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Abstract
Several factors may influence the security vulnerability discovery rates. The projection of these rates might helpthe development and the prioritization of software patches. Previous work studied the seasonal behaviors of thevulnerability discovery process for several operating systems and web-related software systems. We propose areplication study of an experiment conducted more than a decade ago to understand the changes in the dynamicsof the security vulnerability discovery rates. In contrast to the findings from ten years ago, the investigatedsystems do not exhibit a year-end peak. Besides, the higher incidence during mid-year months for Microsoftoperating systems was only noticed for the most recent Windows OSes: Windows 8.1 and Windows 10. Theseresults highlight the relevance of reproducibility in scientific works. For cybersecurity studies, in particular,understanding the impact of specific findings over time might uncover unexpected trends and provide valuableinsights.
Keywords: Cybersecurity; Security Vulnerability; Vulnerability Discovery Models
Resumo
Vários fatores podem influenciar as taxas de descoberta de vulnerabilidades de segurança. A projeção dessas taxaspode ajudar no desenvolvimento e na priorização de atualização de software. Trabalhos anteriores estudaramos comportamentos sazonais do processo de descoberta de vulnerabilidades para vários sistemas operacionais esistemas de software relacionados à Web. O presente trabalho propõe a replicação de um experimento realizadohá mais de uma década para entender as mudanças na dinâmica das taxas de descoberta de vulnerabilidades desegurança. Em contraste com os resultados encontrados anteriormente, os sistemas investigados não apresentamsazonalidade no fim do ano. Além disso, o aumento de vulnerabilidades no meio do ano para os sistemasoperacionais Microsoft foi observada apenas para os sistemas Windows mais recentes: Windows 8.1 e Windows 10.Esses resultados destacam a importância da reprodutibilidade em trabalhos científicos. Na área de cibersegurança,em particular, a confirmação do impacto de resultados ao longo do tempo, pode servir para descobrir novastendências e fornecer valiosos insights sobre o problema.
Palavras-Chave: Cibersegurança; Modelos de descoberta de vulnerabilidades; Vulnerabilidades de Segurança

1 Introduction
With the advent of new information andcommunication technologies (ICTs), both businessesand people in this environment need to understandthat new features often imply new security issues. Oneway to exploit new security issues, and developing

cyber-attacks involves finding vulnerabilities incomputer systems. A typical example is exploitingvulnerabilities in protocols of operating systems suchas Microsoft Server Message Block (SMB) from MicrosoftWindows.
Cyber-attacks are increasing every day, and
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statistics show that more than 70% of computersystems have vulnerabilities that could be exploited byan attacker (Positive Technologies, 2018). Data lossesdue to such vulnerabilities are typical of two types:either the data is confidential to the organization oris private to an individual. Regardless of the category,such attacks may result in loss of money or reputation.
Thus, managing security flaws in computersystems become an essential task not only toidentify vulnerabilities but also to create a knowledgebase on the subject and therefore, to understandpossible patterns of behavior. Several referencesshow the importance of vulnerability analysis forthe understanding of the security risks of anorganization (Goel and Mehtre, 2015, Shameli-Sendiet al., 2016, Singh et al., 2016).
In this context, Joh and Malaiya (2009) proposeda study on the seasonal variation in the processof security vulnerability discovery of software.The authors’ idea was to investigate the National

Vulnerability Database (NVD) between 1995 and 2007and discover at what time of year vulnerabilitydiscovery rates were higher, detecting possible causes.Its results suggested a possible seasonality pattern,which means that it should be taken into account indecision-making and security vulnerability forecastingmodels.
Given that new technologies, computer systems, andconsequently security issues have arisen since the workconducted by Joh and Malaiya (2009), it is essentialto verify if the trends found in their work still exist.To do this, we analyzed security vulnerability datareported from 2008 to 2017 for the following systems:Windows Vista, Windows 7, Windows 8, Windows 8.1,Windows 10, Solaris, Red Hat, Ubuntu, Mac OS X,Internet Information Services (IIS), Internet Explorer(IE), Chrome, Firefox, and Apache. Additionally, twoapproaches were employed to find the patterns ofseasonality: calculation of the seasonality index andanalysis of the autocorrelation function (ACF) for eachof the months. Since cyber-attacks are rapidly evolving,this type of study is important to understand theimpact of temporal factors on information securityissues. Previous studies investigate the behavior ofsecurity incidents and reinforce the importance ofthis research topic. They analyze factors such as howpatterns in past movements are useful for forecastingincidents (Condon et al., 2008, Miani et al., 2015,Liu et al., 2015), the relationship between deployedsecurity measures and security incidents frequencyover time (Kuypers et al., 2016), and the prevalence ofdifferent sizes of data breaches over time (Liu et al.,2015).
The goal of this work is to use time-series analysisto evaluate the seasonality in the software vulnerabilitydiscovery process using a public database maintainedby NIST. We want to i) identify software systems thatexhibit seasonal trends (in the process of vulnerabilitydiscovery) among the data collected and ii) make acomparison of our results with the results of theprevious in Joh and Malaiya (2009). In general terms,two types of results can be found: the confirmation of

the patterns identified by Joh and Malaiya (2009) orthe existence of new patterns.The paper is organized as follows. Section 2 presentsthe theoretical foundation of security vulnerabilities.Section 3 discusses related work. Section 4 details thestudy that is being replicated (Joh and Malaiya, 2009)and also the proposed methodology. Section 5 presentsthe results. Conclusions and future work are providedin Section 6.

2 Security vulnerabilities
In the context of computer security, a vulnerabilitycan be defined as a failure in a system that allows therealization and execution of an attack on a computersystem (Aparecido and Bellezi, 2014). To exploita vulnerability, an attacker must have at least oneappropriate tool or technique that can connect to asystem weakness, these tools or scripts are called
exploits (Whitman and Mattord, 2012).In general, vulnerabilities have a life cycle, asillustrated in Fig. 1 (Xiao et al., 2018). According tothis figure, from the discovery of vulnerabilities, thereis a race between developers/users and attackers: whiledevelopers try to release patches so that users caninstall and are no longer vulnerable, attackers attemptto exploit these vulnerabilities through automated toolsbefore users install the patches.

Figure 1: Vulnerability life cycle. Adapted from Xiaoet al. (2018).

During the vulnerability discovery phase, whendevelopers or attackers discover system failures, thesevulnerabilities can be disclosed to the public. Suchdisclosure may occur either in public forums orthrough the release of an update for vulnerabilitycorrection (Xiao et al., 2018).Data on software security vulnerabilities are oftenfound using specialized search portals to store andmaintain information about vulnerabilities and securityholes, such as NVD (NIST, 2004), Secunia (Secunia,2009), and US-CERT (CERT, 1991). We use the NVDportal as the main source of data, as done by previouswork such as Joh and Malaiya (2009), Alhazmi et al.(2007), Roumani et al. (2015), Johnson et al. (2016),Han et al. (2017) and Anand et al. (2020).
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3 Related Work
Several studies attempt to characterize computersecurity vulnerabilities. Since the goal of this workis to understand factors (seasonality) that might beused to forecast vulnerabilities, we focus on such typeof study in this section.

One of the first works that investigate vulnerabilityprediction can be found in Alhazmi et al. (2007). Theauthors analyzed the number of vulnerabilities per unitof code size (density) from Windows and Red Had Linux.They found that values of vulnerability densities tendto fall within a range of values, similar to the defectdensity. They used this result to model the vulnerabilitydiscovery process using a logistic model.
Alhazmi and Malaiya (2008) describe theapplicability and significance of several vulnerabilitydiscovery models for four operating systems (WindowsXP, Windows 95, Red Hat Linux 6.2, and Red HatFedora). Vulnerability discovery models were examinedusing the Akaike information criterion (AIC) andchi-square test. The evaluation found that the AMLmodel is generally better in the long run, with betterperformance for Windows 95, Red Hat Linux 6.2, andRed Hat Fedora.
Roumani et al. (2015) evaluate the use of time--series modeling to the vulnerability disclosure issue.They applied two techniques: autoregressive integratedmoving average (ARIMA) and exponential smoothingto predict the number of vulnerabilities for five webbrowsers: Chrome, Firefox, Internet Explorer, Opera,and Safari. Their findings suggest that such modelingtechniques can be useful for vulnerability prediction.
A recent study by Movahedi et al. (2019) comparedthe performance of time-series models and neuralnetwork models for predicting vulnerabilities. Authorsfound that neural network models outperformtime-series models in all the cases in terms ofprediction accuracy. Yasasin et al. (2020) usesseveral vulnerability modeling techniques (exponentialsmoothing, ARIMA, Croston, and neural network) buttackle a slightly different issue: predicting the numberof post-release security vulnerabilities in subsequentperiods of time. They found that the optimalforecasting methodology depends on the software andsome techniques (ARIMA and Croston) outperformsexponential smoothing and neural network.
Regarding analyzing specific seasonal factors, Johand Malaiya (2009) and Joh and Malaiya (2016)examined vulnerabilities disclosed in various software(Windows operating systems: Windows NT, Windows95, Windows 98, Windows 2000, Windows XP andWindows 7; Mac OS X, Red Hat Linux Enterprise,AIX, Android and Chrome OS, and other systems:Apache, IIS, Internet Explorer, Firefox, Safari andJava (JRE)) to investigate possible annual variations invulnerability discovery processes. They also examinedthe weekly frequency in the distribution of securityupdates (patches) and exploited vulnerabilities.
For all software groups examined, the authors founda higher vulnerability detection rate in certain months.In Microsoft products, they reported a higher incidence

during the half-year periods. They also observed theperiodical behavior of 7 days in the data of vulnerabilityscanning and confirmed that more activity occursduring the week than on the weekends. Specifically,vulnerability activity figures for Tuesday tended to behigher than the other days of the week. Results showedthat periodicity needs to be considered for optimumallocation of resources and the evaluation of securityrisks.The objective of this present study is to analyze theseasonality in two different moments: between 1995–2007 and between 2008–2017. The primary motivationfor this is to evaluate the evolution of the behavior ofsecurity issues over the years.

4 Methodology
4.1 Previous work – Joh and Malaiya (2009)

Joh and Malaiya (2009) proposed a study on theseasonal variation in the process of vulnerabilitydiscovery of software security. The objective of theresearch was to find a seasonal pattern among theavailable databases of the studied software and todiscover in which time of year the vulnerability ratetends to be higher and to detect possible causes of thisevent.From the data collection, the authors analyzed thepossible existence of seasonality using two statisticalmethods. The first was a seasonal index methodmeasured with the chi-square test, which providesspecific indices for each month, and the second was theautocorrelation function, which provides informationfor the correlated month. In this way, the authors wereable to investigate the behavior of each of the systems.The authors divided the operating systems intothree categories: Windows, not Windows, and Web.The Windows operating systems were Windows NT,Windows XP, Windows 2000, and Windows Server 2003,non-Windows operating systems were SUN Solaris, RedHat Linux, HP-UX and MAC OS X and Web applicationswere IIS, IE, Apache, and Firefox. The vulnerabilitydatabase used by the authors were from 1995 to 2007.Results suggest that, for the Windows category,the months of June and December had a highrate of vulnerability discovery, whereas February,March, April, and September had a low below-averagevulnerability detection rate. Both non-Windows andWeb categories showed that December had a highvulnerability discovery rate. According to the authors,this seasonality may be associated with the beginningof the semester in schools and the festive periods, suchas Christmas and New Year, since people buy newcomputers with the operating systems described above.
4.2 Our Approach

Some of the operating systems used by Joh and Malaiya(2009) have been discontinued. For this reason, inthis paper, we perform a data collection consideringmost recent Windows operating systems, such as
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Figure 2: Part of an XML file for the Solaris system

Windows Vista, Windows 7, Windows 8, Windows 8.1and Windows 10, as well as GNU/Linux, Mac OS X. Inaddition, we consider the following software: InternetExplorer, Mozilla Firefox, Google Chrome, MicrosoftIIS, and Apache HTTP Server. Besides, the databaseused corresponds to the years 2008 to 2017.From these data, the same technique used in Joh andMalaiya (2009) was replicated, that is, the methodsto extract seasonal indexes, chi-square test, andautocorrelation function. Through these statisticalmethods, it is possible to infer the behavior describedby the vulnerabilities by month and year.For better visualization of the data calculated bythe seasonal index and autocorrelation function, weconstructed a time series graphs for each system groupand individual charts for each system, respectively.When both graphs present possible seasonality, webuilt another chart, called box-plot, to improve the theanalysis.The method used to evaluate the seasonality of thevulnerability discovery process involves the followingsteps:
i. Collection of vulnerability data for each systemfrom the year 2008 to the year 2017;ii. Calculation of the seasonality index for eachsystem;iii. Application of the autocorrelation function foreach of the months for all systems;iv. Individual analysis of the autocorrelation functionto detect possible seasonality for each system;v. Box-plot graphics construction only for systemsthat have the possibility of seasonality.

4.3 Data Collection

XML files are made available by NVD in zip format.Each year has its file with the necessary information.Therefore, when extracting the XML file, the next stepis to import it into an Excel table for better visualizationof the data about the vulnerabilities. Excel was chosento import the data because of its filtering tools.Fig. 2 shows a sample of how to import data fromthe XML file. In the file, there are precisely 35header fields, but only three are essential for the datacollection. The main ones are the published, name3 and
vendor fields, which respectively mean the vulnerabilitypublication date, the operating system name wherethe vulnerability was found, and the company nameresponsible for the system.The field name3 displays all known software types,so the second step is to filter this field according to

the type of software desired (in this case, Solaris).Automatically, all fields are updated with the respectiveinformation of that system. After choosing the system,the published column allows filtering of vulnerabilitiesby months of disclosure to facilitate accounting.Other information such as the name of the (name)vulnerability reported by CVE and the severity of thevulnerability is not relevant to this work, only the dateof publication of the vulnerabilities.
For the present work, we used XML files from theyear 2008 to 2017. For some of the chosen software, theXML files did not present all the necessary informationof the ten years analyzed but presented informationaccording to their launch or when vulnerabilities werenot found. The following is a summary of the datacollected:

• Windows 7: no vulnerabilities were found in the year2008;• Windows 8: there were no vulnerabilities found inthe year 2008 until 2011;• Windows 8.1: there were no vulnerabilities found inthe year 2008 until 2012;• Windows 10: no vulnerabilities were found between2008 and 2014• Solaris: we found vulnerabilities except in the year2012;• IIS: we found vulnerabilities except in the year 2011,2014 and 2016;• IE: we found vulnerabilities except in the year 2011;• Apache: no vulnerabilities were found in 2008, 2011,2015, 2016 and 2017;• Firefox: there were no vulnerabilities found for theyear 2017.

5 Results
This section presents the results of the seasonalityanalysis and compares it to the results from Joh andMalaiya (2009).
5.1 Data Analysis

The seasonality index is a measure widely used toevaluate seasonal trends and may indicate how muchthe average of a particular period tends to be above(or below) the expected value (Arsham, 1994). Themonthly values of the seasonal index are given byEq. (1):
si = did (1)
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(a) Windows Vista (b) Windows 7 (c) Windows 8

(d) Windows 8.1 (e) Windows 10
Figure 3: Accumulated vulnerabilities per year for the Windows OSes

where, si is the seasonal index for ith month, di is the
mean value of ith month, and d is a grand average (1).Hence, for instance, a seasonal index of 1.25 indicatesthat the expected value for that month is 25% greaterthan 1/12 of the overall average where the expectedvalue is 1.To check whether the seasonal indexes arestatistically significant, chi-square (χ2) test for the nullhypothesis H0 has been calculated. To be statisticallysignificant, χ2 value (χ2

s) must be greater than χ2
critical value (χ2

c) with small enough p-value. Theother approach to characterize seasonality is to usethe autocorrelation function (ACF). ACF analysis givesus specific relationship information between relatedmonths. With time series values of zb, zb+1, . . . , zn theACF at time lag k, denoted by rk, is Eq. (2) (Bowerman,1987):

rk =
∑n–k
t=b (zt – z̄)(zt+k – z̄)∑n

t=b(zt – z̄) (2)

1http://home.ubalt.edu/ntsbarsh/business-stat/stat-data/forecast.htm

where z̄ = ∑n
t=b zt(n–b+1) represents the mean of the

observations. Values of coefficient of autocorrelationclose to zero indicate absence of seasonality in suchan interval of observation, while values close to 1show a significant relationship associated with suchan interval of observation.
The value of rk, along with the correlogram analysis(a graph with rk values arranged in lag intervals) areused to establish criteria for a time series. According toHeckert et al. (2002) and Brockwell and Davis (2016),three possible situations can occur:
i. The time series is considered “random”or “stationary” if most of the autocorrelationcoefficients are between the confidence intervalsand no pattern was detected in the correlogram;ii. The time series is considered “non-stationary”when the values of the autocorrelation coefficientsdecrease slowly as k increases, characterizing atrending behavior;iii. The time series is considered “non-stationarystrong” when the values of the correlationcoefficients decrease slowly as k increases, butaccording to a periodicity (seasonal pattern).
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(a) Windows OSes (b) Non-Windows OSes (c) Web
Figure 4: Seasonal indices

The main difference between situations 2 and 3 andthat a non-stationary “moderate” time series does notusually exhibit periodic behavior. In these data types,it is common to find isolated rk components relatedto a growing (or decreasing) trend or some types ofpatterns related to seasonality.
The results of the analysis for the groups ofsoftware using the index of seasonality, chi-square,and autocorrelation will be shown and explained in thenext sections. Based on such methods, the followingsequence of steps will be used to identify patterns ofseasonality in the data series:
i. Analyze the time series of discovered vulnerabilityvalues per year – is it possible to view months witha greater or lesser number of vulnerabilities in allyears?ii. Compute and analyze the seasonality index –identify the months in which the index value isgreater or less than one;iii. Calculate and analyze the autocorrelationcoefficients and the correlogram – exclude thesoftware in which the series is considered stationary(that is, seasonally adjusted indices greater than orless than one previously found are potential outliersand are not associated with seasonal patterns);iv. Investigate the box-plot of the discoveredvulnerabilities per year and correlate with theseasonality index (the average of a given month ishigher or was the product of an outlier?)

5.2 Windows Operating System

Fig. 3 shows the time series referring to the numberof vulnerabilities found over the ten years. For theseoperating systems the total number of vulnerabilitieswas 1261 for Windows Vista (Fig. 3a), 1637 for Windows7 (Fig. 3b), 471 for Windows 8 (Fig. 3c), 759 forWindows 8.1 (Fig. 3d), and 1466 for Windows 10(Fig. 3e).
Time series for Windows systems provide no visible

pattern. It is possible to notice a high dispersion in thedata as a high concentration of vulnerabilities in someyears – 2010 and 2011 for Windows Vista and 2015 forWindows 8, for example – and low concentration ofvulnerabilities in others – 2014 for Windows Vista andthe majority of the series for Windows 7.
With the help of the seasonal index presented inTable 1 and in Fig. 4a it is possible to note that somemonths have a higher probability of disclosure ofvulnerabilities than the others. All systems have a lowseasonal index in January and December, and Marchshows high seasonal index in all. However, in orderto check whether such indices can be associated withseasonal patterns, additional tests should be done,such as, for example, calculating the autocorrelationcoefficients.
The autocorrelation coefficients are shown inTable 2. It is possible to see that Windows 7displays a stationary pattern (absence of seasonality),unlike other systems in which several coefficientsautocorrelation coefficients are greater than one andare outside the confidence interval. The next step of theanalysis involves the construction of box-plots for thefour systems that exhibited non-stationary behavior.
With the help of the seasonal indexes shown inTable 1 and the box-plot shown in Fig. 5 it is possibleto note that Windows Vista exhibits the followingbehavior: few vulnerabilities released in Januaryand an increase in vulnerability between Februaryand April. Windows 8 already has a decrease invulnerabilities in January and April but an increasein the second half (August–September). Windows 8.1has few vulnerabilities in January and December butan increase in June. Moreover, Windows 10 has fewervulnerabilities in January and December while Juneexhibits an increase in such number.

5.3 Non-Windows Operating Systems

For non-windows operating systems, the total numberof vulnerabilities was 756 for Solaris, 418 for Red Hat,
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Table 1: Seasonal Vulnerability Discovery Indexes - Windows OSes
WVista W7 W8 W8.1 W10Jan. 0.3331 0.5205 0.6879 0.3320 0.2619Feb. 1.1039 1.5467 0.6624 0.6324 0.1883Mar. 1.5511 1.1802 1.1465 1.4387 1.1623Apr. 1.5987 1.4588 0.4331 0.6957 0.6958May 0.4282 0.7770 1.1210 1.1700 0.9250June 0.9040 1.0922 0.9682 1.5494 1.9236July 0.9136 1.1802 0.8917 0.8696 0.8267Aug. 1.2086 1.0556 1.6051 1.2648 0.8186Sep. 0.8755 0.6891 1.3758 1.3123 1.6453Oct. 1.4370 0.9016 0.7134 0.9170 1.4980Nov. 0.7518 0.7330 1.4013 1.2490 1.4407Dec. 0.8945 0.8650 0.9936 0.5692 0.6139

X2
c 19.6751 19.6751 19.6751 19.6751 0.6578
X2
s 187.48 144.8 52.287 103.5 397.26p-value 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16

Table 2: Individual ACF values – Windows OSes
Windows Vista - 95% confidence interval: (-0.177,0.177)

1.00 0.1801 0.2302 0.1073 0.3494
0.1195 0.3156 0.0307 0.1748 -0.0559
0.21910 0.00111 0.18012 -0.02613 0.05214
-0.05815 0.04316 -0.06117 0.11518 -0.05019
-0.01020 -0.02121 0.08622 -0.13223

Windows 7 - 95% confidence interval: (-0.1863,0.1863)
1.00 0.0581 0.0442 0.1833 0.0834
-0.0485 0.0296 0.0387 0.1078 0.0779
-0.04810 -0.05411 -0.08312 -0.07713 0.02214
-0.02615 -0.02616 -0.13317 0.01118 0.0719
-0.07120 -0.04221 0.26622 -0.08823
Windows 8 - 95% confidence interval: (-0.2269,0.2269)

1.00 0.6591 0.5852 0.6423 0.4684
0.3305 0.3036 0.1597 0.0328 0.0179
-0.05610 -0.14511 -0.16012 -0.18713 -0.19314
-0.15015 -0.18416 -0.15217 -0.10818 -0.16019
-0.10420 -0.06221 -0.05522 -0.07123
Windows 8.1 - 95% confidence interval: (-0.2477,0.2477)
1.00 0.4971 0.3322 0.4743 0.3144
0.1785 0.2756 0.2187 0.0628 0.1209
0.09710 0.04011 0.08412 0.01613 0.00414
0.03915 -0.04016 -0.10717 0.02218 0.01619
-0.01820 0.05721 0.05822 -0.14723
Windows 10 - 95% confidence interval: (-0.3155,0.3155)

1.00 0.5031 0.2592 0.4063 0.2884
0.0635 0.1306 0.2237 0.0438 0.0339
0.08310 0.07111 0.04012 -0.04413 -0.07014
-0.08815 -0.09716 -0.11217 -0.07418 -0.07419
-0.14520 -0.09721 -0.12322 -0.16723
Bold represents the values outside the confidence interval.
The superscript represents the lags.

2166 for Ubuntu and 9176 for Mac OS X. With thehelp of the seasonal index presented in Table 3 and inFig. 4b it is possible to note that some months have ahigher probability of disclosure of vulnerabilities thanthe others. All systems show low seasonal index inFebruary and March, but none show high seasonalindex at all.
The autocorrelation coefficients are shown in Table 4.Mac OS X exhibits a stationary pattern (absence of

seasonality), unlike other systems in which severalautocorrelation coefficients are greater than 1 and areoutside the confidence interval. The next step of theanalysis involves the construction of box-plots for thethree systems that exhibited non-stationary behavior.
Using the seasonal indexes shown in Table 3 andthe box-plot shown in Fig. 5 it is possible to note thatSolaris displays the following behavior: an increase invulnerabilities released in January and August and fewvulnerabilities released in February. Red Hat showsan increase in vulnerabilities in June and October andlow vulnerabilities released for the remaining months.Ubuntu has few vulnerabilities in September but anincrease in April and June.

Table 3: Seasonal Vulnerability Discovery Indexes -No Windows OSes
Solaris RHLinux Ubuntu Mac OSX

Jan. 1.2627 1.7512 1.0193 0.0183
Feb. 0.5456 0.5455 0.6372 0.2380
Mar. 0.7794 0.4306 0.6921 0.6578
Apr. 1.2003 1.3206 1.9226 0.6591
May 0.4053 0.6890 1.6095 1.1155
June 0.7794 2.1244 1.2579 0.5885
July 1.8551 1.1196 1.1041 0.6212
Aug. 1.4809 0.7177 0.8075 0.1622
Sep. 0.7448 0.2010 0.4614 1.0488
Oct. 1.8395 1.8373 0.8404 2.0859
Nov. 0.4209 0.6890 0.7580 1.7014
Dec. 0.6859 0.5742 0.8899 3.1033
X2
c 19.6751 19.6751 19.6751 19.6751
X2
s 192.1 148.76 359.06 6808.0

p-value 2.20E-16 2.20E-16 2.20E-16 2.20E-16

5.4 Web Servers and Browsers

The number of vulnerabilities for Web Servers andBrowsers was 35 for IIS, 2528 for IE, 60180 for Firefox,
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Figure 5: Box-plot for all systems

and 456021 for Chrome. Since the cumulative total ofdiscovered vulnerabilities of the Apache Server from theyear, 2008 through 2017 were only 19; such softwarewas not considered in our analysis.
The seasonal index presented in Table 5 and inFig. 4c show that all of the systems have low seasonalindexes in January, but none of them exhibit a highseasonal index. However, in order to check whethersuch indices can be associated with seasonal patterns,additional tests were conducted.
Table 6 show that all systems exhibit a non-stationary pattern where several coefficients ofautocorrelation are higher than one and are out of range.The next step of the analysis involves the constructionof box-plots for the four systems that exhibited non-stationary behavior.
The analysis of the box-plots (Fig. 5) and the

seasonal indexes reveal that IIS exhibits the followingbehavior: an increase in vulnerabilities released in Julyand September and low vulnerabilities for the othermonths. The number of vulnerabilities associated withIE has increased in February and June and decreasedin January. Firefox has fewer vulnerabilities in Januaryand April but an increase in vulnerabilities in February.
Fig. 5 shows two box-plot graphics for Chrome.In the first graph, the months of April and Julypresent a small number of vulnerabilities but anincrease in March, August, and September. In thesecond graph, the months of March, May, and Augustshow an increase in reported vulnerabilities and lowvulnerabilities reported for most other months. Bycomparing the two graphs, it is possible to noticethat the seasonality present in the first graph, hasentirely changed concerning the second graph. This
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Table 4: Individual ACF values – No Windows OSes
Solaris - 95% confidence interval: (-0.18639,0.18639)

1.00 0.2451 0.2032 0.4803 0.1204
0.1525 0.3486 0.1167 0.0748 0.2279
0.07810 0.09711 0.18312 -0.01013 -0.00314
0.14515 0.00816 -0.08617 0.04018 -0.09519
-0.16420 -0.04421 -0.15122 -0.17223

Red Hat - 95% confidence interval: (-0.17703,0.17703)
1.00 0.0241 0.0372 0.3643 0.0764
0.1195 0.2306 0.2057 0.0738 0.0809
0.08210 0.01311 0.16412 -0.02713 0.04814
0.10815 0.09116 0.02817 0.10118 0.06019
-0.03520 0.02821 0.13922 0.03523

Ubuntu - 95% confidence interval: (-0.17703,0.17703)
1.00 0.6231 0.3372 0.3703 0.4244
0.3695 0.3066 0.1967 0.2078 0.2999
-0.28410 0.23411 0.23312 0.27713 0.26414
0.18915 0.20216 0.21617 0.14818 0.07619
0.06220 0.09721 0.02222 0.02423
Mac Os X - 95% confidence interval: (-0.17703,0.17703)

1.00 0.0581 -0.0422 -0.0533 0.0374
-0.0465 -0.0486 0.1067 -0.0318 -0.0379
-0.04910 0.08011 -0.04512 -0.02413 -0.04714
-0.04815 -0.03516 -0.00817 -0.01818 -0.00419
-0.01120 -0.03821 -0.03922 0.02623
Bold represents the values outside the confidence interval.
The superscript represents the lags.

fact reinforces the importance of studying securityevents using different time windows.
Table 5: Seasonal Vulnerability Discovery Indexes -Web

IIS Chrome IE Firefox
Jan. 0.0000 0.4195 0.0807 0.9220
Feb. 0.3429 0.4723 1.4573 2.1406
Mar. 1.0286 1.6300 0.8687 1.1687
Apr. 0.0000 0.3099 0.5601 1.0351
May 0.0000 1.2653 0.8592 0.2154
June 2.4000 0.9620 1.5332 0.6526
July 0.0000 0.2399 1.3196 0.4407
Aug. 0.6857 1.8441 1.0680 1.2576
Sep. 3.7714 1.8143 1.4525 0.6837
Oct. 0.0000 1.4271 0.8497 1.1870
Nov. 2.0571 0.6378 0.9399 1.2241
Dec. 1.7143 0.9777 1.0111 1.0724
X2
c 19.6751 19.6751 19.6751 19.6751
X2
s 49.0 145470.0 401.75 13253.0

p-value 9.46E-07 2.20E-16 2.20E-16 2.20E-16

Of all the software analyzed, only Windows 7 andMac OS systems did not present any seasonalitypattern. January was the month with less incidenceof vulnerabilities for Windows systems and Webapplications. For non-windows OSes, February andSeptember have a less incidence of vulnerabilities. Formost of the studied systems, June is the month with ahigher incidence of vulnerabilities.

Table 6: Individual ACF values – Web
IIS - 95% confidence interval: (-0.2106,0.2106)

1.00 -0.0461 0.0442 0.3453 -0.0574
-0.1085 0.1546 0.0557 -0.1528 0.3729
0.09110 -0.08011 0.31912 0.15113 -0.05514
0.21615 -0.06916 -0.10917 -0.00718 0.02119
-0.11920 -0.01121 0.16722 -0.06523

IE - 95% confidence interval: (-0.1974,0.1974)
1.00 0.4131 0.4492 0.5463 0.3504
0.4695 0.3206 0.2907 0.3598 0.2979
0.34710 0.25211 0.41012 0.21013 0.17514
0.29615 0.07816 0.10017 0.04418 -0.04619
0.01220 -0.03421 -0.10222 -0.08923

Firefox - 95% confidence interval: (-0.1863,0.1863)
1.00 0.2431 0.2802 0.3423 -0.0214
0.0135 -0.0366 -0.1517 -0.1128 -0.1279
-0.03110 0.09711 0.02112 0.08813 0.29414
0.06015 0.19116 0.18217 0.05018 0.00819
0.03920 -0.16621 -0.08522 -0.08623

Chrome - 95% confidence interval: (-0.177,0.177)
1.00 0.5641 0.6052 0.5583 0.4094
0.4165 0.3976 0.3597 0.1918 0.1929
0.07310 0.08211 0.04312 0.04113 -0.00814
-0.01215 -0.05016 -0.06117 -0.07618 -0.09319
-0.09720 -0.10421 -0.10422 -0.11123
Bold represents the values outside the confidence interval.
The superscript represents the lags.

5.5 Discussion and comparison with Joh and
Malaiya (2009)

Table 7 illustrates the main similarities and differencesbetween papers. For the systems studied, Joh andMalaiya (2009) found that June and December, forthe Windows systems, had a high rate of vulnerabilitydiscovery. For systems other than Windows and Webapplications, December showed a high incidence ofvulnerability discovery rate. However, our resultsshowed that this pattern has changed over theyears. For example, Windows systems, non-Windowssystems, and Web applications have a higher incidenceof vulnerabilities in June. In other words, the year-endpeak for these systems found by Joh and Malaiya (2009)does not exist anymore. Besides, it would be importantto study the reasons that affect such changes.
An important issue found during the analysis isrelated to the collected data. In many situations, NVDhas returned months in which no vulnerability wasdisclosed. Systems such as Apache and IIS, for example,obtained 19 and 35 vulnerabilities respectively over theten years. In future work, it would be interesting toevaluate what actually happened in those months as away of providing context for the analysis of the results.Our work shows the importance of performing suchtype of studies using updated data. That is, behaviorsassociated with information security issues, such asthe modeling of security vulnerabilities, might changeover time. This result emphasizes the importance ofconducting cybersecurity replication studies in order toconfirm or clarify specific outcomes. The usable privacyand security community and references (Coopamootoo
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Table 7: Differences and similarities between the papers
Systems Comparative Joh and Malaiya(2009) - 1995 to2007

Our paper - 2008 to2017

Windows System
Months with ahigher incidence ofvulnerabilities

June and December June

Months with a lowerincidence ofvulnerabilities
February, March,April, and September January

Different WindowsSystem

Months with ahigher incidence ofvulnerabilities
December June

Months with a lowerincidence ofvulnerabilities
February February andSeptember

Web Applications
Months with ahigher incidence ofvulnerabilities

December February and June

Months with a lowerincidence ofvulnerabilities
September andNovember January

and Groß, 2016, Herley and Van Oorschot, 2017) discussthe impact of moving security research forward in amore scientific fashion, and this involves replicatingor extending relevant previously published studies andexperiments.

6 Conclusion
The purpose of this paper was to find possibleseasonalities in a vulnerability dataset of ten yearscomposed of Windows operating systems, non-Windows operating systems, and Web applications. Insummary, from the collected dataset of vulnerabilities,we compute the seasonal index for each system, appliedthe autocorrelation function, and constructed box-plotgraphs for the systems that presented seasonality.Next, we compare our results with a previous work (Johand Malaiya, 2009).

By comparing both results, we observed that theseasonality reported in the updated dataset (our paper)has changed. Joh and Malaiya (2009) concluded thatWindows operating systems had seasonality in themonths of June and December, while other operatingsystems and Web applications obtained seasonality inDecember. However, this study indicates that all ofthese system groups obtained seasonality in June. Thisresult reinforces the relevance of replicating cyber-security studies in order to understand the impact ofsome findings over time.
For future work, we would like to explore theseasonality factor in order to forecast the futurebehavior of vulnerability disclosures. For this, we

might use several time-series modeling techniquessuch as moving average, exponential smoothing,and ARIMA (Auto-Regressive Integrated Moving Average)models. For instance, the ARIMA model can beapplied in cases where the data show evidence of non-stationarity, such as the data collected for this work.Evaluating the forecast capabilities of machine learningmodels is another important research topic. Finally,it would be interesting to consider other relevantsoftware, for example, IoT applications.
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