the accuracy that each network obtained,compared to Inception V3 implemented by the Kermany(2018).As described above, a portion of the dataset wasseparated for validation.(Bacterial pneumonia X viralpneumonia) were separated 50 images of each, alreadyin (Normal X pneumonia) were separated 100 imagesof each. On the Table 4 it is possible to visualize theresults obtained by the networks, and the best resultswere attributed to the comparison of (PneumoniaX Normal). The networks performed less thanthe test in cases of (Pneumonia Bacteria X ViralPneumonia). Thus, the network that had the bestcapacity to generalize was the NasNetLarge with 96.5%in (Pneumonia X normal) and 69.00% in (PneumoniaBacteria X Viral Pneumonia). The two networks didwell in generalization when the case was only detectingpneumonia. In the Figs. 6 to 9 it is possible to visualizesome more results, represented by the matrices ofconfusion, curve ROC and Recall curve.In Fig. 6 it is possible to see the confusion matricesand ROC curve for the classification of (Normal XPneumonia) with the Xception network, with a goodperformance for the test and validation sets, with99% acurracy in the validation, demonstrating thatthe model is able to generalize well, since in the testset it obtained a slightly lower percentage. In Fig. 7dit is possible to see that the validation performedconsiderably less, with 60% accuracy, this is due tothe fact that the model has a greater difficulty indistinguishing differences between the classes of Viral

and Bacterial Pneumonia . In the Figs. 8 and 9 theresults of the NasNetLarge network are shown, whichhad the same difficulty in distinguishing between theclasses of viral and bacterial pneumonia, but with aslightly better performance, 69% accuracy .

In the Table 5 it is possible to visualize measures ofSensitivity and Specificity, which are metrics chosento evaluate the performance of the classifiers, withthis one can observe the comparative of the same,related to the classification of (Pneumonia X Normal)and (Pneumonia Bacterial X Viral Pneumonia). It ispossible to see how the networks performed well inthe tests and validation, and also how the proposedmethod performed better than Kermany (2018).
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Table 4: Validation accuracy for the NasNetLarge and Xception networks.
Reference paper Neural network Accuracy validation

** ** Pneumonia X Normal Viral X Bacterial
This paper NasNetLarge 96.50% 69.00%
This paper Xception 99.00% 60.00%

Table 5: Specificity and sensitivity between thevalidation and test data sets, comparisons:(Pneumonia X Normal) and (Pneumonia Bacterial XViral Pneumonia).
Paper Network Pneumonia X Normal

Test
** ** Sensitivity Specificity

This paper NasNetLarge 95.23% 95.55%
This paper Xception 92.68% 95.32%

(Kermany, 2018) Inception V3 93.2% 90.1%
Validation

** ** Sensitivity Specificity
This paper NasNetLarge 97.93% 95.14%
This paper Xception 100.00% 98.03%

Kermany (2018) Inception V3 Null Null

** ** Bacterial X Viral
Test

** ** Sensitivity Specificity
This paper NasNetLarge 91.01% 93.28%
This paper Xception 91.90% 89.51%

Kermany (2018) Inception V3 88.60% 90.90%
Validation

** ** Sensitivity Specificity
This paper NasNetLarge 63.01% 85.18%
This paper Xception 58.06% 63.15%

Kermany (2018) Inception V3 Null Null

(a) Curve ROC (b) Recall curve

(c) Test dataset (d) Validation dataset
Figure 6: Confusion matrix, ROC curve in thecomparison of Normal(0) X Pneumonia(1) andconfounding matrix of the validation of the neuralnetwork Xception.

(a) Curve ROC (b) Recall curve

(c) Test dataset (d) Validation dataset
Figure 7: Confusion matrix, ROC curve in thecomparison of Bacterial Pneumonia(0) X ViralPneumonia(1) and confusion matrix of the validationof the neural network Xception.

(a) Curve ROC (b) Recall curve

(c) Test dataset (d) Validation dataset
Figure 8: Confusion matrix, ROC curve in thecomparison of Normal(0) X Pneumonia(1) andconfusion matrix of the validation of the neuralnetwork NasNetLarge.
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(a) Curve ROC (b) Recall curve

(c) Test dataset (d) Validation dataset
Figure 9: Confusion matrix, ROC curve comparingBacterial Pneumonia(0) X Viral Pneumonia(1) andconfusion matrix of neural network validation

NasNetLarge.

7 Conclusion
In this work, a comparison was made betweenthe pre-trained neural networks Xception, InceptionV3 and NasNetLarge with learning transfer for theclassification of thoracic x-ray images in the detectionof pneumonia. The use of pre-trained neural networkswith learning transfer has been shown to be efficientin classification, as discussed in this work, the state ofthe art is optimistic about the use of this technique.In the literature, applications for classificationof pneumonia are presented that use approachessuch as network construction, as is the case of theworks Saraiva et al. (2019), Andika et al. (2019)and transfer of learning as an extractor of featuressuch as the work of Toğaçar et al. (2020) thatuses a combination of three pre-trunked networks,alexnet, VGG16 and VGG19 to make the classification.The main contribution of this work is in thedetailed analysis of performance of the Xceptionand NasNetLarge networks in the classification ofthree classes, separated in pairs, classification ofviral x bacterial pneumonia and classification betweenpneumonia and normal. Fundamentals that strengthenthe use of transfer of learning for the classification ofchest x-ray images of pathologies such as pneumoniaare presented during the work, but with the potentialto extend other classes.The neural network NasNetlarge was the onethat obtained the best result, even in the validationof (Bacterial Pneumonia X Viral Pneumonia) itdemonstrated better than the Xception. However, thenetworks NasNetLarge and Xception had a good resultin the generalization question in the comparison of

(Pneumonia X Normal), having a result in the validationsimilar to that of the test, thus demonstrating itscapacity. The study of machine learning techniques inassisting medicine is promising, with the possibility ofimproving diagnoses in hospitals.
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