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Abstract
Data clustering is a technique that aims to represent a dataset in clusters according to their similarities. Inclustering algorithms, it is usually assumed that the number of clusters is known. Unfortunately, the optimalnumber of clusters is unknown for many applications. This kind of problem is called Automatic Clustering.There are several cluster validity indexes for evaluating solutions and it is known that the quality of a result isinfluenced by the chosen function. From this, a genetic algorithm is described in this article for the resolution forautomatic clustering using the Calinski-Harabasz Index as a form of evaluation. Comparisons between the resultsand other algorithms in literature are also presented. In a first analysis, fitness values equivalent or higher arefound in at least 58% of the cases for each comparison. Our algorithm could also find the correct number ofclusters or close values in 33 cases out of 48. In another comparison, some fitness values are lower, even with thecorrect number of clusters, but graphically the partitioning are adequate. Thus, it is observed that our proposal isjustified and that improvements can be studied for cases in which the correct number of clusters is not found.
Keywords: Automatic Clustering Problem; Calinski-Harabasz index; Cluster Validity Index
Resumo
O agrupamento de dados é uma técnica que busca representar um conjunto de dados em grupos de acordo comas suas semelhanças. Algoritmos de agrupamento geralmente assumem que o número de grupos é conhecido.Entretanto, o número ideal de grupos é desconhecido para muitas aplicações. Este tipo de problema é conhecidocomo Agrupamento Automático. Existem diversas funções para a avaliação de soluções e sabe-se que a qualidadede um resultado é influenciada pela função escolhida. A partir disto, neste artigo é descrito um algoritmo genéticopara a resolução do agrupamento automático utilizando o índice Calinski-Harabasz como forma de avaliação.Também são apresentadas comparações dos resultados com outros algoritmos da literatura. Numa primeiraanálise, são encontrados valores de aptidão equivalentes ou maiores em pelo menos 58% dos casos para cadacomparação. Consegue-se encontrar o número certo de grupos ou valores próximos em 33 casos de 48. Numaoutra comparação, alguns valores de aptidão são inferiores, mesmo com o número de grupos correto, porémgraficamente é visto que os particionamentos são adequados. Assim, observa-se que nossa proposta é justificávele aperfeiçoamentos podem ser estudados para os casos onde não é encontrado tal número correto.
Palavras-Chave: Função de Avaliação; Índice CH; Problema de Agrupamento Automático

1 Introduction

Data clustering is a technique that organizes a datasetinto clusters defined by the similarities between itselements. Sometimes the number of clusters that

represents the set is initially unknown. This caseis called Automatic Clustering Problem (ACP), and inaddition to identifying the clustering, the ideal numberof clusters is part of the solution to be discovered(Linden, 2009, Cruz, 2010, Ochi et al., 2004, José-García
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and Gómez-Flores, 2016, Gan et al., 2007).
There are many methods available in the literature.Cruz (2010) proposed several methods for ACPresolution using the Silhouette index (SI) as evaluationcriteria. Semaan et al. (2012) presented a method forsolving this problem, called MRDBSCAN, evaluatingsolutions by the SI function. Kettani et al. (2015)aimed to improve the initial definition of the numberof clusters problem found in the K-means algorithm.The optimality was measured by Calinski–Harabaszindex (CHI). Finally, Pacheco et al. (2017) presented analgorithm based on a proposal inspired by ants behaviorto solve data clustering problems. The ACO algorithmperformed its experiments with the SI evaluationfunction.
There are proposals in the literature that makeuse of the CHI as an evaluation criteria for theresolution of automatic clustering. Because of itssimple implementation and low computational cost,it is stated that its use is a good choice so as to findsolutions with good clusters formation (Kettani et al.,2015, Harsh and Ball, 2016). Thus, this article presentsa Genetic Algorithm to solve the Automatic ClusteringProblem. This procedure is based on an algorithmfrom the literature and the cluster validity index usedto evaluate is the CHI. Experiments were performedand their results were compared to other works in theliterature.
This paper is structured as follows: The nextsection presents the cluster validity index that willbe applied in the ACP resolution. Section 3 talksabout the methodology used in this paper. The fourthsection presents, compares and analyzes the resultsobtained by experiments. Finally, Section 5 presentsthe conclusions about the work as a whole.

2 The cluster validity index

A solution generated by a clustering algorithm isevaluated by a cluster validity index. It analyzes thegoodness of the clustering by establishing, usually, arelation between the clusters’ internal cohesion andthe separation between clusters. Clustering algorithmsbased on metaheuristics often use cluster validityindexes as objective function to be optimized (José-García and Gómez-Flores, 2016, Mishra et al., 2016).
Some works present proposals for solving theAutomatic Clustering Problem using the CHI as acluster validity index. It is stated that the use ofthis index is a good choice in the search for solutionswith good clusters formations because, in addition tobeing simple to implement, its processing is not verycomputationally expensive. In general, its results arerobust when compared to other clusters’ validationmethods (Kettani et al., 2015, Harsh and Ball, 2016).Thus, the cluster validity index used in this article isthe CHI and it will be presented below.

2.1 Calinski–Harabasz index

The function evaluates the cohesion through thesum of distances of cluster elements in relation totheir respective centroids. The separation criteria iscalculated from the sum of the distances between thecentroid of each cluster and the global centroid of thedataset. The computational cost of this function is nothigh and outperforms, generally, other cluster validityindexes. Its complexity is equals to O(n). When used bya metaheuristic, maximizing its value is the objective.This function is defined as follows (Kettani et al., 2015,Mishra et al., 2016, Maulik and Bandyopadhyay, 2002,Caliński and Harabasz, 1974):

CH(C) = n – k
k – 1

traceB(C)
traceW(C) (1)

where:

traceB(C) = k∑
r=1

|cr|dist(c̄r , x̄ ) (2)

traceW(C) = k∑
r=1

|cr|∑
i=1
dist(xi, c̄r ) (3)

3 The used methodology
In this paper, the ACP is solved by an algorithmbased on the Genetic Algorithm metaheuristic. Thepartitional form is adopted. Using a hard clusteringalgorithm, the Euclidean Distance determines thesimilarity between the elements.The methodology used is based on the methodnamed Constructive Evolutionary Algorithm with LocalSearch 1 (AECBL1), already known in the literature.The AECBL1 solves the ACP from the concept of theEvolutionary Algorithm metaheuristic. It has twophases, an initial which is responsible for generatingthe initial clusters and another that presents a geneticalgorithm with a local search (Cruz, 2010).
3.1 The formation of initial clusters

For the initial organization of clusters it is made use ofthe procedure named Generate Initial Solution 1 (GSI1).From the dataset X it organizes the elements into setsto form the genetic algorithm’s initial solution. Todecrease the cardinality of the problem’s input dataeach of these temporary clusters is considered as anobject by the algorithm. Its pseudocode is presented inAlgorithm 1 (Cruz, 2010).A region with points agglomeration originates acluster. For each element is determined the shortestdistance from it to some another. Then, the averageof all these shortest distances is calculated, which iscalled as davg (Cruz, 2010).
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Algorithm 1: GSI1
Input: X,α

1 begin
2 for i=1 to n do
3 dmin(xi) = min{de(xi, xj)}, i 6= j, 1 ≤ j ≤ n;
4 end
5 davg = 1

n
∑n
i=1 dmin(xi);

6 r = α ∗ davg;
7 for i=1 to n do
8 Ni = circle(xi, r);
9 T = T ∪ Ni;

10 end
11 Sort T in descending order;
12 i = 1;
13 while T 6= ∅ do
14 Bi = next(Nj ∈ T);
15 T = T – Nj;
16 i + +;
17 end
18 Return B = {B1, . . . ,Bt}, the initial t clusters;
19 end

From this, each element xi of X is defined as thecenter of a circle whose radius is equivalent to r =
α ∗davg. Then, the group of elements belonging to eachcircle Ni = circle(xi, r) is generated (Cruz, 2010).

A list T stores the number of elements of each circle.It is sorted in descending order according to thesecardinalities. Thus, the corresponding elements to eachposition of T are defined the initial clusters from thisprocedure, forming B = {B1,B2, . . . ,Bt}. These clustersdo not share any elements because when a circle ischosen the elements belonging to it will not be part ofany other (Cruz, 2010).
3.2 Genetic Algorithm

The methodology of this work called Genetic Algorithmwith Local Search 6 (AGBL6) is based on AECBL1’sevolutionary module. It corresponds to an EvolutionaryAlgorithm with three Local Search techniques andnotions of adaptive memory (Cruz, 2010).
After GSI1 processing the algorithm begins itsexecution by initializing a population. In sequence,

Gmax iterations will be performed related to theGenetic Algorithm’s generations. In each generation,individuals are selected for reproduction, crossover andmutation operations. The selected pairs are definedas follows: the first one is chosen among the 50%fittest and the second among the entire population,both selected randomly. There are no repetitions in thechoice of individuals. The number of pairs that willpass the crossover is defined according to a rate pc, it isapplied in the two-point method. Then the mutationoperator is applied with a probability pm, it exchangesone of the characters from one of the individuals inthe pair. If any generated individual represents aninvalid configuration, without clusters, another one is

randomly generated to replace it. Remembering thatwhen generating some chromosome, either by applyingan operator or during a search process, it is evaluatedby CHI, used here as a fitness (Cruz, 2010).The Individual Inversion local search is applied to thefittest individuals in the population at each t iterations.The Path-Relinking runs every r iterations on the bestindividual of the population and the best of the Eliteset. The Elite set has a size of five individuals and itsaves the best solution in each iteration, it must bebetter than the worst solution in this set and all theothers, and at the end of processing the Peer Exchangesearch runs in this set (Cruz, 2010).In conclusion, the algorithm returns the best of allsolutions after completing the processing of operations.Algorithm 2 shows the method’s operation (Cruz,2010).

Algorithm 2: AGBL6
Input: X,Tpop,Gmax, pc, pm,α, t, r

1 begin
2 G = GSI1(X,α);
3 P = generateInitialPopulation(G,Tpop);
4 for k = 1 to Gmax do
5 for i = 1 to pc do
6 selection(p1, p2);
7 crossover(p1, p2);
8 mutation(p2, pm);
9 checkIndividuals(p1, p2);

10 evaluateSolutions(p1, p2);
11 end
12 if k%t = 0 then
13 individualInversion(P);
14 end
15 if k%r = 0 then
16 pathRelinking(P, elite);
17 end
18 updateEliteSet(P, elite);
19 end
20 peerExchange(elite);
21 Return the best solution S;
22 end

4 Computational experiments
The developed work was implemented in the C++programming language using the g++ compiler inversion 4.8.4.It used 64 datasets to perform the tests, they are allnumerical and they are known in the literature. Eachone belongs to one of the following collections: UCIdatasets (iris, wine, yeast, glass, thyroid, and breast)(Clustering basic benchmark, 2018, Machine Learning
Repository, 2017), DIM-sets (high) (dim32, dim64,dim128, and dim256) (Clustering basic benchmark, 2018),A-sets (a1, a2, and a3) (Clustering basic benchmark,
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2018), Shape sets (R15 and D31) (Clustering basic
benchmark, 2018, Veenman et al., 2002), Behaved (It has17 datasets named according to their size and number ofclusters with a letter "c" at the end. Example: 300p4c)(Cruz, 2010), No-behaved (It has 28 datasets namedaccording to their size and approximate number ofclusters with a "1" character at the end. Example:100p5c1) (Cruz, 2010), and Other instances (ruspini,maronna, 200DATA, and Broken ring) (Cruz, 2010,Wang et al., 2007, Fisher, 1936, Maronna and Jacovkis,1974, Ruspini, 1970). The input parameters weredefined empirically in the algorithm (Cruz, 2010).
• α: Tested values vary within the range [0.5,12],according to the particularities of the dataset.• Tpop: The population size was defined as 1/3 ofthe number of generated initial clusters, ie 1/3 ofchromosome size. Its value is limited to a maximumof 30 individuals.• Gmax: The algorithm had the number of generationsset to 50.• pc: The number of pairs of selected individuals forthe crossover operation is equivalent to 40% of thepopulation size.• pm: The chance of the mutation operation beingapplied to a selected individual was set at 10%.• t: It was stipulated to be applied every five iterations.Thus, for 20% of the best individuals in thepopulation the search is performed in the followinggenerations: 5, 10, 15, 20, 25, 30, 35, 40, 45, and50. The operator is applied similarly to the AECBL1algorithm, having the same frequency set.• r: The application of Path-Relinking has beendefined for the following generations: 18, 28, 38,and 48. The AECBL1 performs the search this wayand it was decided to keep it as well.

The following tables present a comparison betweenthe algorithm presented in this work and someliterature proposals, as follows: AECBL1, MRDBSCAN,AK-means, and ACO (Cruz, 2010, Semaan et al., 2012,Kettani et al., 2015, Pacheco et al., 2017). To compareto others methods, it is necessary to normally executethe algorithm, find the solution and use the Silhouetteindex, since most of the methods in the literature usethis index to show their results. So AGBL6 uses theCHI to find its solutions and, in the end, with its finalsolution, the algorithm uses the SI to compare to othersalgorithms. In each table the highest results will behighlighted in bold. It will be considered equivalentresults those with SI values up to 0.02 difference, sopossible rounding of the strategies of other works aredisconsidered. Each algorithm from this work wasperformed 30 times for each instance.A comparison between AGBL6 and AECBL1,MRDBSCAN and ACO algorithms is shown in Table 1.The “Dataset” column indicates the name of eachdataset. The column “AGBL6” includes the resultsobtained using the CHI function as an evaluation. The“MRDBSCAN”, “AECBL1”, and “ACO” columns containthe results of the respective literature algorithms:MRDBSCAN, AECBL1, and ACO. The “Literature”column corresponds to the known information in the

literature. Each dataset has its results presented inthree rows. The first, “Number of clusters”, containsthe number of clusters obtained in the final solution.The second, “SI value”, includes the SI values for thefinal solution. The third, “CHI value”, presents thevalues obtained by the CHI in AGBL6.Considering the AGBL6, the technique showed goodresults, often their SI values tied with these works ofthe literature. In comparison to AECBL1, similar resultswere found in 28 instances. Lower values were obtainedin only 19 cases, and it won once in the broken ringdataset. Although AGBL6 lost in approximately 39% ofcases, it obtained results equivalent to those of AECBL1in about 58% of datasets. Regarding MRDBSCANalgorithm, SI values were tied in 17 instances, AGBL6won in 25 others, and its results were lower only fivetimes. Thus, the AGBL6 obtained SI values equal toor greater than MRDBSCAN in at least 89% of cases.Considering ACO, there was equivalence in the valuesin 15 datasets. Higher values were recorded in 16 cases,and eight times AGBL6 resulted in lower results. Thus,the results of AGBL6 tied or won ACO in at least 79%of instances.About the number of clusters, AGBL6 finds thecorrect value for 22 instances. AECBL1 resulted in thecorrect value more times, for a total of 37 datasets. Theother two, MRDBSCAN and ACO, found in 14 and 15situations, respectively. Considering also the discoveryof close values, both AGBL6 and ACO obtained a certaindegree of similarity to 11 instances. MRDBSCAN valueswere close to 17 times, and AECBL1 in eight situations.A comparison between AGBL6 and AK-meansalgorithms is shown in Table 2. The name ofeach dataset is displayed in the “Dataset” column.The “AGBL6” column presents the results generatedfrom AGBL6. The results obtained by AK-meansare presented in the “AK-means” column. The“Literature” column corresponds to the knowninformation in the literature. Each dataset has itsresults presented in three rows. The first, “Number ofclusters”, contains the number of clusters generatedby the solution. The second, “SI value”, displays thevalues obtained by the Silhouette Index for the finalsolution. The last, “CHI value”, indicates the valuesobtained by the respective function in AGBL6.When comparing the results it is observed that theAGBL6 obtained lower SI values in 12 cases, and tied orwon in four.The AGBL6 generated the correct number of clustersfor half of the instances. AK-means hits this value in13 cases. Considering values close to correct, with adifference of up to two units, AGBL6 generated for twodatasets, and AK-means in one case.
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Table 1: Results obtained from comparisons between AGBL6, MRDBSCAN, AECBL1and ACO algorithms. (to be continued)
Dataset AGBL6 MRDBSCAN AECBL1 ACO Literature

Maronna Number of clusters 2 2 4 2 4SI value 0,562172 0,562 0,5745 0,562CHI value 274,996
200DATA Number of clusters 3 3 3 3 4SI value 0,823151 0,823 0,8231 0,823CHI value 530,28

Broken ring Number of clusters 2 5 5SI value 0,687451 0,4995CHI value 159,964
100p3c Number of clusters 3 3 3 3 3SI value 0,785802 0,786 0,7858 0,786CHI value 198,116
100p7c Number of clusters 7 7 7 7 7SI value 0,833863 0,834 0,8338 0,834CHI value 186,113
100p10c Number of clusters 10 8 10 10 10SI value 0,833613 0,692 0,8336 0,834CHI value 140,566
100p2c1 Number of clusters 2 2 2 2SI value 0,74274 0,743 0,7427CHI value 257,271
100p3c1 Number of clusters 3 5 3 4 3SI value 0,580263 0,104 0,5802 0,133CHI value 108,262
100p5c1 Number of clusters 5 2 7 17 5SI value 0,684301 0,423 0,6958 0,729CHI value 116,551
100p7c1 Number of clusters 2 2 7 23 7SI value 0,473892 -0,013 0,4911 0,326CHI value 135,312
200p4c Number of clusters 4 4 4 4 4SI value 0,772547 0,773 0,7725 0,773CHI value 298,394
200p2c1 Number of clusters 2 6 2 2 2SI value 0,76417 0,625 0,7642 0,749CHI value 636,475
200p3c1 Number of clusters 2 2 3 2 3SI value 0,648382 0,648 0,6797 0,648CHI value 361,114
200p4c1 Number of clusters 4 3 4 4SI value 0,744936 0,623 0,7449CHI value 280,164
200p7c1 Number of clusters 2 3 13 8 7SI value 0,53906 0,392 0,5759 0,310CHI value 301,242
200p12c1 Number of clusters 2 3 13 12 12SI value 0,524953 0,403 0,5753 0,321CHI value 298,195
300p3c Number of clusters 3 3 3 3 3SI value 0,766375 0,766 0,7663 0,766CHI value 634,296
300p2c1 Number of clusters 2 4 2 2 2SI value 0,77669 0,621 0,7764 0,758CHI value 805,498
300p3c1 Number of clusters 2 2 3 2 3SI value 0,63254 0,640 0,6768 0,690CHI value 489,531
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Table 1. Continuation
Dataset AGBL6 MRDBSCAN AECBL1 ACO Literature
300p4c1 Number of clusters 2 3 2 4SI value 0,503781 0,269 0,5910CHI value 350,574
300p6c1 Number of clusters 2 2 8 11 6SI value 0,548274 0,549 0,6636 0,577CHI value 386,583
300p13c1 Number of clusters 2 3 13 5 13SI value 0,545101 0,404 0,5644 0,449CHI value 342,347
400p3c Number of clusters 3 3 3 3 3SI value 0,798579 0,799 0,7985 0,799CHI value 919,626
400p4c1 Number of clusters 2 2 4 2 4SI value 0,541096 0,379 0,5989 0,382CHI value 513,395
400p17c1 Number of clusters 2 14 2 24 17SI value 0,513234 0,183 0,5138 0,193CHI value 573,552
500p3c Number of clusters 3 3 3 3 3SI value 0,824936 0,825 0,8249 0,825CHI value 1454,37
500p4c1 Number of clusters 2 2 5 4SI value 0,63033 0,305 0,6595CHI value 896,475
500p6c1 Number of clusters 2 12 6 20 6SI value 0,429675 0,495 0,6287 0,557CHI value 505,718
600p15c Number of clusters 16 15 15 15 15SI value 0,747162 0,781 0,7812 0,781CHI value 437,05
600p3c1 Number of clusters 3 2 3 3 3SI value 0,721168 0,687 0,7209 0,661CHI value 1146,35
700p4c Number of clusters 4 4 4 4 4SI value 0,796956 0,797 0,7969 0,797CHI value 1181,22

700p15c1 Number of clusters 2 2 15 15SI value 0,387273 0,123 0,6804CHI value 652,843
800p23c Number of clusters 24 23 23 20 23SI value 0,763279 0,787 0,7873 0,724CHI value 492,824
800p4c1 Number of clusters 4 2 4 4SI value 0,70434 0,509 0,7021CHI value 1003,7
800p10c1 Number of clusters 2 2 2 30 10SI value 0,467051 0,079 0,4681 0,092CHI value 878,184
800p18c1 Number of clusters 2 24 19 16 18SI value 0,417692 0,266 0,6914 0,628CHI value 811,169
900p5c Number of clusters 5 5 5 5 5SI value 0,716048 0,716 0,7160 0,716CHI value 928,315
900p12c Number of clusters 12 12 12 11 12SI value 0,840808 0,841 0,8408 0,818CHI value 1016,1
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Table 1. Continuation
Dataset AGBL6 MRDBSCAN AECBL1 ACO Literature
1000p6c Number of clusters 6 6 6 5 6SI value 0,73567 0,736 0,7356 0,709CHI value 1172,81
1000p14c Number of clusters 14 15 14 15 14SI value 0,830566 0,808 0,8306 0,808CHI value 1015,62
1000p5c1 Number of clusters 4 2 5 11 5SI value 0,614515 0,164 0,6391 0,586CHI value 853,24
1000p27c1 Number of clusters 2 3 25 35 27SI value 0,477777 -0,293 0,5186 0,313CHI value 1211,12
1100p6c1 Number of clusters 6 5 6 12 6SI value 0,673319 0,369 0,6717 0,618CHI value 1063,59
1300p17c Number of clusters 2 18 17 17SI value 0,442087 0,806 0,8229CHI value 1299,85
1500p6c1 Number of clusters 6 18 6 10 6SI value 0,645448 0,123 0,6436 0,630CHI value 1343,79
1800p22c Number of clusters 23 23 22 22SI value 0,772767 0,791 0,8036CHI value 1329,69
2000p11c Number of clusters 2 11 11 11 11SI value 0,516363 0,713 0,7129 0,713CHI value 2603,8
2000p9c1 Number of clusters 2 2 9 15 9SI value 0,501528 0,164 0,6230 0,572CHI value 2532,81

Table 2: Results obtained from comparisons between AGBL6and AK-means algorithms. (to be continued)
Dataset AGBL6 AK-means Literature

ruspini Number of clusters 4 4 4SI value 0,737657 0,9086CHI value 112,015
iris Number of clusters 2 3 3SI value 0,686393 0,7786CHI value 305,805

wine Number of clusters 2 3 3SI value 0,61704 0,5043CHI value 282,443
glass Number of clusters 2 15 7SI value 0,634285 0,6514CHI value 14,1576

thyroid Number of clusters 2 3 2SI value 0,602425 0,7773CHI value 66,4384
breast Number of clusters 2 2 2SI value 0,593488 0,7542CHI value 984,485
yeast Number of clusters 2 2 10SI value 0,561033 0,4102CHI value 87,0216
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Table 2. Continuation
Dataset AGBL6 AK-means Literature

dim32 Number of clusters 16 16 16SI value 0,945562 0,9962CHI value 1661,72
dim64 Number of clusters 16 16 16SI value 0,966338 0,9985CHI value 2379,18
dim128 Number of clusters 16 16 16SI value 0,974642 0,9991CHI value 3046,76
dim256 Number of clusters 16 16 16SI value 0,982946 0,9996CHI value 4356,83

R15 Number of clusters 15 15 15SI value 0,752739 0,9361CHI value 439,674
D31 Number of clusters 2 31 31SI value 0,393086 0,9222CHI value 2901,52
a1 Number of clusters 2 20 20SI value 0,502558 0,7892CHI value 4131,56
a2 Number of clusters 2 35 35SI value 0,460388 0,7911CHI value 6061,87
a3 Number of clusters 2 50 50SI value 0,377202 0,7949CHI value 6526,36

Some AGBL6 results obtained unsatisfactory SIvalues being lower than other algorithms during thecomparisons. Considering AK-means, it was observedthat some SI values of their solutions are much higherthan those obtained by AGBL6. However, for somedatasets, although the AGBL6 SI result is smaller,the correct number of clusters is found. Consideringthese facts, it was decided to perform a more carefulanalysis. Some of the resolutions in which the correctnumber of clusters is found by AGBL6, and the instancedimensions allow for illustration, will be graphically
examined. Solutions of four R2 datasets will bepresented below, they are different in types and sizes,as follows: ruspini, R15, 300p2c1, and 1000p6c. Each

figure was made by gnuplot program, via commandline, and the illustrations represent the organizationof the clusters generated for each instance.
Graphically, it is clear that the configuration ofclusters for four datasets is adequate, presenting somehomogeneity in each cluster and good demarcationsbetween the clusters. Although not obtaining highersilhouette values visually it is concluded that bythe correct number of clusters found the generatedsolutions can be considered optimal, its partitions arecorrect. The AGBL6 algorithm is a valid strategy butit is not 100% accurate. Therefore, it can be improvedto fit cases where the correct number of clusters is notfound.
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Figure 1: Solution generated for ruspini using AGBL6algorithm.

Figure 2: Solution generated for R15 using AGBL6algorithm.

5 Conclusions and future works

This work presented a methodology for the resolutionof Automatic Clustering Problem based on GeneticAlgorithm metaheuristic using the Calinski–Harabaszindex for the formation of clusters. The resultsobtained were compared to other works in theliterature.
When comparing AGBL6 to other studies, it wasfound that it was able to result fitness values equivalentto or higher than ACO’s and MRDBSCAN’s in 79% ofthe cases and 89%, respectively. There were also tieswith AECBL1 for 58% of the datasets. About the number

Figure 3: Solution generated for 300p2c1 using AGBL6algorithm.

Figure 4: Solution generated for 1000p6c using AGBL6algorithm.

of clusters, in the first comparison to literature works,AGBL6 obtained this value for 22 instances out of 48,second only to AECBL1.
From the comparison to AK-means it was seen thatoften their fitness values are higher than the resultsobtained by AGBL6, even when the correct numberof clusters was found by this proposal. From a totalof 16 datasets in ten times, AGBL6 was able to getthe correct number of clusters or values close to it.Thus, a detailed analysis was performed, observingthe solutions’ results graphically. It was found thatthe partitions are adequate, they are constitutedby clusters of appropriate formation. Thus, it canbe concluded that the AGBL6 proposal is justified,however, improvements should be studied to correctcases where the correct number of clusters is not found.
In future activities, the use of a multi-objective
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optimization method can be a promising strategy in thesearch for better solutions. Another possibility that canalso be explored is to adopt different cluster validityindexes at different stages of the algorithm. A functioncan be employed only for the initial phase of clustersformation and another for continuity of processing.
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