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Abstract
Some phenomena that occur in the Sun have consequences on Earth. Among these phenomena, solar flaresrelease large amounts of radiation and energy that impact on the Earth’s life and technological systems. Theseflares usually come from sunspots, which derive from solar magnetic activities. One strategy to predict solarflares is to identify active regions, i. e., a group of sunspots with a high potential to cause solar flares. Thispaper reports the use of the deep learning technique to identify and classify active regions from magnetogramanalysis. To achieve these tasks, we assembled a dataset with magnetograms and performed tests to choose thebest deep learning models for the identification and classification of active regions. The results of the best modelsreached accuracies higher than 80% for both the identification and classification tasks. Based on these results,we implemented a system in Python to automate the complete identification and classification process based onmagnetograms’ analysis.
Keywords: Classification; Deep Learning; Detection; Magnetograms; Solar Flares.
Resumo
Alguns fenômenos que ocorrem no Sol têm consequências na Terra. Entre esses fenômenos, as explosões solaresliberam grandes quantidades de radiação e energia que impactam a vida e os sistemas tecnológicos da Terra.Essas explosões nascem geralmente a partir de manchas solares, que derivam de atividades magnéticas solares.Uma estratégia para prever explosões solares é identificar as regiões ativas, i. e., um grupo de manchas solarescom alto potencial de causar explosões solares. Este artigo relata o uso da técnica de aprendizado profundo paraidentificar e classificar regiões ativas a partir da análise de magnetogramas. Para realizar essas tarefas, montamosum conjunto magnetogramas e realizamos testes para escolher os melhores modelos de aprendizado profundopara identificação e classificação de regiões ativas. Os resultados dos melhores modelos alcançaram precisõessuperiores a 80% para as tarefas de identificação e classificação. Com base nesses resultados, implementamosum sistema em Python para automatizar o processo completo de identificação e classificação baseado na análisede magnetogramas.
Palavras-Chave: Aprendizado Profundo; Classificação; Detecção; Explosões Solares; Magnetogramas.

1 Introduction

Many of the technology systems used today depend onpower distribution or satellite communication. Becauseof these characteristics, these systems can be affectedby phenomena that occur in the Sun and have impactson the Earth (Royal Academy of Engineering, 2013).

We call Space Weather the solar phenomena andits effects on the solar system (Echer et al., 2005).Among the Space Weather phenomena, one of theevents with a direct impact on the Earth is solar flares.This phenomenon generates an intense flash in imagescaptured from the Sun and can release protons andelectrons toward the Earth in a phenomenon called
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coronal mass ejection (CME). This mass of particles,with temperatures in the order of one million degreesCelsius, is a magnetized plasma.
When solar flares occur, they release x-rays andeventually gamma rays. Astrophysics analyze thestrength of these rays from the peak that an X-

ray reaches, measured in Ångströms (Å). Sensorsembedded in GOES satellites obtain solar flares datawhose intensity can be classified as A, B, C, M, or X, asillustrated in Table 1 (Messerotti et al., 2009).
Table 1: Solar flares classes.

Class X-ray Peak Flux in W/m2
between 1 Å e 8 Å

A <10−7
B ≥10−7 and <10−6
C ≥10−6 and <10−5
M ≥10−5 and <10−4
X ≥10−4

Class X solar flares are the most intense. Besides,the classes are logarithmic in scale, and each class hasnine subdivisions. Therefore, a class X.2 explosionis twice as massive as an X.1 explosion. Thesephenomena impact three main areas: the ionosphere,space systems, and terrestrial systems.
In the ionosphere, the disturbances manifest afew moments after a solar flare occurs and affectlong-distance radio communications on the Earth’sface facing the sun. The gradual disappearance ofshortwave waves is caused by X-ray penetration intothe Earth’s lowest levels. High-frequency radio wavesare absorbed rather than passed to higher levels, whichcauses malfunctions in communications systems thatmay last an hour or more.
In addition to these sudden disturbances incommunication systems, this phenomenon gives riseto auroras at the Earth’s poles. Protons reach theterrestrial magnetic field through the solar winds andare guided by the terrestrial magnetic field lines to thepolar ice caps. They then penetrate to an approximatealtitude of 50 km, where they release energy by ionizingneutral particles from the atmosphere and thus causingauroras.
Moreover, in space-based systems, a charge on aspacecraft may appear, which is a variation of theelectrostatic potential, the tendency of a charge toshift from the spacecraft surface with its surroundingplasma. During geomagnetic storms, the number ofelectrons and ions increases. Thus, when a satellitetravels in a geomagnetic storm, the charged particles’shock can cause a potential difference that generatescurrent in the spacecraft’s components, damagingthem and probably disabling them.

1.1 Research objectives

Currently, Space Weather forecasting centers aroundthe world analyze the active regions of the Sun to

calculate the probability of a solar flare. By calculatingthe chance of a solar flare occurring in advance, onecan mitigate the effects of this phenomenon on theEarth or on orbiting technologies on the planet.The analysis of the active regions on the Sun playsa fundamental role in solar flares forecasting, as theseregions are precursors of various solar phenomena,especially the solar flares and CMEs (McAteer et al.,2005). It is from the intense magnetic activity in aparticular region in the Sun that solar flares occur.Therefore, the objective of the research described inthis paper is to use deep learning neural networks toautomatically identify active regions in magnetogramsand classify them according to their “morphology”,analyzing their format, presence, and disposition ofdifferent polarities.
1.2 Paper structure

We organized this paper with the following structure.Section 2 presents some fundamental concepts used inthis paper. Section 3 show other works related to thetheme. In turn, Section 4 describes the methodologyadopted in this research, as well as the metricsused to evaluate the results. Section 5 discusses theresults obtained and, finally, Section 6 points to theconclusions and future works.

2 Fundamental concepts
This section presents two essential concepts for thiswork. The first concept is the magnetograms, i. e.,the images we will analyze to identify and classify theactive regions in the Sun. The second concept is theDeep Learning technique, a method used for automaticdetection and classification of active regions.
2.1 Magnetograms

A magnetogram is a graphical representation of thevariation of the Sun’s magnetic field. It is an imageformed from a set of magnetic data obtained from amagnetometer (Bobra et al., 2014a,b). Fig. 1 illustratesan example of a magnetogram.Notice that, in Fig. 1 three types of colors occur:white spots appear, which represent regions withpositive polarities or that move against the Sun’s core;black spots representing negative polarities or thatmove toward the Sun’s core; and other gray areas. Agroup of spots forms an active region, which, in turn, isrelated to the occurrence of solar flares. This situationoccurs because, between spots of different polarities,magnetic arcs can arise, which, when broken, causesolar flares and, eventually, coronal mass ejections.Fig. 2 illustrates on the right side several magneticfield lines extending from the sunspots, formingmagnetic arcs, sending overheated plasma into thesolar system.Therefore, the visual information contained in amagnetogram serves to identify the active regions ofthe Sun. We can classify these regions according to
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Figure 1: A magnetogram from May 15, 2013 at1:48 UTC. Source: The Helioviewer Project (2019).

the Mt. Wilson classification, which considers thedistribution of magnetic polarities within groups ofsunspots (Li and Zhu, 2013).According to the Mt. Wilson classification, there areeight magnetic classes defined according to how thesegroups of sunspots form. The classes are the following:
• Alpha (α): a unipolar group of sunspots.• Beta (β): a group of sunspots of positive and negative(or bipolar) polarities with a simple division betweenpolarities.• Gamma (γ): a complex region in which the positiveand negative polarities are so irregularly distributedthat they cannot be classified as a bipolar group.• Beta-Gamma (β–γ): a group of bipolar sunspots, butcomplex enough that no lines can be drawn betweenpoints of opposite polarity.• Delta (δ): the opposite polarity umbra in a singlepenumbra.• Beta-Delta (β–δ): a group of sunspots with a generalmagnetic configuration β, but containing one (ormore) δ sunspots.• Beta-Gamma-Delta (β – γ – δ): a group of sunspotswith a β – γ magnetic configuration but containingone or more δ sunspots.• Gamma-Delta (γ – δ): A group of sunspots with a γmagnetic configuration but containing one or more
δ sunspots.
Observation, analysis, and classification of sunspotsare an essential part of deepening the knowledgeabout the Sun, solar weather, and their effects on theEarth (Phillips and White, 1996). Specific categoriesof sunspot groups are associated with solar flares.Observatories around the world track every visiblesunspot to detect solar flares at an early stage oftheir formation. Today, sunspot recognition and

Figure 2: Magnetic arcs formed between activeregions. Source: SDO/NASA –
https://sdo.gsfc.nasa.gov/gallery.

classification are manual and intensive processes thatcan be automated if successfully learned by a machine(Nguyen et al., 2006).
The identification of active regions in the Sun bymagnetogram analysis and the automatic classificationof these active regions by the Mt. Wilson classificationhelps to predict the occurrence of solar flares. Notice,however, that this identification is entirely subjective,as it is based on the morphological analysis of theseactive regions (McAteer et al., 2010).
Therefore, sunspots are detected by satellites anddescribed in image format (magnetograms), whichis unstructured data. Thus, we sought a techniquethat assisted the process of detection and automaticclassification of active regions in magnetograms. Wedescribe this technique briefly in the following section.

2.2 Deep Learning

The deep learning technique is part of a set of machinelearning methods based on artificial neural networks(LeCun et al., 2015). According to Wang and Alexander(2016), one can use machine learning to process largevolumes of structured data and unstructured data thatare difficult to process using traditional database andsoftware techniques.
Since 2010, researchers have been using artificialintelligence and machine learning as tools forpredicting solar flares, as seen in the works of Yu et al.(2010), Colak and Qahwaji (2009) and Gensler et al.(2016). In particular, the Deep Learning technique mayhave some advantages in Space Weather applications,notably in the identification and classification of activeregions in magnetograms.

https://sdo.gsfc.nasa.gov/gallery
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Other more traditional imaging processingalgorithms, such as Filament Diffusion-Detectionbased on graphs or morphological operators, employedby Andrijauskas and Gradvohl (2012), could be used toidentify and classify active regions. However, thesetechniques require higher computational processingpower or processing time, making them less feasiblein simpler systems or for real-time processing.Some deep learning techniques rely on convolutionalneural networks (CNN) for object detection. Theadvantage of CNNs is that they do not depend onmanually created resource pullers or filters. Instead,they train themselves from the pixel level to theidentification of objects as a whole. Deep neuralnetwork architectures handle complex models moreefficiently than less layered networks. Besides,CNNs are less accurate for small datasets but showsignificant accuracy in large image datasets. For thisprocedure, CNNs require a large number of labeled datasets to perform computer vision related tasks, e. g.,recognition, classification, and detection (Pathak et al.,2018).For its training, a deep neural network usuallyuses a dataset of considerable size. This dataset shalldescribe as much as possible of the situations of theenvironment in which it will operate. Once well-trained, a deep neural network can process data asit becomes available without waiting for the wholedataset to be ready for processing (Zhao et al., 2019).CNNs exploit the so-called spatial-local correlation,reinforcing a pattern of local connectivity betweenadjacent neuron layers. In other words, the inputsof hidden neurons in the m layer come from a subsetof neurons in the m – 1 layer.The image is convoluted through the activationfunction to obtain feature maps. To reduce the spatialcomplexity of the network, feature maps are treatedas layers to obtain abstract feature maps. A neuralnetwork system repeats this process for the desirednumber of filters and hence creates feature maps.Eventually, the system renders these feature mapswith fully connected layers to get an image recognitionoutput, showing the confidence score for the predictedclass labels.In short, each of the various intermediate layersprogressively extracts characteristics from the objectunder analysis. For example, in image processing,lower layers can distinguish edges, while the upperlayers can identify items of more considerablesignificance, such as objects or faces (Guo et al., 2016).Following, we present some details about the twotypes of convolutional neural networks used in thiswork, GoogLeNet and DetectNet.
2.3 GoogLeNet

GoogLeNet is a 22-layer deep pre-trained convolutionalneural network. The network uses a LeNet-inspiredCNN but has implemented a new element that is calledthe “Inception module”. Used batch normalization,image distortion, and RMSprop. This module isbased on several very small convolutions to reduce

the number of parameters drastically. Its architectureconsists of a 22-layer deep CNN, but reduced thenumber of parameters from 60 million (AlexNet) to4 million (Das, 2017).
The main idea of Inception architecture is to considerhow an ideal local sparse structure of a convolutionalvision network can be approximated and covered byavailable dense components. Notice that assumingtranslational invariance means that the neural networkwill be constructed through convolutional blocks. Toperform this task, it is necessary to find the best localconstruction and repeat it spatially (Szegedy et al.,2015). Fig. 3 shows the representation of an Inceptionmodule.

Figure 3: Inception module example. Source: Szegedyet al. (2015).

Therefore, different convolution sizes run underthe same input image, resulting in different types ofextracted resources, plus a maximum pool operation.Then all characteristics are concatenated together toresult in the entry of the next network module. Asthese Inception modules are stacked, their outboundcorrelation statistics tend to vary. As higher layerscapture the features of higher abstraction, we expectthat their spatial concentration decreases. Thissituation suggests that the ratio of 3 × 3 and 5 × 5convolutions should increase as it moves to higherlayers (Szegedy et al., 2015).
The convolution 1 × 1 is introduced by Network InNetwork (NIN). The 1 × 1 convolution is used withthe ReLU activation function. Thus, NIN originallyuses it to introduce more nonlinearity to increase therepresentational power of the neural network, sincethe NIN authors believe that the data is in the formof nonlinearity. In GoogLeNet, 1 × 1 convolution isused as a dimension reduction module to reduce thecalculation. By reducing the computation bottleneck,the system can increase the neural network depth andwidth (Tsang, 2018). Fig. 4 brings the representationof an Inception module using 1 × 1 convolutions.
One argument for choosing GooLeNet is thefollowing. ImageNet’s Large-Scale Visual RecognitionChallenge (ILSVRC) evaluates algorithms for objectdetection and large-scale image classification. A high-level motivation is to allow researchers to compare



Oliveira & Gradvohl | Revista Brasileira de Computação Aplicada (2020), v.12, n.2, pp.67–79 71

Figure 4: Example of Inception module using 1 × 1convolutions. Source: Szegedy et al. (2015).

detection progress on a broader range of objects, takingadvantage of the expensive labeling effort. Anothermotivation is to measure the progress of computervision for indexing large-scale images for retrieval andannotation. GoogLeNet’s submission to ILSVRC 2014(ImageNet, 2014) uses 12 times fewer parameters thanthe winning architecture of years ago (Krizhevsky et al.,2017) and proved significantly more accurate (Szegedyet al., 2015).
2.4 DetectNet

For the development of this work, we used thepre-trained neural network DetectNet, developed byNVIDIA. One can train such a network through theCaffe framework.DetectNet training data samples are large imagesthat contain multiple objects. For each object in theimage, the training label must capture not only theobject’s class but also the corner coordinates of thebounding box (Tao et al., 2016).According to Tao et al. (2016), the DetectNetframework introduces a fixed three-dimensional tag

format that allows DetectNet to accept images of anysize with a variable number of objects present. Therepresentation used by Redmon et al. (2016) inspiresDetectNet’s data representation.During the application of the DetectNet model withinthe DIGITS software, the software overlays the imagewith a regular grid with slightly smaller spacing thanthe smallest object to be detected. We labeled eachgrid square with two information: the object classpresent in the grid square and the pixel coordinates ofthe bounding box corners of that object relative to thecenter of the grid square (Tao et al., 2016).
2.4.1 DetectNet Architecture
The DetectNet architecture has five parts specified inthe Caffe model definition file (Tao et al., 2016), asillustrated in the Figs. 5 and 6.

i. The data layers ingest images and traininglabels, and a transformer layer applies online dataaugmentation.ii. A fully convolutional network (FCN) performsresource extraction and prediction of object classesand bounding boxes per grid square.iii. Loss functions simultaneously measure the errorin both tasks of predicting object coverage and theedges of the object’s bounding box per grid square.iv. A grouping function produces the final set ofbounding boxes provided during validation.v. The system calculates a simplified version of themAP to measure the model performance against thevalidation dataset Tao et al. (2016).
The DetectNet network uses a linear combinationof two separate loss functions to produce its final lossfunction for optimization. For training purposes, Caffeminimizes a weighted sum of the following loss values(Tao et al., 2016).

• cover_loss: is the sum of the squares of thedifferences between the true and predicted object

Figure 5: Flowchart of DetectNet network training operation, displaying items 1, 2, and 3. Source: Tao et al.(2016).
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Figure 6: Flowchart of DetectNet network training operation, displaying items 4 and 5. Source: Tao et al. (2016).

coverage in all grid squares in a training data sample.Eq. (1) calculates the cover_loss.

cover_loss = 1
2N

N∑
i=1
∣∣coverageti – coveragepi ∣∣2 (1)

• bbox_loss: is the average loss of L1 (mean absolutedifference) for the actual and predicted corners ofthe bounding box for the object covered by each gridsquare. Eq. (2) calculates the bbox_loss.

bbox_loss = 1
2N

N∑
i=1
[∣∣xt1 – xp1 ∣∣ + ∣∣yt1 – yp1 ∣∣+
∣∣xt2 – xp2∣∣ + ∣∣yt2 – yp2∣∣]

(2)

In the final layers of DetectNet, it uses the OpenCV
openCV groupRectangles algorithm to aggregate and tofilter the set of bounding boxes generated for gridsquares with coverage values greater than or equalto the gridbox_cvg_threshold specified in the DetectNettemplate definition file.

3 Related works

This section presents some works focusing onextracting attributes for forecasting space weatherfrom images of the Sun.
Nguyen et al. (2006) used machine learningapproaches to the problem of classifying active regions.In the paper, the authors used the Modified Zurichclassification scheme with seven classes. They croppedactive regions from images using image processingalgorithms, and later, they classified the imagesaccording to the Modified Zurich scheme. The authorsused the decision tree algorithms C4.5, k-nearestneighbors (k-NN), and LEM2.

On the other hand, Ahmed et al. (2013) usedmachine learning methods to estimate the magneticcomplexity of active regions, among other importantattributes for trying to predict solar flares 24 hours inadvance. To this end, the authors used the number ofsunspots and magnetic field properties as attributes formachine learning algorithms. They chose attributesfrom algorithms for attribute selection. For sunspotforecasting, they used the Cascade Correlation NeuralNetwork (CCNN) algorithm.On another front, Banda and Angryk (2015) describedan automated, unsupervised methodology for reducingthe space for image research in an attempt to findsimilar solar phenomena. The work analyzed someclustering algorithms – among them K-means, K-medoids, and EM – to identify regions of interest insolar images.In turn, Bobra and Couvidat (2015) reported aproposal to predict class M and X solar flares usingthe support vector machine (SVM) algorithm and fouryears of data from the Solar Dynamics Observatory(SDO). The data referred to the magnetic parameters ofthe active regions, and they used for the classificationof active regions. The proposed mechanism has reachedan accuracy of around 96% for 24 and 48 hours.Still, Hada-Muranushi et al. (2016) tries topredict solar flares automatically using Deep Learning.According to the authors, the system can forecast overa 24-hour horizon, taking an image every 360 secondsand x-ray information every 60 seconds. However, thework did not apply the Deep Learning technique toidentify active regions.In turn, Park et al. (2018) applied deep convolutionalnetworks to try to predict the occurrence of solar flares.In this case, the work used the deep neural networkto associate images to the probability of solar flaresoccurrence. The output of the neural network receivedan image and informed if there would be an explosionor not.Finally, Nishizuka et al. (2018) reports thedevelopment of a solar flare prediction model using theDeep Flare Net (DeFN) deep neural network structure.
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The reported model calculates the probability of solarflares happening 24 hours in advance for each activeregion. However, manual intervention is required toselect the attributes required to make the forecast.
Based on the works mentioned above, we observedthe importance of the classification of the active regionsfor the forecasting of solar flares. However, there isno prior application of a deep convolutional neuralnetwork in the identification and classification of activesolar regions through magnetogram analysis.
Thus, this work elaborated a methodology to identifyand classify the active regions through deep neuralmodels. In the literature survey performed for thiswork, we did not identify other works with the sameproposal as ours.

4 Methodology
Facing the problem of identifying and classifying theactive regions of a magnetogram, it is possible to applyconvolutional neural networks to detect objects thatalready include the classification of found objects. Anexample of such a network for this situation is theDetectNet. In this case, we only need a neural model.However, its application was limited only to identifyingthe location of the spots, because, since the generateddatabase did not include all the sunspot classificationscontained in an image, it was not possible to performthe training of a single network.

Therefore, it was about the creation of two distinctneural networks: one to identify the sunspots andanother to classify them. In this context, for each typeof neural network, its metrics were used to evaluateDIGITS software standard performance.
By having an existing dataset, the selectedneural networks are feed-forward supervised learningnetworks, adjusting their weights through thebackpropagation process. Thus, the methodology usedin this paper consists of four steps. The first stepconsisted of creating a database with magnetogramsselected from the following characteristics.
For the detection of the active regions, we gathered1000 solar magnetograms from the image dataset. Eachmagnetogram has a 256 × 256 pixels resolution.
On the other hand, we obtained the images for theclassification of active regions from the image datasetmentioned in the previous paragraph. For this, wecreated a small Python script, which cuts out theactive regions and classifies them according to TheHelioviewer Project (2019) portal information. Thisbase contains 1548 images.
We highlight that the Helioviewer portal containsthe identification of active regions and their respectivemagnetic classifications in four main classes (α, α – γ,

β, or β – γ). Therefore, the information obtained fromthe Helioviewer served as the ground truth. After weassembled the datasets, the second step was to segmentthem into three parts. The first part consists of 70%of the total samples for training. The second partconsists of 20% of the total samples for validation.It is noteworthy that the subset of tests, the third

part, contains data never presented to the deep neuralnetwork. Therefore, it is a piece of new information,which was subsequently submitted to the deep neuralnetwork to prove its accuracy. This set represents theremaining 10% of the image dataset.
Then, in the third stage, we trained a deep neuralnetwork. At this stage, we used the NVIDIA DeepLearning GPU Training System (DIGITS). The DIGITSsoftware is a neural network training system that usesgraphics processing units (GPUs) to accelerate andoptimize the training process (NVIDIA Corporation,2019).
The DIGITS facilitates the creation of a training andvalidation image dataset, the training of a model basedon the dataset created, and the testing of the modelin a variety of ways. A RESTful web application, builton the Python Flask web framework, allows users tocreate and delete datasets and templates through a webpage (Yeager et al., 2015).
In addition to DIGITS, we used the Fiji software –ImageJ (Schindelin et al., 2012) – for image processingin conjunction with the Alp’s Labeling Tools for Deep

Learning (2017) for labeling the active regions.
We did the active region labeling. The labelsdid not contain the identified active region classes.We wrote the scripts responsible for consulting thelabeling performed by experts, as discussed later inthis text. Therefore, there was only the demarcationof sunspots with an area greater than 36 pixels in themagnetograms contained in the database.
Furthermore, as support for the realization of theproject, we used the Python programming language attwo different times. Initially, to obtain data to completethe database and, later, to integrate the differentproducts from the project: models for detection andclassification of active regions.
In the last stage, we evaluated the result of thedeep neural network. Therefore, we performed ananalysis of the precision level by comparing the resultsreturned by the DIGITS software and manual analysis,comparing the actual results of the database with thoseproduced by the model. We described these analyzesas follows.
The DIGITS performance analysis is based on severalmetrics. However, in this study, we considered onlyfour of them: accuracy for both classification and objectdetection and Recall, mAP, and F1 score for objectdetection only. The metrics are better described asfollows:

• Accuracy: Measures how accurate the predictionsare, i. e., what percentage of the predictions iscorrect. Accuracy is calculated from the number oftrue positives (TP) and the number of false positives(FP) according to the relationship established inEq. (3).

accuracy = TP
(TP + FP) (3)
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• Recall: how many of the true positives were actuallyfound. In this case, the recall considers the falsenegatives (FN), according to the relation defined inEq. (4).

recall = TP
(TP + FN) (4)

• mean Average Precision (mAP) (simplified): thescore based on the product between accuracy andRecall for the DetectNet network. It is a goodmeasure of how sensitive the network is for objectsof interest and how well it avoids false alarms.• F1 score: the harmonic mean of Accuracy and Recall,where an F1 score reaches its best value at 1 (perfectaccuracy and recovery) and worst at zero.
For all Accuracy, Recall, and mAP metrics, highvalues are desired because maximizing them representsa good model. In the initial project definition, weexpected the model to achieve an 80% accuracy level.
For the manual analysis, in the case of identificationof the active regions, for every image, we created acorresponding text file, containing the coordinatesof the regions present in the image. In the caseof the classification of active regions, we organizedthe images of the active regions in their respectivedirectories. We performed the analysis by comparingthe data provided by the deep neural networks withthe correct data obtained from The Helioviewer Project(2019) portal. Therefore, we looked at the accuracy,i. e., the number of correct predictions.

5 Results

One of the results of this research was a database withmagnetogram images adequately organized and labeled.We obtained the original information with dates andimages, when and where the most massive explosionsoccurred, from another database curated by Gradvohland Fernandes (2017).
Besides the magnetogram database, we reportother results in the next two sections, which deal,respectively, with the detection and classification ofactive regions, as well as the construction of a systemthat automates these processes.

5.1 Active region detection

After obtaining the samples (images), 1000 of themwere adequately labeled using Fiji software, togetherwith the ALP’s plugin, indicating the location of theactive regions present in the image. Such indicationsor labels were recorded in a text file with the samename as the image, resulting in 1000 new text fileswith this information. Fig. 7 is an example of a textcontaining the coordinates of the active regions presentin a magnetogram.

Figure 7: Labels containing the coordinates of theactive regions.

After obtaining the complete database with labelsand coordinates of the active regions, we organized theimages into three distinct sets:
• Training Set (train): a subset of images intendedfor training the neural network. We submitted theimages to the neural network. Later, the imageswere used to adjust the node weights based on thebackpropagation technique. 70% of the datasetcomprises this subset.• Validation Set (val): a subset of images intendedfor neural network validation. The DIGITS usedthis set of images automatically and required nomanual intervention. The images contained in thisset do not influence the maintenance of the neuralnetwork. Also, the observatories use the images forlive monitoring of the performance of the networkover the seasons. This subset contains 20% of theoriginal dataset.• Test set (test): subset of images intended for manualtesting of neural network performance. These areimages that were only submitted to the networkwhen the model was ready. This subset has 10%from the dataset.

Once organized, we submitted the relevant imagesets to DIGITS software, which in turn organized andformatted the base according to its models. Everyimage submitted to the DIGITS software received thespecified treatment at the time of dataset creation.Possible modifications made by the DIGITS softwareare the standardization of image size, the method forchanging the size, adding borders, subtracting theaverage image, modifying color channels, among otherpossibilities. However, in this work, the images in thedatabases were only resized, and there was no otherchanges.
After image normalization, we applied a pre-trainedneural network model architecture called DetectNet(Tao et al., 2016). This architecture is a derivation of theGoogLeNet model (Szegedy et al., 2015) and has alreadywon some competitions as the best adaptive neuralnetwork architecture, proving to be very efficient forlearning new objects. These characteristics motivatedthe choice of this architecture.
For each model developed, we tuned the network’shyper-parameters to optimize the learning processby modifying the learning rate, batch size andaccumulation, solver type, learning policy, and thenumber of epochs as needed. For the performanceevaluation of the spot detection network, we used theevaluation metrics mentioned in Section 4.
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After several tests, the best model obtained for thedetection of active regions reached a maximum degreeof 80.75% accuracy, 74.22% Recall, 61.37% mAP, and77.35% F1 score. Fig. 8 shows the performance of theneural network in the training phase, where the brownline at the top of the figure represents the accuracy,the purple line represents mAP, and the pink linerepresents Recall.
It is important to note that although DetectNet hasone of the best structures for modeling object detectionmodels, it was necessary to adjust some parametersand values in its structure. This procedure is becausetheir filters work better with larger images (1248× 384

pixels), making their sensitivity to detect small objectslow.
Therefore, to adapt the model and increase its abilityto identify smaller objects, we made some adjustmentsto the DetectNet model structure described as follows:

• We zeroed the probabilities of changes in the image,i. e., we informed the deep neural network thatthe images are normalized. Therefore, the modelshould not consider any probability that the imageshave been resized, rotated, overlapped, or any otherchanges.• Resizing the image dimensions, i. e., we reportedthat the model would handle 512 × 512 pixels.• To identify the objects, several filters run throughthe original image. In DetectNet, when panning theimage, the convolution operation sets the stride to16 pixels, making the model less sensitive to smaller

objects, especially when detecting active regions inlow-resolution images. Therefore, we adjusted thisstride for 8 pixels offsets.• As we reduced the stride, it was also necessary toreduce the number of layers in the deep neuralnetwork. Then, we set the “pool1/3x3_s2” layerkernel and stride parameters to 1.
Analyzing the graph in Fig. 8, there is a rapid risein model accuracy, as well as a rapid fall in loss values.This situation shows that DetectNet’s altered structuremodel has a high learning rate, learning to identifysunspots at a certain speed. However, still, there is asequence of later times, which have a lower learningrate. The need for these times is to improve the modelby making slight adjustments to the weights.

5.2 Classification of identified active regions

For the classification of the active regions, wedeveloped a program to extract the regions from thedataset for object detection and classify them accordingto their active regions through information from theHelioviewer portal. Thus, we obtained a dataset ofactive regions, containing 1548 images, distributed inthe following classes (magnetic configurations):
• A (α): 223 images.• AG (α – γ): 111 images.• B (β): 408 images.• BG (β – γ): 774 images.

Figure 8: Learning performance graph of the active regions identification model.
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Although there are several classifications for spotgroups, we took the classifications assigned to theactive regions in this project from the Helioviewerportal. The portal provides only the four magneticconfigurations (α, α– γ, β, and β – γ) mentioned in theprevious paragraph and which are the most relevant.Notice that magnetic configurations are more likely tobe associated with the occurrence of solar flares.
Thus, we separated the images belonging to thedataset according to their magnetic classification. Inaddition to this primary separation, we divided thebase according to the need to train, validate, and testa network, following the same pattern as the objectdetection base: 70% of its volume was allocated to thetraining phase, 20% to validation and 10%for testing.Once organized, we submitted the dataset to the DIGITSsoftware to segment it according to the specificationsrequired for the training of the classification model.
Once the dataset was ready for use, we developedseveral active region classification models, which weclassified as A (α), AG (α – γ), B (β), or BG (β – γ).For the performance evaluation of the active regionclassification network, we used the evaluation metricmentioned earlier in Section 4, accuracy (representedby the red line in the graph).
The best model obtained reached a maximum levelof 88% accuracy. Fig. 9 shows the evolution of thismodel during its training. The red color line representsthe accuracy of the model at the top of the figure.
Analyzing Fig. 9, it is possible to see the differencebetween the learning curve and the sunspot detection

model, shown in Fig. 8. During the learning processof the active region classification model, the learningstabilization of the model only occurs near epoch100, proving that even after the initial learning leap,the model continued to learn. This fact differs fromthe learning of the active region identification model,which only had a higher learning rate until epoch 20,working only with adjustments after that period.
5.3 System for identifying and classifying

active regions

Finally, with the elaborated models, we developed asystem, implemented in Python, able to integrate bothmodels for the identification and classification of activeregions. Fig. 10 illustrates the tasks performed by thesystem.
The system receives images from a magnetogramdataset stored on disk. These images are thennormalized to fit the models. The normalizationincludes, for example, adjustments to the dimensionsthat the model works on.
After normalization, the system identifies the activeregions present in the image from the best active regiondetection model. This module provides the coordinatesof the active regions detected for the classification ofthese regions.
Finally, each active region detected is classified.After this classification, the system generates new fileswith the images from each identified active region, cut

Figure 9: Graph of learning performance of the selected active region classification model.
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Figure 10: System for identifying and classifyingactive regions.

from the image received by this module. The systemalso produces an image with the visual identificationof the locations of the active regions (delimited byrectangles), as well as the classification accuracy levelsof each region, as Fig. 11 shows.

Figure 11: Magnetogram from Fig. 1 with someidentified and classified active regions.
Thus, as an example of the operation, the systemproduces the image in Fig. 11 from the magnetogramprocessing in Figure Fig. 1, with the active regionsadequately identified and classified. Besides, fromthis image, the system cropped the active regionsindicated in Fig. 12. There are six active regions inthe magnetogram, four of which are β – γ, marked asBG in Figs. 12a to 12d, and the others are α marked Ain Figs. 12e and 12f.
Notice that in Fig. 11, the system did not label sometiny active regions automatically. This result is due

(a) Active regionBG on upper leftside ofmagnetogram.

(b) Active regionBG approximatelyin the center of themagnetogram.

(c) Active regionBG on the upperright side of themagnetogram.

(d) Active regionBG on the lowerleft side of themagnetogram.

(e) Active Regionnear the center ofthe magnetogram.
(f) Active region Aon the far rightside of themagnetogram.

Figure 12: Active regions extracted automatically fromthe magnetogram in Fig. 11.

to the following reasons: (i) these active regions donot fall within those with the potential to cause solarflares; (ii) they have such a relatively small area thatthey also have no potential for class C, M or X solarflares; or (iii) due to errors in detection, as its accuracyis currently 80%.

6 Conclusions

The models obtained and the system developed in thisresearch were satisfactory and with results compatiblewith the best works described in the literature on thesubject. Deep learning neural network models, bothfor identification and classification of active regions,showed accuracy equal to or greater than 80%.
Besides, the system that incorporates these modelsfor the identification and classification of active regionsprovides an automatic mechanism that highlightsand indicates the likelihood of classification of activeregions on a magnetogram, with the accuracy given inthe previous paragraph.
However, despite the promising results, there arestill possibilities for improvement. Thus, we proposeas a future work the investigation of the use of deeplearning techniques in the images of the Sun obtainedat higher resolutions and other wavelengths, notably at

1700 Å and 1600 Å. These wavelengths highlight otherfeatures of the active regions that can help improve thesolar flares forecasting.
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