> ,' Revista Brasileira de Computacdo Aplicada, November, 2020
«

DOLI: 10.5335/rbca.v12i3.11117
UPF | EDITORA Vol. 12, N° 3, pp. 97-106
UNIVERSIDADE Homepage: seer.upf.br/index.php/rbca/index

ISSN 2176-6649

ORIGINAL PAPER

A genetic algorithm using Calinski-Harabasz index for
automatic clustering problem

Suzane Pereira Lima! and Marcelo Dib Cruz 1

!Federal Rural University of Rio de Janeiro
szlima.93@gmail.com; madibcruz@gmail.com

Received: 2020-06-01. Revised: 2020-09-17. Accepted: 2020-10-14.

Abstract

Data clustering is a technique that aims to represent a dataset in clusters according to their similarities. In
clustering algorithms, it is usually assumed that the number of clusters is known. Unfortunately, the optimal
number of clusters is unknown for many applications. This kind of problem is called Automatic Clustering.
There are several cluster validity indexes for evaluating solutions and it is known that the quality of a result is
influenced by the chosen function. From this, a genetic algorithm is described in this article for the resolution for
automatic clustering using the Calinski-Harabasz Index as a form of evaluation. Comparisons between the results
and other algorithms in literature are also presented. In a first analysis, fitness values equivalent or higher are
found in at least 58% of the cases for each comparison. Our algorithm could also find the correct number of
clusters or close values in 33 cases out of 48. In another comparison, some fitness values are lower, even with the
correct number of clusters, but graphically the partitioning are adequate. Thus, it is observed that our proposal is
justified and that improvements can be studied for cases in which the correct number of clusters is not found.

Keywords: Automatic Clustering Problem; Calinski-Harabasz index; Cluster Validity Index

Resumo

0 agrupamento de dados é uma técnica que busca representar um conjunto de dados em grupos de acordo com
as suas semelhancas. Algoritmos de agrupamento geralmente assumem que o niimero de grupos é conhecido.
Entretanto, o nimero ideal de grupos é desconhecido para muitas aplicacdes. Este tipo de problema é conhecido
como Agrupamento Automatico. Existem diversas fun¢des para a avaliacdo de solugdes e sabe-se que a qualidade
de um resultado é influenciada pela funcdo escolhida. A partir disto, neste artigo é descrito um algoritmo genético
para a resolucdo do agrupamento automadtico utilizando o indice Calinski-Harabasz como forma de avaliacdo.
Também sdo apresentadas comparagdes dos resultados com outros algoritmos da literatura. Numa primeira
analise, sdo encontrados valores de aptiddo equivalentes ou maiores em pelo menos 58% dos casos para cada
comparagdo. Consegue-se encontrar o nimero certo de grupos ou valores préximos em 33 casos de 48. Numa
outra comparagdo, alguns valores de aptiddo sdo inferiores, mesmo com o nimero de grupos correto, porém
graficamente é visto que os particionamentos sdo adequados. Assim, observa-se que nossa proposta ¢ justificavel
e aperfeicoamentos podem ser estudados para os casos onde nio é encontrado tal niimero correto.

Palavras-Chave: Funcio de Avaliagdo; indice CH; Problema de Agrupamento Automatico

1 Introduction represents the set is initially unknown. This case

is called Automatic Clustering Problem (ACP), and in
Data clustering is a technique that organizes a dataset  addition to identifying the clustering, the ideal number
into clusters defined by the similarities between its ~ of clusters is part of the solution to be discovered
elements. Sometimes the number of clusters that (Linden, 2009, Cruz, 2010, Ochi et al., 2004, José-Garcia
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and Gomez-Flores, 2016, Gan et al., 2007).

There are many methods available in the literature.
Cruz (2010) proposed several methods for ACP
resolution using the Silhouette index (SI) as evaluation
criteria. Semaan et al. (2012) presented a method for
solving this problem, called MRDBSCAN, evaluating
solutions by the SI function. Kettani et al. (2015)
aimed to improve the initial definition of the number
of clusters problem found in the K-means algorithm.
The optimality was measured by Calinski-Harabasz
index (CHI). Finally, Pacheco et al. (2017) presented an
algorithm based on a proposal inspired by ants behavior
to solve data clustering problems. The ACO algorithm
performed its experiments with the SI evaluation
function.

There are proposals in the literature that make
use of the CHI as an evaluation criteria for the
resolution of automatic clustering. Because of its
simple implementation and low computational cost,
it is stated that its use is a good choice so as to find
solutions with good clusters formation (Kettani et al.,
2015, Harsh and Ball, 2016). Thus, this article presents
a Genetic Algorithm to solve the Automatic Clustering
Problem. This procedure is based on an algorithm
from the literature and the cluster validity index used
to evaluate is the CHI. Experiments were performed
and their results were compared to other works in the
literature.

This paper is structured as follows: The next
section presents the cluster validity index that will
be applied in the ACP resolution. Section 3 talks
about the methodology used in this paper. The fourth
section presents, compares and analyzes the results
obtained by experiments. Finally, Section 5 presents
the conclusions about the work as a whole.

2 The cluster validity index

A solution generated by a clustering algorithm is
evaluated by a cluster validity index. It analyzes the
goodness of the clustering by establishing, usually, a
relation between the clusters’ internal cohesion and
the separation between clusters. Clustering algorithms
based on metaheuristics often use cluster validity
indexes as objective function to be optimized (José-
Garcia and Gomez-Flores, 2016, Mishra et al., 2016).

Some works present proposals for solving the
Automatic Clustering Problem using the CHI as a
cluster validity index. It is stated that the use of
this index is a good choice in the search for solutions
with good clusters formations because, in addition to
being simple to implement, its processing is not very
computationally expensive. In general, its results are
robust when compared to other clusters’ validation
methods (Kettani et al., 2015, Harsh and Ball, 2016).
Thus, the cluster validity index used in this article is
the CHI and it will be presented below.

2.1 Calinski-Harabasz index

The function evaluates the cohesion through the
sum of distances of cluster elements in relation to
their respective centroids. The separation criteria is
calculated from the sum of the distances between the
centroid of each cluster and the global centroid of the
dataset. The computational cost of this function is not
high and outperforms, generally, other cluster validity
indexes. Its complexity is equals to O(n). When used by
a metaheuristic, maximizing its value is the objective.
This function is defined as follows (Kettani et al., 2015,
Mishra et al., 2016, Maulik and Bandyopadhyay, 2002,
Calinski and Harabasz, 1974):

n -k traceB(C)

CH(C) = k -1 traceW(C) (1)
where:
k
traceB(C) = > _ lcrldist(cr ,X ) (2)
r=1
k el
traceW(C) = > > " dist(x;, ¢r ) 3)
r=1 i=1

3 The used methodology

In this paper, the ACP is solved by an algorithm
based on the Genetic Algorithm metaheuristic. The
partitional form is adopted. Using a hard clustering
algorithm, the Euclidean Distance determines the
similarity between the elements.

The methodology used is based on the method
named Constructive Evolutionary Algorithm with Local
Search 1 (AECBL1), already known in the literature.
The AECBL1 solves the ACP from the concept of the
Evolutionary Algorithm metaheuristic. It has two
phases, an initial which is responsible for generating
the initial clusters and another that presents a genetic
algorithm with a local search (Cruz, 2010).

3.1 The formation of initial clusters

For the initial organization of clusters it is made use of
the procedure named Generate Initial Solution 1 (GSI1).
From the dataset X it organizes the elements into sets
to form the genetic algorithm’s initial solution. To
decrease the cardinality of the problem’s input data
each of these temporary clusters is considered as an
object by the algorithm. Its pseudocode is presented in
Algorithm 1 (Cruz, 2010).

A region with points agglomeration originates a
cluster. For each element is determined the shortest
distance from it to some another. Then, the average
of all these shortest distances is calculated, which is
called as davg (Cruz, 2010).
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Algorithm 1: GSI1

Input: X, o
1 begin
> | fori=1ton do
3 ‘ dmin(xi) = min{de(xi,Xj)},i 7j,1<j<n;
4 end
5 | davg = § 30it; din(X;);
6 r=aox* davg;
7 | fori=1ton do
8 N; = circle(x;,r);
9 T=TUN;
10 end
u | Sort T in descending order;
12 1=1;
13 while T # 0 do
14 B; = next(Nj eT);
15 T=T- Nj;
16 i++;
17 end
18 Return B = {By, ..., B;}, the initial t clusters;
19 end

From this, each element x; of X is defined as the
center of a circle whose radius is equivalent to r =
a*davg. Then, the group of elements belonging to each
circle N; = circle(x;, r) is generated (Cruz, 2010).

A list T stores the number of elements of each circle.
It is sorted in descending order according to these
cardinalities. Thus, the corresponding elements to each
position of T are defined the initial clusters from this
procedure, forming B = {By, B,, ..., B;}. These clusters
do not share any elements because when a circle is
chosen the elements belonging to it will not be part of
any other (Cruz, 2010).

3.2 Genetic Algorithm

The methodology of this work called Genetic Algorithm
with Local Search 6 (AGBL6) is based on AECBL1’s
evolutionary module. It corresponds to an Evolutionary
Algorithm with three Local Search techniques and
notions of adaptive memory (Cruz, 2010).

After GSI1 processing the algorithm begins its
execution by initializing a population. In sequence,
Gmax iterations will be performed related to the
Genetic Algorithm’s generations. In each generation,
individuals are selected for reproduction, crossover and
mutation operations. The selected pairs are defined
as follows: the first one is chosen among the 50%
fittest and the second among the entire population,
both selected randomly. There are no repetitions in the
choice of individuals. The number of pairs that will
pass the crossover is defined according to a rate pc, it is
applied in the two-point method. Then the mutation
operator is applied with a probability pm, it exchanges
one of the characters from one of the individuals in
the pair. If any generated individual represents an
invalid configuration, without clusters, another one is

randomly generated to replace it. Remembering that
when generating some chromosome, either by applying
an operator or during a search process, it is evaluated
by CHI, used here as a fitness (Cruz, 2010).

The Individual Inversion local search is applied to the
fittest individuals in the population at each t iterations.
The Path-Relinking runs every r iterations on the best
individual of the population and the best of the Elite
set. The Elite set has a size of five individuals and it
saves the best solution in each iteration, it must be
better than the worst solution in this set and all the
others, and at the end of processing the Peer Exchange
search runs in this set (Cruz, 2010).

In conclusion, the algorithm returns the best of all
solutions after completing the processing of operations.
Algorithm 2 shows the method’s operation (Cruz,
2010).

Algorithm 2: AGBL6
Input: X, Tpop, Gmax, Pc, Pm, o, t, T

1 begin

2 | G=GSI(X,a);

3 P = generatelnitialPopulation(G, Tpop);
4 | for k =1toGmax do

5 fori=1topc do

6 selection(p1, p2);

7 crossover(p1, p2);

8 mutation(p,, pm);

9 checkIndividuals(p, p2);

evaluateSolutions(py, p2);

end
if k%t = 0 then

| individuallnversion(P);
end
if k%r = 0 then

| pathRelinking(P, elite);
end

updateEliteSet(P, elite);
end
peerExchange(elite);

21 Return the best solution S;
22 end

[ < - [y
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4 Computational experiments

The developed work was implemented in the C++
programming language using the g++ compiler in
version 4.8.4.

It used 64 datasets to perform the tests, they are all
numerical and they are known in the literature. Each
one belongs to one of the following collections: UCI
datasets (iris, wine, yeast, glass, thyroid, and breast)
(Clustering basic benchmark, 2018, Machine Learning
Repository, 2017), DIM-sets (high) (dim32, dimé64,
dim128, and dim256) (Clustering basic benchmark, 2018),
A-sets (a1, a2, and a3) (Clustering basic benchmark,
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2018), Shape sets (R15 and D31) (Clustering basic
benchmark, 2018, Veenman et al., 2002), Behaved (It has
17 datasets named according to their size and number of
clusters with a letter "c" at the end. Example: 300p4c)
(Cruz, 2010), No-behaved (It has 28 datasets named
according to their size and approximate number of
clusters with a "1" character at the end. Example:
100p5c1) (Cruz, 2010), and Other instances (ruspini,
maronna, 200DATA, and Broken ring) (Cruz, 2010,
Wang et al., 2007, Fisher, 1936, Maronna and JacovKkis,
1974, Ruspini, 1970). The input parameters were
defined empirically in the algorithm (Cruz, 2010).

+ a: Tested values vary within the range [0.5,12],
according to the particularities of the dataset.

+ Tpop: The population size was defined as 1/3 of
the number of generated initial clusters, ie 1/3 of
chromosome size. Its value is limited to a maximum
of 30 individuals.

* Gmax: The algorithm had the number of generations
set to 50.

+ pc: The number of pairs of selected individuals for
the crossover operation is equivalent to 40% of the
population size.

» pm: The chance of the mutation operation being
applied to a selected individual was set at 10%.

- t: It was stipulated to be applied every five iterations.
Thus, for 20% of the best individuals in the
population the search is performed in the following
generations: 5, 10, 15, 20, 25, 30, 35, 40, 45, and
50. The operator is applied similarly to the AECBL1
algorithm, having the same frequency set.

- r: The application of Path-Relinking has been
defined for the following generations: 18, 28, 38,
and 48. The AECBL1 performs the search this way
and it was decided to keep it as well.

The following tables present a comparison between
the algorithm presented in this work and some
literature proposals, as follows: AECBL1, MRDBSCAN,
AK-means, and ACO (Cruz, 2010, Semaan et al., 2012,
Kettani et al., 2015, Pacheco et al., 2017). To compare
to others methods, it is necessary to normally execute
the algorithm, find the solution and use the Silhouette
index, since most of the methods in the literature use
this index to show their results. So AGBL6 uses the
CHI to find its solutions and, in the end, with its final
solution, the algorithm uses the SI to compare to others
algorithms. In each table the highest results will be
highlighted in bold. It will be considered equivalent
results those with SI values up to 0.02 difference, so
possible rounding of the strategies of other works are
disconsidered. Each algorithm from this work was
performed 30 times for each instance.

A comparison between AGBL6 and AECBL1,

MRDBSCAN and ACO algorithms is shown in Table 1.

The “Dataset” column indicates the name of each
dataset. The column “AGBL6” includes the results
obtained using the CHI function as an evaluation. The
“MRDBSCAN”, “AECBL1”, and “ACO” columns contain
the results of the respective literature algorithms:
MRDBSCAN, AECBL1, and ACO. The “Literature”
column corresponds to the known information in the

literature. Each dataset has its results presented in
three rows. The first, “Number of clusters”, contains
the number of clusters obtained in the final solution.
The second, “SI value”, includes the SI values for the
final solution. The third, “CHI value”, presents the
values obtained by the CHI in AGBL6.

Considering the AGBL6, the technique showed good
results, often their SI values tied with these works of
the literature. In comparison to AECBL1, similar results
were found in 28 instances. Lower values were obtained
in only 19 cases, and it won once in the broken ring
dataset. Although AGBL6 lost in approximately 39% of
cases, it obtained results equivalent to those of AECBL1
in about 58% of datasets. Regarding MRDBSCAN
algorithm, SI values were tied in 17 instances, AGBL6
won in 25 others, and its results were lower only five
times. Thus, the AGBL6 obtained SI values equal to
or greater than MRDBSCAN in at least 89% of cases.
Considering ACO, there was equivalence in the values
in 15 datasets. Higher values were recorded in 16 cases,
and eight times AGBL6 resulted in lower results. Thus,
the results of AGBL6 tied or won ACO in at least 79%
of instances.

About the number of clusters, AGBL6 finds the
correct value for 22 instances. AECBL1 resulted in the
correct value more times, for a total of 37 datasets. The
other two, MRDBSCAN and ACO, found in 14 and 15
situations, respectively. Considering also the discovery
of close values, both AGBL6 and ACO obtained a certain
degree of similarity to 11 instances. MRDBSCAN values
were close to 17 times, and AECBL1 in eight situations.

A comparison between AGBL6 and AK-means
algorithms is shown in Table 2. The name of
each dataset is displayed in the “Dataset” column.
The “AGBL6” column presents the results generated
from AGBL6. The results obtained by AK-means
are presented in the “AK-means” column. The
“Literature” column corresponds to the known
information in the literature. Each dataset has its
results presented in three rows. The first, “Number of
clusters”, contains the number of clusters generated
by the solution. The second, “SI value”, displays the
values obtained by the Silhouette Index for the final
solution. The last, “CHI value”, indicates the values
obtained by the respective function in AGBL6.

When comparing the results it is observed that the
AGBL6 obtained lower SI values in 12 cases, and tied or
won in four.

The AGBL6 generated the correct number of clusters
for half of the instances. AK-means hits this value in
13 cases. Considering values close to correct, with a
difference of up to two units, AGBL6 generated for two
datasets, and AK-means in one case.
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Table 1: Results obtained from comparisons between AGBL6, MRDBSCAN, AECBL1
and ACO algorithms.

(to be continued)

Dataset AGBL6 MRDBSCAN | AECBL1 ACO | Literature
Number of clusters 2 2 4 2 4
Maronna
SI value 0,562172 0,562 0,5745 | 0,562
CHI value 274,996
Number of clusters 3 3 3 3 4
200DATA
SI value 0,823151 0,823 0,8231 | 0,823
CHI value 530,28
. Number of clusters 2 5 5
Broken rin
g SI value 0,687451 0,4995
CHI value 159,964
100p3c Number of clusters 3 3 3 3 3
SI value 0,785802 0,786 0,7858 | 0,786
CHI value 198,116
100p7c Number of clusters 7 7 7 7 7
SI value 0,833863 0,834 0,8338 | 0,834
CHI value 186,113
Number of clusters 10 8 10 10 10
100p10
pioc SI value 0,833613 0,692 0,8336 | 0,834
CHI value 140,566
Number of clusters 2 2 2 2
1oop2ct SI value 0,74274 0,743 0,7427
CHI value 257,271
Number of clusters 3 5 3 4 3
100
p3a SI value 0,580263 0,104 0,5802 | 0,133
CHI value 108,262
Number of clusters 5 2 7 17 5
100p5ci SI value 0,684301 0,423 0,6958 | 0,729
CHI value 116,551
Number of clusters 2 2 7 23 7
100p7ci SI value 0,473892 -0,013 0,4911 | 0,326
CHI value 135,312
200p4¢ Number of clusters 4 4 4 4 4
P SI value 0,772547 0,773 0,7725 | 0,773
CHI value 298,394
Number of clusters 2 6 2 2 2
200p2c1 SI value 0,76417 0,625 0,7642 | 0,749
CHI value 636,475
Number of clusters 2 2 3 2 3
200p3cl SI value 0,648382 0,648 0,6797 | 0,648
CHI value 361,114
Number of clusters 4 3 4 4
200pact SI value 0,744936 | 0,623 | 0,7449
CHI value 280,164
Number of clusters 2 3 13 8 7
200p7¢c1 SI value 0,53906 0,392 0,5759 | 0,310
CHI value 301,242
Number of clusters 2 3 13 12 12
200p12cl SI value 0,524953 | 0,403 0,5753 | 0,321
CHI value 298,195
00D3C Number of clusters 3 3 3 3 3
300p3 SI value 0,766375 0,766 0,7663 | 0,766
CHI value 634,296
Number of clusters 2 4 2 2 2
300p2c1 SI value 0,77669 0,621 0,7764 | 0,758
CHI value 805,498
Number of clusters 2 2 3 2 3
300p3ct SI value 0,63254 0,640 0,6768 | 0,690
CHI value 489,531
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Table 1. Continuation

Dataset AGBL6 MRDBSCAN | AECBL1 ACO | Literature
Number of clusters 2 3 2 4
300p4ct SI value 0,503781 0,269 0,5910
CHI value 350,574
Number of clusters 2 2 8 11 6
300p6c1 SI value 0,548274 0,549 0,6636 | 0,577
CHI value 386,583
Number of clusters 2 3 13 5 13
300p13ci SI value 0,545101 0,404 0,5644 | 0,449
CHI value 342,347
400p3C Number of clusters 3 3 3 3 3
SI value 0,798579 0,799 0,7985 | 0,799
CHI value 919,626
Number of clusters 2 2 4 2 4
400p4ct SI value 0,541096 0,379 0,5989 | 0,382
CHI value 513,395
Number of clusters 2 14 2 24 17
400p17ct SI value 0,513234 0,183 0,5138 | 0,193
CHI value 573,552
500p3c Number of clusters 3 3 3 3 3
p SI value 0,824936 0,825 0,8249 | 0,825
CHI value 1454,37
Number of clusters 2 2 5 4
500p4ct SI value 0,63033 0,305 0,6595
CHI value 896,475
Number of clusters 2 12 6 20 6
500p6ci ST value 0,429675 | 0,495 0,6287 | 0,557
CHI value 505,718
Number of clusters 16 15 15 15 15
600p15¢ SI value 0,747162 0,781 0,7812 | 0,781
CHI value 437,05
Number of clusters 3 2 3 3 3
600p3c1 SI value 0,721168 0,687 0,7209 | 0,661
CHI value 1146,35
700p4C Number of clusters 4 4 4 4 4
SI value 0,796956 0,797 0,7969 | 0,797
CHI value 1181,22
Number of clusters 2 2 15 15
700p15¢ct SI value 0,387273 0,123 0,6804
CHI value 652,843
Number of clusters 24 23 23 20 23
800p23¢ SI value 0,763279 0,787 0,7873 | 0,724
CHI value 492,824
Number of clusters 4 2 4 4
8oop4c1 SI value 0,70434 0,509 0,7021
CHI value 1003,7
Number of clusters 2 2 2 30 10
8oop1oci SI value 0,467051 0,079 0,4681 | 0,092
CHI value 878,184
Number of clusters 2 24 19 16 18
8oop18c1 SI value 0,417692 0,266 0,6914 | 0,628
CHI value 811,169
Number of clusters 5 5 5 5 5
900p5¢
SI value 0,716048 0,716 0,7160 0,716
CHI value 928,315
Number of clusters 12 12 12 11 12
900p12¢ SI value 0,840808 0,841 0,8408 | 0,818
CHI value 1016,1
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Table 1. Continuation

Dataset AGBL6 MRDBSCAN | AECBL1 ACO | Literature
Number of clusters 6 6 6 5 6
1000p6e S1 value 0,73567 0,736 0,7356 | 0,709
CHI value 1172,81
Number of clusters 14 15 14 15 14
1000p14c SI value 0,830566 0,808 0,8306 | 0,808
CHI value 1015,62
Number of clusters 4 2 5 11 5
1000p5¢c1 SI value 0,614515 0,164 0,6391 | 0,586
CHI value 853,24
Number of clusters 2 3 25 35 27
1000p27ct SI value 0,477777 -0,293 0,5186 | 0,313
CHI value 1211,12
Number of clusters 6 5 6 12 6
1100p6c1 SI value 0,673319 0,369 0,6717 | 0,618
CHI value 1063,59
Number of clusters 2 18 17 17
1300p17¢ SI value 0,442087 0,806 0,8229
CHI value 1299,85
Number of clusters 6 18 6 10 6
1500p6c1 SI value 0,645448 0,123 0,6436 | 0,630
CHI value 1343,79
Number of clusters 23 23 22 22
1800p22c SI value 0,772767 0,791 0,8036
CHI value 1329,69
Number of clusters 2 11 11 11 11
2000p1ic SI value 0,516363 0,713 0,7129 | 0,713
CHI value 2603,8
Number of clusters 2 2 9 15 9
2000p9ct SI value 0,501528 0,164 0,6230 | 0,572
CHI value 2532,81

Table 2: Results obtained from comparisons between AGBL6
and AK-means algorithms. (to be continued)

Dataset AGBL6 AK-means | Literature
Number of clusters 4 4 4
ruspini SI value 0,737657 0,9086
CHI value 112,015
Number of clusters 2 3 3
iris SI value 0,686393 0,7786
CHI value 305,805
Number of clusters 2 3 3
wine SI value 0,61704 0,5043
CHI value 282,443
Number of clusters 2 15 7
glass SI value 0,634285 0,651/
CHI value 14,1576
Number of clusters 2 3 2
thyroid SI value 0,602425 0,7773
CHI value 66,4384
Number of clusters 2 2 2
breast SI value 0,593488 0,7542
CHI value 984,485
Number of clusters 2 2 10
yeast SI value 0,561033 0,4102
CHI value 87,0216
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Table 2. Continuation

Dataset AGBL6 AK-means | Literature
Number of clusters 16 16 16
dim32 SI value 0,945562 0,9962
CHI value 1661,72
Number of clusters 16 16 16
dimé64 SI value 0,966338 0,9985
CHI value 2379,18
Number of clusters 16 16 16
dimi128 SI value 0,974642 0,9991
CHI value 3046,76
Number of clusters 16 16 16
dim256 SI value 0,982946 0,9996
CHI value 4356,83
Number of clusters 15 15 15
R15 SI value 0,752739 0,9361
CHI value 439,674
Number of clusters 2 31 31
D31 SI value 0,393086 0,9222
CHI value 2901,52
Number of clusters 2 20 20
a1 SI value 0,502558 0,7892
CHI value 4131,56
Number of clusters 2 35 35
a2 SI value 0,460388 0,7911
CHI value 6061,87
Number of clusters 2 50 50
a3 SI value 0,377202 0,7949
CHI value 6526,36

Some AGBL6 results obtained unsatisfactory SI
values being lower than other algorithms during the
comparisons. Considering AK-means, it was observed
that some SI values of their solutions are much higher
than those obtained by AGBL6. However, for some
datasets, although the AGBL6 SI result is smaller,
the correct number of clusters is found. Considering
these facts, it was decided to perform a more careful
analysis. Some of the resolutions in which the correct
number of clusters is found by AGBL6, and the instance
dimensions allow for illustration, will be graphically
examined. Solutions of four R? datasets will be
presented below, they are different in types and sizes,
as follows: ruspini, R15, 300p2c1, and 1000p6¢. Each

figure was made by gnuplot program, via command
line, and the illustrations represent the organization
of the clusters generated for each instance.

Graphically, it is clear that the configuration of
clusters for four datasets is adequate, presenting some
homogeneity in each cluster and good demarcations
between the clusters. Although not obtaining higher
silhouette values visually it is concluded that by
the correct number of clusters found the generated
solutions can be considered optimal, its partitions are
correct. The AGBL6 algorithm is a valid strategy but
it is not 100% accurate. Therefore, it can be improved
to fit cases where the correct number of clusters is not
found.
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Figure 1: Solution generated for ruspini using AGBL6
algorithm.
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Figure 2: Solution generated for R15 using AGBL6
algorithm.

5 Conclusions and future works

This work presented a methodology for the resolution
of Automatic Clustering Problem based on Genetic
Algorithm metaheuristic using the Calinski-Harabasz
index for the formation of clusters. The results
obtained were compared to other works in the
literature.

When comparing AGBL6 to other studies, it was
found that it was able to result fitness values equivalent
to or higher than ACO’s and MRDBSCAN’s in 79% of
the cases and 89%, respectively. There were also ties
with AECBL1 for 58% of the datasets. About the number
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Figure 3: Solution generated for 300p2c1 using AGBL6
algorithm.
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Figure 4: Solution generated for 1000p6¢ using AGBL6
algorithm.

of clusters, in the first comparison to literature works,
AGBL6 obtained this value for 22 instances out of 48,
second only to AECBLI1.

From the comparison to AK-means it was seen that
often their fitness values are higher than the results
obtained by AGBL6, even when the correct number
of clusters was found by this proposal. From a total
of 16 datasets in ten times, AGBL6 was able to get
the correct number of clusters or values close to it.
Thus, a detailed analysis was performed, observing
the solutions’ results graphically. It was found that
the partitions are adequate, they are constituted
by clusters of appropriate formation. Thus, it can
be concluded that the AGBL6 proposal is justified,
however, improvements should be studied to correct
cases where the correct number of clusters is not found.

In future activities, the use of a multi-objective
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optimization method can be a promising strategy in the
search for better solutions. Another possibility that can
also be explored is to adopt different cluster validity
indexes at different stages of the algorithm. A function
can be employed only for the initial phase of clusters
formation and another for continuity of processing.
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