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Abstract

This paper describes a comparison between three pre-trained neural networks for the classification of chest
X-ray images: Xception, Inception V3, and NasNetLarge. Networks were implemented using learning transfer;
The database used was the chest x-ray data set, which contains a total of 5856 chest x-ray images of pediatric
patients aged one to five years, with three classes: Normal Viral Pneumonia and Bacterial Pneumonia. Data were
divided into three groups: validation, testing and training. A comparison was made with the work of Kermany
et al. (2018) who implemented the Inception V3 network in two ways: (Pneumonia X Normal) and (Bacterial
Pneumonia X Viral Pneumonia). The nets used had good accuracy, being the NasNetLarge network the best
precision, which was 95.35 % (Pneumonia X Normal) and 91.79 % (Viral Pneumonia X Bacterial Pneumonia)
against 92.80 % in (Pneumonia X Normal) and 90.70 % (Viral Pneumonia X Bacterial Pneumonia) from kermany’s
work, the Xception network also achieved an improvement in accuracy compared to kermany’s work, with 93.59
% at (Normal X Pneumonia) and 91.03 % in (Viral Pneumonia X Bacterial Pneumonia).

Keywords: Pneumonia; NasNetLarge; Xception; Classification; Inception V3; Chest-X-Ray;

Resumo

Este artigo descreve uma comparacdo entre trés redes neurais pré-treinadas para a classificagdo de imagens de
radiografia de térax: Xception, Inception V3 e NasNetLarge. As redes foram implementadas usando transferéncia
de aprendizado; o banco de dados utilizado foi o conjunto de dados de radiografia de térax, que contém um total
de 5856 imagens de radiografias de pacientes pediatricos com idade entre um e cinco anos, com trés classes:
Normal Pneumonia Viral e Pneumonia Bacteriana. Os dados foram divididos em trés grupos: validacdo, teste e
treinamento. Foi feita uma comparacao com o trabalho de Kermany et al. (2018) que implementou a rede Inception
V3 com dois modos: (Pneumonia X Normal) e (Pneumonia bacteriana X Pneumonia viral). As redes utilizadas
tiveram boa precisdo, sendo a rede NasNetLarge a melhor, que foi de 95,35 % (Pneumonia X Normal) e 91,79 %
(Pneumonia Viral X Pneumonia Bacteriana) contra 92,80 % na (Pneumonia X Normal ) e 90,70 % (Pneumonia
viral X Pneumonia bacteriana) do trabalho de kermany, a rede Xception também obteve uma melhoria na precisdo
em comparac¢ao com o trabalho de kermany, com 93,59 % em (Normal X Pneumonia) e 91,03 % em (Pneumonia
viral X Pneumonia bacteriana).

Palavras-Chave: Pneumonia; NasNetLarge; Xception; Classificacdo; Inception V3; Chest-X-Ray;
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1 Introduction

According to the World Health Organization,
pneumonia is the largest infectious cause of death
in children worldwide. Pneumonia killed 920136
children under 5 by 2015, accounting for 16% of all
deaths of children under five years of age. Pneumonia
affects children and families everywhere, but it is
more prevalent in South Asia and sub-Saharan Africa
(World, 2016).

Chest X-rays are often used to assess cases of
pneumonia and are the most commonly used diagnostic
tests for chest-related diseases. A very small dose of
ionizing radiation is used to produce images of the
chest (Kermany et al., 2018).

Low precision in the diagnosis of pneumonia is
harmful to the patient, and this leads to the excessive
prescription of antibiotics and to the waste of stocks
of the same. Antibiotics also kill beneficial bacteria,
causing unintended health problems in patients (Kurt
et al., 2018). It is noteworthy that overuse leads to the
proliferation of drug resistant bacteria, therefore the
importance of a rapid and precise diagnosis.

Computational systems able to aid in the diagnosis
and to identify the potential of diseases in patients are
increasingly common (Manogaran et al., 2018). Used
as a specialist support tool they can minimize errors
(Malmir et al., 2017), being able to carry out a screening
of potential patients.

With the increase of computational power, it became
possible to use techniques such as Artificial Neural
Networks (RNA) (Esteva et al., 2017), a technique that

requires a high processing power in the training phase.

RNA has its origin in a biophysical analogy to biological
neurons (Koger and Tiimer, 2017).

In this way, it inspired the development of image
classifier childhood pneumonia images, in order to
diagnose patients in an automated and fast way. The
method chosen and implemented is in the classification
of chest x-ray images of patients, to determine if it
has pneumonia or not, and is also classified what type
of pneumonia, which may be bacterin or viral, for the
classification was used the Chest X-Ray Dataset in total
5856 chest X-ray images of pediatric patients aged
one to five years, provided with (Kermany, Zhang and
Goldbaum, 2018).

In the prediction stage the classification of the
images through artificial intelligence, consisting of
Convolutional Neural Networks (CNN), together with
the technique known as learning transference (Douarre
et al., 2018). For purposes of comparison, two different
CNNs were used, these being pre-trained neural
networks known as NasNetLarge (Zoph et al., 2017)
and Xception (Chollet, 2016), thus, an analysis is made
of which network has a better performance for the
proposed system.The proposed method guarantees
robust coverage in image recognition, in certain aspects
that will be clarified throughout the text.

The document is divided into 7 sections, in which
Section 2 is characterized by the contextualization of
the work. The methodology applied and the validation
metrics in Section 3. The description of the database is

in Section 4, the evaluation metrics in Section 5, the
results after application of the proposal are presented
in Section 6 and Section 7 consists of the conclusion.

2 Related work

In Rajpurkar et al. (2017), an algorithm is proposed
to detect pneumonia of chest radiographs, where the
authors affirm that the proposed algorithm exceeds
the performance of radiologists. The algorithm is a
convolutional neural network of 121 layers trained using
the set of images of ChestX-ray14, containing more
than 100,000 radiographic images with 14 diseases.

In Varoquaux et al. (2017), a review is made on cross-
validation procedures for neuroimaging decoding, also
includes a didactic overview of the relevant theoretical
considerations. Practical aspects of common decoders
are highlighted in predictions across multiple data sets.
The experiments describe the large margins of error of
cross-validation in neuroimaging configurations.

A clinical diagnostic tool is developed in Kermany
et al. (2018), which is based on a deep learning
framework for the screening of patients with retinal
dazzling diseases treatable and childhood pneumonia.
Transfer learning is used, where a neural network is
trained with a data set of optical coherence tomography
images and chest X-ray images, the authors state that
the performance of the proposed method is comparable
to that of human specialists.

In Zech et al. (2018), it is proposed a classification
system of images of pneumonia, based on deep neural
networks, an analysis of trained models is made using
the junction of three sets of data. The validation was
performed in a set of data from different hospitals,
evaluated how well the trained models manage to
generalize the classification, for a pneumonia screening
task.

Deep neural network architectures are used to
identify glaucomatous optic neuropathy in Christopher
et al. (2018) ,the performance of neural networks
is analyzed and also the impact of learning by
transference. The author states that, in all cases,
transfer learning achieved better performance, and also
a reduction in training time.

In Abiyev and Maaitah (2018), we demonstrated
the feasibility of classifying chest pathologies in
chest X-rays using convolutional neural networks.
For comparison, back-propagation neural networks
with supervised learning, neural networks with
unsupervised learning, training and testing is
performed on the same radiographic database.

We present the work of a model based on stochastic
attention in Kermany et al. (2018), this model is able
to learn which regions within a chest x-ray should be
visually explored, to conclude whether the radiograph
contains a specific radiological abnormality. The
proposed model is a recurrent neural network that
sequentially learns the entire radiograph and focuses
only on information areas that are likely to contain the
relevant information.
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3 Methodology

According to Shahin et al. (2004), to train a machine
learning model it is necessary to divide the data into
three sets (training, test and validation). According to
Krawczyk (2016) the training data set is the sample of
data used to fit the model, where the model sees and
learns from that data.

The test dataset, however, is the data sample used
to provide an unbiased assessment of a model fit
in the training data set while adjusting the model
hyperparameters (Krawczyk, 2016).

The validation data set, is the data sample used to
provide an unbiased assessment of a final model, the
validation data set provides the gold standard used to
evaluate the model. It is only used when a model is
fully trained (Esteva et al., 2017).

Ideally, the model should be evaluated on samples
that were not used to construct or fit the model so as
to provide an unbiased sense of model efficacy. In this
case, the validation sets were used for this purpose
where the implemented models were validated after
being trained Fig. 1.

Fig. 1a shows the number of samples selected for
training, testing and validation for both cases, Bacterial
Pneumonia and Viral Pneumonia. Fig. 1b shows the
total amount of samples for training, testing and
validation for cases of Bacterial Pneumonia and Viral
Pneumonia.

(a) 2488 images of
Bacterial Pneumonia for
training, 242 for testing

and 50 for validation.
1295 images of viral
pneumonia for training,
148 for test and 50 for
validation.

(b) Dividing the dataset
into training, testing and
validation. 3783 images
for training, 390 images
for test and 100 images
for validation

Figure 1: Division of the dataset for the tests of
Bacterial Pneumonia and Viral Pneumonia.

In the Fig. 2 the division used to carry out the tests
is represented, the comparison proposed in this paper

takes into account the structure described in Fig. 2.
Thus, the pre-trained networks use the same structure.

(a) 1249 normal images
for training, 234 for test
and 100 for validation.
3783 images of
pneumonia for training,
390 for test and 100 for
validation.

(b) Dividing the dataset
into training, testing and
validation. 5032 images
for training, 624 images
for test and 200 images
for validation.

Figure 2: Division of the dataset for the tests of
pneumonia and normal.

Neural networks were implemented using the Keras
deep learning API (Gulli and Pal, 2017), written in
Python and capable of running on top of TensorFlow
(Tang, 2016), CNTK (Seide and Agarwal, 2016), or
Theano (Bergstra et al., 2010). The networks were
processed using an NVIDIA Quadro P6000 24 GB video
card, which has 3840 CUDA cores and an Intel Core i7
processor with 12 Gigabytes of RAM, though, most of
the processing effort is done per video card, since CNN
can run on GPUs, if available. The Table 1 shows the
time for training the NasNetLarge x Xception networks,
it is possible to notice that the training times are
relatively low, however the Xception is up to 55% faster
than the NasNetLarge, approximately.

3.1 Transfer Learning

Transfer learning is used to provide a pre-trained
structure in a knowledge base that can be from the
same or another domain, taking advantage of the
knowledge acquired to solve new problems more
quickly and effectively (Weiss et al., 2016, Lu et al.,
2015).

In the state of the art the transfer of learning to solve
problems is much more present, some examples are:
Abidin et al. (2018), Douarre et al. (2018), Khatami et al.
(2018), Baltruschat et al. (2018), Chen et al. (2018).The
technique consists in using a pre-trained model with
distinct classes of the problem to be solved (Wu et al.,
2018), this becomes an advantage in the use of small
data sets (Shallu and Mehra, 2018), because there is
a difficulty in getting large sets of data for specific
problems (Ramalingam and Garzia, 2018).

In the transfer of learning the initial layers and
intermediates remain, being that the final layer is
subsisted and trained again (Ramalingam and Garzia,
2018). In the Fig. 3 it is possible to visualize
the flowchart in which it represents the transfer of
learning.

For the training of neural networks, all weights are
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Table 1: Training time, between image loading and network training. All networks had 100 epochs.

Neural network

Training time

Reference paper
kk

** | Pneumonia X Normal | Viral X Bacterial
This paper NasNetLarge 17.16 min 09.69 min
This paper Xception 07.09 min 04.24 min
Kermany (2018) Inception V3 Null Null

defined as non-trainable, since they were trained with
the Imagenet data set. In this way, the last layer of
the networks is removed and four dense layers are o(2); = e 3)
added, with the latter having the same number of ! ZJK— L €7

neurons as the number of classes to be classified. The
Sofitmax function is used to activate the last layer of
the networks Fig. 3.

Layer 1
512 Layer 2

Neurons 256
Neurons

Layer 3
128 Layer 4
2

Neurons
Neurons

Image Input Neural Network
224X 224 > Pretrained > i *>| Sofmax

Fullly Fullly Fullly Fullly
connected connected  connected connected

RelU RelU RelU

Figure 3: Transfer learning Architecture.

The hyperparameters for each of the networks can
be analyzed in Table 2, the epoch parameter used for
both networks for both Pneumoia X Normal and Viral X
Bacterial classification was 100, this means the number
of times the dataset is analyzed in each layer of the
network, with this parameter the network Xception
had an advantage over the NasNetLarge with regard to
training time taking half the time to be trained Table 1.
The Batch Size parameter (hyperparameter that defines
the number of samples to work before updating the
internal parameters of the model) is the 300 used for
NasNetLarge and 200 for Xcepion.

A CNN is described as a sequence of layers, an
example is shown in the Fig. 3, which is composed of
three main layers, the convolutional layer, the pooling
layer and the fully connected layer (Saraiva. et al.,
2020), in fully connected layers, the use of ReLU
functions demonstrated in the Egs. (1) and (2) are
common. These layers, when placed in sequence, form
an architecture of a CNN (Salamon and Bello, 2017). In
the output layer, the softmax function Eq. (3) is used,
which is a generalization of the logistic function for
various dimensions (Zhao, 2017)

f(x) = x* = max(0, x) (1)

) = {0 forx<o )

x forx>o0

Choosing the optimization algorithm for a deep
learning model can mean the difference between good
results in minutes, hours, and days (Bottou et al., 2018).
This is done using ADAM (Kingma and Ba, 2014) and
SGD (Metz et al., 2018) optimizers, where they are quite
present in the literature (Anil et al., 2018, Zoph and Le,
2016, Bello et al., 2017), Adam is used in NasNetLarge
with a learning rate of 0.001, since for Xception the
SGD is used with a learning rate of 0.002.

3.2 NasNet Large

Zoph et al. (2017) proposed a learning model for
image recognition in the Cifrar-10 and imageNet data
sets, he defends the contribution of his work as a
design of a search space in which he calls the "nasnet
search space", which according to the author improves
transferability to the network contains about 88.9
million parameters (Arend et al., 2018, Bressan et al.,
2018).

3.3 Xception

The Xception network, proposed by Chollet (2016), is a
derivation of the Inception V3 network (Szegedy et al.,
2015) of google, that in the classification of the dataset
imagenet obtained an improvement in the precision. A
imageNet is a data set with 15 million labeled images
(He et al., 2018). Xception has 22855952 parameters,
which represents a reduction in quantity compared to
Inception V3 (Chollet, 2016).

4 Description of the dataset

The set of images contains 5856 X-ray images
(JPEG) and 3 categories (Viral Pneumonia, Bacterial
Pneumonia and Normal) provided by the Kermany,
Zhang and Goldbaum (2018). You can see in the Fig. 5,
where they are divided into Normal X pneumonia
(Fig. 5a and b) and Viral Pneumonia, Bacterial and
Normal Pneumonia (Fig. 5c).

Chest x-ray images (anteroposterior) were selected
from pediatric patients aged one to five years. The
images come from the Guangzhou Women and Children
Medical Center. All chest X-ray images were performed
as part of the routine clinical care of the patients
(Kermany, Zhang and Goldbaum, 2018).

The dataset still has quality control, where garbled,
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Table 2: Training hyperparameters of NasNetLarge and Xception.

Neural Network | Initial Learning Rate | Optimiser | Batch Size | Max Epochs
NasNetLarge 0.001 Adam 300 100
Xception 0.002 SGD 200 100

low-quality images have been removed. The diagnosis
was classified by two specialist physicians and checked
by a third expert in order to extinguish the errors
(Kermany, Zhang and Goldbaum, 2018).

The dataset consists of 5856 images, 1583 images
of normal patients and 2780 of patients with bacterial
pneumonia and 1493 of patients with viral pneumonia.

Pneumonia causes a pulmonary consolidation,
this means that the pulmonary alveoli are full of
inflammatory fluid, this liquid replaces the air in the
alveoli, so that the affected part of the lung does not
contain air (Iorio et al., 2018). In the radiographic,
pulmonary consolidation corresponds to an opacity
(whitish area).

The identification of the existence of pneumonia is
based on the opacities of the radiography, ie, on the
radiograph you can see the darker part near the spine
that corresponds to the bronchi (Kunz et al., 2018).
The air contained in the bronchi gives this color to
the radiograph, while the outside of the lung is lighter
(opaque) because the alveoli are filled with fluid Figs. 4
and 5.

(a) Normal image (b) Image of pneumonia
Figure 4: Example of radiographic images divided into
normal and with pneumonia.

Source: Kermany, Zhang and Goldbaum (2018),
Kermany et al. (2018)

5 Metrics of the evaluation

A statistical tool is the confusion matrix that provides
the basis for describing classification accuracy and
characterizing errors, helping to refine the ranking
(Saraiva et al., 2018). The confusion matrix is formed
by an array of squares of numbers arranged in rows
and columns that express the number of sample units
of a particular category, inferred by a rule of decision,
compared to the category current verified in the field.

The measures derived from the confusion matrix
are: the total accuracy being that chosen by the present
work, accuracy of individual class, producer precision,
user precision and Kappa index, among others. The

total accuracy is calculated by dividing the sum of
the main diagonal of the error matrix x;;, by the total
number of samples collected n. According to the Eq. (4).

a
_ 2iakii
n

T (4)

Receiver Operating Characteristic Curve (ROC curve)
is a measure of performance for classification problems
in various boundary settings. The ROC is a probability
curve and the ROC curve represents the degree or
measure of separability. It informs how much model
is able to distinguish between classes. the ROC curve is
a curve that is drawn using the true positive rate and
the false positive rate. The ROC curve is a complete
sensitivity/specificity report.

In a ROC curve, the true positive rate (Sensitivity) is
plotted against the false positive rate (specificity of 100)
for different cut-off points of a parameter. Each point
in the ROC curve represents a sensitivity / specificity
pair corresponding to a given decision threshold.

To evaluate the performance of the classifiers of the
present study, the confusion matrix, accuracy, along
with the measures given by the ROC curve are used:
sensitivity, specificity.

B TP + TN
ACUray = g5 TN P+ EN (5)
e TP
Sensitivity = TP+ EN (6)
. TN
Specificity = TN+ EP (7)

To exemplify a classification (Pneumonia X Normal),
where true positive (TP) is the number of pneumonia
samples that are correctly classified and true negative
(TN) is the number of normal samples that are
classified correctly. The false positive (FP) are Normal
samples classified as wrong Pneumonia, and false
negative (FN) are Pneumonia samples classified as
Normal.

6 Results

In this section we will present the performance results
of neural networks. Accuracy data, ROC curve and
matrix of confusion will be presented. Satisfactory
results were obtained, compared to the paper of
Kermany (2018). Two pre-trained neural networks



Costa et al. |

Revista Brasileira de Computagdo Aplicada (2020), v.12, n.3, pp.132-141 137

Normal

Bactenal Pneumonia

Viral Pneumonia

(a) Source: (Kermany et al., 2018)

Figure 5: Example of radiographic images divided into normal and with pneumonia. Source: (Kermany, Zhang
and Goldbaum, 2018) and (Kermany et al., 2018)

Table 3: Test accuracy for the NasNetLarge, Xception and Inception V3.

Reference paper | Neural network
kk

Accuracy test

** | Pneumonia X Normal | Viral X Bacterial
This paper NasNetLarge 95.35% 91.79 %
This paper Xception 93.59% 91.03 %
(Kermany, 2018) Inception V3 92.80 % 90.70 %

were implemented and the learning transfer was used,

the networks used were: Xception and NasNetLarge.

and showed an improvement in accuracy.

Data were divided into three groups: Training,
testing and validation. On the Table 3 it is possible
to visualize the accuracy that each network obtained,
compared to Inception V3 implemented by the Kermany
(2018).

As described above, a portion of the dataset was
separated for validation.(Bacterial pneumonia X viral
pneumonia) were separated 50 images of each, already
in (Normal X pneumonia) were separated 100 images
of each. On the Table 4 it is possible to visualize the
results obtained by the networks, and the best results
were attributed to the comparison of (Pneumonia
X Normal). The networks performed less than
the test in cases of (Pneumonia Bacteria X Viral
Pneumonia). Thus, the network that had the best
capacity to generalize was the NasNetLarge with 96.5%
in (Pneumonia X normal) and 69.00% in (Pneumonia
Bacteria X Viral Pneumonia). The two networks did
well in generalization when the case was only detecting
pneumonia. In the Figs. 6 to 9 it is possible to visualize
some more results, represented by the matrices of
confusion, curve ROC and Recall curve.

In Fig. 6 it is possible to see the confusion matrices
and ROC curve for the classification of (Normal X
Pneumonia) with the Xception network, with a good
performance for the test and validation sets, with
99% acurracy in the validation, demonstrating that
the model is able to generalize well, since in the test
set it obtained a slightly lower percentage. In Fig. 7d
it is possible to see that the validation performed
considerably less, with 60% accuracy, this is due to
the fact that the model has a greater difficulty in
distinguishing differences between the classes of Viral

and Bacterial Pneumonia . In the Figs. 8 and 9 the
results of the NasNetLarge network are shown, which
had the same difficulty in distinguishing between the
classes of viral and bacterial pneumonia, but with a
slightly better performance, 69% accuracy .

In the Table 5 it is possible to visualize measures of
Sensitivity and Specificity, which are metrics chosen
to evaluate the performance of the classifiers, with
this one can observe the comparative of the same,
related to the classification of (Pneumonia X Normal)
and (Pneumonia Bacterial X Viral Pneumonia). It is
possible to see how the networks performed well in
the tests and validation, and also how the proposed
method performed better than Kermany (2018).
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Table 4: Validation accuracy for the NasNetLarge and Xception networks.

Reference paper | Neural network Accuracy validation
ok ** | Pneumonia X Normal | Viral X Bacterial
This paper NasNetLarge 96.50% 69.00%
This paper Xception 99.00% 60.00%

Table 5: Specificity and sensitivity between the
validation and test data sets, comparisons:
(Pneumonia X Normal) and (Pneumonia Bacterial X
Viral Pneumonia).

True label

True Positive Rate

Paper | Network [ Pneumonia X Normal
Test
*x **% | Sensitivity | Specificity
This paper | NasNetLarge 95.23% 95.55%
This paper Xception 92.68% 95.32%
(Kermany, 2018) | Inception V3 93.2% 90.1%
Validation
*x ** | Sensitivity | Specificity
This paper | NasNetLarge 97.93% 95.14%
This paper Xception | 100.00% 98.03%
Kermany (2018) | Inception V3 Null Null 3
o \ FE \ Bacterial X Viral
Test
*% ** | Sensitivity | Specificity
This paper | NasNetLarge 91.01% 93.28%
This paper Xception 91.90% 89.51%
Kermany (2018) | Inception V3 88.60% 90.90%
Validation
*% *% | Sensitivity | Specificity
This paper | NasNetLarge 63.01% 85.18%
This paper Xception 58.06% 63.15%
Kermany (2018) | Inception V3 Null Null
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Figure 9: Confusion matrix, ROC curve comparing
Bacterial Pneumonia(o) X Viral Pneumonia(1) and
confusion matrix of neural network validation
NasNetLarge.

7 Conclusion

In this work, a comparison was made between
the pre-trained neural networks Xception, Inception
V3 and NasNetLarge with learning transfer for the
classification of thoracic x-ray images in the detection
of pneumonia. The use of pre-trained neural networks
with learning transfer has been shown to be efficient
in classification, as discussed in this work, the state of
the art is optimistic about the use of this technique.
In the literature, applications for classification
of pneumonia are presented that use approaches
such as network construction, as is the case of the
works Saraiva et al. (2019), Andika et al. (2019)
and transfer of learning as an extractor of features
such as the work of Togacar et al. (2020) that
uses a combination of three pre-trunked networks,

alexnet, VGG16 and VGG19 to make the classification.

The main contribution of this work is in the
detailed analysis of performance of the Xception
and NasNetLarge networks in the classification of
three classes, separated in pairs, classification of
viral x bacterial pneumonia and classification between
pheumonia and normal. Fundamentals that strengthen
the use of transfer of learning for the classification of
chest x-ray images of pathologies such as pneumonia
are presented during the work, but with the potential
to extend other classes.

The neural network NasNetlarge was the one
that obtained the best result, even in the validation
of (Bacterial Pneumonia X Viral Pneumonia) it
demonstrated better than the Xception. However, the
networks NasNetLarge and Xception had a good result
in the generalization question in the comparison of

(Pneumonia X Normal), having a result in the validation
similar to that of the test, thus demonstrating its
capacity. The study of machine learning techniques in
assisting medicine is promising, with the possibility of
improving diagnoses in hospitals.
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