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Abstract
The objective of this work is to develop an autonomous vehicle controller inside Grand Theft Auto V game, used as asimulation environment. It is used an end-to-end approach, in which the model maps directly the inputs from theimage of a car hood camera and a sequence of speed values to three driving commands: steering wheel angle, acceleratorpedal pressure and brake pedal pressure. The developed model is composed of a convolutional neural network and arecurring neural network. The convolutional network processes the images and the recurrent network processes thespeed data. The model learns from data generated by a human driver´s commands. Two interfaces are developed: onefor collecting in-game training data and another to verify the performance of the model for the autonomous vehiclecontrol. The results show that the model after training is capable to drive the vehicle as well as a human driver. Thisproves that a combination of a convolutional network with a recurrent network, using an end-to-end approach, iscapable of obtaining a good driving performance even using only images and speed velocity as sensory data.
Keywords: Autonomous vehicle; Artificial intelligence; Convolutional neural network; Deep learning; Recurrent neuralnetwork.
Resumo
O objetivo deste trabalho é desenvolver o controle de um veículo autônomo dentro do jogo Grand Theft Auto V, utilizadocomo ambiente de simulação. É aplicada uma abordagem end-to-end, na qual o sistema mapeia diretamente as entradasprovenientes da imagem de uma câmera colocada no capô do carro e de uma sequência de valores de velocidade paratrês comandos de direção: ângulo do volante, pressão do pedal do acelerador e pressão do pedal do freio. O controladordesenvolvido é composto por uma rede neural convolucional e uma rede neural recorrente. A rede convolucional processaas imagens e a rede recorrente processa os dados de velocidade. São desenvolvidas duas interfaces: uma para coletade dados de treinamento e outra para controlar o veículo dentro do ambiente de simulação. Os resultados mostramque o sistema após o treinamento é capaz de dirigir o veículo tão bem quanto um motorista humano. Isso prova quea combinação de uma rede convolucional com uma rede recorrente, utilizando uma abordagem end-to-end, é capazde obter um bom desempenho de direção mesmo utilizando apenas imagens e valores de velocidade como dados desensores.
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1 Introduction
The development and improvement of GPUs (GraphicsProcessing Unit) promoted great advances in the fieldof artificial intelligence. In this context, the use ofartificial intelligence to control autonomous vehicles helpsto improve the quality of drivers’ life making possible theuseful use of time spent driving and reducing the amountof accidents caused by human error.Deep learning neural networks need a lot of data tobe trained properly, but the work of capturing imagesand data for training in a real vehicle demands a lot ofresources. Furthermore, it is very difficult to obtain data inall possible conditions of weather, hour of the day, traffic,road types etc. Thus, a form to accelerate the developmentof autonomous vehicle is to use games that simulate realenvironments to recreate different scenarios. Using largeamounts of synthetic images and simulation data, makeit possible to obtain better results when compared todeep learning algorithms that are trained using only realimages acquired with a real vehicle (Johnson-Robersonet al., 2016). With a virtual environment it is simplerand faster to obtain a large volume of images and datain different conditions, since there is no need for a driverand a real equipped car with sensors. In addition, testsare performed more safely since the car is in a virtualenvironment.The objective of this work is to develop, throughsimulation, the control of an autonomous vehicle withina virtual environment using images from a camerapositioned on the vehicle’s hood, vehicle speed data,and driver’s commands for steering wheel angle, brakeand accelerator pedal pressures. The images and thevehicle speed are the inputs of the model and the driver’scommands are used as desired outputs to train the model.This work is divided in 8 sections. Section 2 presents abrief review of the literature describing two similar works.Section 3 describes the simulation environment. Section 4describes the interfaces for the game. Section 5 describesthe data used for training the model. Section 6 presentsthe architecture of the model developed. In Section 7it is presented how the model is trained and finally inSections 8 and 9 the results and conclusions are presentedrespectively.
2 Related works
Bojarski et al. (2016) developed a system called DAVE-2 capable of driving in real roads without the need torecognize street elements, such as lanes and boundaries,using only one convolutional neural network to learnthe entire vehicle steering process directly from cameraimages. The system has three cameras positioned on theleft, center and right of the car that collect the imagessimultaneously with the steering wheel angle of the driver.After training, the model is capable of receiving imagesin real time and calculating the vehicle steering wheelangle. The architecture of the DAVE-2 neural networkconsists of one normalization layer, five convolution layersfollowed by three densely connected layers. The first threeconvolution layers use stride equal to 2 and a 5x5 kernel,and the remaining two use a 3x3 kernel and stride equals

to 1. The output of the last densely connected layer isthe vehicle steering angle. Tests were carried out witha real car. The results showed that the model was able togenerate steering angles autonomously 98% of the time,demonstrating that it is possible to obtain good results forcontrolling the direction of a vehicle only with the use ofcameras.
Yang et al. (2018) developed a model that uses aconvolution neural network together with a recurrentneural network. This model is able to predict the steeringangle and the desired speed of the vehicle, receivingas input the road image and a sequence of previousspeeds. This work improves the work of Bojarski et al.(2016) in the sense that the model can control both thesteering angle and the speed of the vehicle simultaneously,greatly improving the vehicle’s driving autonomy incomparison with other models proposed in the work. Theconvolutional network of model, that the authors namedas Multi-modal Multi-task Network, has 5 convolutionallayers and 4 densely connected layers, and it is usedto determine the steering angle. The output of therecurrent network is concatenated with the output ofthe second densely connected layer of the convolutionalnetwork to obtain the speed command. According tothe authors the separation of the calculation into twoneural networks reduces considerably the amount ofcomputational processing required and allows processingwith high frames per second rates ensuring betterperformance in real time.

3 Simulation environment

Using a virtual environment facilitates development andreduces costs to create, replicate and iterate situations ascompared to a real environment (Martinez et al., 2017).The computer game Grand Theft Auto V (GTA-V) is chosento create the simulation environment. The GTA-V isan open-world computer game, very rich in elementsand details that represents a replica of the real world.Within the GTA-V “world” map a circuit was chosenand set up to simulate the environment to obtain datafor training and for testing the model developed forcontrolling autonomous vehicles. The circuit chosen is

Figure 1: GTA-V circuit map used to collect data fortraining and testing the developed model
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approximately 850 m long and it has several streets wherethe lane is not delimited. The landscape observed in theroute contains vegetation, trees, hills and other elementsseen in common real roads. In this first approach, thesimulation environment does not include the presence ofother vehicles and pedestrians. In addition, it is possibleto control variables such as hour of the day and weatherconditions facilitating testing and enabling a variety oftraining conditions. The representation of the circuit mapand an its aerial view are represented in Fig. 1. Someexamples of images collect by the car hood camera areshown in Fig. 2.
4 Interface with GTA-V game
Two interfaces for the GTA-V game were developed andused to acquire the training data and to control the vehicleinside the game. Theses interfaces are available anddescribed with more details in Novello and Yamamoto(2020).The data acquisition interface captures real-timeimages displayed on screen at 10 fps rate using theImageGrab module from Python library Pillow. Theseimages are resized to (240, 150, 3) pixels and stored in RGBformat in Numpy arrays with pixel values ranging from0 to 255. The driving data is acquired with the PyGamelibrary that reads the joystick and triggers commandsfrom a controller handled by a human driver. The joystickcontrols the steering wheel and the accelerator and brakepedals. Speed data is collected with in-game modificationsnamed ScriptHookV and Native Trainer (Blade, 2019).

Native Trainer is used with few modifications.The control interface sends driving commands duringsimulations inside the game using as inputs real-timeacquired images and normalized values of speed. Thesedata are acquired with the data acquisition interface andare normalized to be used in model. The model outputis processed using a virtual joystick simulated with vJoydriver and the Pvjoy library. Finally, the software x360cesends the commands to the game to control the vehicle.A diagram that summarizes the operation of these twointerfaces is shown in Fig. 3.
5 Training Dataset
The dataset used for training the model consists of about130 thousand data samples captured at a rate of 10 fps,completing more than 3½ hours of video. The videoswere collected at different hours of the day with differentweather conditions to improve the generalization of themodel. Associated with each image of the videos there are4 parameters: steering wheel angle, accelerator and brakepedal pressures, and vehicle speed. For collecting this data,a human driver drove the vehicle inside the GTA-V gameenvironment.The steering wheel angle, the accelerator and thebrake pedal pressures represent relative values varyingbetween zero and one. For the accelerator and brake pedalpressures, zero corresponds to the natural unpressedposition. For the steering wheel angle, 0.5 correspondsto the neutral position of the steering wheel, valuesabove 0.5 correspond to clockwise angles and under 0.5

Figure 2: Examples of images collected from the car hood camera used for training the model.
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to counterclockwise angles. An example of the steeringwheel angle, accelerator and brake pedal pressures, andvehicle speed for one lap in the circuit is shown in Fig. 4. Asummary of these values, that shows the distributions ofthe accelerator and brake pedal pressures, vehicle speedand steering wheel angle in the dataset are presented inFig. 5. Note that in the brake pedal pressure histogramthe amount of values is in logarithmic scale because itremained in neutral position most of time. Also note thatas the circuit has more curves to the right there is a higherconcentration of positive steering wheel values.The driver’s steering wheel angle, and accelerator andbrake pedal pressures are the desired outputs for the modelwhile the speed history and the images are the modelinputs. This data is used to train the model with supervisedlearning. The solution to the problem follows an end-to-end approach where a direct association between theimages and the driver’s driving commands is learnt by themodel, so that it is not necessary to consider the detailedkinematics and dynamics of the vehicle.Each input sample consists of one image and 50 vehiclespeed values, i.e., the current speed and 49 previousvalues. This 50 samples of speed correspond to a temporalsequence of 5 seconds and are normalized to have zeromean and values between -1 to 1, so the values aresubtracted by the mean and divided by a scale factor.For each input it is associated the desired output withthree values that corresponds to the steering wheel angle,accelerator pedal pressure and brake pedal pressure. The

total number of examples in the dataset is 129,515. Thisdata is divided into a training dataset with 60% of theexamples, a validation dataset with 20% of the examplesand a test set with the remaining 20% of the examples.Before separation, the data is randomly shuffled so that toensure the diversity of the data in the both training andvalidation datasets. This dataset is available in Cabral et al.(2020).
6 Background

As explained in Chollet (2017), Convolutional NeuralNetworks are widely used in image processing andpattern recognition. The main step of this techniqueis convolution, which consists on sliding a filter, amatrix with specified dimensions, through the desiredimage. The filter slides through the image with adetermined spacing, called stride, performing multiplematrix multiplications with pixels values. A bias isadded to the result and an activation function (nonlinearfunction) is applied. A convolutional layer has multiplefilters that extract specific patterns from the image.The main advantage of a convolutional layer is thecapability to learn and extract local patterns in images,such as vertical, horizontal edges, textures or colors. Afterthe filters are learnt, they can be used to extract thesepatterns in any image. This generalization makes CNNsvery efficient for image processing. The first layers extract

Figure 3: Diagrams of the interfaces developed for the GTA-V game used to acquire and send data.
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Figure 4: Example of the steering wheel angle, accelerator and brake pedal pressures and vehicle speed for one lap in thecircuit.

Figure 5: Distribution of the data for steering wheel angle, accelerator and brake pedal pressures, and vehicle speed. Theamount of values of brake pedal pressure distribution is in logarithmic scale.
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simpler patterns from the images and the deeper ones canrecognize complex patterns. Fig. 6 illustrates this aspect:the first layer recognizes the contours of the cat’s face,eyes and ears and the second layer, more complex patterns.With this, it is possible to identify the image as a cat in theoutput layer, for example.Recurrent Neural Networks are used to processsequences and time series, which, unlike dense andconvolutional networks, require memory. This enablesthe previous output to influence on next predictions, thus,the network output does not depend only on the currentinput vector.
7 Model architecture
The model developed is similar to the model of Yang et al.(2018), i.e., it has a convolutional network and a recurrentnetwork. The images are the input of the convolutionalnetwork and the sequential speed history is the input ofthe recurrent network.A pretrained convolutional network is used in theconvolutional part of the model developed. Threeconvolutional networks, pre-trained with the Imagenetdataset (Krizhevsky et al., 2012), were tested. TheVGG16 network (SIMONYAN et al., 2015) was the one thatperformed best so it was chosen. Based on the work ofYang et al. (2018) to process the sequential speed history arecurrent network is used in parallel to the convolutionalnetwork. The complete model is shown in Fig. 7.The convolutional part of the model shown in Fig. 7is the left branch. This network is composed of theconvolutional part of the VGG16 network (SIMONYANet al., 2015) and two densely connect layers separated bya dropout layer. The first dense layer has 256 units andthe second dense layer has 50 units. The RELU activationfunction is used in these two layers. Image normalizationis performed inside the network using a lambda layerwhich divides the pixels of the images by 255.The recurrent part of the model is the right branch

Figure 6: Hierarchical learning of convolutional neuralnetworks (Chollet, 2017).

shown in Fig. 7. This network has a LSTM layer followedby a densely connected layer. The LSTM layer has 128units and the dense layer 50 units with RELU activationfunction.The outputs of the convolutional and recurrentnetworks are concatenated and then processed by twodense layers to calculated the output of the model, i.e.,the vehicle’s driving controls (steering wheel angle,accelerator pedal pressure and brake pedal pressure). Thefirst of these two layer has 50 units with RELU activationfunction and the output layer has 3 units with sigmoidactivation layer.The total number of parameters of the model is18,501,111, but only 3,786,423 are trainable. The other14,714,688 parameters are VGG16 pre-trained frozenparameters.The great advantage of this configuration used in themodel is that it allows the visual information contained inthe images to be used together with the vehicle’s temporalspeed information to determine all the vehicle’s drivingcommands. This model attempts to reproduce the wayhumans drive a vehicle, both in terms of informationreceived and of driving commands generated.Comparing with the model developed by Yang et al.(2018), many modifications are made. In the model ofYang et al. the outputs are just the steering wheel angleand the desired speed for the vehicle. In addition, inthe model of Yang et al. the convolutional and recurrentparts are joined in such a way that only the recurrent partreceives information from the convolutional part. Thus,the convolutional part of the model of Yang et al. onlycalculates the vehicle’s steering angle and does not receiveany temporal information of the vehicle’s speed.
8 Training
The model is trained with the input data (camera imagesand speed history) and desired outputs (vehicle steeringcommands generated by a human driver). Table 1 showsthe set of hyperparameters used for training.

Table 1: Hyperparameters usedfor training the model.
Hyperparameters
Batch Size 128Epochs 100Dropout rate 0.4Optimizer AdamLearning Rate 1x10–4

The cost function and the metric used are respectivelythe mean square error (MSE) and the mean absolute error(MAE). The values obtained for these functions for thevalidation data are: MSE equal to 0.0015, or 0.15%, andMAE equal to 0.0216, or 2.16%. The dropout layer helpedto reduce the overfit during training. These values are verysmall, showing that the model is capable of performing thedesired transformation of the input data into the outputdata. Fig. 8 shows the values of the loss function (MSE)and the metric (MAE) in each epoch during training.



38 Novello, Yamamoto & Cabral | Revista Brasileira de Computação Aplicada (2021), v.13, n.3, pp.32–41

Figure 7: Scheme of the model developed for autonomous driving vehicle.
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9 Results

The model developed is tested under different weatherconditions and hours of the day to verify its performancein driving the vehicle inside the game environment. Thevehicle completes a circuit loop in about 1 minute and13 seconds without colliding with any obstacle on theroad and without deviating from the correct road lane.A video that summarizes the model driving performancein different weather and hours of the day may be seen inNovello and Yamamoto (2019).To graphically view the vehicle control values generatedby the model, an auxiliary dataset is obtained that containsdriving through one circuit lap. This data contains theimages, the vehicle speed and the human driver’s steeringcommands. Speed values and images are used as modelinput and the model output is compared to the humandriver’s actions. These data allow to compare the angle ofthe steering wheel and the pressures on the pedals of theaccelerator and brake used by the human driver with thosecalculated by the model. The results are shown in Figs. 9and 10. Note that the brake pedal is not pressed on thislap. From the results shown in Fig. 9, it is observed thatthe steering wheel angle generated by the model behavessimilarly to that performed by the human driver, with amean absolute error of 2.9%. The results presented inFig. 10 show that at the beginning of the circuit, the modelaccelerates the vehicle more than the human driver, butsince there is not a reference speed value, it is not possibleto evaluate this result negatively, even because the vehiclecontrolled by the model is able to perform the circuit lapwithout any collision and keeping the vehicle within theexpected road lane.On some rare occasions, the vehicle driven by the modelhas failed to remain on the track. Note that for this failurecondition there are no examples in the database used inthe training showing which would be the right action totake. The location of the circuit where this fault has thehighest occurrence is on the left curve indicated by thenumber 3 in Fig. 1. This failure is probably caused bythe data imbalance, as there is a predominance of rightcurves in the chosen circuit. Note that curve 3 follows

closely curves 1 and 2. In some situations, poor vehicleorientation at the exit of curve 1 (see Fig. 2) caused thefailure, in some other cases, a high speed at the entranceof curve 2, which is sharper, may have been the cause. It isnoteworthy that in the road before curve number 1 thereare no tracks demarcating the lanes.In order to estimate the frequency of failure of themodel a vehicle’s autonomy measurement is defined. Thismeasurement is defined as the time interval for the vehicleget lost on the track. This does not consider the caseswhere the vehicle exceeds the lane limits and recoversimmediately. The results shown in Table 2 are obtainedunder five weather and hours of the day conditions. Theinformation on the fault location shows the number ofthe curve where the vehicle get lost. Note that the lasttest performed is interrupted without any failure afterexceeding 80 minutes of complete vehicle autonomy.
10 Conclusions
In this work a neural network controller is developed foran autonomous vehicle based on an end-to-end approachusing a simulation environment. To simulate a streetenvironment, the game GTA-V was used due to thediversity of scenarios and the realism of the details of theimages making them similar to reality. Two interfaces forthe GTA-V game were developed allowing to collect aboutdata in different conditions of weather and hours of theday and to control the vehicle inside the game.The model is composed of a convolutional neuralnetwork in parallel with a recurrent neural network.The outputs of these two networks are concatenatedand further processed to generate the vehicle’s drivingcommands. To train the neural network model, theimages from the camera and the vehicle speed historyare used as input data, and the steering wheel angle andpressure controls on the accelerator and brake pedalsdetermined by the human driver are used as desired outputdata.The results of the loss function and the metricsobtained during training indicate little overfit and a goodperformance on the validation and test datasets. The

Figure 8: Results of loss function (MSE) and metric (MAE) during training.
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model’s performance is good, being able to autonomouslydrive the vehicle through several laps of the circuit. Somepoint failures of the model are detected mainly in curvesto the left. This failure is probably caused by the fact thatthe data has more examples with curves to the right.
Finally, the results obtained allow to conclude thatthe end-to-end approach used together with the neuralnetwork model architecture are satisfactory, beingpossible to obtain a good level of autonomy for a vehicleusing as input data only images and a temporal sequence

of speed.To improve and enrich the simulation in a virtualenvironment of an autonomous vehicle control, itis intended in future work to make the followingimprovements:
• The database collected has a good diversity of weatherconditions and hours of the day, but it is necessaryto collect data on different types of roads and also toinclude other vehicles, pedestrians, traffic signs etc.

Figure 9: Comparison between steering wheel angle used by the human driver and that calculated by the model in onelap of the circuit.

Figure 10: Comparison between the pressure on the accelerator pedal used by the human driver and that calculated bythe model in one lap of the circuit.
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Table 2: Time between failure of the vehicle under the model driving control.
Weather Hour of the day Failure location Time of autonomy

Clear Night 3 5 min and 49 secClear Morning 3 8 min and 9 secRaining Afternoon 2 1 min and 8 secRaining Sunset 3 11 min and 18 secCloudy Sunset 3 Unlimited

• Design a control architecture capable of planning thevehicle’s route in order to increase the autonomy of thevehicle controller.• Train the model to recover from error states by addingin the training data examples of situations representingthe recovery of the vehicle in error states.
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