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Abstract

Background: Hydrological forecasting is a valuable tool for dealing with socio-environmental problems, and it can be
used in natural disaster alert systems and as assistant aid in making public policies. This work presents an application
of a hydrological model based on Artificial Neural Networks (ANN). The variable modeled was the flood stage of the
fluviometric station Fazenda Airis, located in the Macaé River drainage basin. For this purpose, the datasets used are
composed of daily records of flow and rainfall stations between 2010 to 2013, made available by the National Water Agency
(ANA) and the INEA (Environment State Institute of Rio de Janeiro) Flood Alert System. The adopted methodology
investigates the influence of the input variables and ANN architecture on the models’ performance. Results: The results
obtained were considered very satisfactory and support the proposition of the potential of Artificial Neural Networks for
hydrological forecasting. It was found that of the 189 models created, 42.3 % had the coefficient of determination R*
above 0.80. Conclusions: The best ANN developed received daily data from six rainfall stations and one fluviometric
station, obtaining for metrics R* and MAE the values of 0.88, 7.03 cm, respectively. Finally, the results were compared
with related works and are similar or superior even with shorter time series.

Keywords: Artificial Neural Networks; Drainage Basin of the Macaé River; Hydrological forecasting.

Resumo

Background: A previsdo hidroldgica é uma ferramenta valiosa no tratamento de problemas socioambientais, podendo
ser utilizada em sistemas de alerta de desastres naturais e auxiliar na formulacdo de politicas publicas. Este trabalho
apresenta a aplicacdo de um modelo hidrolégico baseado em Redes Neurais Artificiais (RNA). A variavel modelada
foi o estagio de inundacdo da estacdo fluviométrica Fazenda Airis, localizada na bacia do rio Macaé. Para tanto, os
conjuntos de dados utilizados sdo compostos por registros didrios de vazoes e estagdes pluviométricas entre 2010 a
2013, disponibilizados pela Agéncia Nacional de Aguas (ANA) e pelo Sistema de Alerta de Inundag&o do INEA (Instituto
Estadual do Meio Ambiente do Rio de Janeiro). A metodologia adotada investiga a influéncia das variaveis de entrada
e da arquitetura da RNA no desempenho dos modelos. Resultados: Os resultados obtidos foram considerados muito
satisfatorios e suportam a proposigdo do potencial das Redes Neurais Artificiais para previsdes hidrolégicas. Constatou-se
que dos 189 modelos criados, 42,3% tinham o coeficiente de determinag¢do R? acima de 0,80. Conclusdes: A melhor
RNA desenvolvida recebeu dados didrios de seis estag¢oes pluviométricas e uma estacdo fluviométrica, obtendo para
as métricas R? e MAE os valores de 0,88 e 7,03 cm, respectivamente. Por fim, os resultados foram comparados com
trabalhos relacionados e sdo semelhantes ou superiores mesmo com séries temporais mais curtas.

Palavras-Chave: Redes Neurais Artificiais; Bacia do Rio Macaé; Previsdo hidroldgica.

1 Introduction events and can be intensified by human interventions.

Rio de Janeiro is among the six Brazilian states with the
Floods are natural phenomena resulting from therisein ~ highest number of registered natural disasters, where
the water level in a river section, caused by extremerainfall ~ 65% of all occurrences are associated with flooding
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(Ikemoto et al., 2015).This high incidence is due, in
part, to the urbanization process and the Straightening
of rivers. The urbanization process promotes the
increased waterproofing, surface runoff, land occupation
and construction of rain conduits, thus it increases the
maximum flow peaks during rainfall events (Tucci and
Silveira, 2002).

Short-term hydrological forecasting is one of the tools
used in disaster risk management due to its ability to
predict future situations a few days or hours in advance. It
is commonly used in the natural disaster warning system,
in addition to assisting in decision-making processes in
public policies (dos Santos Neto et al., 2020).

The National Center for Monitoring and Alerting of
Natural Disasters (Cemaden), created in 2011 by the federal
government in Brazil, is responsible for monitoring
meteorological events and natural threats in Brazilian
municipalities susceptible to the occurrence of natural
disasters. Observing the potential of computational
intelligence techniques for building hydrological models,
Cemaden has modeling hydrometeorological data through
Machine Learning techniques for the Grande River in the
state of Rio de Janeiro (de Lima and Scofield, 2017). As a
result, a model based on Artificial Neural Networks was
developed in de Lima et al. (2016) capable of forecasting
the river stage within 120 minutes in advance.

Works have applied the Artificial Neural Networks
(ANN) technique for hydrological forecasting in different
temporal bases using approaches to define the best
architecture (Machado, 2005, da Silva et al., 2018),
feature selection techniques and to improve generalization
(Rodrigues et al., 2015). Furthermore, some authors
compare the results with different machine learning
algorithms (Freire et al., 2009, Gorodetskaya et al., 2018,
dos Santos Sousa et al., 2018).

This work aims to evaluate models based on Artificial
Neural Networks for hydrological forecasting on a daily
basis in the Macaé river basin, located on the coast of the
State of Rio de Janeiro, Brazil. In order to achieve this
goal, the proposed methodology gathers different datasets
which cover daily rainfall and flow data, proposes different
features combinations and evaluates models based on ANN
varying theirs hyper-parameters to predict the stage of the
Macaé river. The code developed for this work is available
in the git repository*.

2 Related Work

Studies have evaluated the performance of models
based on ANNs in hydrological modeling, observing
the applicability of the technique in issuing alerts and
managing water resources (de Lima and Scofield, 2021,
Shamseldin, 2009).

In this context, in Debastiani et al. (2016) the authors
evaluated twelve data treatments with combinations of
precipitation, evapotranspiration and flow variables, as
well as their temporal transformations and time step for
hydrological forecasting on a daily scale. The input vectors
were defined after an exploratory correlation analysis

1Link: https://github.com/JuliaGodinhoo8/RNA_Macae

between the hydroclimatic variables.

Similarly, the authors in da Silva et al. (2016)
investigated the best combination of input data with daily
precipitation and flow data from a sub-basin located on the
north coast of Sdo Paulo, in the period 1985 to 1989. The
simultaneous use of precipitation and flow data resulted in
better ANNs, with Nash-Sutcliffe coefficients of 0.77. Thus,
the authors highlighted the need to promote continuous
monitoring of the two variables.

Some pieces of work use the ANNs technique for
forecasting on a monthly scale, such as the work presented
in Machado (2005), which proposes a hydrological model
using precipitation, flow and potential evapotranspiration
data to predict flow in the Jangada River, Parana, Brazil.
The best ANNs had a correlation coefficient equal to
96.9%. The good result obtained was associated with the
adopted methodology, which considered the influence
of the number of neurons in the input layer and in
the intermediate layer, the number of epochs, the
initialization and extension of the data series.

In Matos et al. (2014) the authors propose upstream
control alternatives to the area of Ponte Mistica. The
dataset contains daily and hourly data of rainfall and flow
from the Ponte Mistica and flows of sub-basins located
upstream of it.

The methodology adopted in Sousa and de Sousa (2010)
investigates the ANN architecture, varying the neurons
in the input and intermediate layers and the activation
function, using data from a fluviometric station and
five rainfall stations. It was found that an ANN with
normalized input data, 15 neurons in the hidden layer and
alogarithmic sigmoid activation function is able to predict
with 77.0% efficiency the average flow of the Piancd river
basin. Other authors adopted the approach of investigating
the architecture of ANN and data input (Celeste et al.,
2014, Cristaldo et al., 2018, Gorodetskaya et al., 2018, dos
Santos Neto etal., 2020, da Silva et al., 2018, Alberton et al.,
2021, Mendonga et al., 2021).

Some examples compare other Machine Learning
techniques with ANNs. Batista (2009) implemented
time series models and multi-layer perceptron ANNs
to predict the flow of the Grande River, a tributary of
Camargos hydropower plant reservoir. It was identified
that the ANNs were adequate to the data in question
and found results superior to the time series. The work
presented in dos Santos Sousa et al. (2018) compared the
algorithms of Decision Trees, Random Forest, Logistic
Regression and ANNSs to forecast the annual volume of rain
in Manaus. After training and testing more than 4,000
models with different parameters, it was verified that the
ANN s obtained the best performances.

Some studies have used deep neural networks for
hydrological forecasting. In Barino and Bessa (2020),
for example, the forecasting model is based on one-
dimensional convolutional neural networks. The authors
used as input a time series of flow and turbidity of the
Madeira River in the Amazon in the period 2016 to 2019.
The authors concluded that when using flow and turbidity
as input, the predictive model becomes up to 5 times
simpler than the model using only flow.

This work also proposes to use ANNs to perform
the hydrological prediction. However, this is the first
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Table 1: Rainfall stations selected from Macaé river basin.

Number  Station Period Latitude Longitude Municipality
2241005 Fazenda SdoJoao 1967-2020 -22.3903  -42.4947  Nova Friburgo
2242004  Galdindpolis 1950-2020 -22.3631 -42.3808  Nova Friburgo
2242003  Piller 1950-2020 -22.4047  -423392  Nova Friburgo
2242145 Ponte Baido 2010-2013  -22.383 -42.083  Macaé
2241032  Fazenda Airis 2011-2013 -22.3281 -41.9825 Macaé
2241030  Severina 2011-2013  -22.2956 -41.8786  Macaé

time, from our knowledge, that Machine Learning
algorithms were used to predict the Macaé river stage.
Another differential of this work is the study of features
combinations that consider fluviometric and pluviometric
stations to evaluate the ANN models and even with a
smaller time series the results achieved are equal or better
to the related work.

3 Methodology

The proposed methodology is composed of five steps: 1)
definition of the study area, 2) data collection, 3) data
preparation, 4) definition of input variables, 5) training of
ANNSs and 6) performance analysis.

3.1 Definition of the Study Area

The study area corresponds to the Macaé river drainage
basin, located in the central-northern coastal strip of the
State of Rio de Janeiro in Brazil (Fig. 1). The drainage
area of this basin is approximately 1,765 km?2. The Macaé
river is the main stream of the basin and originates in
the Serra Macaé de Cima in Nova Friburgo. It travels
for about 136 km, flowing into the Atlantic Ocean in the
city of Macaé. This is the first work of our knowledge
that makes the hydrological forecast for this region using
neural networks.

3.2 Data collection

The datasets consist of daily flow data and daily
precipitation data. All data were obtained through the
website Hidroweb? from National Water Agency (ANA)
or made available by the Flood Alert System of the
Environment State Institute (INEA).

The historical rainfall series were obtained from
Hidroweb website and 6 rainfall stations located within
the study area were selected: Fazenda Sao Jodo (2241005),
Galdinépolis (2242004), Piller (2242003), Ponte Baido
(2242145), Fazenda Airis (2241032) e Severina (2241030).
The selection criteria considered the proximity to the
target station and the length of the historical series. Table 1
shows the length of the historical series and the location
of each rainfall station, which can also be seen in Fig. 1.

The historical series of discharge and stage were
obtained from the Hidroweb portal and provided by
the Flood Alert System at INEA. Datasets from six
fluviometric stations were collected. These datasets have

2Hidroweb : https://www.snirh.gov.br/hidroweb/serieshistoricas

discharge or stage data of rivers in the Macaé river basin
available. These stations are: Macaé de Cima (59120000),
Galdinépolis (59125000), Piller (59135000), Barra do
Sana (59134000), Fazenda Airis (59138800) e Sdo Pedro
(59143000). Table 2 shows for each monitoring station
the location and the river it monitors. The location of the
stations can be seen in Fig. 1.

The Fazenda Airis station (59138800) provides level
data and will be the object of the forecast.The choice of
Fazenda Airis as a target station for the forecast models
was due to its location, close to the urbanized area of the
municipality of Macaé. The other fluviometric stations will
be used as input data in the training of the ANNs. These are
located upstream from the Fazenda Airis (5913880), except
for the S3o Pedro station (59143000), which monitors the
river of the same name, one of the main tributaries of the
Macaé River.

Fig. 2 shows the pluviograph chart and hydrograph
of the Fazenda Airis (59138800) between 2010 and
2013, according to the collected data. Through this,
it was possible to graphically verify the responses to
precipitation events at the channel level.

3.3 Data preparation

Data preparation includes data selection, cleaning and
transformation, in order to prepare the dataset that
contains missing values and features with different scales.

The missing values of the historical series were filled
by a linear regression algorithm as suggested in de Mello
et al. (2017). After, the data were divided into training,
validation and testing sets, with 60%, 20% and 20%,
respectively. It is important to mention that when we use
neural networks, the algorithm does not perform well
when the numeric input attributes have very different
scales. Thus, it is necessary to apply feature scaling. The
features of the dataset are normalized rescaled so that they
end up ranging from 0 to 1, agreeing with the limits of the
ReLU activation function chosen for the experiments as
suggested in Dawson and Wilby (2001).

Data manipulation and analysis were performed in
Python language, using the Pandas library? and Scikit-

Learn” for pre-processing and data evaluation.

3Pandas: https://pandas.pydata.org/docs/index.html
4Scikit-learn: https://scikit-learn.org/stable/index.html
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Figure 1: Macaé E Das Ostras Drainage Basin.

Table 2: Selected fluviometric stations in the Macaé river basin.

Number  Station Period Latitude Longitude Monitored river
59120000 MacaédeCima 1967-2020 -22.3722  -42.4622  Rio Macaé de Cima
59125000  Galdindpolis 1950-2020 -22.3689  -42.3792  Rio Macaé
50135000 Piller 1950-2020 -22.4092 -42.3361 Rio Bonito
50134000 Barra do Sana 2011-2013  -22.3686 -42.2058  Rio Macaé
59138800 Fazenda Airis 2010-2013  -22.3281 -£41.9825 Rio Macaé
50143000 Sao Pedro 2011-2013 -22.2761 -41.8753 Rio Sao Pedro

3.4 Definition of input variables

In order to investigate the influence of the features in
predicting the river level, 9 combinations of features
were proposed. Table 3 presents all combinations with
the applied variables, the interval of the historical series
and the number of records contained. The extension of
the series was defined by the stations covered by each
alternative. For all models, the output variable is at
the daily level at the Fazenda Airis fluviometric station
(59138800).

The feature combinations were chosen in order to
enable the analysis of the contribution between rainfall
and flow data for different response times. The response
time of some alternatives was chosen experimentally.
Below is a description of each set.

Alternative 1: for forecasting the level in time t, this
inputalternative receives daily rainfall, discharge and level
data from all monitoring stations (Tables 1and 2) with one
day lag (t — 1). Thus, each variable represents a neuron in
the RNA input layer;

Alternative 2: similar to alternative 1. However, it
receives the data of the last 2 days, being the dataset with
the most records;

Alternative 3: uses daily rainfall data from the
previous 4 days. Thus, it is expected to evaluate the
effectiveness of a discharge prediction model that receives
only precipitation data. This alternative is suitable for
evaluating the performance considering areas where there
are no fluviometric stations yet. As the rainfall monitoring
network in Brazil is broader than fluviometric monitoring,
as noted in Sarmento (2021), this could be an alternative
for level predicting where only rainfall stations data is
available.

Alternative 4: receives only daily data of average
rainfall with a response time of 4 days. Values were
estimated by arithmetic mean (P) of rainfall stations from
Table 1. This way, the ANNSs trained with this alternative
will have four neurons in the input layer, one neuron for
each of the four days preceding the forecast in time t;

Alternative 5: combines daily data from fluviometric
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Figure 2: Pluviograph chart and hydrograph of Fazenda Airis between 2010 e 2013.

Table 3: Input data alternatives with the features used, data lag in days, historical series interval and number of records
each model receives in training.

N Variables Data lag (days) Period

1 P1,P2,P3,P4, P5, P6, Q1, Q2, Q3, Q4, Q5, Q6 1 02/05/11a30/04/13
2 P1,P2,P3,P4, Ps5, P6,Q1, Q2, 03, Q4, Q5, Q6 2 03/05/11a30/04/13
3 P1,P2,P3, P4, P5,P6 4 05/05/11a30/04/13
L P 4 01/02/10 a 30/04/13
5 P, 01,02,03,040Q5,Q6 1 02/01/11 2 30/04/13
6 Q1,02,0Q3,04,05,Q6 1 02/01/11a30/04/13
7 05 1 02/02/10 a30/04/13
8 P1,P2,P3,P4,P5,P6,Q5 1 02/05/11a30/04/13
9 Q1,02,03,04,Q6 1 04/01/11a30/04/13

Note: The variables P1, P2, P3, P4, P5 and P6 precipitation data from rainfall stations of
Fazenda Sao Jodo, Galdindpolis, Piller, Ponte do Baido, Fazenda Airis e Severina, respectively;
P is the average rainfall of the cited monitoring stations. The variables Q1, Q2, Q3, Q4, Q5 and
Q6 are the daily readings recorded by the fluviometric stations Macaé de Cima, Galdindpolis,
Piller, Barra do Sana, Fazenda Airis and Sdo Pedro, respectively.

stations and average rainfall (P) with a one-day response
time;

Alternative 6: receives daily data from 6 fluviometric
stations in (t — 1). Thus, it is expected to analyze the
feasibility of a forecasting model that does not receive
rainfall attributes;

Alternative 7: uses only the daily stage data from the
Fazenda Airis (Q5) in (t — 1), so the ANNSs trained with
this set will have only one neuron in the input layer.
This alternative can be considered in basins with limited
hydrological monitoring, as it requires monitoring of only
one variable;

Alternative 8: combines rainfall data from all rainfall
stations and daily level in Fazenda Airis (Q5) with a lag of
one day;

Alternative 9: considers only flow data upstream and
downstream of the Fazenda Airis. This combination
evaluates the performance of a model that does not receive

data from the target station as an attribute.

3.5 ANNSs training

The hyperparameters that were varied in training are the
number of hidden layers and the number of neurons. So
that, for each input alternative (Table 3) ANNs will be
created with 1, 2 and 4 hidden layers, also varying the
number of hidden neurons between 5, 10, 20, 50 , 80, 100
and 120. Thus, each input alternative will be trained for
21 different architectures. At the end of the experiments,
there are 189 models.

In order to improve the generalization of the ANNs
used, two regularization criteria were implemented:
regularization ¢, and early stopping (Rodrigues et al.,
2015). The early stopping technique ends the training
when the validation error stops decreasing, avoiding
model overfitting. While the regularization ¢, reduces the
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magnitude of the weights of the ANNs.

In all models, the Adam optimization algorithm was
implemented, used so that ANN adjusts its weights faster
and more efficiently. Considering the randomness of
the initializations of the ANN weights, each model was
initialized and trained 5 times. The results will be
presented by the mean obtained and with its respective
standard deviation.

The process of creating, training and testing the
ANNs was done using the Keras package, an API of
TensorTensorFlow 2 used for ML solutions®.

3.6 Performance Evaluation

To analyze the performance of the model, error and
adjustment measures were combined as suggested in
Dawson and Wilby (2001). The metrics used are: Mean
Absolute Error (MAE), Mean Square Error (MSE) and
Coefficient of Determination (R?), see Egs. (1) to (3),
respectively;

MAE(y,9) = = > 1y =9 | "
i=1
MSE@,Y) = = > (i = 91)? o)
i=1
Ny _9.)2
RZ(Y:?) =1- m )
i=1\Yi

where y; are the predicted values, y; the observed values,
y is the mean of the observed values, and n is the amount
of data.

4 Results and Discussions

In this section we will analyze the results obtained in
the experiments proposed in the previous section for
the prediction of the daily level of the Fazenda Airis
fluviometric station.

The first part of the discussion is directed to the
architecture of the neural network, then the results will
be discussed considering the input variables used.Each
alternative input set (Table 3) was trained for 21 different
architectures, as per the hyperparameters shown in the
previous section.

All ANNs will be identified by the nomenclature that
indicates the input set, the number of neurons and hidden
layers. The first number after the letter “M” refers to the
alternative input data, as per Table 3. The number after
the letter “C” indicates the amount of hidden layers of
the ANN, which can assume the values of 1, 2 or 4 layers.

5Keras API: https://keras.io/about/

Table 4: Best models for each input alternative, using as
reference the coefficient of determination RZ. Where, M is
input alternative (Table 3) and the data lag is given in

days.

M ANN MSE MAE R?

1 Mi1C4N10 18078 634  0.88(0.04)
2 M2Ci1N5 164.57 6.81  0.87(0.06)
3 M3CIN20 74653 1719  0.49 (0.10)
4 M4C4N20 79897 19.44  0.45(0.07)
5 M5C4N5 182.60 6.81  0.86(0.07)
6 M6CLN20 21929 757  0.86(0.02)
7  M7CIN180 190.12  6.94  0.84(0.03)
8 MB8C1N5 178.97 7.03  0.88(0.01)
9 M9C4N100 71591  13.06  0.53(0.22)

The number after the letter “N” refers to the number of
neurons present in each intermediate layer, which varies
between 5, 10, 20, 50, 80, 100 and 120. Taking as an
example, the nomenclature M3C2N100 refers to an ANN
that received the input variables of alternative 3, having 2
hidden layers and 100 neurons in each hidden layer.

Of the 189 models generated, 80 obtained the coefficient
R? above 80%. Where the best value of R* obtained was
0.88 (0.01) by ANN M8C1N5, which received input set
8, with a hidden layer and five neurons in the hidden
layer. The prediction obtained by the model is shown
in Fig. 3. Discussions about the experiments will be
presented below.

4.1 Architecture

Of the 21 proposed architectures, Fig. 4 shows the
frequency of each configuration among the models with
coefficient R? above 0.80. We can observe that simpler
architectures (i.e. with fewer hidden layers and neurons)
were able to perform predictions as effectively as the more
complex ones. Therefore, there was no significant gain in
model performance by adding hidden layers and neurons
in these layers.

The architectures that generated the most good models
were the CIN100, C2N10, C2N50 and C2N120. And ANNs
with two hidden layers and 20 neurons in a layer, C2N20,
were the least frequent among the best models with a
coefficient of determination above 0.80.

4.2 Input variables

Table 4 presents the best ANN obtained for each input
alternative presented in the Table 3. Next, the analysis of
the contribution of the different features, the different lag
days and the way the rainfall is represented are discussed.

4.2.1 Contribution of feature combinations

To analyze the contribution of the variables, we can
observe the M7C2N120 network, which received only level
data from the Fazenda Airis in (t — 1) and presented a good
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Figure 4: Frequency of architectures with coefficient of determination R* equal to or greater than 0.80.

performance with R? equal to 0.82 and with a standard
deviation of 0.01. With the addition of average rainfall
data, P, we obtain the M5C4N20 model, which showed an
improvement in the forecast with R? of 0.86 (0.07).

However, if the rainfall data were applied so that each
rainfall station will be an input variable, we obtain the
ANN MB8C1N5. This ANN produced in the best prediction
model, with R? equal to 0.88 with a standard deviation of
0.01.

Adding the data from the upstream and downstream
fluviometric stations of the Fazenda Airis, we obtain
Mi1C4N1o0. This change again produced a good prediction
model, with a coefficient R? of 0.88 (0.04), but it did not
represent a significant performance improvement.

Thus, Fazenda Airis station with a lag of one day is the
most important attribute for predicting the model and that
fluviometric data from other points did not significantly
contribute to its efficiency.

Fig. 5 shows the frequency at which models of each
input alternative obtained a coefficient of determination
above 0.80. The input alternatives 1, 2, 5, and 8,
which combine rainfall and fluviometric data, are the
most frequent among ANNs with R* above 0.80. On
the other hand, none of the models trained only with
precipitation data had a coefficient of determination above
0.80 (alternatives 3 and 4). Therefore, we have from these
results that the combination of precipitation and discharge
data generates more accurate hydrological prediction
models.

4.2.2 Datalag

Alternatives 1 and 2 receive the same variables with the
difference in data lag time. Alternative 1 receives data on
(t — 1), while alternative 2 input set receives data on (t — 1)
and (t —2).

In Table 4 we see that the addition of information
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Figure 5: Frequency of input alternatives in models with
coefficient R* above 0.80.

on rainfall and discharge with two days of lag did not
contribute to the improvement of the forecast, since the
Mi1C4N10 model had a higher coefficient in relation to the
M2Ci1Ns5.

4.2.3 Processing of precipitation data

ANN models can receive rainfall data in different ways.
Alternative 3 receives the rainfall data so that each rainfall
station represents an input neuron. While in alternative
4, the ANN is fed by the average rainfall, calculated by the
arithmetic mean. We see that the ANN M3C1N20 with a
coefficient of R? of 0.49 had a better performance than the
M/4C4N20, which had a coefficient of 0.45.

The result obtained can be explained by the weights
attributed by the ANNs to each variable during training. So
that by the distribution of rainfall data from alternative 3,
it is possible that the back-propagation algorithm assigns
the weights according to the contribution of the station,
generating better forecasts. It is noteworthy that there are
other methods of obtaining the average rainfall and that
these were not addressed in this work.

4.3 Comparison with Related Work

In this section, the results obtained are compared with
related works that applied models based on Artificial
Neural Networks for hydrological forecasting in Brazil in
different temporal bases.

For each work, Table 5 presents the length of the
historical series, the input and output variables, together
with the metrics of the best model obtained. At the end,
the data from this work were entered for comparison
purposes.

Some performance metrics chosen by the authors were
not addressed in this work, but they are comparable. The
coefficient of determination R? is similar to the Nash-
Sutcliffe (NS) performance coefficient when analyzing
the model’s fit, as discussed in Dawson and Wilby
(2001). Meanwhile, Pearson’s correlation coefficient
(rp) determines the degree of linear correlation between
predicted and observed values, which may vary between
-1and 1. The other metrics MAE, MSE, MAPE and RMSE
are error measures, where MAPE refers to the Absolute

fluviometric data, agreeing with the conclusions obtained
in this work. Regarding the extent of the data, this work
has the smallest series for forecasting on a daily basis
among the studies presented in Table 5.

When comparing the results obtained in this study with
the other works cited in Table 5, it is possible to notice
that the proposed models had a satisfactory performance,
being superior to other works that have a more complete
historical series. However, we observe that it is possible
to generate models with even more efficient forecasts,
encouraging the continuity of this theme.

5 Conclusion

The goal of this work was to evaluate models based on
Artificial Neural Networks for hydrological forecasting on
a daily scale in the Macaé River drainage basin on the coast
of the State of Rio de Janeiro. The database is composed
of 6 rainfall stations and 6 fluviometric stations located
in the Macaé river basin. The object of forecast was the
daily level at the Fazenda Airis monitoring station and the
study of the influence of the architecture and the training
set were specific objectives of this work.

Different combinations of input variables were
proposed. Furthermore, the number of hidden layers
and number of neurons were varied. A total of 189 ANNs
were trained, where 42.3% of the models obtained the
correlation coefficient R* above 80%. These results are
considered satisfactory or superior to other related works.
The best model of ANN found, M8C1N5, received level
data from Fazenda Airis and data from 6 rainfall stations
with a time lag of one day and R? of 0.88 with a standard
deviation of 0.01.

With regard to the feature combinations, it was
observed that the performance of the ANNs was highly
dependent on the input variables, so that the combinations
of flow and precipitation data were more effective, with
coefficient R*> between 0.86 and 0.88 and MAE between
6.34 and 7.04 cm. It was also observed that models trained
only with rainfall data did not obtain good fits, with R?
between 0.45 and 0.49. The variable that was most relevant
in the forecast was the daily level of the Fazenda Airis with
a one-day lag. Having only this input variable, the ANN
M7C1N180 produced a good fit to the test data and obtained
R? equal to 0.84 (0.03).

The results obtained in the experiments encourage the
use of the ANNSs technique in hydrological modeling, even
in basins where monitoring and data extent is limited,
considering that the historical series of this work was less
than 3 years. The results reinforce the relevance of the
investment in the simultaneous monitoring of rainfall and
the level of urban rivers and upstream stretches of urban
areas, in order to develop more effective forecasts. So that
such tools help in decision-making by public authorities
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Table 5: Related works that uses ANN for hydrological forecasting with input set variables, length of the historical
series, forecast model output and metrics.

Author Features Period Output Metrics
Machado (2005) rainfall, dlsc.har.ge 1976 21994  monthly discharge rp = 0886
evapotranspiration RMSE = 8.11
. . . MAPE = 0.59
Batista (2009) discharge 199022007 monthly discharge MSE = 77959
Sousa and de Sousa (2010) rainfall, discharge 196422003 monthly discharge R> =092
RMSE = 8.29
Matos et al. (2014) rainfall, discharge 1989 21994 daily discharge NS =0.97
Celeste et al. (2014) rainfall, discharge 196921979 monthlydischarge NS =0.82
. . . o NS =0.77
da Silva et al. (2016) rainfall, discharge 1986 a 1989 daily discharge RMSE = 1.09
Debastiani et al. (2016) rainfall, discharge 1997a1999 daily discharge R?=0.868
RMSE =14.29
NS = 0.982
de Lima et al. (2016) rainfall, stage 201322014 hourly stage MAE = 0.69
RMSE =1.50
. rainfall R2 =0.999
da Silva et al. (2018) 1979 a 2016 monthly stage
sea surface temperature MSE = 0.001
Cristaldo et al. (2018) rainfall, stage 1995 a 2014 daily stage II:IASA}; 2’?571
Gorodetskaya et al. (2018) rainfall, discharge 2000 a 2016 daily discharge R> = 0.917
! MAPE = 0.108
stage, _
Maraes et al. (2019) . > 1951 a 2017 monthly stage rp =0.96
climate indices
dos Santos Neto et al. (2020) sea surface t.emperature, 201142016 monthly stage R> = 0.845
atmospheric pressure RMSE = 0.233
Barino and Bessa (2020) dlsch‘ar'ge, 201622019 monthly discharge MAPE =0.23
turbidity
R2 =0.990
Mendonga et al. (2021) rainfall, discharge 2009 a 2019 daily discharge RMSE =13.21
MAPE = 0.044
R2=0.996
Alberton et al. (2021) rainfall, stage 2009 a 2019 hourly stage MAE = 4.82
MSE =59.65
R?=0.88
This work rainfall, stage 201122013 daily stage MAE =7.03
MSE = 178.97
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