> ,' Revista Brasileira de Computacao Aplicada, July, 2021
UPF | EDITORA

LNITI 0 D

DOLI: 10.5335/rbca.v13i2.12163
Vol. 13, N° 2, pp. 83-95
Homepage: seer.upf.br/index.php/rbca/index

RBCA

ISSN 2176-6649

ORIGINAL PAPER
Security analysis of the message queuing telemetry transport
protocol

1and André L. S. Gradvohl “1

!Faculdade de Tecnologia, Universidade Estadual de Campinas — Limeira, SP, Brasil

Matheus Ferraz Silveira

*matheus_ferraz@live.com; gradvohl@ft.unicamp.br

Received: 2020-12-26. Revised: 2021-07-07. Accepted: 2021-07-26.

Abstract

The internet of things aims to assign computational processing and connection to simple objects on a network to collect
data and then perform analysis. However, due to its easy use, the simplified implementation has several information
security problems. This paper presents attack procedures in an internet of things environment using the Message
Queue Telemetry Transport protocol. We use the Low Orbit Ion Cannon and Wireshark programs for attack procedures,
compromising the integrity, confidentiality, and availability of data and network connection. After carrying out the
attack procedures, we implemented security methods on the network, such as data encryption and firewall, to protect
data integrity and prevent network connection attacks.

Keywords: Encryption; firewall; information security; internet of Things; MQTT.

Resumo

A internet das coisas tem como objetivo atribuir a objetos simples um pouco de poder de processamento computacional
e conexdo com uma rede para coletar dados e, em seguida, realizar analises. Contudo, devido a facilidade de uso,
a implementacao simplificada apresenta diversos problemas de seguranca da informacao. Este artigo apresenta
procedimentos de ataque em um ambiente na internet das coisas usando o protocolo Message Queue Telemetry
Transport. N6s usamos os programas Low Orbit Ion Cannon e Wireshark para procedimentos de ataque, comprometendo
a integridade, confidencialidade e disponibilidade de dados e da conexao de rede. Ap6s realizar os procedimentos de
ataque, implementamos métodos de seguranca na rede, como criptografia de dados e firewall, para proteger a integridade
dos dados e evitar ataques a conexao de rede.

Palavras-Chave: Encriptagao; firewall; internet das coisas; MQTT; seguranca da informacao.

1 Introduction Data, a concept that, along with IoT, has acquired much
relevance in academia and the market due to the positive
history of use (Jung et al., 2019, Yadav and Vishwakarma,

2018).

With the advancement of research and technology,
the IoT network has become widespread in several

The Internet of Things (IoT) is a concept that has been
in evidence today. In short, the IoT aims to connect
simple objects with little computational power for data
processing and information collection (Sinha et al., 2017).

The concept of IoT has recently gained prominence as

the ability to include data processing into simple objects.

With 10T, it is possible to gather information to analyze
the information that travels between objects and make a
more assertive decision making, generating more positive

results (da Cunha et al., 2016). This large set of data stored,

analyzed, and processed by institutions is called Big

different application segments, such as restaurants,
commerce, agriculture, academic research, and other
segments (Dholu and Ghodinde, 2018, Alghamdi, 2019,
Mekruksavanich, 2019). Most of these activities use a
wireless network due to its practicality. However, when
combining this interest in implementation and ease of
implementation, many IoT networks fall short in data

http://dx.doi.org/10.5335/rbca.v13i2.12163
http://seer.upf.br/index.php/rbca/index
https://orcid.org/0000-0002-2543-3684
https://orcid.org/0000-0002-6520-9740

84 Silveira & Gradvohl |

Revista Brasileira de Computagdo Aplicada (2021), v.13, n.2, pp.83—95

security, which is a failure during its implementation
(Chen and Erfani, 2017). The lack of data traffic security
allows attacks in several ways to capture sensitive data
or interfere with the stored dataset, compromising its
analysis.

For creating a connection between simple objects, such
as stoves and refrigerators, these objects must have some
data processing capacity, such as microcontrollers and
sensors, along with a wireless network connection. These
components are necessary for reading and exchanging
information (Samsudin et al.,, 2018). This network
fostered the exchange of information works with rules
for communication, which are called communication
protocols (Rouse, 2020). In the TCP/IP protocol stack,
most IoT protocols are in the application layer, as shown
in Fig. 1.

TCP/IP protocol architecture

Data Link

Figure 1: Illustration of the layers of the TCP / IP model.
Adapted from Lopez (2003).

One of the most used protocols in an IoT network is
Message Queuing Telemetry Transport (MQTT), as it
is a protocol with low memory usage, low processing
demand, and low bandwidth consumption (Yassein et al.,
2017). IBM created the MQT'T protocol to be a lightweight
protocol, guaranteeing messages with data delivery, using
small computational power, and high latency in the
network (Yuan, 2017). It operates using messages between
the publisher, the broker, and the client (subscriber).

In practice, the publisher generates the data and sends
it through topics to the broker, who acts as the controller
who signs the published data. Once published in the
broker, the client sends the data’s topic, subscribing to the
publication and obtaining the data sent from the publisher
(Cope, 2019).

Next, Fig. 2 illustrates the exchange of messages
between the publisher and the client, with the topics
controlled by a broker.

Sensores
(publish)

Clientes diversos
(subscriber)

Q> —®
O/ —@

Figure 2: Illustration of the functioning of the MQTT
protocol. Source: (da Cunhaetal., 2016).

Broker

According to the presented context, this paper aims
to demonstrate the MQTT protocol’s fragility when
implemented in an IoT network in the usual way. Thus,
when using specific procedures to capture the data that
travel on the network, we show that it is possible to
compromise the customer’s data.

We organized the rest of this paper as follows. Section 2
discusses some concepts regarding this work, and
Section 3 presents a literature survey. Besides, Section 4
describes the methodology used to expose weaknesses
and indicate solutions. Section 5 details the experiments
and results. Finally, Section 6 shows the conclusions of
this research.

2 Literature review

For this work’s positioning concerning the others, we
did a literature survey of the most relevant works in the
area. However, first, we discuss the concepts that underlie
IoT and the aspects related to security in the following
sections.

2.1 Internet of Things

At the beginning of the discussion, in 1982, the
International Telecommunication Union (2012) described
the IoT as a global information infrastructure, which
enables advanced services through the interconnection
(physical and virtual) of objects based on information and
communication technologies interoperable and evolving.

For this infrastructure to become real, it is necessary
to explore the identification, data capture, processing,
and communication resources, which we can see as small
data packages for a large set of nodes. Later, practitioners
considered that there were more objects connected to the
internet with IoT than people. Cisco Systems estimated
that in 2009 the proportion of connected objects to people

Silveira & Gradvohl |

Revista Brasileira de Computagdo Aplicada (2021), v.13, n.2, pp.83—95 85

would increase, and that number will gradually increase
in the following years (Raji, 1994).

The Internet of Things is an evolving concept. As such,
it intends to cover several areas of research since the
connection of devices to wide area networks or local area
networks (LAN) becomes very simple, making activities
that require specific monitoring or constant reading of
data performs more efficiently and safely (Anil, 2016).

Usually, an IoT system uses an application layer
protocol, such as MQT'T, to transport light data, reduce
network latency, and treat several devices connected to
the IoT network. Besides, processing resources must be
limited to avoid overloading them, supplying the data to a
server with greater processing power to provide data on
objects (Navani et al., 2017). For creating an IoT network,
someone must use a sensor for data collection, a controller,
and a client that will process the data, such as a desktop
or smartphone.

2.2 Message Queuing Telemetry Transport
Protocol

After creating the IoT network, one of the means of data
transmission is using the Message Queuing Telemetry
Transport (MQTT) protocol. Created by IBM in the 90s,
this protocol allows data exchange between an object and
other devices connected to a network. Moreover, it is
capable of operating on limited hardware and networks
with high latency.

In the MQT'T protocol, the sensor and clients transfer
data via topics. Assuming that several sensors and clients
exist, the identifier will be the topic informed when
sending data to the broker. For instance, in the type
“publisher” topic, the object data is made available to
all devices that subscribe to that topic. Therefore, it is
necessary to use the “publisher” function to carry out the
transfer. Then the publisher sends the data to the broker
responsible for receiving and relaying the data. Finally,
the function “subscriber” receives the data, identifying
the data path and selecting it in the broker.

The TCP protocol with authentication and encryption
options establishes the connection with the broker. The
entire connection process determines the desired Quality
of Service (QoS), indicating the relationship between client
communication and a broker (Shinho Lee et al., 2013).
Therefore, we may use one of the following three QoS
levels:

+ QoS 0 (maximum once): This service has no message
delivery confirmation. Also, it does not store the
message for future retransmissions.

+ QoS 1 (at least once): In this service, there is a message
delivery confirmation. Therefore, it can generate
equal messages, depending on the non-confirmation
of delivery, until it receives a confirmation of the
message’s delivery.

- QoS 2 (exactly once): It ensures delivery of the message
only once, with confirmation in both directions of
traffic. As long as the message is not confirmed, the
sender keeps it.

The server sent a connack message answering a client’s
connect message for a connection between client and
server. If the message from the client does not reach the
server, the connection must be closed.

If the client does not receive the return message, he
must restart the session by making a new request to the
server and issuing a message. This rule includes messages
that provide invalid protocol names or protocol version
numbers.

If the server can perform a connection message
analysis, it can return a message stating the connection
error before ending the session with the client (OASIS
Standard, 2019).

2.3 Information Security Test Procedures

After implementing the test environment, we will perform
network attack procedures, which will focus on the data
and the connection between the publisher and the broker.
Finally, we describe the techniques we will use in the
following sections.

2.3.1 Denial of Service Method

This type of attack aims to establish the connection to
some point on the network inaccessible, obstructing the
passage of data through the network. In addition, it is
possible to overload any point on the network with data
packets, such as the data collection sensor, impairing the
sending of information to the next hop. For this procedure,
there are specialized programs, most frequently found
in the Kali Linux operating system, a Linux distribution
made for information security (Chen et al., 2018).

A more elaborate tactic for the denial of service
attack is the Distributed Denial of Service (DDoS). This
tactic comprises a “boss” computer and several zombie
computers connected to the “boss”. When the moment of
service attack is determined, zombie computers send data
packets to a specific service. As a result, the service may
not handle the load of requests per session and become
unusable since every service, such as the page servers
on the web, for example, has a maximum data load limit
(Nagpal et al., 2015).

2.3.2 Capture of network data packets

Another type of attack resource is to perform a network
fragility analysis, such as obtaining an access password
and, using specific tools, capturing data packets that
travel on the network, obtaining the data, which may be
confidential or sensitive information. For this procedure,
a sniffer program, such as Wireshark, is generally used
to intercept and register data packets that travel on the
network and subsequently evaluate the content (Das and
Tuna, 2017). With the knowledge of the topic used in an
IoT network implemented simply, it is possible to use a
fake publisher and inject fictitious data, compromising
the collected dataset’s analysis (Andy et al., 2017).

As stated before, one of the focuses of attacks on an
IoT network can be to obtain the data that travels on the
network to record sensitive data or make the network
unusable. The work from Andy et al. (2017) demonstrates
that an IoT-based network with the MQTT’s protocol

86 Silveira & Gradvohl |

Revista Brasileira de Computagdo Aplicada (2021), v.13, n.2, pp.83—95

implementation is superficial, as there is no security tool
available, only an authentication tool.

With many devices and networks installed, this type
of IoT network using the MQTT protocol is vulnerable to
attacks. In the first scenario, the attack occurs so that
the subscriber uses a generic topic, using the symbol
“#7, to subscribe to all possible topics connected to the
broker, obtaining sensitive data. Fig. 3 illustrates the
attack scenario.

Publisher
A

Accredited
subscriber

Publisher

Broker B

Attacking subscriber,
catches all topics (#)

Publisher

Figure 3: Typical scenario of an attack. Source: (Andy
etal., 2017).

It is also possible to perform a reverse attack. It means
that, instead of collecting sensitive data using the symbol
“#7 it is possible to inject data into a broker, using the
“publisher” function, informing false data to the broker
and the possible reading of the topic by a subscriber.

We can perform the presented scenarios in a public
IoT network if that network does not have authentication.
That is because, in an IoT network using the MQTT
protocol, authentication is not mandatory. Assuming that
the attacker connects to the IoT network, he can analyze
the data that travels on the network.

In this scenario, we used the Wireshark to verify the
data that travels on the network, exploring the MQTT
package’s privacy and integrity. By definition, MQTT does
not have data encryption. As a result, the attacker can
soon quickly check the data that travels over the network,
according to the screen illustrated in Fig. 4.

¥ MQ Telemetry Transport Protocol
v Publish Message
@811 @288 = Header Flags: 8x38 (Publish Message)
Msg Len: 21
Topic: outTopic
Message: hello world

Figure 4: Adaptation of the figure presented in Andy et al.
(2017), with attack on broker using Wireshark.

Although authentication in the IoT network is not
mandatory using the MQTT protocol, using a user and
password to authenticate with the broker is possible.
Assuming the attacker is on the same network as the

publisher, one can analyze the network and check the
data packets sent to the broker that contain authentication.
Within this data package, authentication data is entered in
text form by default if there is no encryption by network
administrators. Fig. 5 illustrates the connect package
collection in the broker, containing the user and password
data.

¥ MQ Telemetry Transport Protocol
¥ Connect Command

BeBE1l 2ee@ = Header Flags: @x1@ (Connect Command)
Msg Len: 42
Protocol Name: MQTT
Version: 4
1188 8@l@ = Connect Flags: @xc2
Keep Alive: 15
Client ID: ESPB266Client-3f@3
User Name: ipul
Password: ipul

Figure 5: Demonstration of the connect package sent to
broker for authentication. Source: (Andy et al., 2017).

Another way to attack the data packets’ integrity is to
change the data traveling between the publisher and the
broker. To perform this procedure, one can change the
name of the topic published by another and perform a filter
so that the subscriber reads the false topic’s data. Fig. 6
illustrates how we can do a fake topic using the Etterfilter
application (Debian.org, 2020).

#owned. filter
if (ip.proto == TCP && tcp.dst == 1883 && ip.dst == "IP Broker' &&
search(DATA.data, "outTopic")) {

replace("outTopic", "outTopuc");

msg("payload replaced\n");

i

Figure 6: MQTT topic change and creation under another
name. Source: (Andy et al., 2017).

After that, using an Etterfilter interface, the attacker,
connected to the network, modifies the packet and sends
it to the attacked computer. Fig. 7 informs that the
subscriber received the changed topic.

As indicated, it is possible to use attack methods
on data packets that travel on an IoT network and
compromise its connection when someone implements
the IoT network without precautions. The following
section will demonstrate the testing environment, the
experiments carried out, and the results obtained.

3 Related works

Harsha et al. (2018) analyze how security breaches in
the use of the MQTT protocol and demonstrate the
implementation of security measures using authorization

Silveira & Gradvohl |

Revista Brasileira de Computagdo Aplicada (2021), v.13, n.2, pp.83—95 87

Transmission Control Protocol, Src Port: 1883, Dst Por
MQ Telemetry Transport Protocol
Vv Publish Message
8011 9088 = Header Flags: @x3@ (Publish Message)
Msg Len: 25
Topic: outTopuc
Message: hello world #31

Figure 7: Demonstration of the reading of the altered
package made by the subscriber. Source: (Andy et al.,
2017).

and authorization techniques. Besides, that work
addresses some adversities in the use of the MQTT
protocol. Among them, as any customer can subscribe
or publish any topic, they explore how to resend lost
messages is challenging since there is no access control
mechanism or other barriers. Therefore, this work
uses Wireshark software to carry out an analysis and
monitoring of data packages.

The work indicated that publisher authentication
is important, making the broker less vulnerable to
unauthorized publishers. Fig. 8 illustrates an attempt to
authenticate in the broker with incorrect credentials.

¥ M) Telemetry Transport Protocol, Connect Ack
Header Flags: @x2@ (Connect Ack)
Msg Len: 2
Acknowledge Flags: @x@8
Return Code: Connection Refused: not authorized (5)

Figure 8: Attempted client authentication failure. Source:
(Harsha et al., 2018).

To carry out and prevent non-authenticated
publications, the authors configured the authentication
option, limiting publications to customers who have
access. Fig. 9 shows the authentication credentials in
Wireshark’s log.

¥ MQ Telemetry Transport Protocol, Connect Command
Header Flags: @x1@ (Connect Command)
Msg Len: 27
Protocol Name Length: 4
Protocol Mame: MQTT
Version: MQTT v3.1.1 (4)
Connect Flags: @xc2
Keep Alive: 6@
Client ID Length: @
Client ID:
User Name Length: 4
User Name: —'—(?.hEVﬁNEEFCF&TﬁCH

o in plain text
Password Length: 7~

Password: [test123

Figure 9: Client authentication on broker using
credentials. Source: (Harsha et al., 2018).

It is possible to use encryption on the data and
Transport Layer Security or Secure Sockets Layer on
port 8883 to overcome this vulnerability. That procedure
makes data transmission over a secure connection.
However, overhead can occur when there are frequent
reconnections to the broker.

As a resource, we can use the Access Control List (ACL)
— a list configured in the broker, with authorized users
for publishing data. For example, the first red rectangle of
Fig. 10 shows a customer posting on a topic that has access.
In the second rectangle, the same customer tries to post
to another topic. This one, however, is refused.

:= % sudo mosquitto -p 1883 -v -c fetc/mosquitto/mosguitt
.conf
1525012156 mosquitto versien 1.3.4 (build date 2017-05-29 22:25:09+000
) starting
1525012156: Config loaded from setc/mesquitto/mesguitto.conf
] =

525012156: Opening ipve listen socket on port 1883

1525012161 Hew connection from ::1 onm port 1883.
525012161 Hew cliemt connected from ::1 as mosqpub/1943-raspberryp (g
., k60, utest).

1525012161 : Sending CONHACK to mosqpubs/1943-raspberryp (0}
525012161 Received PUBLISH from mosgpub/1943-raspberryp (d0, g0, ro,
v — T ria -+ o

1525012161 : Received DISCONNECT from mosqpub/1943-raspberryp

525012178: Hew connection from ::1 om port 1BE3.
1525012178: Hew client connected from ::1 as mosqpub/1944-raspberryp (d
. k60, utest).

525012178 Sending CONNHACK to mosqpub/1944-raspberryp (0)
1525012178: Denied PUBLISH from mosgpubs1944-raspberryp (d0, g0, r0. md
o =5 -] hg‘_l‘:ﬁﬂ
1325012178: Received DISCONNECT from mosgpubs1944-raspberryp

Figure 10: Authorization to publish topics on the broker.
Source: Harsha et al. (2018).

Harsha et al. (2018) show that it is possible to create
a list of authenticated clients in the broker for data
publishing permission. However, it is still possible to
capture the customer’s name using Wireshark when
sending publisher authentication. Furthermore, it is
possible to use encryption to guarantee the integrity and
confidentiality of the data. Our method shows that only
the client can access authentic data using this procedure.

Another attack on MQTT is the denial of service
procedure, as shown in Section 2. In Firdous et al.
(2017), the authors show that mobile devices are attractive
for performing hacking procedures, as they are always
connected to the internet and can be controlled remotely.
Another attractive target are web pages.

The work from Firdous et al. (2017) illustrates some
scenarios of an attack on MQTT. Among them are the
following:

- A user can create multiple TCP sessions in a broker,
overloading and depleting the broker’s resources.

- A user can send multiple CONNECT packages to the
broker, overloading and depleting their resources.

- A user with privileges to send data packets can send
many packages to the broker, overloading and depleting
resources.

- An internal user can obtain access’ data and make

malicious publications, compromising the study’s

results.

Auser with access information can obtain sensitive data

for a specific group of customers.

88 Silveira & Gradvohl |

Revista Brasileira de Computagdo Aplicada (2021), v.13, n.2, pp.83—95

The mentioned procedures can be challenged with
some information security implementation techniques,
such as firewall, data encryption, and ACL to broker. In
Firdous et al. (2017), the authors used the denial of service
procedure using a virtual machine. The authors sent two
thousand messages of type “publishers” in the proposed
experiment, locking the broker for 30 seconds. Fig. 11
shows that the CPU load increased, reaching a peak of
100% utilization.

CPU History

I cPU 31.7%

MQTT Service Crashes
Memory and Swap History J

/
——

Memaory Swap
286.3 MiB (14.3%) of 2.0GiB 544.0 MiB (26.6%) of 2.0 GiB

Network History

Figure 11: Peak usage of 100% of broker. Source: (Firdous
etal., 2017).

An attack with TCP SYN packets is launched to overload
the network bandwidth, increasing the network transfer
rate to 300 MB/s, as shown in Fig. 12.

Network History

Figure 12: Increased network throughput. Source:
(Firdous et al., 2017).

Despite Firdous et al. (2017) show a practical application
of the denial of service procedure, the authors restrict the
procedure to a single application. Thus, it is different from
this paper, which handles other forms of attack on the
MQTT protocol, such as sending false data to the broker
and presenting security techniques, such as encryption in
the transmission of data.

In Potrino et al. (2019), the authors model and evaluate
an information security system to mitigate the damage
of a denial of service attack using an intrusion detection
system (IDS), which applies a policy of discarding packets
not authorized in the MQTT protocol. One can use the
IDS to monitor only one server or leave a secure network.
Constant monitoring and analysis of the network are
necessary for its use, allowing quick decisions when the
system detects an attack.

The data monitored by sensor nodes are sent
periodically to the nebulizer node using the MQTT
protocol. Thus, it is possible to accept some packets
with limited frequency, monitor the buffer’s integrity,

prioritize to authorized topics, and identify attacking
nodes. Contrary to this work, Potrino et al. (2019)
demonstrates a firewall’s implementation to contain a
denial of service attack.

In Chifor et al. (2017), the authors designed the security
for the MQTT protocol, protecting messages against DoS
attacks. The scenario is a smart city transport system. A
base station receives messages from sensors, trusted and
unreliable vehicles, aggregates the data, and transmits it
to the cloud. Untrusted vehicles can provide helpful traffic
information, but malicious devices can easily interrupt
communication between the base station and trusted
vehicles.

Chifor et al. (2017) propose dividing MQTT into two
separate channels, one for data and one for security
control. A device authenticates with the broker and
reports message delays or applies security policies in the
security channel. Then, if multiple authenticated devices
report MQTT message delays, the broker will discard
messages transmitted by unauthorized devices until the
overall network delay is resolved. Fig. 13 illustrates the
architecture of the MQTT division.

i | security plug-in | :
S —
i| marTbroker | :

| Messages+

security policy

Messages+

authentication Messages

Publishers

Untrusted devices

[Publishers] [Subscribers }

Trusted devices

Figure 13: architecture of the MQTT division. Source:
(Chifor et al., 2017).

We did a simulation to verify the consequence of delayed
messages. In this simulation, several clients bulk send
messages to a broker.

Furthermore, in the experiment, we found that the
average delay time in the network increases dramatically.
Because of this situation, the broker will discard messages
from unauthorized clients and analyze network security
policies. Thus, this study shows a more complex
implementation of the MQTT protocol, different from the
environment proposed by the paper, which analyzes the
security of the MQTT protocol implemented in a simplified
way.

In agreement with the works presented in this
section, the study on information security using the
MQTT protocol is quite extensive. In addition to attack
procedures, this paper demonstrates the implementation
of methods to make attacks more difficult. Section 4
presents the research methodology adopted in this work,
showing the concepts and methods we used.

Silveira & Gradvohl |

Revista Brasileira de Computagdo Aplicada (2021), v.13, n.2, pp.83—95 89

4 Research Methodology

Focusing on the security analysis of the implementation
of the MQTT protocol, this paper demonstrates that
the protocol’s security service quality is not satisfactory,
containing loopholes that can be exploited to intercept
data and create connection problems between objects in an
IoT network. After the attack procedures described in the
previous sections, we will implement security methods in
a network, reducing a common IoT network’s loopholes.

To achieve the aforementioned objectives, attack
procedures will be carried out within the information
security concept, focused on transmitting data between
the publisher and the broker. The purpose of the attack
procedures is to disable the connection between the
publisher and broker, capture data packets, and send
fake data packets. After the tests, we present the results’
analyses.

One of the procedures, focusing on the connection
between the devices, is the Denial of Service (DoS). That
is a widespread method among attacks to interrupt a
system’s network connection, making it impossible to
use. This practice is prevalent to prevent access to a web
page (Chen et al., 2018).

To obtain data traveling on the network, we used the
method of capturing and analyzing packets, also known
as sniffing packets. Somebody can use this method to
intercept, catalog, and even decrypt data packets that
travel over a network (Dawson and McDonald, 2016).

After executing of the attack procedures mentioned
earlier, we will implement a firewall in the broker and
the publisher, increasing the difficulty of rendering
the connection unusable. Besides, we shall implement
data encryption, preventing packet interception, and
performing an analysis of possible false data without
compromising it.

After the security implementations, we carried out new
IoT network attack tests, a new analysis of the results, and
compared the results obtained before implementing better
security measures.

We used an IoT network implementing the MQTT
protocol to perform the procedures through the Python
programming language (Nagpal and Gabrani, 2019, Lo
etal., 2015).

This IoT network is composed of a smartphone
acting as a client. The customer signs the data for a
Raspberry Pi3 card containing a DHT11 temperature and
humidity sensor, acting as a publisher (Sharmila et al.,
2019). Besides, there is a notebook acting as a broker
through the implementation of Mosquitto and a message
controller program created to act as a broker in network
implementations that use the MQTT protocol (Martins,
2019).

In addition to the equipment reported for that IoT
network, we used a notebook with a Kali Linux operating
system (OS) since it is an OS with several pre-installed
software to test information security (Al Neyadi et al.,
2020). Fig. 14 illustrates the testing environment.

MQTT protocel implemented in an loT network o
o QT pr o T

g Subscribing
——

MQTT Broker Clien

o

—
ﬁ DHT11 sensor connected
2 @‘? Publishing

Attacker

Figure 14: Test environment created for procedures
related to the concept of information security.

5 Experiments and Results

This section demonstrates the implementation of
information security concepts, both in attacking data and
implementing security applications on the proposed IoT
network. After the experiments, we discuss the analysis
of the results, indicating the MQTT protocol’s weakness
when implemented in an incautious way.

5.1 Attack Procedures

This section will cover some attack strategies, including
Denial of Service, data packet capture and encryption, and
sending incorrect data packets.

5.1.1 Denial of Service

To apply the denial of service concept, a relatively large
amount of data packets must be sent to the target, causing
the bandwidth to experience very high latency in the
connection, leading to loss of connection to the network
(Liang et al., 2016).

In the proposed experiment, the targets for the denial
of service procedure were the publisher containing the
DHT11 sensor and the broker. We used the Low Orbit Ion
Cannon (LOIC) program to carry out the attack. LOIC is
an open-source program written in the C# programming
language, aimed at a denial of service attack to test the
network’s quality (Patil et al., 2018). LOIC sends a large
volume of User Datagram Protocol (UDP) request packets,
overloading the target, causing it to stop responding to
authentic requests.

Fig. 15 illustrates the configuration of the LOIC to
perform the denial of service. First, we configured the
target for the publisher’s IP and later for the broker, both
using port 1883. The request uses the UDP protocol and,
due to hardware limitation, we use five tasks or threads
for carrying out the procedure.

Figs. 16 and 17 show the loss of connection between the
publisher and broker in the network, interrupting the data
flow to the client.

As shown, the denial of service procedure achieved its
objective in the IoT environment by implementing the
MQTT protocol. Both attacks took 5 seconds, with a total
of 2,132,072 and 3,176,341 requests, respectively, to reach
the goal.

90 Silveira & Gradvohl |

Revista Brasileira de Computagdo Aplicada (2021), v.13, n.2, pp.83—95

Figure 15: Default configuration of the LOIC program.

Microsoft Windows [versao 10.0.17763.1282] A
(c) 2018 Microsoft Corporation. Todos os direitos reservados.

C:\Users\Matheus>ping 192.168.0.120 -t

Disparando 192.168.0.120 com 32 bytes de dados:

Resposta de 192.168.0.120: bytes=32 tempo=94ms TTL=64
Resposta de 192.168.0.120: bytes=32 tempo=5ms TTL=64
Resposta de 192.168.0.120: bytes=32 tempo=5ms TTL=64
Resposta de 192.168.0.120: bytes=32 tempo=5ms TTL=64
Esgotado o tempo limite do pedido.

Esgotado o tempo limite do pedido.

Figure 16: Demonstration of loss of connection with the
publisher through the PING test.

-}

icrosoft Windows [versdo 10.0.17763.1282] -
c) 2018 Microsoft Corporation. Todos os direitos reservados.
‘\Users\Matheus>ping 192.168.0.102 -t

isparando 192.168.0.102 com 32 bytes de dados:

esposta de 192.168.0.102: bytes=32 tempo=1ms TTL=64
esposta de 192.168.0.102: bytes=32 tempo=2ms TTL=64
esposta de 192.168.0.102: bytes=32 tempo=1ms TTL=64
esposta de 192.168.0.102: bytes=32 tempo=284ms TTL=64
sgotado o tempo limite do pedido.

esposta de 192.168.0.102: bytes=32 tempo=290ms TTL=64
sgotado o tempo limite do pedido.

Figure 17: Demonstration of the loss of connection with
broker through the PING test.

5.1.2 Data Packet Capture

With specialized software, we perform methods for
analyzing and capturing packets to obtain data with
sensitive information. The best-known and most used
software is Wireshark, as it has a simplified and easy-to-
use interface (Wang et al., 2010, Das and Tuna, 2017).

In the experiment, Wireshark runs on the notebook
and monitors the wireless network, registering all packets
that travel on the network. It is possible to configure the
Wireshark filter to display only the MQTT protocol. After
configuring the filter, the program saves and interprets

the data packets captured on the network, revealing the
data sent from the publisher to the broker, including access
credentials to the broker.

Fig. 18 shows the credentials visible in the Wireshark
when checking the connection line between the publisher
and the broker. Also, Wireshark show when the publisher
sends the credentials to the broker requesting the
connection.

23 11.291504796 192.168.0.120 192.168.0.105 MQTT 128 Publish Message [casa/tel
31 21.381619604 192.168.0.120 192.168.0.105 MQTT 129 Publish Message [casa/tel
42 31.472221977 192.168.0.120 192.168.0.105 MQTT 129 Publish Message [casa/tel
44 41.570693302 192.168.8.120 192.168.0.105 MQTT 123 Publish Message [casa/tel
56 51.651531873 192.168.0.120 192.168.6.105 MQTT 129 Publish Message [casa/tel
61 61.742896068 192.168.0.120 192.168.0.105 MQTT 123 Publish Message [casa/tel
76 71.757601837 192.168.8.120 192.168.0.105 MQTT 68 Ping Request

78 71.757724487 192.168.0.185 192.168.6.120 MQTT 68 Ping Response

0 71 RIRITRAIA 102 1AR O 12A 107 1RA A A5 MOTT 120 Duhlich Maccane fraca/tel

Msg Len: 38
Protocol Name Length: 4
Protocol Name: MQTT
Version: MQTT v3.1.1 (4)
» Connect Flags: Oxc2, User Name Flag, Password Flag, QoS Level: At most once delivery (Fire and For
Keep Alive: 60
Client ID Length: 2

User Name Length: 18
User Name: rootbroker
Password Length: 18

Password: rootbroker

B e CL e R P T v Ui

Figure 18: Capture packets with authentication
credentials, using the Wireshark.

Fig. 19 shows the publisher’s data after checking the
line containing the topic in transit on the network. That
is a severe security breach, as it is possible to obtain
authentication data from the broker. However, depending
on the context of the implementation of the IoT network,
the data sent to the broker may be confidential and should
not be exposed to registration and analysis.

matt
Mo, Time Source Destination Protacol Lengtl Info
696 626.802546652 192.168.0.120 192.168.6.105 QT 123 Publish Message [casa/temperatura/sensor]
711 636978171063 192.168.0.120 192.168.6.105 QT 123 Publish Message [casa/temperatura/sensor]

714 647.069816446 192.168.0.120 192.168.0.105 MQTT 123 Publish Message [casa/temperatura/sensor]

750 677.268033354 192.168.0.105 192.168.0.120 MQTT 68 Ping Response

752 677.344262435 192.168.6.120 192.168.0.165 MQTT 129 Publish Message [casa/temperatura/sensor]
754 687.438948020 192.168.0.120 192.168.0.165 MQTT 129 Publish Message [casa/temperatura/sensor]
760 607.528452620 192.168.0.120 192.168.0.105 MQTT 123 Publish Message [casa/temperatura/sensor]

Urgent pointer: 0

Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps
[SEQ/ACK analysis]

[Timestamps]

TCP payload (63 bytes)

vy

elemecry lransport Protocol, Pul
» Header Flags: 0x30, Message Type: Publish Message, QoS Levelll At most once delivery (Fire and Forget)

1sh Message

¥sg Len: 61

Topic Length: 23

Topic: casa/tenperatura/sensor

Vessage: 54656070657261747572613a2032332e3302002021 205560

C0 cb 38 4b cb db b8 27 &b 99 d8 4¢ 08 00 45 0O K NE
G0 73 03 7b 40 00 40 06 b4 dB cO a8 06 78 c0 a8 s {0 x
©0 69 cb bf 07 5b 3p fb 20 08 37 b0 92 8 80 18 1. -[; -7
©1 76 bd a5 00 00 01 01 02 Ba £6 11 a9 Oc 00 06
47130 3d 00 17 63 61 72 61 2f 74 65 6d 70 65

qo=--ca sa/tempe
726174 75 72 61 2f 73 65 Ge 73 6f 72 54 65 6d M ratura/s ensorTem
70 65 72 61 74 75 72 61 3a 20 32 33 2e 33 c2 bo M peratura : 23.3

20 2f 20 55 6d 69 64 61 64 65 3a 20 37 38 2¢ 30 / Umida de: 78.0

Figure 19: Capture of packages containing data sent from
the publisher.

5.1.3 Sending incorrect data packets

Another advantage the attacker used is knowing the
connection data, and the topic used to transmit the
publisher’s data. We can obtain this knowledge through
tools aimed at capturing packets, previously mentioned.

Silveira & Gradvohl |

Revista Brasileira de Computagdo Aplicada (2021), v.13, n.2, pp.83—95 91

After the intercepted packages’ registration and
analysis, it is possible to create an illusory publisher
and send false data, impairing decision-making over the
collected data set.

Fig. 18 illustrated the capture of data packets sent
from the publisher with authentication credentials,
allowing incorrect data to be sent to the broker using an
unaccredited publisher (da Silveira, 2020).

Fig. 20 shows that the customer received the false data
sent, characterized by the temperature value 31,000 and
humidity 21,000. As the subscriber receives the false
data, the analysis and interpretation may contain errors,
harming the whole experiment.

MQTTool

I[elsllel| casa/temperatura/sensor @

Clear

Unsubscribe

Status: Subscribed to: casa/temperatura/sensor

casa/temperatura/sensor
Temperatura: 31000 Umidade: 21000

casa/temperatura/sensor
Temperatura: 31000 Umidade: 21000

casa/temperatura/sensor
Temperatura: 24.2° / Umidade: 70.0%

casa/temperatura/sensor
Temperatura: 24.2° / Umidade: 70.0%

casa/temperatura/sensor
Temperatura: 0° / Umidade: 0%

casa/temperatura/sensor
Temperatura: 24.3° / Umidade: 71.0%

casa/temperatura/sensor
Temperatura: 24.2° / Umidade: 73.0%

\[/ T L:\/

Subscribe Publish Stats

(@)

Connect

(D

About

Figure 20: Demonstration that the customer signed the
false data, sent by a non-authentic publisher.

5.2 Security measures

Following, we will discuss some strategies for increasing
device security for IoT.

5.2.1 Data packet traffic encryption

Data encryption is a widely used technique for protecting
data transmitted over a network (Carracedo et al., 2018).
In this system, clients used a security key that only the
publisher and an authentic subscriber have. Therefore, it
is necessary to use the security key to read the data (Oak
and Daruwala, 2018).

Fig. 21 shows that an attacker using the Wireshark
software can still obtain the topic name. However, it is
no longer possible to read the original data sent by the
publisher. Instead, when reading the original data, it
shows the encrypted data.

Packet: 16230 Displyed: 7 (00%] Proie: Defaut

Figure 21: Capturing packages with data sent from the
publisher.

5.2.2 Firewall

A firewall is composed of software or even hardware,
intending to implement security policies at a certain point
in the network (Gupta et al., 2017). We can use the firewall
to filter and analyze the data packets that travel on the
network. We can also implement it via proxy, where it
handles all requests and then sends them to the server (La
Cruz and Goyzueta, 2016). An application firewall (WAF),
widely used in web applications, creates a barrier between
the business and the internet, filtering and blocking
unauthorized access (Clincy and Shahriar, 2018).

For this application, we used the Uncomplicated
Firewall (UFW), a firewall rules management interface
that uses command lines and is available for Arch Linux,
Debian, and Ubuntu distributions. In practice, UFW allows
security rules and policies through commands in the Linux
terminal (Krout, 2019).

For the protection of denial of service attacks, two
security policies can be implemented, for example. The
first is to identify the attacker’s IP and deny the receipt
of data packets, as shown in Fig. 22. Another policy is to
limit the volume of receipt of all data packets of a particular
type of protocol, such as UDP, not allowing the target’s
resources to be rendered unusable. Fig. 23 illustrates the

92 Silveira & Gradvohl |

Revista Brasileira de Computagdo Aplicada (2021), v.13, n.2, pp.83—95

data limitation rule of the UDP type, implemented in the
UFW of a broker.

- Terminal - root@vostro: ~ -+ x
Arquivo Editar Ver Terminal Abas Ajuda

root@vostro:~# ufw deny from 152.168.0.108

Regras atualizadas

root@vostro:~f ufw enable

Firswall estd ativo e habilitado na inicializagio do sistema
root@vostro:~# ufw status verbose

Estado: ativo

Logando: on (low)

Predefinide: deny (entrada), allow (saida), disabled (roteadc)
Novos perfis: skip

Para Acao De
Anywhere

192.168.0.108
Anywhere (v6)

22 ALLOW IN
Anywhere Deny IN
22 (v6) Allow IN

root@vostro:~#

Figure 22: Denial of UFW packet received from a given IP
address.

Terminal - root@vostro; ~ -+ x
Arquivo Editar Ver Terminal Abas Ajuda
root@vostro:~§ ufw status
Estado: inative
ufw enable
ivo e habilitado na inicializag&o do sistema

root@vostr
Estado: ativo

para Acao De
10/udp LIMIT Anywhere
10/udp (v6) LIMIT Anywhere (vé)

root@vostro:~#

Figure 23: Limitation of data packets received from the
UDP protocol type.

5.3 Analysis of Results

Implementing the MQTT protocol presents a particular
weakness for attacks when implemented in a simplified
way, both in connecting devices and reading data traveling
on the network. Therefore, we implemented methods to
make the IoT network less fragile. That is, to identify
and hinder attacks carried out by an external agent, such
as data encryption and firewalls. After we carried out
the attacks, we demonstrated that it is easily possible to
succeed in an IoT network implemented in a simplified
way.

With the data encryption method’s adhesion, it is no
longer possible to read the data, as the interpretation
is impractical. Using a firewall, we kept the network
connection stable, denying the connection to a specific
IP and limiting the volume of data packets received.

6 Conclusion

An IoT network with the simplified implementation of the
MQTT protocol has vulnerabilities that can be exploited in
several different ways, compromising the confidentiality,
integrity, and availability of data, impairing all work and
analysis of results. However, using some resources in the
network’s installation and configuration, it is possible to
make it more robust using information security policies.
Furthermore, it is possible to prevent the presented
vulnerabilities, such as using encryption for the data
and implementing a firewall to stabilize the network
connection.

6.1 Future Works

We will focus on implementing the IoT network’s
information security methods using the MQTT protocol,
for future works. Such methods will concentrate on the
following actions.

- Implement and make available an installation file
or source code extraction of complete projects for
implementing the MQTT protocol. The publisher,
subscriber, and broker already have the appropriate
security methods inserted, such as encryption and
authentication mechanism.

- Perform scalability studies of the environment, adding
several sensors at different credential levels, leaving
some data more exposed to public access and others
more confidential.

+ Check the cost to implement a more robust information
security system in the IoT network, depending on the
data’s criticality.

+ Conduct a survey and study the broker’s availability in
the cloud, where only the publisher and subscriber’s
implementation in the IoT network is required.

Acknowledgments

This study was financed in part by the Coordenacao de
Aperfeicoamento de Pessoal de Nivel Superior — Brasil
(CAPES) — Finance Code 001.

References

Al Neyadi, E., Al Shehhi, S., Al Shehhi, A., Al Hashimi,
N., Qbea’H, M. and Alrabaee, S. (2020). Discovering
Public Wi-Fi Vulnerabilities Using Raspberry pi and
Kali Linux, 2020 12th Annual Undergraduate Research
Conference on Applied Computing (URC), IEEE, Dubai,
United Arab Emirates, pp. 1—4. Available at https://
doi.org/10.1109/URC49805.2020.9099187.

Alghamdi, S. (2019). Shopping and tourism for blind
people using RFID as an application of IoT, 2019
2nd International Conference on Computer Applications
& Information Security (ICCAIS), IEEE, Riyadh, Saudi
Arabia, pp. 1—4. Available at https://doi.org/10.1109/
CAIS.2019.8769581.

https://doi.org/10.1109/URC49805.2020.9099187
https://doi.org/10.1109/URC49805.2020.9099187
https://doi.org/10.1109/CAIS.2019.8769581
https://doi.org/10.1109/CAIS.2019.8769581

Silveira & Gradvohl | Revista Brasileira de Computagdo Aplicada (2021), v.13, n.2, pp.83—95 93

Andy, S., Rahardjo, B. and Hanindhito, B. (2017).
Attack scenarios and security analysis of
MQTT communication protocol in IoT system,
2017 4th International Conference on Electrical
Engineering, Computer Science and Informatics
(EECSI), IEEE, Yogyakarta, pp. 1-6. Available at
https://doi.org/10.1109/EECSI.2017.8239179.

Anil, K. (2016). Open source implementation of
Internet of Things as a Network of Intranet of Things,
2016 International Conference on Information Technology
(InCITe) - The Next Generation IT Summit on the Theme
- Internet of Things: Connect your Worlds, IEEE, Noida,
pp. 215—218. Available at https://doi.org/10.1109/
INCITE.2016.7857619.

Carracedo, J. M., Milliken, M., Chouhan, P. K., Scotney,
B., Lin, Z., Sajjad, A. and Shackleton, M. (2018).
Cryptography for Security in I0T, 2018 Fifth International
Conference on Internet of Things: Systems, Management
and Security, IEEE, Valencia, pp. 23—30. Available at
https://doi.org/10.1109/I0TSMS.2018.8554634.

Chen, L. and Erfani, S. (2017). A note on security
management of the Internet of Things, 2017 IEEE
30th Canadian Conference on Electrical and Computer
Engineering (CCECE), IEEE, Windsor, ON, pp. 1—4.
Available at https://doi.org/10.1109/CCECE.2017.
7946616.

Chen, Q., Chen, H., Cai, Y., Zhang, Y. and Huang, X.
(2018). Denial of Service Attack on IoT System, 2018
9th International Conference on Information Technology
in Medicine and Education (ITME), IEEE, Hangzhou,
pp. 755—758. Available at https://doi.org/10.1109/
ITME.2018.00171.

Chifor, B.-C., Bica, L. and Patriciu, V.-V. (2017). Mitigating
DoS attacks in publish-subscribe IoT networks, 2017
9th International Conference on Electronics, Computers
and Artificial Intelligence (ECAI), IEEE, Targoviste, pp. 1—
6. Available at https://doi.org/10.1109/ECAI.2017.
8166463.

Clincy, V. and Shahriar, H. (2018). Web Application
Firewall: Network Security Models and Configuration,
2018 IEEE 42nd Annual Computer Software and
Applications Conference (COMPSAC), IEEE, Tokyo,
Japan, pp. 835—836. Available at https://doi.org/10.
1109/COMPSAC.2018.00144.

Cope, S. (2019). MQTT Protocol Packet Structure.
Available at nhttp://www.steves-internet-guide.com/
mgtt-protocol-messages-overview.

da Cunha, M. J., de Almeira, M. B., Fernandes, R. F. and
Carrijo, R. S. (2016). Proposal for an IoT architecture in
industrial processes, 12th IEEE International Conference
on Industry Applications, IEEE, Curitiba, pp. 1-7.
Available at https://doi.org/10.1109/INDUSCON.2016.
7874486.

da Silveira, M. F. (2020). MQTTPublisher. Available at
https://github.com/mathferraz/MQTTPublisher.

Das, R. and Tuna, G. (2017). Packet tracing and analysis of
network cameras with Wireshark, 2017 5th International
Symposium on Digital Forensic and Security (ISDFS), IEEE,
Tirgu Mures, Romania, pp. 1—6. Available at https://
doi.org/10.1109/ISDFS.2017.7916510.

Dawson, J. and McDonald, J. T. (2016). Improving
Penetration Testing Methodologies for Security-Based
Risk Assessment, 2016 Cybersecurity Symposium
(CYBERSEC), IEEE, Coeur d’Alene, ID, USA, pp. 51—58.
Available at https://doi.org/10.1109/CYBERSEC.2016.
016.

Debian.org (2020). etterfilter — filter compiler for
ettercap content filtering engine. Available at https:
//manpages.debian.org/testing/ettercap-common/
etterfilter.8.en.html.

Dholu, M. and Ghodinde, K. A. (2018). Internet of
things (iot) for precision agriculture application, 2018
2nd International Conference on Trends in Electronics
and Informatics (ICOEI), IEEE, Tirunelveli, pp. 339—
342. Available at https://doi.org/10.1109/ICOEI.2018.
8553720.

Firdous, S. N., Baig, Z., Valli, C. and Ibrahim, A. (2017).
Modelling and Evaluation of Malicious Attacks against
the IoT MQTT Protocol, 2017 IEEE International
Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData), IEEE, Exeter,
pp. 748—755. Available at https://doi.org/10.1109/
iThings-GreenCom-CPSCom-SmartData.2017.115

Gupta, N., Naik, V. and Sengupta, S. (2017). A firewall
for Internet of Things, 2017 9th International Conference
on Communication Systems and Networks (COMSNETS),
IEEE, Bengaluru, India, pp. 411—412. Available at https:
//doi.org/10.1109/COMSNETS. 2017 .7945418.

Harsha, M. S., Bhavani, B. M. and Kundhavai, K.
(2018). Analysis of vulnerabilities in MQTT
security using Shodan API and implementation
of its countermeasures via authentication and
ACLs, 2018 International Conference on Advances
in Computing, Communications and Informatics
(ICACCI), IEEE, Bangalore, pp. 2244—2250. Available at
https://doi.org/10.1109/ICACCI.2018.8554472.

International Telecommunication Union (2012). Overview
of the internet of things, Recommendation ITU-T Y.4000,
International Telecommunication Union, Genebra.
Available at http://handle.itu.int/11.1002/1000/
11559-en.

Jung, J.-j., Kim, K. and Park, J. (2019). Framework of Big
data Analysis about IoT-Home-device for supporting
a decision making an effective strategy about new
product design, 2019 International Conference on Artificial
Intelligence in Information and Communication (ICAIIC),
IEEE, Okinawa, Japan, pp. 582—584. Available at https:
//doi.org/10.1109/ICAIIC.2019.8669086.

Krout, E. (2019). How to configure a firewall with
UFW. Available at https://www.linode.com/docs/
security/firewalls/configure-firewall-with-ufw.

https://doi.org/10.1109/EECSI.2017.8239179
https://doi.org/10.1109/INCITE.2016.7857619
https://doi.org/10.1109/INCITE.2016.7857619
https://doi.org/10.1109/IoTSMS.2018.8554634
https://doi.org/10.1109/CCECE.2017.7946616
https://doi.org/10.1109/CCECE.2017.7946616
https://doi.org/10.1109/ITME.2018.00171
https://doi.org/10.1109/ITME.2018.00171
https://doi.org/10.1109/ECAI.2017.8166463
https://doi.org/10.1109/ECAI.2017.8166463
https://doi.org/10.1109/COMPSAC.2018.00144
https://doi.org/10.1109/COMPSAC.2018.00144
http://www.steves-internet-guide.com/mqtt-protocol-messages-overview
http://www.steves-internet-guide.com/mqtt-protocol-messages-overview
https://doi.org/10.1109/INDUSCON.2016.7874486
https://doi.org/10.1109/INDUSCON.2016.7874486
https://github.com/mathferraz/MQTTPublisher
https://doi.org/10.1109/ISDFS.2017.7916510
https://doi.org/10.1109/ISDFS.2017.7916510
https://doi.org/10.1109/CYBERSEC.2016.016
https://doi.org/10.1109/CYBERSEC.2016.016
https://manpages.debian.org/testing/ettercap-common/etterfilter.8.en.html
https://manpages.debian.org/testing/ettercap-common/etterfilter.8.en.html
https://manpages.debian.org/testing/ettercap-common/etterfilter.8.en.html
https://doi.org/10.1109/ICOEI.2018.8553720
https://doi.org/10.1109/ICOEI.2018.8553720
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.115
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.115
https://doi.org/10.1109/COMSNETS.2017.7945418
https://doi.org/10.1109/COMSNETS.2017.7945418
https://doi.org/10.1109/ICACCI.2018.8554472
http://handle.itu.int/11.1002/1000/11559-en
http://handle.itu.int/11.1002/1000/11559-en
https://doi.org/10.1109/ICAIIC.2019.8669086
https://doi.org/10.1109/ICAIIC.2019.8669086
https://www.linode.com/docs/security/firewalls/configure-firewall-with-ufw
https://www.linode.com/docs/security/firewalls/configure-firewall-with-ufw

94 Silveira & Gradvohl |

Revista Brasileira de Computagdo Aplicada (2021), v.13, n.2, pp.83—95

La Cruz, J. E. C. and Goyzueta, C. A. R. (2016).
Design of a dynamic rules firewall to block
avoidance internet censorship systems based on
proxy, 2016 IEEE XXIII International Congress on
Electronics, Electrical Engineering and Computing
(INTERCON), IEEE, Piura, Peru, pp. 1—4. Available at
https://doi.org/10.1109/INTERCON.2016.7815582.

Liang, L., Zheng, K., Sheng, Q. and Huang, X. (2016). A
Denial of Service Attack Method for an IoT System, 2016
8th International Conference on Information Technology in
Medicine and Education (ITME), IEEE, Fuzhou, China,
pp. 360—364. Available at https://doi.org/10.1109/
ITME.2016.0087.

Lo, C.-A., Lin, Y.-T. and Wu, C.-C. (2015). Which
Programming Language Should Students Learn First?
A Comparison of Java and Python, 2015 International
Conference on Learning and Teaching in Computing and
Engineering, IEEE, Taipei, pp. 225—226. Available at
https://doi.org/10.1109/LaTiCE.2015.15.

Lopez, N. G. (2003). Redes de computadores. Available
at https://www.gta.ufrj.br/grad/03_1/ip-security/
paginas/introducao.html.

Martins, V. F. (2019). Automaca residencial usando
protocolo MQTT, Node-RED e Mosquitto Broker com
ESP32 e ESP8266, Technical report, Graduagao em
Engenharia de Controle e Automacao — Universidade
Federal de Uberlandia, Uberlandia. = Trabalho de

Conclusao de Curso. Available at https://repositorio.

ufu.br/handle/123456789/28522.

Mekruksavanich, S. (2019). The Smart Shopping Basket
Based on IoT Applications, 2019 IEEE 10th International
Conference on Software Engineering and Service Science
(ICSESS), IEEE, Beijing, China, pp. 714—717. Available at
https://doi.org/10.1109/ICSESS47205.2019.9040750.

Nagpal, A. and Gabrani, G. (2019). Python for Data
Analytics, Scientific and Technical Applications, 2019
Amity International Conference on Artificial Intelligence
(AICAI), IEEE, Dubai, United Arab Emirates, pp. 140—

145. Available at https://doi.org/10.1109/AICAT.2019.

8701341.

Nagpal, B., Sharma, P.,, Chauhan, N. and Panesar, A.
(2015). DDoS tools: Classification, analysis and
comparison, International Conference on Computing for
Sustainable Global Development, IEEE, New Delhi, India,

PP. 342—346. Available at https://ieeexplore.ieee.

org/document/7100270.

Navani, D., Jain, S. and Nehra, M. S. (2017). The Internet
of Things (IoT): A Study of Architectural Elements, 2017
13th International Conference on Signal-Image Technology
& Internet-Based Systems (SITIS), IEEE, Jaipur, India,
PP- 473—478. Available at https://doi.org/10.1109/
SITIS.2017.83.

Oak, A. and Daruwala, R. (2018). Assessment
of Message Queue Telemetry and Transport
(MQTT) protocol with Symmetric Encryption,
2018 First International Conference on Secure
Cyber Computing and Communication (ICSCCC),

IEEE, Jalandhar, India, pp. 5-8. Available at
https://doi.org/10.1109/ICSCCC.2018.8703314.

OASIS Standard (2019). MQT'T Version 5.0, Technical report,
OASIS Open. Availableat https://docs.oasis-open.org/
mgtt/mqtt/v5.0/mqtt-v5.0.html.

Patil, G. V., Pachghare, K. V. and Kshirsagar, D. D.
(2018). Feature Reduction in Flow Based Intrusion
Detection System, 2018 3rd IEEE International
Conference on Recent Trends in Electronics, Information
& Communication Technology (RTEICT), IEEE,
Bangalore, India, pp. 1356—1362. Available at
https://doi.org/10.1109/RTEICT42901.2018.9012554.

Potrino, G., de Rango, F. and Santamaria, A. F. (2019).
Modeling and evaluation of a new IoT security system for
mitigating DoS attacks to the MQTT broker, 2019 IEEE
Wireless Communications and Networking Conference
(WCNC), IEEE, Marrakesh, Morocco, pp. 1—6. Available
athttps://doi.org/10.1109/WCNC.2019.8885553.

Raji, R. (1994). Smart networks for control, IEEE Spectrum
31(6): 49—55. Available at https://doi.org/10.1109/6.
284793.

Rouse, M. (2020). TCP/IP (transmission control
protocol/internet protocol). Available at https:
//searchnetworking.techtarget.com/definition/
TCP-IP.

Samsudin, M. F. A., Mohamad, R., Suliman, S. I., Anas,
N. M. and Mohamad, H. (2018). Implementation
of wireless temperature and humidity monitoring
on an embedded device, 2018 IEEE Symposium on
Computer Applications & Industrial Electronics (ISCAIE),
IEEE, Penang, pp. 90—95. Available at https://doi.org/
10.1109/ISCAIE.2018.8405450.

Sharmila, F. M., Suryaganesh, P., Abishek, M. and Benny,
U. (2019). Iot Based Smart Window using Sensor Dhti1,
2019 5th International Conference on Advanced Computing
& Communication Systems (ICACCS), IEEE, Coimbatore,
India, pp. 782—784. Available at https://doi.org/10.
1109/ICACCS.2019.8728426.

Shinho Lee, Hyeonwoo Kim, Dong-kweon Hong and
Hongtaek Ju (2013). Correlation analysis of MQTT
loss and delay according to QoS level, The International
Conference on Information Networking 2013 (ICOIN), IEEE,
Bangkok, pp. 714—717. Available at https://doi.org/10.
1109/ICOIN.2013.6496715.

Sinha, A., Sharma, S. and Mahboob, M. R. (2017). An
Internet of Things based prototype for smart appliance
control, 2017 International Conference on Computing,
Communication and Automation (ICCCA), IEEE, Greater
Noida, pp. 1358 —1363. Available at https://doi.org/10.
1109/CCAA.2017.8230009.

Wang, S., Xu, D. and Yan, S. (2010). Analysis and
application of Wireshark in TCP/IP protocol teaching,
International Conference on E-Health Networking, Digital
Ecosystems and Technologies, Vol. 2, IEEE, Shenzhen,
pp.269—272. Availableathttps://doi.org/10.1109/EDT.
2010.5496372.

https://doi.org/10.1109/INTERCON.2016.7815582
https://doi.org/10.1109/ITME.2016.0087
https://doi.org/10.1109/ITME.2016.0087
https://doi.org/10.1109/LaTiCE.2015.15
https://www.gta.ufrj.br/grad/03_1/ip-security/paginas/introducao.html
https://www.gta.ufrj.br/grad/03_1/ip-security/paginas/introducao.html
https://repositorio.ufu.br/handle/123456789/28522
https://repositorio.ufu.br/handle/123456789/28522
https://doi.org/10.1109/ICSESS47205.2019.9040750
https://doi.org/10.1109/AICAI.2019.8701341
https://doi.org/10.1109/AICAI.2019.8701341
https://ieeexplore.ieee.org/document/7100270
https://ieeexplore.ieee.org/document/7100270
https://doi.org/10.1109/SITIS.2017.83
https://doi.org/10.1109/SITIS.2017.83
https://doi.org/10.1109/ICSCCC.2018.8703314
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://doi.org/10.1109/RTEICT42901.2018.9012554
https://doi.org/10.1109/WCNC.2019.8885553
https://doi.org/10.1109/6.284793
https://doi.org/10.1109/6.284793
https://searchnetworking.techtarget.com/definition/TCP-IP
https://searchnetworking.techtarget.com/definition/TCP-IP
https://searchnetworking.techtarget.com/definition/TCP-IP
https://doi.org/10.1109/ISCAIE.2018.8405450
https://doi.org/10.1109/ISCAIE.2018.8405450
https://doi.org/10.1109/ICACCS.2019.8728426
https://doi.org/10.1109/ICACCS.2019.8728426
https://doi.org/10.1109/ICOIN.2013.6496715
https://doi.org/10.1109/ICOIN.2013.6496715
https://doi.org/10.1109/CCAA.2017.8230009
https://doi.org/10.1109/CCAA.2017.8230009
https://doi.org/10.1109/EDT.2010.5496372
https://doi.org/10.1109/EDT.2010.5496372

Silveira & Gradvohl | Revista Brasileira de Computagdo Aplicada (2021), v.13, n.2, pp.83—95 95

Yadav, P. and Vishwakarma, S. (2018). Application of
Internet of Things and Big Data towards a Smart City,
2018 3rd International Conference On Internet of Things:
Smart Innovation and Usages (IoT-SIU), IEEE, Bhimtal,
pp. 1-5. Available at https://doi.org/10.1109/I0T-SIU.
2018.8519920.

Yassein, M. B., Shatnawi, M. Q., Aljwarneh, S. and Al-
Hatmi, R. (2017). Internet of Things: Survey and open
issues of MQTT protocol, 2017 International Conference
on Engineering & MIS (ICEMIS), IEEE, Monastir, pp. 1—
6. Available at https://doi.org/10.1109/ICEMIS.2017.
8273112.

Yuan, M. (2017). Conhecendo o MQTT. Available at
https://developer.ibm.com/br/technologies/iot/
articles/iot-mqtt-why-good-for-iot.

https://doi.org/10.1109/IoT-SIU.2018.8519920
https://doi.org/10.1109/IoT-SIU.2018.8519920
https://doi.org/10.1109/ICEMIS.2017.8273112
https://doi.org/10.1109/ICEMIS.2017.8273112
https://developer.ibm.com/br/technologies/iot/articles/iot-mqtt-why-good-for-iot
https://developer.ibm.com/br/technologies/iot/articles/iot-mqtt-why-good-for-iot

	1 Introduction
	2 Literature review
	2.1 Internet of Things
	2.2 Message Queuing Telemetry Transport Protocol
	2.3 Information Security Test Procedures
	2.3.1 Denial of Service Method
	2.3.2 Capture of network data packets

	3 Related works
	4 Research Methodology
	5 Experiments and Results
	5.1 Attack Procedures
	5.1.1 Denial of Service
	5.1.2 Data Packet Capture
	5.1.3 Sending incorrect data packets

	5.2 Security measures
	5.2.1 Data packet traffic encryption
	5.2.2 Firewall

	5.3 Analysis of Results

	6 Conclusion
	6.1 Future Works

