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Abstract

The objective of this work is to develop an autonomous vehicle controller inside Grand Theft Auto V game, used as a
simulation environment. It is used an end-to-end approach, in which the model maps directly the inputs from the
image of a car hood camera and a sequence of speed values to three driving commands: steering wheel angle, accelerator
pedal pressure and brake pedal pressure. The developed model is composed of a convolutional neural network and a
recurring neural network. The convolutional network processes the images and the recurrent network processes the
speed data. The model learns from data generated by a human driver ‘s commands. Two interfaces are developed: one
for collecting in-game training data and another to verify the performance of the model for the autonomous vehicle
control. The results show that the model after training is capable to drive the vehicle as well as a human driver. This
proves that a combination of a convolutional network with a recurrent network, using an end-to-end approach, is
capable of obtaining a good driving performance even using only images and speed velocity as sensory data.

Keywords: Autonomous vehicle; Artificial intelligence; Convolutional neural network; Deep learning; Recurrent neural
network.

Resumo

O objetivo deste trabalho é desenvolver o controle de um veiculo auténomo dentro do jogo Grand Theft Auto V, utilizado
como ambiente de simulacio. E aplicada uma abordagem end-to-end, na qual o sistema mapeia diretamente as entradas
provenientes da imagem de uma camera colocada no cap0 do carro e de uma sequéncia de valores de velocidade para
trés comandos de dire¢ao: angulo do volante, pressdo do pedal do acelerador e pressao do pedal do freio. O controlador
desenvolvido é composto por uma rede neural convolucional e uma rede neural recorrente. A rede convolucional processa
as imagens e a rede recorrente processa os dados de velocidade. Sdo desenvolvidas duas interfaces: uma para coleta
de dados de treinamento e outra para controlar o veiculo dentro do ambiente de simulagdo. Os resultados mostram
que o sistema ap0s o treinamento é capaz de dirigir o veiculo tdo bem quanto um motorista humano. Isso prova que
a combinagdo de uma rede convolucional com uma rede recorrente, utilizando uma abordagem end-to-end, é capaz
de obter um bom desempenho de direcao mesmo utilizando apenas imagens e valores de velocidade como dados de
sensores.

Palavras-Chave: Aprendizado profundo; Inteligéncia artificial; Redes neurais convolucionais; Redes neurais recorrentes;
Veiculo auténomo.
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1 Introduction

The development and improvement of GPUs (Graphics
Processing Unit) promoted great advances in the field
of artificial intelligence. In this context, the use of
artificial intelligence to control autonomous vehicles helps
to improve the quality of drivers’ life making possible the
useful use of time spent driving and reducing the amount
of accidents caused by human error.

Deep learning neural networks need a lot of data to
be trained properly, but the work of capturing images
and data for training in a real vehicle demands a lot of
resources. Furthermore, it is very difficult to obtain datain
all possible conditions of weather, hour of the day, traffic,
road types etc. Thus, a form to accelerate the development
of autonomous vehicle is to use games that simulate real
environments to recreate different scenarios. Using large
amounts of synthetic images and simulation data, make
it possible to obtain better results when compared to
deep learning algorithms that are trained using only real
images acquired with a real vehicle (Johnson-Roberson
et al., 2016). With a virtual environment it is simpler
and faster to obtain a large volume of images and data
in different conditions, since there is no need for a driver
and a real equipped car with sensors. In addition, tests
are performed more safely since the car is in a virtual
environment.

The objective of this work is to develop, through
simulation, the control of an autonomous vehicle within
a virtual environment using images from a camera
positioned on the vehicle’s hood, vehicle speed data,
and driver’s commands for steering wheel angle, brake
and accelerator pedal pressures. The images and the
vehicle speed are the inputs of the model and the driver’s
commands are used as desired outputs to train the model.

This work is divided in 8 sections. Section 2 presents a
brief review of the literature describing two similar works.
Section 3 describes the simulation environment. Section 4
describes the interfaces for the game. Section 5 describes
the data used for training the model. Section 6 presents
the architecture of the model developed. In Section 7
it is presented how the model is trained and finally in
Sections 8 and 9 the results and conclusions are presented
respectively.

2 Related works

Bojarski et al. (2016) developed a system called DAVE-
2 capable of driving in real roads without the need to
recognize street elements, such as lanes and boundaries,
using only one convolutional neural network to learn
the entire vehicle steering process directly from camera
images. The system has three cameras positioned on the
left, center and right of the car that collect the images
simultaneously with the steering wheel angle of the driver.
After training, the model is capable of receiving images
in real time and calculating the vehicle steering wheel
angle. The architecture of the DAVE-2 neural network
consists of one normalization layer, five convolution layers
followed by three densely connected layers. The first three
convolution layers use stride equal to 2 and a 5x5 kernel,
and the remaining two use a 3x3 kernel and stride equals

to 1. The output of the last densely connected layer is
the vehicle steering angle. Tests were carried out with
areal car. The results showed that the model was able to
generate steering angles autonomously 98% of the time,
demonstrating that it is possible to obtain good results for
controlling the direction of a vehicle only with the use of
cameras.

Yang et al. (2018) developed a model that uses a
convolution neural network together with a recurrent
neural network. This model is able to predict the steering
angle and the desired speed of the vehicle, receiving
as input the road image and a sequence of previous
speeds. This work improves the work of Bojarski et al.
(2016) in the sense that the model can control both the
steering angle and the speed of the vehicle simultaneously,
greatly improving the vehicle’s driving autonomy in
comparison with other models proposed in the work. The
convolutional network of model, that the authors named
as Multi-modal Multi-task Network, has 5 convolutional
layers and 4 densely connected layers, and it is used
to determine the steering angle. The output of the
recurrent network is concatenated with the output of
the second densely connected layer of the convolutional
network to obtain the speed command. According to
the authors the separation of the calculation into two
neural networks reduces considerably the amount of
computational processing required and allows processing
with high frames per second rates ensuring better
performance in real time.

3 Simulation environment

Using a virtual environment facilitates development and
reduces costs to create, replicate and iterate situations as
compared to a real environment (Martinez et al., 2017).
The computer game Grand Theft Auto V (GTA-V) is chosen
to create the simulation environment. The GTA-V is
an open-world computer game, very rich in elements
and details that represents a replica of the real world.
Within the GTA-V “world” map a circuit was chosen
and set up to simulate the environment to obtain data
for training and for testing the model developed for
controlling autonomous vehicles. The circuit chosen is

Figure 1: GTA-V circuit map used to collect data for
training and testing the developed model
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approximately 850 m long and it has several streets where
the lane is not delimited. The landscape observed in the
route contains vegetation, trees, hills and other elements
seen in common real roads. In this first approach, the
simulation environment does not include the presence of
other vehicles and pedestrians. In addition, it is possible
to control variables such as hour of the day and weather
conditions facilitating testing and enabling a variety of
training conditions. The representation of the circuit map
and an its aerial view are represented in Fig. 1. Some
examples of images collect by the car hood camera are
shown in Fig. 2.

4 Interface with GTA-V game

Two interfaces for the GTA-V game were developed and
used to acquire the training data and to control the vehicle
inside the game. Theses interfaces are available and
described with more details in Novello and Yamamoto
(2020).

The data acquisition interface captures real-time
images displayed on screen at 10 fps rate using the
ImageGrab module from Python library Pillow. These
images are resized to (240, 150, 3) pixels and stored in RGB
format in Numpy arrays with pixel values ranging from
0 to 255. The driving data is acquired with the PyGame
library that reads the joystick and triggers commands
from a controller handled by a human driver. The joystick
controls the steering wheel and the accelerator and brake
pedals. Speed data is collected with in-game modifications

named ScriptHookV and Native Trainer (Blade, 2019).
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Native Trainer is used with few modifications.

The control interface sends driving commands during
simulations inside the game using as inputs real-time
acquired images and normalized values of speed. These
data are acquired with the data acquisition interface and
are normalized to be used in model. The model output
is processed using a virtual joystick simulated with vJoy
driver and the Pvjoy library. Finally, the software x360ce
sends the commands to the game to control the vehicle.
A diagram that summarizes the operation of these two
interfaces is shown in Fig. 3.

5 Training Dataset

The dataset used for training the model consists of about
130 thousand data samples captured at a rate of 10 fps,
completing more than 3% hours of video. The videos
were collected at different hours of the day with different
weather conditions to improve the generalization of the
model. Associated with each image of the videos there are
£ parameters: steering wheel angle, accelerator and brake
pedal pressures, and vehicle speed. For collecting this data,
a human driver drove the vehicle inside the GTA-V game
environment.

The steering wheel angle, the accelerator and the
brake pedal pressures represent relative values varying
between zero and one. For the accelerator and brake pedal
pressures, zero corresponds to the natural unpressed
position. For the steering wheel angle, 0.5 corresponds
to the neutral position of the steering wheel, values
above 0.5 correspond to clockwise angles and under 0.5

0 50 100 150 200

Figure 2: Examples of images collected from the car hood camera used for training the model.
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to counterclockwise angles. An example of the steering
wheel angle, accelerator and brake pedal pressures, and
vehicle speed for one lap in the circuit is shown in Fig. 4. A
summary of these values, that shows the distributions of
the accelerator and brake pedal pressures, vehicle speed
and steering wheel angle in the dataset are presented in
Fig. 5. Note that in the brake pedal pressure histogram
the amount of values is in logarithmic scale because it
remained in neutral position most of time. Also note that
as the circuit has more curves to the right there is a higher
concentration of positive steering wheel values.

The driver’s steering wheel angle, and accelerator and
brake pedal pressures are the desired outputs for the model
while the speed history and the images are the model
inputs. This data is used to train the model with supervised
learning. The solution to the problem follows an end-
to-end approach where a direct association between the
images and the driver’s driving commands is learnt by the
model, so that it is not necessary to consider the detailed
kinematics and dynamics of the vehicle.

Each input sample consists of one image and 50 vehicle
speed values, i.e., the current speed and 49 previous
values. This 50 samples of speed correspond to a temporal
sequence of 5 seconds and are normalized to have zero
mean and values between -1 to 1, so the values are
subtracted by the mean and divided by a scale factor.
For each input it is associated the desired output with
three values that corresponds to the steering wheel angle,
accelerator pedal pressure and brake pedal pressure. The

total number of examples in the dataset is 129,515. This
data is divided into a training dataset with 60% of the
examples, a validation dataset with 20% of the examples
and a test set with the remaining 20% of the examples.
Before separation, the data is randomly shuffled so that to
ensure the diversity of the data in the both training and
validation datasets. This dataset is available in Cabral et al.
(2020).

6 Background

As explained in Chollet (2017), Convolutional Neural
Networks are widely used in image processing and
pattern recognition. The main step of this technique
is convolution, which consists on sliding a filter, a
matrix with specified dimensions, through the desired
image. The filter slides through the image with a
determined spacing, called stride, performing multiple
matrix multiplications with pixels values. A bias is
added to the result and an activation function (nonlinear
function) is applied. A convolutional layer has multiple
filters that extract specific patterns from the image.

The main advantage of a convolutional layer is the
capability to learn and extract local patterns in images,
such as vertical, horizontal edges, textures or colors. After
the filters are learnt, they can be used to extract these
patterns in any image. This generalization makes CNNs
very efficient for image processing. The first layers extract
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Figure 3: Diagrams of the interfaces developed for the GTA-V game used to acquire and send data.
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Figure 4: Example of the steering wheel angle, accelerator and brake pedal pressures and vehicle speed for one lap in the

circuit.
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simpler patterns from the images and the deeper ones can
recognize complex patterns. Fig. 6 illustrates this aspect:
the first layer recognizes the contours of the cat’s face,
eyes and ears and the second layer, more complex patterns.
With this, it is possible to identify the image as a cat in the
output layer, for example.

Recurrent Neural Networks are used to process
sequences and time series, which, unlike dense and
convolutional networks, require memory. This enables
the previous output to influence on next predictions, thus,
the network output does not depend only on the current
input vector.

7 Model architecture

The model developed is similar to the model of Yang et al.
(2018), i.e., it has a convolutional network and a recurrent
network. The images are the input of the convolutional
network and the sequential speed history is the input of
the recurrent network.

A pretrained convolutional network is used in the
convolutional part of the model developed. Three
convolutional networks, pre-trained with the Imagenet
dataset (Krizhevsky et al., 2012), were tested. The
VGG16 network (SIMONYAN et al., 2015) was the one that
performed best so it was chosen. Based on the work of
Yang et al. (2018) to process the sequential speed history a
recurrent network is used in parallel to the convolutional
network. The complete model is shown in Fig. 7.

The convolutional part of the model shown in Fig. 7
is the left branch. This network is composed of the
convolutional part of the VGG16 network (SIMONYAN
et al., 2015) and two densely connect layers separated by
a dropout layer. The first dense layer has 256 units and
the second dense layer has 50 units. The RELU activation
function is used in these two layers. Image normalization
is performed inside the network using a lambda layer
which divides the pixels of the images by 255.

The recurrent part of the model is the right branch

Figure 6: Hierarchical learning of convolutional neural
networks (Chollet, 2017).

shown in Fig. 7. This network has a LSTM layer followed
by a densely connected layer. The LSTM layer has 128
units and the dense layer 50 units with RELU activation
function.

The outputs of the convolutional and recurrent
networks are concatenated and then processed by two
dense layers to calculated the output of the model, i.e.,
the vehicle’s driving controls (steering wheel angle,
accelerator pedal pressure and brake pedal pressure). The
first of these two layer has 50 units with RELU activation
function and the output layer has 3 units with sigmoid
activation layer.

The total number of parameters of the model is
18,501,111, but only 3,786,423 are trainable. The other
14,714,688 parameters are VGG16 pre-trained frozen
parameters.

The great advantage of this configuration used in the
model is that it allows the visual information contained in
the images to be used together with the vehicle’s temporal
speed information to determine all the vehicle’s driving
commands. This model attempts to reproduce the way
humans drive a vehicle, both in terms of information
received and of driving commands generated.

Comparing with the model developed by Yang et al.
(2018), many modifications are made. In the model of
Yang et al. the outputs are just the steering wheel angle
and the desired speed for the vehicle. In addition, in
the model of Yang et al. the convolutional and recurrent
parts are joined in such a way that only the recurrent part
receives information from the convolutional part. Thus,
the convolutional part of the model of Yang et al. only
calculates the vehicle’s steering angle and does not receive
any temporal information of the vehicle’s speed.

8 Training
The model is trained with the input data (camera images
and speed history) and desired outputs (vehicle steering

commands generated by a human driver). Table 1 shows
the set of hyperparameters used for training.

Table 1: Hyperparameters used

for training the model.
Hyperparameters
Batch Size 128
Epochs 100
Dropout rate 0.4
Optimizer Adam

Learning Rate X104

The cost function and the metric used are respectively
the mean square error (MSE) and the mean absolute error
(MAE). The values obtained for these functions for the
validation data are: MSE equal to 0.0015, or 0.15%, and
MAE equal to 0.0216, or 2.16%. The dropout layer helped
to reduce the overfit during training. These values are very
small, showing that the model is capable of performing the
desired transformation of the input data into the output
data. Fig. 8 shows the values of the loss function (MSE)
and the metric (MAE) in each epoch during training.
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Figure 7: Scheme of the model developed for autonomous driving vehicle.
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9 Results

The model developed is tested under different weather
conditions and hours of the day to verify its performance
in driving the vehicle inside the game environment. The
vehicle completes a circuit loop in about 1 minute and
13 seconds without colliding with any obstacle on the

road and without deviating from the correct road lane.

Avideo that summarizes the model driving performance
in different weather and hours of the day may be seen in
Novello and Yamamoto (2019).

To graphically view the vehicle control values generated
by the model, an auxiliary dataset is obtained that contains
driving through one circuit lap. This data contains the
images, the vehicle speed and the human driver’s steering
commands. Speed values and images are used as model
input and the model output is compared to the human
driver’s actions. These data allow to compare the angle of
the steering wheel and the pressures on the pedals of the
accelerator and brake used by the human driver with those
calculated by the model. The results are shown in Figs. 9
and 10. Note that the brake pedal is not pressed on this
lap. From the results shown in Fig. 9, it is observed that
the steering wheel angle generated by the model behaves
similarly to that performed by the human driver, with a
mean absolute error of 2.9%. The results presented in
Fig. 10 show that at the beginning of the circuit, the model
accelerates the vehicle more than the human driver, but
since there is not a reference speed value, it is not possible
to evaluate this result negatively, even because the vehicle
controlled by the model is able to perform the circuit lap
without any collision and keeping the vehicle within the
expected road lane.

On some rare occasions, the vehicle driven by the model
has failed to remain on the track. Note that for this failure
condition there are no examples in the database used in
the training showing which would be the right action to
take. The location of the circuit where this fault has the
highest occurrence is on the left curve indicated by the
number 3 in Fig. 1. This failure is probably caused by
the data imbalance, as there is a predominance of right
curves in the chosen circuit. Note that curve 3 follows

Training and validation loss: VGG16

closely curves 1 and 2. In some situations, poor vehicle
orientation at the exit of curve 1 (see Fig. 2) caused the
failure, in some other cases, a high speed at the entrance
of curve 2, which is sharper, may have been the cause. It is
noteworthy that in the road before curve number 1 there
are no tracks demarcating the lanes.

In order to estimate the frequency of failure of the
model a vehicle’s autonomy measurement is defined. This
measurement is defined as the time interval for the vehicle
get lost on the track. This does not consider the cases
where the vehicle exceeds the lane limits and recovers
immediately. The results shown in Table 2 are obtained
under five weather and hours of the day conditions. The
information on the fault location shows the number of
the curve where the vehicle get lost. Note that the last
test performed is interrupted without any failure after
exceeding 80 minutes of complete vehicle autonomy.

10 Conclusions

In this work a neural network controller is developed for
an autonomous vehicle based on an end-to-end approach
using a simulation environment. To simulate a street
environment, the game GTA-V was used due to the
diversity of scenarios and the realism of the details of the
images making them similar to reality. Two interfaces for
the GTA-V game were developed allowing to collect about
data in different conditions of weather and hours of the
day and to control the vehicle inside the game.

The model is composed of a convolutional neural
network in parallel with a recurrent neural network.
The outputs of these two networks are concatenated
and further processed to generate the vehicle’s driving
commands. To train the neural network model, the
images from the camera and the vehicle speed history
are used as input data, and the steering wheel angle and
pressure controls on the accelerator and brake pedals
determined by the human driver are used as desired output
data.

The results of the loss function and the metrics
obtained during training indicate little overfit and a good
performance on the validation and test datasets. The

Training and validation mean absolute error: VGG16
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Figure 8: Results of loss function (MSE) and metric (MAE) during training.



40 Novello, Yamamoto & Cabral |

Revista Brasileira de Computagdo Aplicada (2021), v.13, n.3, pp-32—41

model’s performance is good, being able to autonomously
drive the vehicle through several laps of the circuit. Some
point failures of the model are detected mainly in curves
to the left. This failure is probably caused by the fact that
the data has more examples with curves to the right.

Finally, the results obtained allow to conclude that
the end-to-end approach used together with the neural
network model architecture are satisfactory, being
possible to obtain a good level of autonomy for a vehicle
using as input data only images and a temporal sequence

of speed.

To improve and enrich the simulation in a virtual
environment of an autonomous vehicle control, it
is intended in future work to make the following
improvements:

- The database collected has a good diversity of weather
conditions and hours of the day, but it is necessary
to collect data on different types of roads and also to
include other vehicles, pedestrians, traffic signs etc.
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Table 2: Time between failure of the vehicle under the model driving control.

Weather Hour of the day Failure location Time of autonomy
Clear Night 3 5 min and 49 sec
Clear Morning 3 8 min and 9 sec

Raining Afternoon 2 1min and 8 sec

Raining Sunset 3 11 min and 18 sec

Cloudy Sunset 3 Unlimited

- Design a control architecture capable of planning the
vehicle’s route in order to increase the autonomy of the
vehicle controller.

- Train the model to recover from error states by adding
in the training data examples of situations representing
the recovery of the vehicle in error states.
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