Revista Brasileira de Computacao Aplicada, July, 2022

b
UPF |EDITORA

UNIVERSIDADE
E PASS0 FUNDO

DOLI: 10.5335/rbca.v14i2.13045
Vol. 14, N2 2, pp. 56—66
Homepage: seer.upf.br/index.php/rbca/index

RBCA

ISSN 2176-6649

ORIGINAL PAPER

Improved Low-cost 3D Reconstruction Pipeline by Merging Data
From Different Color and Depth Cameras

Eberty Alves da Silva ! and Karl Philips Apaza-Agiiero “!

!Department of Computer Science, Federal University of Bahia (UFBA)
*eberty.silva@hotmail.com; kaguero@ufba.br

Received: 2021-10-11. Revised: 2022-07-13. Accepted: 2022-07-22.

Abstract

The performance of traditional 3D capture methods directly influences the quality of digitally reconstructed 3D models. In
order to obtain complete and well-detailed low-cost three-dimensional models, this paper proposes a 3D reconstruction
pipeline using point clouds from different sensors, combining captures of a low-cost depth sensor post-processed
by Super-Resolution techniques with high-resolution RGB images from an external camera using Structure from
Motion and Multi-View Stereo output data. The main contribution of this work includes the description of a complete
pipeline that improves the stage of information acquisition and merges data from different sensors. Several phases of
the 3D reconstruction pipeline were also specialized to improve the model’s visual quality. The experimental evaluation
demonstrates that the developed method produces good and reliable results for low-cost 3D reconstruction of an object.

Keywords: Depth Sensor, Low-Cost 3D Reconstruction, Photogrammetry.

Resumo

O desempenho dos métodos tradicionais de captura 3D influenciam diretamente na qualidade dos modelos 3D
reconstruidos digitalmente. Com o objetivo de obter modelos tridimensionais de baixo custo completos e bem detalhados,
este trabalho propoe um pipeline de reconstrucdo 3D usando nuvens de pontos de diferentes sensores, combinando
capturas de um sensor de profundidade de baixo custo pos-processadas por técnicas de Super-Resolucdo com imagens
RGB de alta resolu¢do adquiridas por uma camera externa aplicadas sobre algoritmos de Structure from Motion e Multi-
View Stereo. A principal contribuigdo deste trabalho inclui a descri¢do de um pipeline completo que aprimora o estagio
de aquisicdo de informagdes e mescla dados de diferentes sensores. Varias fases do pipeline de reconstrugéo 3D também
foram especializadas para melhorar a qualidade visual do modelo. A avaliacdo experimental demonstra que o método
desenvolvido produz resultados bons e confiaveis para a reconstrucdo 3D de baixo custo de um objeto.

Palavras-Chave: Fotogrametria, Reconstrucdo 3D de Baixo Custo, Sensor de Profundidade.

1 Introduction low-cost acquisition devices (e.g., the Microsoft Kinect
sensor (Newcombe et al., 2011)) or using Structure from

3D reconstruction makes it possible to capture the  Motion (SfM) (Schonberger and Frahm, 2016) combined

geometry and appearance of an object or scene, allowing us
to inspect details, measure properties, and reproduce 3D
models in different materials (Raimundo et al., 2018). In
recent years, numerous advances in 3D digitization have
been observed, mainly by applying pipelines for three-
dimensional reconstruction using costly high-precision
3D scanners. In addition, recent researches have sought
to reconstruct objects or scenes using depth images from

with Multi-View Stereo (MVS) (Cernea, 2020) from RGB
images.

Good quality 3D reconstructions require a large number
of financial resources, as they require state-of-the-art
equipment to capture object data in high precision and
detail. On the other hand, low-resolution equipment
implies lower quality captures, even being financially
more viable. Even with the ease of operation, lightweight,
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and portability, hardware low-cost approaches must
consider the limitations of the scanning equipment used
(Raimundo, 2018).

The acquisition step of a 3D reconstruction pipeline
refers to the use of devices to capture data from objects
in a scene, such as their geometry and color (Raimundo
and Apaza-Agiiero, 2020). One result of 3D geometry
capture is the production of discrete points collection that
demonstrates the model shape. We call it point cloud. The
data obtained by this step will be used in all other phases of
the 3D reconstruction process (Bernardini and Rushmeier,
2002).

Active capture methods use equipment such as
scanners to infer an object’s geometry through a beam
of light, inside or outside the visible spectrum. The
scanner sensor has the advantages of fast measuring
speed, robustness regarding external factors, and ease
of acquiring information. Active sensors also have
good performance in reconstructing texture-less and
featureless surfaces (Chen et al., 2019, Raimundo and
Apaza-Agiiero, 2020). The sensors need to be sensitive
to small variations in the information acquired, since,
for small differences in distance, the variation in the
time it takes to reach two different points is very low,
requiring low equipment latency and good response
time. For this reason, these systems tend to be slightly
noisy (Raimundo et al., 2018). Considering low-cost
reconstruction approaches, difficulties to capture color
in high precision are a disadvantage (Hernandez and
Vogiatzis, 2010).

Passive methods are based on optical imaging
techniques. They are highly flexible and work well
with any modern digital camera. Image-based 3D
reconstruction is practical, non-intrusive, low-cost and
easily deployable outdoors. Various properties of the
images can be used to retrieve the target shape, such
as material, viewpoints and illumination. As opposed
to active techniques, image-based techniques provide
an efficient and easy way to acquire the color of a target
object (Hernandez and Vogiatzis, 2010). Although passive
reconstructions mainly using SfM and MVS produce
excellent results, they have limitations like the difficulty
of distinguishing the target object from the background
(Sergeeva and Sablina, 2018) and require the target
object to having detailed geometry (Chen et al., 2019).
A controlled environment is needed to obtain better
reconstruction results (Hosseininaveh Ahmadabadian
etal., 2019, Schonberger and Frahm, 2016).

Considering the limitations imposed by the presented
approaches, it is important to note that a target
whose geometry has been described by only a low-cost
capture method has a real challenge in expressing its
completeness, with rich and small details (Chen et al.,
2019).

This paper proposes a hybrid pipeline from a low-cost
depth camera (low-resolution images) and an external
color capture camera (digital camera with high-resolution
RGB images) to estimate and reconstruct the surface
of an object and apply a high-quality texture. The
individual limitations imposed by each presented low-cost
capture approach are overcome by the proposed pipeline,
generating a complete and well-detailed replica of the

target model with high visual quality. To achieve this
effect, this project uses a variation and combination of
Structure from Motion, Multi-View Stereo and depth
camera capture techniques.

The main contribution of this work is the description of
a low-cost and complete pipeline that makes use of post-
processed depth captures and merging data from different
sensors, in which depth sensor data and high-resolution
color images do not need to be synchronized.

In addition to this introductory section, this work is
organized as follows: Section 2 presents related works,
while Section 3 describes the proposed pipeline. The
experiments and evaluation of the pipeline are presented
in Section 4. Finally, Section 5 discusses the final
considerations and results achieved by this research.

2 Related work

Prokos et al. (2009) proposed a hybrid approach
combining shape from stereo (with additional geometric
constraints) and laser scanning techniques. Using two
cameras and a portable laser beam, they achieved accuracy
as good as some high-end laser triangulation scanners.
They do not include automatically detecting outliers in
their results.

The KinectFusion system (Newcombe et al., 2011)
tracks the pose of portable depth cameras (Kinect)
as they move through space and perform good three-
dimensional surface reconstructions in real-time. The
Kinect sensor has considerable limitations, including
temporal inconsistency and the low resolution of the
captured color and depth images (Raimundo and Apaza-
Agiliero, 2020). This approach does not include the
texturing step.

Silva et al. (2013) provides a guided reconstruction
process using Super-Resolution (SR) techniques, helping
to increase the quality of the low-resolution data captured
with a low-cost depth sensor. The method of data
acquisition using low-cost depth cameras and SR is also
improved by Raimundo and Apaza-Agiiero (2020). Even
with depth image improvements, a poor registration of
captures can affect the final model’s shape.

Falkingham (2013) demonstrates the potential
applications of low-cost technology in the field of
paleontology. The Microsoft Kinect was used to digitalize
specimens of various sizes, and the resulting digital
models were compared with models produced using SfM
and MVS. The work pointed out that although Kinect
generally registers morphology at a lower resolution
capturing less detail than photogrammetry techniques,
it offers advantages in the speed of data acquisition and
generation of the 3D mesh completed in real-time during
data capture. Also, they did not use Super-Resolution to
improve captures from low-cost devices, and the models
produced by the Kinect lack any color information.

Zollhofer et al. (2014) used a Kinect sensor to capture
the geometry of an excavation site and took advantage
of a topographic map to distort the reconstructed model,
significantly increasing the quality of the scene. The global
distortion, with Super-Resolution techniques applied to
raw scans, significantly increased the fidelity and realism
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of its results but is too specialized for large scale-scenes.

Di Paola and Inzerillo (2018), in order to digitally
produce the Egyptian stone from Palermo, proposed a
method with a structured light scanner, smartphones and
SfM to apply texture in the highlyaccurate mesh generated
by the scanner. The main challenges were the dark color
of the material and the superficiality of the groove of the
hieroglyphs that some capture approaches have difficulty
recognizing. The level of detail of the texture application
showed up quite accurately. This reference work used a
high-resolution 3D scanner, not aiming for a low-cost
reconstruction.

Jo and Hong (2019) use a combination of terrestrial
laser scanning and Unmanned Aerial Vehicle (UAV)
photogrammetry to establish a three-dimensional model
of the Magoksa Temple in Korea. The scans were
used to acquire the perpendicular geometry of buildings
and locations, being aligned and merged with the
photogrammetry output, producing a hybrid point cloud.
The photogrammetry adds value to the 3D model,
complementing the point cloud with the upper parts of
buildings, which are difficult to acquire through laser
scanning.

Chen et al. (2019) proposes a registration method to
combine the data of a laser scanner and photogrammetry
to reconstruct the real outdoor 3D scene. They managed
to greatly increase the accuracy and convenience of the
operation. The two sensors can work independently, as
the method fuses their data even if in different scales.
Mesh reconstruction and texturing were not explored by
this work, they also don’t use MVS point clouds in their
experiments.

Unlike the related works, the pipeline described in
this article includes all reconstruction steps from capture
to texturing, focusing on data merging using low-cost
equipment.

3 Pipeline proposal

To overcome limitations of the low-cost three-
dimensional data acquisition process, such as the
low-resolution of depth captures with a low-cost
sensor and the need for features for reconstruction by
photogrammetry, and taking the advantages of each
method individually, the following pipeline is proposed *:
acquisition of depth and color images (using a low-cost
depth sensor and a digital camera); generation of point
clouds from low-cost RGB-D camera depth images
(using SR techniques (Raimundo and Apaza-Agiiero,
2020)); shape estimation from RGB images (using SfM
(Schonberger and Frahm, 2016) and MVS (Cernea, 2020));
aligning and merging of data from these different capture
techniques; surface reconstruction; and texturing with
high-quality photos (Fig. 1).

Several phases of the pipeline were specialized
to achieve better accuracy and visual quality of 3D
reconstructions of small and medium scale objects. The
proposed pipeline works offline, allowing greater freedom
in the execution of individual steps.

Inttps://github.com/Eberty/LowCost3DReconstruction

Capturingdepth and
colorimages (using low-
cost depth sensor
and digital camera)

Bl =

Shape estimation from
RGB images (using SFM
and MVS)

Generation of point
clouds from low-cost
RGB-D camera depth
images (using SR
techniques)

LA

Merging of datafrom
these different capture

techniques

) . . Mesh generation using
Texturing with high Screened Poisson

auslity phatos Surface Reconstruction
Y i )
' g

Figure 1: Schematic diagram for the proposed pipeline
and the 3D reconstruction processes of an object.

3.1 Data acquisition

The data acquisition step comprises the capture of depth
and color images (raw data), generation of point clouds
from low-cost camera depth images and the shape
estimation from RGB images (processed data). As the
output, this step provides the point clouds used in the
next steps of the pipeline.

3.1.1 Low-cost depth captures

For the captures using a low-cost depth sensor, we
established the following acquisition procedure: take
several depth captures, moving the sensor around the
object, and defining the limits of the capture volume. The
number of views captured is less than that of real-time
approaches due to the additional processing required to
ensure the quality of each capture (Raimundo and Apaza-
Agiiero, 2020). Considering the quality requirements for
this proposed work, an interactive tool (Raimundo, 2018)
is used to acquire the raw data from the depth sensor
(Fig. 2).

The depth capture method will present results
proportional to the best captures of the device (less
noise incidence and best depth accuracy). To achieve
this, each depth image, acquired by a low-cost depth
sensor, goes through a filtering step with the application
of Super-Resolution (Raimundo and Apaza-Agiiero,
2020). In order to provide high-resolution information
beyond what is possible with a specific sensor, several
low-resolution captures are merged, recreating as much
detail as possible.

3.1.2 Photogrammetry
In order to add 3D information in greater detail and apply
a simple high-quality texturing process, photographs are
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Figure 2: Software to acquire and process depth images.
The slider controls the capture limits (in millimeters) and
the cut limits (in pixels), effectively determining the
capture volume.

taken from a digital camera around the target object. In
our pipeline, these captures are independent of the depth
sensor. We need just to take pictures with the fixed object,
in a free movement of the camera. The set of captured
images must be sufficient to cover most of the object’s
surface and the images must portray, in pairs, common
parts of it. The color images will be used in the SfM
pipeline.

The SfM pipeline detects characteristics in the images
(feature detection), mapping these characteristics
between images and finding descriptors capable of
representing a distinguishable region (feature matching).
These descriptors represent vertices of the reconstruction
of the 3D scene (sparse reconstruction). The greater the
number of matches found between the images, the greater
the degree of accuracy of calculating a 3D transformation
matrix between the images, providing the estimation of
the relative position between camera poses (Hernandez
and Vogiatzis, 2010, Bianco et al., 2018).

Photographs with good resolution and objects with
a high level of detail tend to bring greater precision to
the photogrammetry algorithms. For objects with fewer
details and features, the environment can be used to
achieve better results (Schonberger and Frahm, 2016,
Chen et al., 2019). In addition to the estimated structure
to improve the depth sensor captured geometry, we use
these cameras’ pose estimation to apply directly texture
over the final model surface.

The Multi-View Stereo process is used to improve
the point cloud obtained by SfM, resulting in a dense
reconstruction. As the camera parameters such as
position, rotation, and focal length are known from SfM,
the MVS computes 3D vertices in regions not detected by
the descriptors. Multi-View Stereo algorithms generally
have good accuracy, even with few images (Hernandez and

N

(a) MVS point cloud result

(b) Photo of porcelain horse

Figure 3: Some parts of the surface may not be estimated
by the photogrammetry process. In (a) the white and
smooth painting of the object (in (b)) prevents the MVS
algorithm from obtaining a greater number of points that
define this part of the structure of the model, leaving this
featureless surface region with a fewer density of points
than others.

Vogiatzis, 2010). A good evaluation of the performance of
different state-of-the-art SfM and MVS implementations
is presented by Bianco et al. (2018).

For this image-based point cloud result, a crop box
filter and a euclidean cluster extraction can be used to
highlighting the target object. If the floor below the
object is discernible, it is also possible to use a planar
segmentation algorithm to remove the plane. A statistical
removal algorithm can also be used to remove outliers.
Most of the discrepancies and the background are removed
using the proposed steps, minimizing working time and
human intervention. Details of implementation and
application of the algorithms described in this paragraph
are presented by Rusu and Cousins (2011).

Although image-based 3D reconstructions get greater
detail than using low-cost depth sensors (Falkingham,
2013), this approach may not be able to estimate the
completeness of the object (Fig. 3). This isa common result
when the captures do not fully describe the target model,
or it does not have a very distinguishable texture or detail
(Chenetal., 2019).

3.1.3 Normal estimation

The algorithms used in the next steps require a guided
set of data, thus, the normals of the point clouds are
estimated before performing the alignment step. A normal
estimation k-neighbor algorithm (Rusu and Cousins,
2011) is used for this task.

3.2 Alignment

The alignment task, usually called Point Cloud
Registration, seeks to find the transformations which
align two (or more) point sets, placing all captures in a
global coordinate system. To find these transformations,
the algorithm needs to establish correct correspondences
between features present in each point cloud.

The registration is usually performed in a coarse and
fine alignment steps. To perform the coarse alignment,
we use global alignment algorithms where the pairs of
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three-dimensional captures are roughly aligned (pairwise
incremental registration). A good algorithm for global
registration is the Super 4PCS (Mellado et al., 2014). With
the captures positioned closer to the correct spot in the
real-world representation, a fine adjustment step aims to
align the geometric features of the objects. To do this,
the Iterative Closest Point (ICP) algorithm (Holz et al.,
2015) is used due to its satisfactory performance for the
registration problem. This step needs to be carefully
parameterized to produce good alignment results due to
the nature of the depth data utilized, otherwise it may lead
to drifts in the registration (Wang et al., 2016, Raimundo,
2018).

SfM approaches use a geometric verification strategy to
improve the triangulation method, responsible for finding
multiple planes relationship. This strategy performs a
more robust camera position estimation, improving the
3D reconstruction and images projection (Schonberger
and Frahm, 2016, Bianco et al., 2018). With this and
the results from MVS (Cernea, 2020), we use the point
cloud obtained by photogrammetry as an auxiliary to apply
a new alignment over the depth sensors point clouds,
distorting the initial transformation, propagating the
accumulation of errors between consecutive alignments
and avoiding loop closure problems (Li et al., 2013).

It is important to note that the point cloud generated by
the image-based 3D reconstruction pipeline and the ones
obtained with the depth sensor captures are created from
different image spectrums and are very common to have
different scales (Chen et al., 2019). As the depth sensor
captures are already in a global coordinate system, to carry
out the aligned with the corresponding points of the object
in the photogrammetry point cloud, it is sufficient to find
a transformation matrix to a single initially aligned depth
sensor capture over the MVS point cloud by a manual
process or using a scale-based iterative closest point
algorithm (scale-based PCA-ICP) (Chenetal., 2019). After
finding this matrix, we apply the transformation to all
depth sensor point clouds. For better results, the ICP (Holz
etal., 2015) algorithm can be applied for each depth sensor
point cloud over the photogrammetry output point cloud.
The camera positions that we will utilize for texturing will
use the photogrammetry model’s coordinate system.

The merging of point clouds from both data capture
approaches, using an algorithm to accumulate all 3D
coordinates described by each point clouds and save as a
single cloud, should increase the information that defines
the object geometry.

The merged point clouds are also filtered, using a
statistical outlier removal algorithm (Rusu and Cousins,
2011) and down-sampled to facilitate visualization,
meshing generation, and processing, since the aligned
and combined point clouds may have an excessive
and redundant number of vertices and there is no
guarantee that the sampling density is sufficient for
proper reconstruction (Bernardini and Rushmeier, 2002).
A voxel grid filter Rusu and Cousins (2011) is used
to downsampling the point cloud, joining points close
enough. The resulting point cloud is used in the next steps
of the pipeline.

3.3 Surface reconstruction

The mesh generation step is characterized by the
reconstruction of the surface, a process in which a 3D
continuous surface is inferred from a collection of discrete
points that prove the object’s shape (Berger et al., 2017).

For this step, we use the algorithm Screened Poisson
Surface Reconstruction (Kazhdan and Hoppe, 2013) from
MeshLab. This algorithm seeks to find a surface in which
the gradient of its points is the closest to the normals
of the vertices of the input point cloud. The choice of
this parametric method for the surface reconstruction is
justified by the robustness in the geometric fidelity and
the possibility of using numerical methods to improve the
results. Also, the resulting meshes are almost regular and
smooth.

3.4 Texture synthesis

Applying textures to reconstructed 3D models is one of
the keys to realism (Waechter et al., 2014). High-quality
texture mapping aims to avoid seams, smoothing the
transition of an image used for applying texture and its
adjacent one (Muratov et al., 2016).

The texture synthesis phase of the proposed pipeline
comprises the combination of the high-resolution
pictures captured with an external digital camera
with the integrated model obtained from the surface
reconstruction.

The high-resolution photos taken with a digital camera
with the poses calculated using SfM, will be used to
perform the generation of texture coordinates and atlas of
the model, avoiding a time-consuming manual process.
For this texturing stage, we used the algorithm proposed
by Waechter et al. (2014).

The images with poses from SfM may not be able
to apply a texture on faces not visible by any image
used for the reconstruction, causing non-textured mesh
surfaces in the three-dimensional model. To overcome
this limitation, we post-apply the texture, merging
camera relative poses result from SfM with new photos,
calculating the new poses using photogrammetry result
relative coordinate system.

The need for additional photos is determined by
non-textured surfaces in the final texturing result and
is manually solved using a user interface program
like MeshLab’s (Cignoni et al., 2008), followed by a
mutual information filter (Corsini et al., 2009) for fine
adjustments finding and a transformation matrix for the
new photo. Note that as this is a post-processed step, the
new image of the object can be inserted even if the photo
is taken from another environment.

Using a suitable output format, the new camera’s pose
isadded to the output of the SfM module, and the texturing
algorithm must be run again.

4 Experiments and evaluation
For evaluation, we run the proposed pipeline on tabletop

objects of varying size and complexity. We present the
results for a porcelain horse-shaped object (‘“Porcelain
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(b) Initial point clouds alignment
(Kinect)

(c) SfM shape and camera pose
estimation

(d) MVS point cloud output before
filtering

(e) MVS point cloud output after
filtering

(f) Kinect improved initial alignment
and filtering

(g) Merged point cloud

(h) Poisson generated mesh

(i) Textured model

Figure 4: Porcelain horse. With the richness of details that this object has, as in the head and saddle, we use the
photogrammetry method for distinguishing them with the highest level of detail. At the same time it has a low number
of characteristics in predominantly smoothness regions, as the base of the structure and the body of the animal, we use

the depth sensor capture approach where this factor does not influence the 3D acquisition process.

horse”, Fig. 4), a jaguar and a turtle-shaped clay
pan replicas (“Jaguar pan”, Fig. 5 and “Turtle pan”,
Fig. 6 respectively). These last two objects mentioned
are replicas of cultural objects from the collection
of Federal University of Bahia’s Brazilian Museum of
Archaeology and Ethnology (MAE/UFBA) and were three-
dimensionally reconstructed and 3D printed. In addition,
the turtle replica was colored by hydrographic printing.

In our experiments we used Microsoft Kinect version 1,
however, any other low-cost sensor can be used to capture
depth images. This sensor is affordable and captures
color and depth information with a resolution of 640x480
pixels. To produce point clouds from the low-cost 3D
scanner, we used the Super-Resolution approach proposed
by Raimundo and Apaza-Agiiero (2020) with 16 Low-
Resolution (LR) depth frames.

The photos used as input to the passive 3D
reconstruction method were taken with a Redmi
Note 8 camera for all evaluated models. The number of
photos was arbitrarily chosen to maximize the coverage
of the object. For the SfM pipeline, the RGB images
were processed using COLMAP (Schonberger and Frahm,

2016) to calculate camera poses and sparse shape
reconstruction. OpenMVS (Cernea, 2020) was used for
dense reconstruction.

Some software tools were developed from third-party
libraries for various purposes. For instance, OpenCV
(Bradski, 2000) and PCL (Rusu and Cousins, 2011) were
used to handle and process depth images and point clouds,
libfreenect (OpenKinect, 2012) was used for the depth
acquisition application to access and retrieve data from the
Microsoft Kinect. MeshLab’s system (Cignoni et al., 2008)
has been used for Poisson reconstruction and adjustments
in 3D point clouds and meshes when necessary.

Details for reproducing the results can be found in the
project repository.

Figs. 4 and 5 show the acquisition, merging, and
reconstruction steps proposed by this pipeline for the
Porcelain Horse and Jaguar Pan respectively. The figures
also bring the discussion of the main challenges for each
reconstruction and how they were handled by the pipeline.
The algorithms and main components of each experiment
are described in Table 1.

The resolution of clouds obtained by the low-cost
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(a) Super-Resolution point cloud

(d) MVS point cloud output before
filtering

(b) Initial point clouds alignment
(Kinect)

(e) MVS point cloud output after
filtering

(c) SfM shape and camera pose
estimation

(f) Kinect improved initial alignment
and filtering

(g) Merged point cloud

(h) Poisson generated mesh

(i) Textured model

Figure 5: Jaguar pan replica. Even with some visual characteristics generated by the 3D printing process, the object has
very few distinguishable features. This factor makes the reconstruction process by SfM and MVS difficult. With this, we
use the environment to assist in detecting the positions and orientation of the cameras. The data captured by the
low-cost depth sensor aggregated information where there are no relevant representations in the photogrammetry
method, as can be seen at the legs of the jaguar.

sensor, even with SR, is considerably lower than the
clouds obtained by photogrammetry and therefore these
point clouds, although represent geometry well, don’t
describe with good precision small object details. The
low-cost sensor captures also presented a scale limitation,
making it difficult to retrieve the geometry of small objects
such as the Turtle replica (Fig. 6). However, it has the
advantage of making new captures of the object even if it
has moved in the scene. The photogrammetry presented
limitations when it tries to describe featureless regions
of any object (as shown in Fig. 3 and Fig. 5e). This does
not happen with the depth sensor, since the coloring does
not influence on the captures. The point clouds obtained
by photogrammetry were capable of representing, with
good quality, distinguishable details on a millimeter scale.
The merging of point clouds was helpful to express in
greater detail the objects that were reconstructed, taking
the advantages of both captures.

Point clouds were meshed using the Screened Poisson
Surface Reconstruction feature in MeshLab (Cignoni et al.,

2008) using reconstruction depth 7 and 3 as the minimum
number of samples. It is important to note that the
production of a mesh is a highly dependent process on
the variables used to generate the surface. We consider
as standard for all reconstructions the Poisson Surface
Reconstruction, the parameters defined in this paragraph.

For quantitative validation, the 3D surfaces
reconstructions of the Jaguar were compared with
a ground truth, a mesh 3D which was printed and used as
the target of our reconstructions (Fig. 7f), making this
analysis possible. In order to make an evaluation with
previous works, this paper also provides a comparison
with the results produced using publicly available
implementations based in KinectFusion system, the
PCL Kinfu (Rusu and Cousins, 2011) and ReconstructMe
(Heindl et al., 2015). For the comparison, we used the
one-sided Hausdorff Distance tool of MeshLab (Cignoni
etal., 2008). The results are graphically represented on
Fig. 7 and discussed on Table 2.

It was observed that the capture approach with super-
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Table 1: Algorithms and main components of each experiment.

Object Porcelain horse Jaguar pan Turtle pan
Dimensions (cm) 35x12x31 21.5X15X7 9x6.5%X3.5
Texture Handmade Predominantly white = Hydrographic printing
Num. of RGB images 108 65 29
RGB images resolution 8000 X 6000px 4000 X1844pX 8000 x 6000px
SfM algorithm COLMAP* COLMAP* COLMAP*
MVS algorithm OpenMVS* OpenMVS* OpenMVS*
Depth sensor Kinect V1 Kinect V1 Kinect V1
LR frames per capture 16 16 16
SR point clouds 26 22 20

* (Schonberger and Frahm, 2016)
* (Cernea, 2020)

(a) Reconstruction from MVS
output after filtering

(b) Reconstruction from SR
Kinect captures with improved
alignment

€D

s ]
O~

(d) Ground truth mesh

¥

(c) Reconstruction from merged
point clouds

Figure 6: Screened Poisson Surface Reconstruction results for the Turtle point clouds. In (a) the limiting factor was the
bottom part of the object that is not inferred by the photogrammetry process. (b) shows that the low-cost depth sensor
was unable to identify details of the model, this is due to the small size of the object, making it difficult to obtain details,
however, this mesh was able to represent the model in all directions, including the bottom. The merged mesh (c) was
able to reproduce all the small details found by photogrammetry and include regions that were represented only by
depth sensor captures. For comparison, (d) presents the model’s ground truth used for 3D printing.

Table 2: One-sided Hausdorff distances for 3D surface reconstructions of the Jaguar. Each sampled face from the
reconstructed models is searched to the closest point on the ground truth. Values in the mesh units and concerning the
diagonal of the bounding box of the ground truth mesh. It was used a denser sampling approach over the meshes.

Mesh MVS Kinect SR Merged PCLKinfu ReconstructMe
Vertices 12513 13034 13147 70812 27505
Faces 25022 26064 26290 23390 54500
Samples 42000 42000 42000 42000 42000
Minimum 0.000004 0.000000 0.000000 0.000000 0.000000
Maximum 0.775509  0.172886  0.136019 0.169612 0.194958
Mean 0.124142  0.017680 0.019820  0.023655 0.031021
RMS 0.208610 0.028585  0.026591 0.031335 0.043607
Reference Fig.7a Fig.7b Fig.7c Fig.7d Fig. 7e

resolution manages to get very close to the real geometry
of the object, even losing details, that can be recovered
by the MVS approach. The KinectFusion based systems,
once not having an adequate treatment of the data,
as SR, despite representing the geometry well, is also
unable to reproduce small details because of the temporal
inconsistency of the Kinect.

All objects evaluated were benefited from the merging
of point clouds. For the jaguar pan, the captures
with the depth sensor added information in the legs
of the jaguar and the belly (bottom) not acquired
by photogrammetry. Poisson’s surface reconstruction
identifies and differentiates nearby geometric details,
some of them are added by the merging. For the horse,
small depressions in the mouth and eye of the original

model were not well recovered in the reconstructed model.
Nonetheless, small reliefs of the saddle and mane were
well-preserved.

Texturing results using surfaces from merged point
clouds are shown in Figs. 4i, 5i and 8. This stage is
satisfactory due to the high quality of the images used
and from the camera positions correctly aligned and
undistorted with the target object from SfM results.

Every procedure described in this section was
performed on a notebook Avell G1550 MUV, Intel Core
i7-9750H CPU @ 2.60GHz x 12, 16 GB of RAM, GeForce
RTX 2070 graphics card, on Ubuntu 16.04 64-bits
(Windows 10 for ReconstructMe).
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(a) Reconstruction from MVS output
after filtering

0.2I

0.1/
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(d) PCL Kinfu reconstruction

(b) Reconstruction from SR Kinect
captures with improved alignment

(e) ReconstructMe reconstruction

O.OI

(c) Reconstruction from merged point
clouds

(f) Ground truth mesh (21635 vertices
and 43266 faces)

Figure 7: One-sided Hausdorff Distances for Jaguar’ meshes. For each face sampled over the reconstructed meshes,
were searched the closest point on ground truth (f). The red-green-blue color map was truncated to facilitate the
comparison between results using a minimum of 0.0 (red, good) and a maximum of 0.2 (blue, bad). Values in the mesh
units and concerning the diagonal of the bounding box of the ground truth mesh. Details of the Hausdorff Distances for
each evaluated mesh are presented on Table 2. Color created using the tool "Colorized by vertex quality" from MeshLab
(Cignoni et al., 2008). The meshes (d) and (e) were made using PCL Kinfu (Rusu and Cousins, 2011) and ReconstructMe
(Heindl et al., 2015) respectively, with the environment and outliers manually removed.

5 Conclusion

With the proposed pipeline, it is possible to add 3D capture
information, reconstructing details beyond what a single
low-cost capture method initially provides. A low-cost
depth sensor allows preliminary verification of data during
acquisition. The Super-Resolution methodology reduces
the incidence of noise and mitigates the low amount of
details from depth maps acquired using low-cost RGB-D
hardware. Photogrammetry, despite capturing a higher
level of detail, has certain limitations related to the number
of resources, like geometric and feature details.

The texturing process that uses high definition images
from SfM output and adds possible missing parts, if
needed, also helps to achieve greater visual realism to the
reconstructed 3D model.

The proposed techniques are not novel, but adapted
from known methods. Their combination to compose
a low-cost 3D reconstruction is a novelty, and it
demonstrates a good surface representation of tabletop
objects, even for small details.

The pipeline, despite being robust, has some
limitations. If after merging point clouds between
different capture methods, it is still not possible to
recognize part of the object, the surface reconstruction
can stay too smoothed or distorted. If the registration
between captures does not reach a desirable alignment
result, the surface reconstruction may become bad. The
photogrammetry model is usually denser than the Kinect
one, which can make it difficult in the alignment and
surface reconstruction process. Texturing for regions not
covered by photogrammetry needs manual intervention.

Future research involves a quantitative analysis of the
3D reconstruction after the texturing step. It is also
projected a better evaluation of the automated alignment
of point clouds using the scale-based iterative closest
point algorithm (scaled PCA-ICP) and the application of
this pipeline to digital preservation of artifacts from the
cultural heritage of the MAE/UFBA.
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