> ,' Revista Brasileira de Computagdo Aplicada, July, 2020
«

DOI: 10.5335/rbca.v12i2.10665
UPF |EDITORA Vol. 12, N° 2, pp. 122-133
UNIVERSIDADE Homepage: seer.upf.br/index.php/rbca/index
s PAssREUREY ISSN 21766649

ORIGINAL PAPER

An updated analysis of seasonal variations of the security
vulnerability discovery process

Ariane Santos Borges!, Paulo H. R. Gabriel “1, Rodrigo Sanches Miani !

!Faculty of Computing (FACOM), Federal University of Uberlandia (UFU)
*ariianeboorges@gmail.com; phrg@ufu.br; miani@ufu.br

Received: 2020-02-28. Revised: 2020-06-09. Accepted: 2020-06-30.

Abstract

Several factors may influence the security vulnerability discovery rates. The projection of these rates might help
the development and the prioritization of software patches. Previous work studied the seasonal behaviors of the
vulnerability discovery process for several operating systems and web-related software systems. We propose a
replication study of an experiment conducted more than a decade ago to understand the changes in the dynamics
of the security vulnerability discovery rates. In contrast to the findings from ten years ago, the investigated
systems do not exhibit a year-end peak. Besides, the higher incidence during mid-year months for Microsoft
operating systems was only noticed for the most recent Windows OSes: Windows 8.1 and Windows 10. These
results highlight the relevance of reproducibility in scientific works. For cybersecurity studies, in particular,
understanding the impact of specific findings over time might uncover unexpected trends and provide valuable
insights.

Keywords: Cybersecurity; Security Vulnerability; Vulnerability Discovery Models

Resumo

Varios fatores podem influenciar as taxas de descoberta de vulnerabilidades de seguranca. A projecdo dessas taxas
pode ajudar no desenvolvimento e na priorizacao de atualizacdo de software. Trabalhos anteriores estudaram
os comportamentos sazonais do processo de descoberta de vulnerabilidades para varios sistemas operacionais e
sistemas de software relacionados a Web. O presente trabalho propde a replicacdo de um experimento realizado
ha mais de uma década para entender as mudangas na dinamica das taxas de descoberta de vulnerabilidades de
seguranca. Em contraste com os resultados encontrados anteriormente, os sistemas investigados ndo apresentam
sazonalidade no fim do ano. Além disso, o aumento de vulnerabilidades no meio do ano para os sistemas
operacionais Microsoft foi observada apenas para os sistemas Windows mais recentes: Windows 8.1 e Windows 10.
Esses resultados destacam a importancia da reprodutibilidade em trabalhos cientificos. Na drea de ciberseguranga,
em particular, a confirmacdo do impacto de resultados ao longo do tempo, pode servir para descobrir novas
tendéncias e fornecer valiosos insights sobre o problema.

Palavras-Chave: Ciberseguranca; Modelos de descoberta de vulnerabilidades; Vulnerabilidades de Seguranca

1 Introduction cyber-attacks involves finding vulnerabilities in
computer systems. A typical example is exploiting

With the advent of new information and vulnerabilities in protocols of operating systems such

communication technologies (ICTs), both businesses  as Microsoft Server Message Block (SMB) from Microsoft

and people in this environment need to understand  Windows.

that new features often imply new security issues. One

way to exploit new security issues, and developing Cyber-attacks are increasing every day, and


http://dx.doi.org/10.5335/rbca.v12i2.10665
http://seer.upf.br/index.php/rbca/index
https://orcid.org/0000-0002-5923-4181
https://orcid.org/0000-0002-8176-8040

Borges, Gabriel & Miani |

Revista Brasileira de Computagdo Aplicada (2020), v.12, n.2, pp.122-133 123

statistics show that more than 70% of computer
systems have vulnerabilities that could be exploited by
an attacker (Positive Technologies, 2018). Data losses
due to such vulnerabilities are typical of two types:
either the data is confidential to the organization or
is private to an individual. Regardless of the category,
such attacks may result in loss of money or reputation.

Thus, managing security flaws in computer
systems become an essential task not only to
identify vulnerabilities but also to create a knowledge
base on the subject and therefore, to understand
possible patterns of behavior. Several references
show the importance of vulnerability analysis for
the understanding of the security risks of an
organization (Goel and Mehtre, 2015, Shameli-Sendi
et al., 2016, Singh et al., 2016).

In this context, Joh and Malaiya (2009) proposed
a study on the seasonal variation in the process
of security vulnerability discovery of software.
The authors’ idea was to investigate the National
Vulnerability Database (NVD) between 1995 and 2007
and discover at what time of year vulnerability
discovery rates were higher, detecting possible causes.
Its results suggested a possible seasonality pattern,
which means that it should be taken into account in
decision-making and security vulnerability forecasting
models.

Given that new technologies, computer systems, and
consequently security issues have arisen since the work
conducted by Joh and Malaiya (2009), it is essential
to verify if the trends found in their work still exist.
To do this, we analyzed security vulnerability data
reported from 2008 to 2017 for the following systems:
Windows Vista, Windows 7, Windows 8, Windows 8.1,
Windows 10, Solaris, Red Hat, Ubuntu, Mac OS X,
Internet Information Services (IIS), Internet Explorer
(IE), Chrome, Firefox, and Apache. Additionally, two
approaches were employed to find the patterns of
seasonality: calculation of the seasonality index and
analysis of the autocorrelation function (ACF) for each
of the months. Since cyber-attacks are rapidly evolving,
this type of study is important to understand the
impact of temporal factors on information security
issues. Previous studies investigate the behavior of
security incidents and reinforce the importance of
this research topic. They analyze factors such as how
patterns in past movements are useful for forecasting
incidents (Condon et al., 2008, Miani et al., 2015,
Liu et al., 2015), the relationship between deployed
security measures and security incidents frequency
over time (Kuypers et al., 2016), and the prevalence of
different sizes of data breaches over time (Liu et al.,
2015).

The goal of this work is to use time-series analysis
to evaluate the seasonality in the software vulnerability
discovery process using a public database maintained
by NIST. We want to i) identify software systems that
exhibit seasonal trends (in the process of vulnerability
discovery) among the data collected and ii) make a
comparison of our results with the results of the
previous in Joh and Malaiya (2009). In general terms,
two types of results can be found: the confirmation of

the patterns identified by Joh and Malaiya (2009) or
the existence of new patterns.

The paper is organized as follows. Section 2 presents
the theoretical foundation of security vulnerabilities.
Section 3 discusses related work. Section 4 details the
study that is being replicated (Joh and Malaiya, 2009)
and also the proposed methodology. Section 5 presents
the results. Conclusions and future work are provided
in Section 6.

2 Security vulnerabilities

In the context of computer security, a vulnerability
can be defined as a failure in a system that allows the
realization and execution of an attack on a computer
system (Aparecido and Bellezi, 2014). To exploit
a vulnerability, an attacker must have at least one
appropriate tool or technique that can connect to a
system weakness, these tools or scripts are called
exploits (Whitman and Mattord, 2012).

In general, vulnerabilities have a life cycle, as
illustrated in Fig. 1 (Xiao et al., 2018). According to
this figure, from the discovery of vulnerabilities, there
is a race between developers/users and attackers: while
developers try to release patches so that users can
install and are no longer vulnerable, attackers attempt
to exploit these vulnerabilities through automated tools
before users install the patches.

Developer User
!

r 1 1 r
Patch Patch Installing the
Development /| Availability 4 Patch
Vulnerability
Discovery
Exploit Using the \
w Tool xpo pack

L

T

Attacker

Figure 1: Vulnerability life cycle. Adapted from Xiao
et al. (2018).

During the vulnerability discovery phase, when
developers or attackers discover system failures, these
vulnerabilities can be disclosed to the public. Such
disclosure may occur either in public forums or
through the release of an update for vulnerability
correction (Xiao et al., 2018).

Data on software security vulnerabilities are often
found using specialized search portals to store and
maintain information about vulnerabilities and security
holes, such as NVD (NIST, 2004), Secunia (Secunia,
2009), and US-CERT (CERT, 1991). We use the NVD
portal as the main source of data, as done by previous
work such as Joh and Malaiya (2009), Alhazmi et al.
(2007), Roumani et al. (2015), Johnson et al. (2016),
Han et al. (2017) and Anand et al. (2020).



124 Borges, Gabriel & Miani |

Revista Brasileira de Computagdo Aplicada (2020), v.12, n.2, pp.122-133

3 Related Work

Several studies attempt to characterize computer
security vulnerabilities. Since the goal of this work
is to understand factors (seasonality) that might be
used to forecast vulnerabilities, we focus on such type
of study in this section.

One of the first works that investigate vulnerability
prediction can be found in Alhazmi et al. (2007). The
authors analyzed the number of vulnerabilities per unit
of code size (density) from Windows and Red Had Linux.
They found that values of vulnerability densities tend
to fall within a range of values, similar to the defect
density. They used this result to model the vulnerability
discovery process using a logistic model.

Alhazmi and Malaiya (2008) describe the
applicability and significance of several vulnerability
discovery models for four operating systems (Windows
XP, Windows 95, Red Hat Linux 6.2, and Red Hat
Fedora). Vulnerability discovery models were examined
using the Akaike information criterion (AIC) and
chi-square test. The evaluation found that the AML
model is generally better in the long run, with better
performance for Windows 95, Red Hat Linux 6.2, and
Red Hat Fedora.

Roumani et al. (2015) evaluate the use of time-
-series modeling to the vulnerability disclosure issue.
They applied two techniques: autoregressive integrated
moving average (ARIMA) and exponential smoothing
to predict the number of vulnerabilities for five web
browsers: Chrome, Firefox, Internet Explorer, Opera,
and Safari. Their findings suggest that such modeling
techniques can be useful for vulnerability prediction.

A recent study by Movahedi et al. (2019) compared
the performance of time-series models and neural
network models for predicting vulnerabilities. Authors
found that neural network models outperform
time-series models in all the cases in terms of
prediction accuracy. Yasasin et al. (2020) uses
several vulnerability modeling techniques (exponential
smoothing, ARIMA, Croston, and neural network) but
tackle a slightly different issue: predicting the number
of post-release security vulnerabilities in subsequent
periods of time. They found that the optimal
forecasting methodology depends on the software and
some techniques (ARIMA and Croston) outperforms
exponential smoothing and neural network.

Regarding analyzing specific seasonal factors, Joh
and Malaiya (2009) and Joh and Malaiya (2016)
examined vulnerabilities disclosed in various software
(Windows operating systems: Windows NT, Windows
95, Windows 98, Windows 2000, Windows XP and
Windows 7; Mac OS X, Red Hat Linux Enterprise,
AIX, Android and Chrome OS, and other systems:
Apache, IIS, Internet Explorer, Firefox, Safari and
Java (JRE)) to investigate possible annual variations in
vulnerability discovery processes. They also examined
the weekly frequency in the distribution of security
updates (patches) and exploited vulnerabilities.

For all software groups examined, the authors found
a higher vulnerability detection rate in certain months.
In Microsoft products, they reported a higher incidence

during the half-year periods. They also observed the
periodical behavior of 7 days in the data of vulnerability
scanning and confirmed that more activity occurs
during the week than on the weekends. Specifically,
vulnerability activity figures for Tuesday tended to be
higher than the other days of the week. Results showed
that periodicity needs to be considered for optimum
allocation of resources and the evaluation of security
risks.

The objective of this present study is to analyze the
seasonality in two different moments: between 1995-
2007 and between 2008-2017. The primary motivation
for this is to evaluate the evolution of the behavior of
security issues over the years.

4 Methodology
4.1 Previous work - Joh and Malaiya (2009)

Joh and Malaiya (2009) proposed a study on the
seasonal variation in the process of vulnerability
discovery of software security. The objective of the
research was to find a seasonal pattern among the
available databases of the studied software and to
discover in which time of year the vulnerability rate
tends to be higher and to detect possible causes of this
event.

From the data collection, the authors analyzed the
possible existence of seasonality using two statistical
methods. The first was a seasonal index method
measured with the chi-square test, which provides
specific indices for each month, and the second was the
autocorrelation function, which provides information
for the correlated month. In this way, the authors were
able to investigate the behavior of each of the systems.

The authors divided the operating systems into
three categories: Windows, not Windows, and Web.
The Windows operating systems were Windows NT,
Windows XP, Windows 2000, and Windows Server 2003,
non-Windows operating systems were SUN Solaris, Red
Hat Linux, HP-UX and MAC OS X and Web applications
were IIS, IE, Apache, and Firefox. The vulnerability
database used by the authors were from 1995 to 2007.

Results suggest that, for the Windows category,
the months of June and December had a high
rate of vulnerability discovery, whereas February,
March, April, and September had a low below-average
vulnerability detection rate. Both non-Windows and
Web categories showed that December had a high
vulnerability discovery rate. According to the authors,
this seasonality may be associated with the beginning
of the semester in schools and the festive periods, such
as Christmas and New Year, since people buy new
computers with the operating systems described above.

4.2 Our Approach

Some of the operating systems used by Joh and Malaiya
(2009) have been discontinued. For this reason, in
this paper, we perform a data collection considering
most recent Windows operating systems, such as



Borges, Gabriel & Miani |

Revista Brasileira de Computagdo Aplicada (2020), v.12, n.2, pp.122-133 125

pub_date ﬂ type n name

15/08/2018 CVE
15/08/2018 CVE
15/08/2018 CVE
15/08/2018 CVE
15/08/2018 CVE
15/08/2018 CVE

CVE-2008-0242 2008-0242
CVE-2008-0242 2008-0242
CVE-2008-0265 2008-0269
CVE-2008-0718 2008-0718
CVE-2008-0718 2008-0718
CVE-2008-0718 2008-0718

11/01/2008
11/01/2008
15/01/2008
11/02/2008
11/02/2008
11/02/2008

28/09/2017 High
28/09/2017 High
28/09/2017 Medium
28/09/2017 Medium
28/09/2017 Medium
28/09/2017 Medium

n seq n published E modified n severity n name3

solaris sun
solaris sun
solaris sun
solaris sun
solaris sun
solaris sun

Figure 2: Part of an XML file for the Solaris system

Windows Vista, Windows 7, Windows 8, Windows 8.1
and Windows 10, as well as GNU/Linux, Mac OS X. In
addition, we consider the following software: Internet
Explorer, Mozilla Firefox, Google Chrome, Microsoft
IIS, and Apache HTTP Server. Besides, the database
used corresponds to the years 2008 to 2017.

From these data, the same technique used in Joh and
Malaiya (2009) was replicated, that is, the methods
to extract seasonal indexes, chi-square test, and
autocorrelation function. Through these statistical
methods, it is possible to infer the behavior described
by the vulnerabilities by month and year.

For better visualization of the data calculated by
the seasonal index and autocorrelation function, we
constructed a time series graphs for each system group

and individual charts for each system, respectively.

When both graphs present possible seasonality, we
built another chart, called box-plot, to improve the the
analysis.

The method used to evaluate the seasonality of the
vulnerability discovery process involves the following
steps:

i. Collection of vulnerability data for each system
from the year 2008 to the year 2017;

ii. Calculation of the seasonality index for each
system;

iii. Application of the autocorrelation function for
each of the months for all systems;

iv. Individual analysis of the autocorrelation function
to detect possible seasonality for each system;

v. Box-plot graphics construction only for systems
that have the possibility of seasonality.

4.3 Data Collection

XML files are made available by NVD in zip format.
Each year has its file with the necessary information.

Therefore, when extracting the XML file, the next step
is to import it into an Excel table for better visualization
of the data about the vulnerabilities. Excel was chosen
to import the data because of its filtering tools.

Fig. 2 shows a sample of how to import data from
the XML file. In the file, there are precisely 35
header fields, but only three are essential for the data
collection. The main ones are the published, name3 and
vendor fields, which respectively mean the vulnerability
publication date, the operating system name where
the vulnerability was found, and the company name
responsible for the system.

The field name3 displays all known software types,
so the second step is to filter this field according to

the type of software desired (in this case, Solaris).
Automatically, all fields are updated with the respective
information of that system. After choosing the system,
the published column allows filtering of vulnerabilities
by months of disclosure to facilitate accounting.
Other information such as the name of the (name)
vulnerability reported by CVE and the severity of the
vulnerability is not relevant to this work, only the date
of publication of the vulnerabilities.

For the present work, we used XML files from the
year 2008 to 2017. For some of the chosen software, the
XML files did not present all the necessary information
of the ten years analyzed but presented information
according to their launch or when vulnerabilities were
not found. The following is a summary of the data
collected:

« Windows 7: no vulnerabilities were found in the year
2008;

- Windows 8: there were no vulnerabilities found in
the year 2008 until 2011;

- Windows 8.1: there were no vulnerabilities found in
the year 2008 until 2012;

- Windows 10: no vulnerabilities were found between
2008 and 2014

- Solaris: we found vulnerabilities except in the year
2012;

- IIS: we found vulnerabilities except in the year 2011,
2014 and 2016;

- IE: we found vulnerabilities except in the year 2011,

« Apache: no vulnerabilities were found in 2008, 2011,
2015, 2016 and 2017;

- Firefox: there were no vulnerabilities found for the
year 2017.

5 Results

This section presents the results of the seasonality
analysis and compares it to the results from Joh and
Malaiya (2009).

5.1 Data Analysis

The seasonality index is a measure widely used to
evaluate seasonal trends and may indicate how much
the average of a particular period tends to be above
(or below) the expected value (Arsham, 1994). The
monthly values of the seasonal index are given by
Eq. (1):

5= 0



126 Borges, Gabriel & Miani | Revista Brasileira de Computagdo Aplicada (2020), v.12, n.2, pp.122-133
o
g .
~ o |
- <
8 —
8 8 8+ 8 g
5 e- i ] i .
g g 8- g 87
g 8 = g ] g o _|
o | e
N
o - o - o -
T I I I T T T T I I I I I | I T T |
2008 2010 2012 2014 2016 2018 2010 2012 2014 2016 2018 2012 2014 2016 2018
Year Year Year
(a) Windows Vista (b) Windows 7 (c) Windows 8
o
8 87
8 9 8 B
g 87 % s
(] (] -~
c o | c
5 S
> > o
o _| Yol
o o
T T T T T T I T T T T T I
2013 2014 2015 2016 2017 2018 20150 20160  2017.0  2018.0
Year Year

(d) Windows 8.1

(e) Windows 10

Figure 3: Accumulated vulnerabilities per year for the Windows OSes

where, s; is the seasonal index for i" month, d; is the

mean value of it month, and d is a grand average (*).

Hence, for instance, a seasonal index of 1.25 indicates
that the expected value for that month is 25% greater
than 1/12 of the overall average where the expected
value is 1.

To check whether the seasonal indexes are
statistically significant, chi-square (x?) test for the null
hypothesis Hy has been calculated. To be statistically
significant, x? value (x2) must be greater than x>
critical value (x2) with small enough p-value. The
other approach to characterize seasonality is to use
the autocorrelation function (ACF). ACF analysis gives
us specific relationship information between related
months. With time series values of z,, zp.,, ..., zn the
ACF at time lag k, denoted by r;, is Eq. (2) (Bowerman,
1987):

- Z?:_bk(zf - Z2) 2tk - 2)

Srep(Ze - 2) (2)

Ik

Thttp://home.ubalt.edu/ntsbarsh/business-stat/stat-
data/forecast.htm

E_fzbfl‘) represents the mean of the

observations. Values of coefficient of autocorrelation
close to zero indicate absence of seasonality in such
an interval of observation, while values close to 1
show a significant relationship associated with such
an interval of observation.

The value of ry, along with the correlogram analysis
(a graph with r, values arranged in lag intervals) are
used to establish criteria for a time series. According to
Heckert et al. (2002) and Brockwell and Davis (2016),
three possible situations can occur:

where z =

i. The time series is considered “random”
or “stationary” if most of the autocorrelation
coefficients are between the confidence intervals
and no pattern was detected in the correlogram;

ii. The time series is considered ‘“non-stationary”
when the values of the autocorrelation coefficients
decrease slowly as k increases, characterizing a
trending behavior;

iii. The time series is considered “non-stationary
strong” when the values of the correlation
coefficients decrease slowly as k increases, but
according to a periodicity (seasonal pattern).



Borges, Gabriel & Miani |

Revista Brasileira de Computagdo Aplicada (2020), v.12, n.2, pp.122-133 127

= Solaris

= windows 7 = RedHat

= Windows Vista ﬂ
= Windows 8
= = Windows 8.1

= Windows 10

== Ubuntu
== WMac08

Seasonal Indices
Seasonal Indices
16

-5
’ - IE

== Firefox
! = = Chrome

Seasonal Indices

jan feb mar apr may jun jul aug sep oct nov dec

Maenth

(a) Windows OSes

jan feb mar apr may jun jul aug sep oct nov dec

(b) Non-Windows OSes

jan feb mar apr may jun jul aug sep oct nov dec

Maenth Menth

(c) Web

Figure 4: Seasonal indices

The main difference between situations 2 and 3 and
that a non-stationary “moderate” time series does not
usually exhibit periodic behavior. In these data types,
it is common to find isolated r;, components related
to a growing (or decreasing) trend or some types of
patterns related to seasonality.

The results of the analysis for the groups of
software using the index of seasonality, chi-square,
and autocorrelation will be shown and explained in the
next sections. Based on such methods, the following
sequence of steps will be used to identify patterns of
seasonality in the data series:

i. Analyze the time series of discovered vulnerability
values per year - is it possible to view months with
a greater or lesser number of vulnerabilities in all
years?

ii. Compute and analyze the seasonality index -
identify the months in which the index value is
greater or less than one;

iii. Calculate and analyze the autocorrelation
coefficients and the correlogram - exclude the
software in which the series is considered stationary
(that is, seasonally adjusted indices greater than or
less than one previously found are potential outliers
and are not associated with seasonal patterns);

iv. Investigate the box-plot of the discovered
vulnerabilities per year and correlate with the
seasonality index (the average of a given month is
higher or was the product of an outlier?)

5.2 Windows Operating System

Fig. 3 shows the time series referring to the number
of vulnerabilities found over the ten years. For these
operating systems the total number of vulnerabilities
was 1261 for Windows Vista (Fig. 3a), 1637 for Windows
7 (Fig. 3b), 471 for Windows 8 (Fig. 3c), 759 for
Windows 8.1 (Fig. 3d), and 1466 for Windows 10
(Fig. 3e).

Time series for Windows systems provide no visible

pattern. It is possible to notice a high dispersion in the
data as a high concentration of vulnerabilities in some
years - 2010 and 2011 for Windows Vista and 2015 for
Windows 8, for example - and low concentration of
vulnerabilities in others - 2014 for Windows Vista and
the majority of the series for Windows 7.

With the help of the seasonal index presented in
Table 1 and in Fig. 4a it is possible to note that some
months have a higher probability of disclosure of
vulnerabilities than the others. All systems have a low
seasonal index in January and December, and March
shows high seasonal index in all. However, in order
to check whether such indices can be associated with
seasonal patterns, additional tests should be done,
such as, for example, calculating the autocorrelation
coefficients.

The autocorrelation coefficients are shown in
Table 2. It is possible to see that Windows 7
displays a stationary pattern (absence of seasonality),
unlike other systems in which several coefficients
autocorrelation coefficients are greater than one and
are outside the confidence interval. The next step of the
analysis involves the construction of box-plots for the
four systems that exhibited non-stationary behavior.

With the help of the seasonal indexes shown in
Table 1 and the box-plot shown in Fig. 5 it is possible
to note that Windows Vista exhibits the following
behavior: few vulnerabilities released in January
and an increase in vulnerability between February
and April. Windows 8 already has a decrease in
vulnerabilities in January and April but an increase
in the second half (August-September). Windows 8.1
has few vulnerabilities in January and December but
an increase in June. Moreover, Windows 10 has fewer
vulnerabilities in January and December while June
exhibits an increase in such number.

5.3 Non-Windows Operating Systems

For non-windows operating systems, the total number
of vulnerabilities was 756 for Solaris, 418 for Red Hat,



128 Borges, Gabriel & Miani |

Revista Brasileira de Computagdo Aplicada (2020), v.12, n.2, pp.122-133

Table 1: Seasonal Vulnerability Discovery Indexes - Windows OSes

WVista W7 WS W8.1 W10

Jan. 0.3331 0.5205 0.6879 0.3320 0.2619
Feb. 1.1039 1.5467 0.6624 0.6324 0.1883
Mar. 1.5511 1.1802 1.1465 1.4387 1.1623
Apr. 1.5987 1.4588 0.4331 0.6957 0.6958
May 0.4282 0.7770 1.1210 1.1700 0.9250
June 0.9040 1.0922 0.9682 1.5494 1.9236
July 0.9136 1.1802 0.8917 0.8696 0.8267
Aug. 1.2086 1.0556 1.6051 1.2648 0.8186
Sep. 0.8755 0.6891 1.3758 1.3123 1.6453
Oct. 1.4370 0.9016 0.7134 0.9170 1.4980
Nov. 0.7518 0.7330 1.4013 1.2490 1.4407
Dec. 0.8945 0.8650 0.9936 0.5692 0.6139
X2 19.6751 19.6751 19.6751 19.6751 0.6578
X2 187.48 144.8 52.287 103.5 397.26
p- 2.20E-16 | 2.20E-16 | 2.20E-16 | 2.20E-16 | 2.20E-16
value

Table 2: Individual ACF values - Windows OSes

seasonality), unlike other systems in which several

Windows Vista - 95% confidence interval: (-0.177,0.177) autocorrelation coefficients are greater than 1 and are
1.0° 0.180° 0.230° 0.1073 0-349% outside the confidence interval. The next step of the
0.119° 0.315° 0.0307 0.174° ~0.0559 analysis involves the construction of box-plots for the
0.219 | 0.0017 | 0.180% | -0.0267 | 0.052% three systems that exhibited non-stationary behavior.
-0.05855 | 0.043 -0.06117 0.1158 -0.05019 . . .
20.0102° | —0.0212" | 0.08622 20.13253 Using the seasonal indexes shown in Table 3 and
Windows 7 - 95% confidence interval: (-0.1863,0.1863) the box-plot shown in Fig. 5 it is possible to note that
.00 0.058! 0.0442 0.1833 0.083% Solaris displays the following behavior: an increase in
~0.0485 0.029° 0.0387 0.1078 0.077° vulnerabilities released in January and August and few
-0.0480 | -0.054 20.0832 | —0.0773 | 0.022% vulnerabilities released in February. Red Hat shows
20.0265 | —0.0260 | -0.1337 | o.om® 0.079 an increase in vulnerabilities in June and October and
-0.071%° | -0.042%* | 0.266% -0.088%3 low vulnerabilities released for the remaining months.
Windows 8 - 95% confidence interval: (-0.2269,0.2269) Ubuntu has few vulnerabilities in September but an
1.0° 0.659" 0.5852 0.6423 0.468% increase in April and June.
0.3305 0.303° 0.1597 0.0328 0.0179
_ 10 _ 11 — 12 _ 13 _ 14
_g:?;(?ls _g:ig’zw _g:iggn _g:iggls _3:12(3)19 Table 3: Seasonal Vulnerability Discovery Indexes -
20.104%0 20.0622T | -0.0552%2 | -0.071%3 No Windows OSes
Windows 8.1 - 95% confidence interval: (-0.2477,0.2477) Solaris RH Ubuntu Mac 0S
1.0° 0.497" 0.3322 0.4743 0.314% Linux X
0.1785 0.275° 0.2187 0.0628 0.1209 Jan. 1.2627 1.7512 1.0193 0.0183
0.0971 0.040™ 0.08412 0.0163 0.004% Feb. 0.5456 0.5455 0.6372 0.2380
0.039%55 -0.040% | -0.1077 | 0.02218 0.01619 Mar. 0.7794 0.4306 0.6921 0.6578
~0.018%0 0.05721 0.05822 -0.147%3 Apr. 1.2003 1.3206 1.9226 0.6591
Windows 10 - 95% confidence interval: (-0.3155,0.3155) May 0.4053 0.6890 1.6095 1.1155
1.0° 0.5031 0.2592 0.4063 0.288% June 0.7794 2.1244 1.2579 0.5885
0.0635 0.130° 0.2237 0.0438 0.0339 July 1.8551 1.1196 1.1041 0.6212
0.08310 0.0711 0.04012 -0.04413 -0.070% Aug. 1.4809 0.7177 0.8075 0.1622
-0.08815 -0.0971% | -0.112%7 -0.0748 -0.074Y9 Sep. 0.7448 0.2010 0.4614 1.0488
-0.14520 -0.09721 | -0.12322 -0.167%3 Oct. 1.8395 1.8373 0.8404 2.0859
Bold represents the values outside the confidence interval. Nov. 0.4209 0.6890 0.7580 1.7014
The SUPeTSTiPt represents the lags. Dec. 0.6859 0.5742 0.8899 | 3.1033
X2 19.6751 | 19.6751 19.6751 | 19.6751
X? 192.1 148.76 359.06 6808.0
2166 for Ubuntu and 9176 for Mac OS X. With the p- 2.20E- 2.20E- 2.20E- 2.20E-
help of the seasonal index presented in Table 3 and in value 16 16 16 16

Fig. 4b it is possible to note that some months have a
higher probability of disclosure of vulnerabilities than
the others. All systems show low seasonal index in
February and March, but none show high seasonal
index at all.

The autocorrelation coefficients are shown in Table 4.

Mac OS X exhibits a stationary pattern (absence of

5.4 Web Servers and Browsers

The number of vulnerabilities for Web Servers and
Browsers was 35 for IIS, 2528 for IE, 60180 for Firefox,



Borges, Gabriel & Miani |

Revista Brasileira de Computagdo Aplicada (2020), v.12, n.2, pp.122-133

129

Wulnerabilties

Wulnerabilties

40 B0

20

100 150 200

50

1}

Windows Vista

Windows 10

Ubuntu

Windows &

Wi

ndows 8.1

Wulnerabilties

- -
|
I

Wulnerabilties

50

0 10 20 30 40

s

[

-
'
'
'

-
|
|
|
|
|

- T
b
i

I
:

Jeleaol =l
jan feb apr

jun  jul aug oct nov

jan feb

apr

Jndall

jun  jul aug

Red Hat

A

oct nov

Wulnerabilties
20 an
I I

10
1

Wulnerabilties

10 15 20 25 30 35

5

1]

EDDQDQ

-
'
'

-
'
'
|

-
|
'
'
'
|
'
'

jan fab

apr

jun  jul aug

3=_—=

-
T T
oct now

Wulnerabilities
Wulnerabiities
3
L

-4

-
'

QBEQQQDEDQE

q
Wulnerabiities
-4

jan feb apr jun  jul aug oct nov jan feb apr

Firefox

jun  jul aug

Chrome (2009.2013)

oct nov jan feb apr jun JI.I| aug oct nov

Chrome (20142016

—
'
|
'
'
|

3000
I

‘ulnerabilities
L
Wulnerabilities

1
20000 40000  &00O00
L I

0 1000

a

*ﬂﬁ@;ﬁéiﬁ%@g

IR =

1000
1
—mmmmeeed

Wulnerabilities
600
L

T T

DD Eﬁ_—

E:}mﬂ

o 200
I

1

jan feb apr jun  jul aug oct nov jan feb apr

jun  jul aug

T T
jun  jul aug

oct nov jan feb apr oct nov

Figure 5: Box-plot for all systems

and 456021 for Chrome. Since the cumulative total of
discovered vulnerabilities of the Apache Server from the
year, 2008 through 2017 were only 19; such software
was not considered in our analysis.

The seasonal index presented in Table 5 and in
Fig. 4c show that all of the systems have low seasonal
indexes in January, but none of them exhibit a high
seasonal index. However, in order to check whether
such indices can be associated with seasonal patterns,
additional tests were conducted.

Table 6 show that all systems exhibit a non-
stationary pattern where several coefficients of
autocorrelation are higher than one and are out of range.
The next step of the analysis involves the construction
of box-plots for the four systems that exhibited non-
stationary behavior.

The analysis of the box-plots (Fig. 5) and the

seasonal indexes reveal that IIS exhibits the following
behavior: an increase in vulnerabilities released in July
and September and low vulnerabilities for the other
months. The number of vulnerabilities associated with
IE has increased in February and June and decreased
in January. Firefox has fewer vulnerabilities in January
and April but an increase in vulnerabilities in February.

Fig. 5 shows two box-plot graphics for Chrome.
In the first graph, the months of April and July
present a small number of vulnerabilities but an
increase in March, August, and September. In the
second graph, the months of March, May, and August
show an increase in reported vulnerabilities and low
vulnerabilities reported for most other months. By
comparing the two graphs, it is possible to notice
that the seasonality present in the first graph, has
entirely changed concerning the second graph. This



130

Borges, Gabriel & Miani

| Revista Brasileira de Computagdo Aplicada (2020), v.12, n.2, pp.122-133

Table 4: Individual ACF values — No Windows OSes

Table 6: Individual ACF values - Web

Solaris - 95% confidence interval: (-0.18639,0.18639) IIS - 95% confidence interval: (-0.2106,0.2106)
1.0° 0.2457 0.2032 0.4803 0.120% 1.0° -0.0461 0.0442 0.3453 -0.0574%
0.1525 0.348° 0.1167 0.0748 0.2279 -0.1085 0.154° 0.0557 -0.1528 0.3729
0.07810 0.0971 0.18312 -0.010%3 -0.003% 0.0911 -0.080M 0.3192 0.15113 -0.055%
0.1455 0.00816 -0.086'7 | 0.040%8 -0.095%9 0.21615 -0.069® | -0.10917 -0.0078 | 0.02119
-0.1642° -0.0441 -0.151%2 -0.17223 -0.11920 -0.011%1 0.16722 -0.065%3

Red Hat - 95% confidence interval: (-0.17703,0.17703) IE - 95% confidence interval: (-0.1974,0.1974)
1.0° 0.0241 0.037>2 0.3643 0.076% 1.0° 0.4131 0.4492 0.5463 0.350%
0.1195 0.230° 0.2057 0.0738 0.080° 0.4695 0.320° 0.2907 0.3598 0.2979
0.0821 0.013" 0.1642 -0.0271 0.0481% 0.347% 0.252" 0.410%? 0.21013 0.175%
0.108%5 0.0911° 0.02817 0.101%8 0.06019 0.29615 0.0781 0.1007 0.0448 -0.046%
-0.0352° | 0.0282%! 0.13922 0.0352%3 0.01220 -0.034* -0.10222 -0.089%3

Ubuntu - 95% confidence interval: (-0.17703,0.17703) Firefox - 95% confidence interval: (-0.1863,0.1863)
1.0° 0.6231 0.3372 0.3703 0.424% 1.0° 0.243! 0.2802 0.3423 -0.021%
0.3695 0.306° 0.1967 0.2078 0.2999 0.0135 -0.036° -0.1517 -0.1128 -0.1279
-0.2841° | 0.2341 0.23312 0.27713 0.2641% -0.0311° 0.0971 0.02112 0.08813 0.294%
0.18915 0.20210 0.216%7 0.14818 0.07619 0.06015 0.19116 0.18217 0.05018 0.00819
0.06220 0.097% 0.02222 0.02423 0.0392° -0.166%! -0.085%2 | -0.0862%3

Mac Os X - 95% confidence interval: (-0.17703,0.17703) Chrome - 95% confidence interval: (-0.177,0.177)
1.0° 0.058! -0.0422 -0.0533 0.0374 1.0° 0.564! 0.6052 0.5583 0.409%
-0.0465 -0.048° 0.1067 -0.0318 -0.0379 0.4165 0.397° 0.3597 0.1918 0.1929
-0.0491° | 0.080M -0.045% -0.02413 -0.047% 0.07310 0.0821 0.043%2 0.04153 -0.0081
-0.048% | -0.035° | -0.0087 | -0.01878 -0.00419 -0.01215 -0.050 | -0.0617 -0.076® | -0.09319
-0.011%Y -0.038%! | -0.039%2 | 0.0267%3 -0.0972° | -0.104%* -0.1042? -0.111%3
Bold represents the values outside the confidence interval. Bold represents the values outside the confidence interval.
The superscript represents the lags. The superscript yepresents the lags.

fact reinforces the importance of studying security

events using different time windows.

Table 5: Seasonal Vulnerability Discovery Indexes -

Web
1IS Chrome IE Firefox
Jan. 0.0000 0.4195 0.0807 0.9220
Feb. 0.3429 0.4723 1.4573 2.1406
Mar. 1.0286 1.6300 0.8687 1.1687
Apr. 0.0000 0.3099 0.5601 1.0351
May 0.0000 1.2653 0.8592 0.2154
June 2.4000 0.9620 1.5332 0.6526
July 0.0000 0.2399 1.3196 0.4407
Aug. 0.6857 1.8441 1.0680 1.2576
Sep. 3.7714 1.8143 1.4525 0.6837
Oct. 0.0000 1.4271 0.8497 1.1870
Nov. 2.0571 0.6378 0.9399 1.2241
Dec. 1.7143 0.9777 1.0111 1.0724
X2 19.6751 19.6751 19.6751 19.6751
X2 49.0 145470.0 | 401.75 13253.0
p- 9.46E- 2.20E- 2.20E- 2.20E-
value 07 16 16 16

Of all the software analyzed, only Windows 7 and
Mac OS systems did not present any seasonality
pattern. January was the month with less incidence
of vulnerabilities for Windows systems and Web
applications. For non-windows OSes, February and
September have a less incidence of vulnerabilities. For
most of the studied systems, June is the month with a
higher incidence of vulnerabilities.

5.5 Discussion and comparison with Joh and
Malaiya (2009)

Table 7 illustrates the main similarities and differences
between papers. For the systems studied, Joh and
Malaiya (2009) found that June and December, for
the Windows systems, had a high rate of vulnerability
discovery. For systems other than Windows and Web
applications, December showed a high incidence of
vulnerability discovery rate. However, our results
showed that this pattern has changed over the
years. For example, Windows systems, non-Windows
systems, and Web applications have a higher incidence
of vulnerabilities in June. In other words, the year-end
peak for these systems found by Joh and Malaiya (2009)
does not exist anymore. Besides, it would be important
to study the reasons that affect such changes.

An important issue found during the analysis is
related to the collected data. In many situations, NVD
has returned months in which no vulnerability was
disclosed. Systems such as Apache and IIS, for example,
obtained 19 and 35 vulnerabilities respectively over the
ten years. In future work, it would be interesting to
evaluate what actually happened in those months as a
way of providing context for the analysis of the results.
Our work shows the importance of performing such
type of studies using updated data. That is, behaviors
associated with information security issues, such as
the modeling of security vulnerabilities, might change
over time. This result emphasizes the importance of
conducting cybersecurity replication studies in order to
confirm or clarify specific outcomes. The usable privacy
and security community and references (Coopamootoo




Borges, Gabriel & Miani |

Revista Brasileira de Computagdo Aplicada (2020), v.12, n.2, pp.122-133

131

Table 7: Differences and similarities between the papers

Systems Comparative Joh and Malaiya Our paper - 2008 to
(2009) - 1995 to 2017
2007
Months with a June and December June
. higher incidence of
Windows System vulnerabilities
Months with a lower February, March, January
incidence of April, and September
vulnerabilities
Months with a December June
higher inci f
Different Windows l%uelzlrl é?acll)(ljlel?l(éi °
System
Months with a lower February February and
incidence of September
vulnerabilities
Months with a December February and June
L higher incidence of
Web Applications %/ulnerabilities
Months with a lower September and January
incidence of November
vulnerabilities

and Grof3, 2016, Herley and Van Oorschot, 2017) discuss
the impact of moving security research forward in a
more scientific fashion, and this involves replicating
or extending relevant previously published studies and
experiments.

6 Conclusion

The purpose of this paper was to find possible
seasonalities in a vulnerability dataset of ten years
composed of Windows operating systems, non-
Windows operating systems, and Web applications. In
summary, from the collected dataset of vulnerabilities,
we compute the seasonal index for each system, applied
the autocorrelation function, and constructed box-plot
graphs for the systems that presented seasonality.
Next, we compare our results with a previous work (Joh
and Malaiya, 2009).

By comparing both results, we observed that the
seasonality reported in the updated dataset (our paper)
has changed. Joh and Malaiya (2009) concluded that
Windows operating systems had seasonality in the
months of June and December, while other operating
systems and Web applications obtained seasonality in
December. However, this study indicates that all of
these system groups obtained seasonality in June. This
result reinforces the relevance of replicating cyber-
security studies in order to understand the impact of
some findings over time.

For future work, we would like to explore the
seasonality factor in order to forecast the future
behavior of vulnerability disclosures. For this, we

might use several time-series modeling techniques
such as moving average, exponential smoothing,
and ARIMA (Auto-Regressive Integrated Moving Average)
models. For instance, the ARIMA model can be
applied in cases where the data show evidence of non-
stationarity, such as the data collected for this work.
Evaluating the forecast capabilities of machine learning
models is another important research topic. Finally,
it would be interesting to consider other relevant
software, for example, IoT applications.

References

Alhazmi, O. H. and Malaiya, Y. K. (2008). Application
of vulnerability discovery models to major operating
systems, IEEE Transactions on Reliability 57(1): 14-22.
http://dx.doi.org/10.1109/tr.2008.916872.

Alhazmi, 0. H., Malaiya, Y. K. and Ray, I. (2007).
Measuring, analyzing and predicting security
vulnerabilities in software systems, Computers &
Security 26(3): 219-228. http://dx.doi.org/10.10
16/j.cose.2006.10.002.

Anand, A., Bhatt, N. and Alhazmi, O. H. (2020).
Modeling software vulnerability discovery process
inculcating the impact of reporters, Information
Systems Frontiers pp. 1-14. http://dx.doi.org/10.
1007/510796-020-10004-9.

Aparecido, C. A. G. M. and Bellezi, M. A. (2014).
Analise de vulnerabilidades com OpenVAS e Nessus,
Tecnologias, Infraestrutura e Software 3(1): 34-44.


http://dx.doi.org/10.1109/tr.2008.916872
http://dx.doi.org/10.1016/j.cose.2006.10.002
http://dx.doi.org/10.1016/j.cose.2006.10.002
http://dx.doi.org/10.1007/s10796-020-10004-9
http://dx.doi.org/10.1007/s10796-020-10004-9

132 Borges, Gabriel & Miani |

Revista Brasileira de Computagdo Aplicada (2020), v.12, n.2, pp.122-133

Arsham, H. (1994). Time series analysis for business
forecasting. Available at http://home.ubalt.edu/nts
barsh/Business-stat/stat-data/Forecast.htm.

Bowerman, B. L. (1987). Time series forecasting: Unified
concepts and computer implementation, Duxbury Press,
Boston, MA.

Brockwell, P. J. and Davis, R. A. (2016). Introduction to
time series and forecasting, Springer, Switzerland.

CERT (1991). US-CERT | United States Computer
Emergency Readiness Team. Available at https:
//www.us-cert.gov/.

Condon, E., He, A. and Cukier, M. (2008). Analysis of
computer security incident data using time series
models, 19th International Symposium on Software
Reliability Engineering, IEEE, pp. 77-86. http://dx
.doi.org/10.1109/issre.2008.39.

Coopamootoo, K. P. L. and Grof3, T.
Evidence-based methods for privacy and identity
management, Privacy and Identity Management.
Facing up to Next Steps, Vol. 498 of Advances in
Information and Communication Technology book series,

Springer International Publishing, pp. 105-121.

http://dx.doi.org/10.1007/978-3-319-55783-0_9.

Goel, J. N. and Mehtre, B. M. (2015). Vulnerability
assessment & penetration testing as a cyber defence
technology, Procedia Computer Science 57: 710-715. ht
tp://dx.doi.org/10.1016/j.procs.2015.07.458.

Han, Z., Li, X., Xing, Z., Liu, H. and Feng, Z. (2017).

Learning to predict severity of software vulnerability
using only vulnerability description, 2017 IEEE
International Conference on Software Maintenance and
Evolution (ICSME), IEEE, pp. 125-136. http://dx.doi
.org/10.1109/icsme.2017.52.

Heckert, N. A., Filliben, J. J., Croarkin, C. M.,

Hembree, B., Guthrie, W. F., Tobias, P. and Prinz, J.

(2002). Handbook 151: Nist/sematech e-handbook
of statistical methods, Technical report, National
Institute of Standards and Technology, Gaithersburg,
MD. Available at https://www.nist.gov/publication
s/handbook-151-nistsematech-e-handbook-statistic
al-methods.

Herley, C. and Van Oorschot, P. C. (2017). SoK: Science,
security and the elusive goal of security as a scientific
pursuit, 2017 IEEE Symposium on Security and Privacy
(SP), IEEE, pp. 99-120. http://dx.doi.org/10.1109/s
p.2017.38.

Joh, H. and Malaiya, Y. K. (2009). Seasonal
variation in the vulnerability discovery process,
2009 International Conference on Software Testing
Verification and Validation, IEEE, pp. 191-200. http:
//dx.doi.org/10.1109/icst.2009.9.

Joh, H. and Malaiya, Y. K. (2016). Periodicity in
software vulnerability discovery, patching and
exploitation, International Journal of Information
Security 16(6): 673—-690. http://dx.doi.org/10.1007
/s10207-016-0345-x.

(2016).

Johnson, P., Gorton, D., Lagerstrom, R. and Ekstedt,
M. (2016). Time between vulnerability disclosures: A
measure of software product vulnerability, Computers
& Security 62: 278-295. http://dx.doi.org/10.1016/ ]
.cose.2016.08.004.

Kuypers, M., Paté-Cornell, E. and Maillart, T. (2016).
An empirical analysis of cyber security incidents
at a large organization, Technical report, Stanford
University, Stanford, CA. Available at https://fs
i.stanford.edu/publication/empirical-analysis-cy
ber-security-incidents-large-organization.

Liu, Y., Sarabi, A., Zhang, J., Naghizadeh, P., Karir, M.,
Bailey, M. and Liu, M. (2015). Cloudy with a chance
of breach: Forecasting cyber security incidents, 24th
USENIX Conference on Security Symposium, USENIX
Association, USA, pp. 1009-1024. http://dx.doi.org
/10.5555/2831143.2831207.

Miani, R. S., Zarpelao, B. B., Sobesto, B. and Cukier, M.
(2015). A practical experience on evaluating intrusion
prevention system event data as indicators of security
issues, 34th Symposium on Reliable Distributed Systems
(SRDS), IEEE, pp. 296-305. http://dx.doi.org/10.11
09/srds.2015.17.

Movahedi, Y., Cukier, M. and Gashi, I. (2019).
Vulnerability prediction capability: A comparison
between vulnerability discovery models and neural
network models, Computers & Security 87: 101596.
http://dx.doi.org/10.1016/j.cose.2019.101596.

NIST (2004). NVD - Home. available at

https://nvd.nist.gov/.

Positive Technologies (2018).  Vulnerabilities in
corporate information systems 2018, Technical report,
Positive Technologies, London, UK. Available at
https://www.ptsecurity.com/ww-en/analytics/cor
porate-vulnerabilities-2018/.

Roumani, Y., Nwankpa, J. K. and Roumani, Y. F. (2015).
Time series modeling of vulnerabilities, Computers &
Security 51: 32—40. http://dx.doi.org/10.1016/j.cos
e.2015.03.003.

Secunia (2009). Computer security research - secunia.
Available at https://secuniaresearch.flexerasoftwar
e.com/commu-nity/research.

Shameli-Sendi, A., Aghababaei-Barzegar, R. and
Cheriet, M. (2016). Taxonomy of information security
risk assessment (ISRA), Computers & Security 57: 14—
30. http://dx.doi.org/10.1016/j.cose.2015.11.001.

Singh, H., Surender, J. and Pankaj, K. V. (2016).
Penetration testing: Analyzing the security of the
network by hacker’s mind, International Journal
of Latest Technology in Engineering,Management &
Applied Science 5(5): 56-60.

Whitman, M. E. and Mattord, H. J. (2012). Principles
of information security, 4 edn, Course Technology,
Boston, MA.


http://home.ubalt.edu/ntsbarsh/Business-stat/stat-data/Forecast.htm
http://home.ubalt.edu/ntsbarsh/Business-stat/stat-data/Forecast.htm
https://www.us-cert.gov/
https://www.us-cert.gov/
http://dx.doi.org/10.1109/issre.2008.39
http://dx.doi.org/10.1109/issre.2008.39
http://dx.doi.org/10.1007/978-3-319-55783-0_9
http://dx.doi.org/10.1016/j.procs.2015.07.458
http://dx.doi.org/10.1016/j.procs.2015.07.458
http://dx.doi.org/10.1109/icsme.2017.52
http://dx.doi.org/10.1109/icsme.2017.52
https://www.nist.gov/publications/handbook-151-nistsematech-e-handbook-statistical-methods
https://www.nist.gov/publications/handbook-151-nistsematech-e-handbook-statistical-methods
https://www.nist.gov/publications/handbook-151-nistsematech-e-handbook-statistical-methods
http://dx.doi.org/10.1109/sp.2017.38
http://dx.doi.org/10.1109/sp.2017.38
http://dx.doi.org/10.1109/icst.2009.9
http://dx.doi.org/10.1109/icst.2009.9
http://dx.doi.org/10.1007/s10207-016-0345-x
http://dx.doi.org/10.1007/s10207-016-0345-x
http://dx.doi.org/10.1016/j.cose.2016.08.004
http://dx.doi.org/10.1016/j.cose.2016.08.004
https://fsi.stanford.edu/publication/empirical-analysis-cyber-security-incidents-large-organization
https://fsi.stanford.edu/publication/empirical-analysis-cyber-security-incidents-large-organization
https://fsi.stanford.edu/publication/empirical-analysis-cyber-security-incidents-large-organization
http://dx.doi.org/10.5555/2831143.2831207
http://dx.doi.org/10.5555/2831143.2831207
http://dx.doi.org/10.1109/srds.2015.17
http://dx.doi.org/10.1109/srds.2015.17
http://dx.doi.org/10.1016/j.cose.2019.101596
https://www.ptsecurity.com/ww-en/analytics/corporate-vulnerabilities-2018/
https://www.ptsecurity.com/ww-en/analytics/corporate-vulnerabilities-2018/
http://dx.doi.org/10.1016/j.cose.2015.03.003
http://dx.doi.org/10.1016/j.cose.2015.03.003
https://secuniaresearch.flexerasoftware.com/commu-nity/research
https://secuniaresearch.flexerasoftware.com/commu-nity/research
http://dx.doi.org/10.1016/j.cose.2015.11.001

Borges, Gabriel & Miani | Revista Brasileira de Computagdo Aplicada (2020), v.12, n.2, pp.122-133 133

Xiao, C., Sarabi, A., Liu, Y., Li, B., Liu, M. and
Dumitras, T. (2018). From patching delays to
infection symptoms: Using risk profiles for an early
discovery of vulnerabilities exploited in the wild,
27th USENIX Security Symposium (USENIX Security 18),
USENIX Association, Baltimore, MD, pp. 903-918.

Yasasin, E., Prester, J., Wagner, G. and Schryen, G.
(2020). Forecasting IT security vulnerabilities — An
empirical analysis, Computers & Security 88: 101610.
http://dx.doi.org/10.1016/j.cose.2019.101610.


http://dx.doi.org/10.1016/j.cose.2019.101610

	1 Introduction
	2 Security vulnerabilities
	3 Related Work
	4 Methodology
	4.1 Previous work – Joh2009
	4.2 Our Approach
	4.3 Data Collection

	5 Results
	5.1 Data Analysis
	5.2 Windows Operating System
	5.3 Non-Windows Operating Systems
	5.4 Web Servers and Browsers
	5.5 Discussion and comparison with Joh2009

	6 Conclusion

