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Abstract
The performance of traditional 3D capture methods directly influences the quality of digitally reconstructed 3D models. Inorder to obtain complete and well-detailed low-cost three-dimensional models, this paper proposes a 3D reconstructionpipeline using point clouds from different sensors, combining captures of a low-cost depth sensor post-processedby Super-Resolution techniques with high-resolution RGB images from an external camera using Structure fromMotion and Multi-View Stereo output data. The main contribution of this work includes the description of a completepipeline that improves the stage of information acquisition and merges data from different sensors. Several phases ofthe 3D reconstruction pipeline were also specialized to improve the model’s visual quality. The experimental evaluationdemonstrates that the developed method produces good and reliable results for low-cost 3D reconstruction of an object.
Keywords: Depth Sensor, Low-Cost 3D Reconstruction, Photogrammetry.
Resumo
O desempenho dos métodos tradicionais de captura 3D influenciam diretamente na qualidade dos modelos 3Dreconstruídos digitalmente. Com o objetivo de obter modelos tridimensionais de baixo custo completos e bem detalhados,este trabalho propõe um pipeline de reconstrução 3D usando nuvens de pontos de diferentes sensores, combinandocapturas de um sensor de profundidade de baixo custo pós-processadas por técnicas de Super-Resolução com imagensRGB de alta resolução adquiridas por uma câmera externa aplicadas sobre algoritmos de Structure from Motion e Multi-View Stereo. A principal contribuição deste trabalho inclui a descrição de um pipeline completo que aprimora o estágiode aquisição de informações e mescla dados de diferentes sensores. Várias fases do pipeline de reconstrução 3D tambémforam especializadas para melhorar a qualidade visual do modelo. A avaliação experimental demonstra que o métododesenvolvido produz resultados bons e confiáveis para a reconstrução 3D de baixo custo de um objeto.
Palavras-Chave: Fotogrametria, Reconstrução 3D de Baixo Custo, Sensor de Profundidade.

1 Introduction

3D reconstruction makes it possible to capture thegeometry and appearance of an object or scene, allowing usto inspect details, measure properties, and reproduce 3Dmodels in different materials (Raimundo et al., 2018). Inrecent years, numerous advances in 3D digitization havebeen observed, mainly by applying pipelines for three-dimensional reconstruction using costly high-precision3D scanners. In addition, recent researches have soughtto reconstruct objects or scenes using depth images from

low-cost acquisition devices (e.g., the Microsoft Kinectsensor (Newcombe et al., 2011)) or using Structure fromMotion (SfM) (Schonberger and Frahm, 2016) combinedwith Multi-View Stereo (MVS) (Cernea, 2020) from RGBimages.Good quality 3D reconstructions require a large numberof financial resources, as they require state-of-the-artequipment to capture object data in high precision anddetail. On the other hand, low-resolution equipmentimplies lower quality captures, even being financiallymore viable. Even with the ease of operation, lightweight,
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and portability, hardware low-cost approaches mustconsider the limitations of the scanning equipment used(Raimundo, 2018).The acquisition step of a 3D reconstruction pipelinerefers to the use of devices to capture data from objectsin a scene, such as their geometry and color (Raimundoand Apaza-Agüero, 2020). One result of 3D geometrycapture is the production of discrete points collection thatdemonstrates the model shape. We call it point cloud. Thedata obtained by this step will be used in all other phases ofthe 3D reconstruction process (Bernardini and Rushmeier,2002).Active capture methods use equipment such asscanners to infer an object’s geometry through a beamof light, inside or outside the visible spectrum. Thescanner sensor has the advantages of fast measuringspeed, robustness regarding external factors, and easeof acquiring information. Active sensors also havegood performance in reconstructing texture-less andfeatureless surfaces (Chen et al., 2019, Raimundo andApaza-Agüero, 2020). The sensors need to be sensitiveto small variations in the information acquired, since,for small differences in distance, the variation in thetime it takes to reach two different points is very low,requiring low equipment latency and good responsetime. For this reason, these systems tend to be slightlynoisy (Raimundo et al., 2018). Considering low-costreconstruction approaches, difficulties to capture colorin high precision are a disadvantage (Hernández andVogiatzis, 2010).Passive methods are based on optical imagingtechniques. They are highly flexible and work wellwith any modern digital camera. Image-based 3Dreconstruction is practical, non-intrusive, low-cost andeasily deployable outdoors. Various properties of theimages can be used to retrieve the target shape, suchas material, viewpoints and illumination. As opposedto active techniques, image-based techniques providean efficient and easy way to acquire the color of a targetobject (Hernández and Vogiatzis, 2010). Although passivereconstructions mainly using SfM and MVS produceexcellent results, they have limitations like the difficultyof distinguishing the target object from the background(Sergeeva and Sablina, 2018) and require the targetobject to having detailed geometry (Chen et al., 2019).A controlled environment is needed to obtain betterreconstruction results (Hosseininaveh Ahmadabadianet al., 2019, Schonberger and Frahm, 2016).Considering the limitations imposed by the presentedapproaches, it is important to note that a targetwhose geometry has been described by only a low-costcapture method has a real challenge in expressing itscompleteness, with rich and small details (Chen et al.,2019).This paper proposes a hybrid pipeline from a low-costdepth camera (low-resolution images) and an externalcolor capture camera (digital camera with high-resolutionRGB images) to estimate and reconstruct the surfaceof an object and apply a high-quality texture. Theindividual limitations imposed by each presented low-costcapture approach are overcome by the proposed pipeline,generating a complete and well-detailed replica of the

target model with high visual quality. To achieve thiseffect, this project uses a variation and combination ofStructure from Motion, Multi-View Stereo and depthcamera capture techniques.The main contribution of this work is the description ofa low-cost and complete pipeline that makes use of post-processed depth captures and merging data from differentsensors, in which depth sensor data and high-resolutioncolor images do not need to be synchronized.In addition to this introductory section, this work isorganized as follows: Section 2 presents related works,while Section 3 describes the proposed pipeline. Theexperiments and evaluation of the pipeline are presentedin Section 4. Finally, Section 5 discusses the finalconsiderations and results achieved by this research.
2 Related work
Prokos et al. (2009) proposed a hybrid approachcombining shape from stereo (with additional geometricconstraints) and laser scanning techniques. Using twocameras and a portable laser beam, they achieved accuracyas good as some high-end laser triangulation scanners.They do not include automatically detecting outliers intheir results.The KinectFusion system (Newcombe et al., 2011)tracks the pose of portable depth cameras (Kinect)as they move through space and perform good three-dimensional surface reconstructions in real-time. TheKinect sensor has considerable limitations, includingtemporal inconsistency and the low resolution of thecaptured color and depth images (Raimundo and Apaza-Agüero, 2020). This approach does not include thetexturing step.Silva et al. (2013) provides a guided reconstructionprocess using Super-Resolution (SR) techniques, helpingto increase the quality of the low-resolution data capturedwith a low-cost depth sensor. The method of dataacquisition using low-cost depth cameras and SR is alsoimproved by Raimundo and Apaza-Agüero (2020). Evenwith depth image improvements, a poor registration ofcaptures can affect the final model’s shape.Falkingham (2013) demonstrates the potentialapplications of low-cost technology in the field ofpaleontology. The Microsoft Kinect was used to digitalizespecimens of various sizes, and the resulting digitalmodels were compared with models produced using SfMand MVS. The work pointed out that although Kinectgenerally registers morphology at a lower resolutioncapturing less detail than photogrammetry techniques,it offers advantages in the speed of data acquisition andgeneration of the 3D mesh completed in real-time duringdata capture. Also, they did not use Super-Resolution toimprove captures from low-cost devices, and the modelsproduced by the Kinect lack any color information.Zollhöfer et al. (2014) used a Kinect sensor to capturethe geometry of an excavation site and took advantageof a topographic map to distort the reconstructed model,significantly increasing the quality of the scene. The globaldistortion, with Super-Resolution techniques applied toraw scans, significantly increased the fidelity and realism
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of its results but is too specialized for large scale-scenes.Di Paola and Inzerillo (2018), in order to digitallyproduce the Egyptian stone from Palermo, proposed amethod with a structured light scanner, smartphones andSfM to apply texture in the highly accurate mesh generatedby the scanner. The main challenges were the dark colorof the material and the superficiality of the groove of thehieroglyphs that some capture approaches have difficultyrecognizing. The level of detail of the texture applicationshowed up quite accurately. This reference work used ahigh-resolution 3D scanner, not aiming for a low-costreconstruction.Jo and Hong (2019) use a combination of terrestriallaser scanning and Unmanned Aerial Vehicle (UAV)photogrammetry to establish a three-dimensional modelof the Magoksa Temple in Korea. The scans wereused to acquire the perpendicular geometry of buildingsand locations, being aligned and merged with thephotogrammetry output, producing a hybrid point cloud.The photogrammetry adds value to the 3D model,complementing the point cloud with the upper parts ofbuildings, which are difficult to acquire through laserscanning.Chen et al. (2019) proposes a registration method tocombine the data of a laser scanner and photogrammetryto reconstruct the real outdoor 3D scene. They managedto greatly increase the accuracy and convenience of theoperation. The two sensors can work independently, asthe method fuses their data even if in different scales.Mesh reconstruction and texturing were not explored bythis work, they also don’t use MVS point clouds in theirexperiments.Unlike the related works, the pipeline described inthis article includes all reconstruction steps from captureto texturing, focusing on data merging using low-costequipment.
3 Pipeline proposal
To overcome limitations of the low-cost three-dimensional data acquisition process, such as thelow-resolution of depth captures with a low-costsensor and the need for features for reconstruction byphotogrammetry, and taking the advantages of eachmethod individually, the following pipeline is proposed 1:acquisition of depth and color images (using a low-costdepth sensor and a digital camera); generation of pointclouds from low-cost RGB-D camera depth images(using SR techniques (Raimundo and Apaza-Agüero,2020)); shape estimation from RGB images (using SfM(Schonberger and Frahm, 2016) and MVS (Cernea, 2020));aligning and merging of data from these different capturetechniques; surface reconstruction; and texturing withhigh-quality photos (Fig. 1).Several phases of the pipeline were specializedto achieve better accuracy and visual quality of 3Dreconstructions of small and medium scale objects. Theproposed pipeline works offline, allowing greater freedomin the execution of individual steps.

1https://github.com/Eberty/LowCost3DReconstruction

Figure 1: Schematic diagram for the proposed pipelineand the 3D reconstruction processes of an object.
3.1 Data acquisition

The data acquisition step comprises the capture of depthand color images (raw data), generation of point cloudsfrom low-cost camera depth images and the shapeestimation from RGB images (processed data). As theoutput, this step provides the point clouds used in thenext steps of the pipeline.
3.1.1 Low-cost depth capturesFor the captures using a low-cost depth sensor, weestablished the following acquisition procedure: takeseveral depth captures, moving the sensor around theobject, and defining the limits of the capture volume. Thenumber of views captured is less than that of real-timeapproaches due to the additional processing required toensure the quality of each capture (Raimundo and Apaza-Agüero, 2020). Considering the quality requirements forthis proposed work, an interactive tool (Raimundo, 2018)is used to acquire the raw data from the depth sensor(Fig. 2).The depth capture method will present resultsproportional to the best captures of the device (lessnoise incidence and best depth accuracy). To achievethis, each depth image, acquired by a low-cost depthsensor, goes through a filtering step with the applicationof Super-Resolution (Raimundo and Apaza-Agüero,2020). In order to provide high-resolution informationbeyond what is possible with a specific sensor, severallow-resolution captures are merged, recreating as muchdetail as possible.
3.1.2 PhotogrammetryIn order to add 3D information in greater detail and applya simple high-quality texturing process, photographs are

https://github.com/Eberty/LowCost3DReconstruction


Eberty & Apaza-Agüero | Revista Brasileira de Computação Aplicada (2022), v.14, n.2, pp.56–66 59

Figure 2: Software to acquire and process depth images.The slider controls the capture limits (in millimeters) andthe cut limits (in pixels), effectively determining thecapture volume.
taken from a digital camera around the target object. Inour pipeline, these captures are independent of the depthsensor. We need just to take pictures with the fixed object,in a free movement of the camera. The set of capturedimages must be sufficient to cover most of the object’ssurface and the images must portray, in pairs, commonparts of it. The color images will be used in the SfMpipeline.The SfM pipeline detects characteristics in the images(feature detection), mapping these characteristicsbetween images and finding descriptors capable ofrepresenting a distinguishable region (feature matching).These descriptors represent vertices of the reconstructionof the 3D scene (sparse reconstruction). The greater thenumber of matches found between the images, the greaterthe degree of accuracy of calculating a 3D transformationmatrix between the images, providing the estimation ofthe relative position between camera poses (Hernándezand Vogiatzis, 2010, Bianco et al., 2018).Photographs with good resolution and objects witha high level of detail tend to bring greater precision tothe photogrammetry algorithms. For objects with fewerdetails and features, the environment can be used toachieve better results (Schonberger and Frahm, 2016,Chen et al., 2019). In addition to the estimated structureto improve the depth sensor captured geometry, we usethese cameras’ pose estimation to apply directly textureover the final model surface.The Multi-View Stereo process is used to improvethe point cloud obtained by SfM, resulting in a densereconstruction. As the camera parameters such asposition, rotation, and focal length are known from SfM,the MVS computes 3D vertices in regions not detected bythe descriptors. Multi-View Stereo algorithms generallyhave good accuracy, even with few images (Hernández and

(a) MVS point cloud result (b) Photo of porcelain horse
Figure 3: Some parts of the surface may not be estimatedby the photogrammetry process. In (a) the white andsmooth painting of the object (in (b)) prevents the MVSalgorithm from obtaining a greater number of points thatdefine this part of the structure of the model, leaving thisfeatureless surface region with a fewer density of pointsthan others.
Vogiatzis, 2010). A good evaluation of the performance ofdifferent state-of-the-art SfM and MVS implementationsis presented by Bianco et al. (2018).For this image-based point cloud result, a crop boxfilter and a euclidean cluster extraction can be used tohighlighting the target object. If the floor below theobject is discernible, it is also possible to use a planarsegmentation algorithm to remove the plane. A statisticalremoval algorithm can also be used to remove outliers.Most of the discrepancies and the background are removedusing the proposed steps, minimizing working time andhuman intervention. Details of implementation andapplication of the algorithms described in this paragraphare presented by Rusu and Cousins (2011).Although image-based 3D reconstructions get greaterdetail than using low-cost depth sensors (Falkingham,2013), this approach may not be able to estimate thecompleteness of the object (Fig. 3). This is a common resultwhen the captures do not fully describe the target model,or it does not have a very distinguishable texture or detail(Chen et al., 2019).
3.1.3 Normal estimationThe algorithms used in the next steps require a guidedset of data, thus, the normals of the point clouds areestimated before performing the alignment step. A normalestimation k-neighbor algorithm (Rusu and Cousins,2011) is used for this task.
3.2 Alignment

The alignment task, usually called Point CloudRegistration, seeks to find the transformations whichalign two (or more) point sets, placing all captures in aglobal coordinate system. To find these transformations,the algorithm needs to establish correct correspondencesbetween features present in each point cloud.The registration is usually performed in a coarse andfine alignment steps. To perform the coarse alignment,we use global alignment algorithms where the pairs of
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three-dimensional captures are roughly aligned (pairwiseincremental registration). A good algorithm for globalregistration is the Super 4PCS (Mellado et al., 2014). Withthe captures positioned closer to the correct spot in thereal-world representation, a fine adjustment step aims toalign the geometric features of the objects. To do this,the Iterative Closest Point (ICP) algorithm (Holz et al.,2015) is used due to its satisfactory performance for theregistration problem. This step needs to be carefullyparameterized to produce good alignment results due tothe nature of the depth data utilized, otherwise it may leadto drifts in the registration (Wang et al., 2016, Raimundo,2018).SfM approaches use a geometric verification strategy toimprove the triangulation method, responsible for findingmultiple planes relationship. This strategy performs amore robust camera position estimation, improving the3D reconstruction and images projection (Schonbergerand Frahm, 2016, Bianco et al., 2018). With this andthe results from MVS (Cernea, 2020), we use the pointcloud obtained by photogrammetry as an auxiliary to applya new alignment over the depth sensors point clouds,distorting the initial transformation, propagating theaccumulation of errors between consecutive alignmentsand avoiding loop closure problems (Li et al., 2013).It is important to note that the point cloud generated bythe image-based 3D reconstruction pipeline and the onesobtained with the depth sensor captures are created fromdifferent image spectrums and are very common to havedifferent scales (Chen et al., 2019). As the depth sensorcaptures are already in a global coordinate system, to carryout the aligned with the corresponding points of the objectin the photogrammetry point cloud, it is sufficient to finda transformation matrix to a single initially aligned depthsensor capture over the MVS point cloud by a manualprocess or using a scale-based iterative closest pointalgorithm (scale-based PCA-ICP) (Chen et al., 2019). Afterfinding this matrix, we apply the transformation to alldepth sensor point clouds. For better results, the ICP (Holzet al., 2015) algorithm can be applied for each depth sensorpoint cloud over the photogrammetry output point cloud.The camera positions that we will utilize for texturing willuse the photogrammetry model’s coordinate system.The merging of point clouds from both data captureapproaches, using an algorithm to accumulate all 3Dcoordinates described by each point clouds and save as asingle cloud, should increase the information that definesthe object geometry.The merged point clouds are also filtered, using astatistical outlier removal algorithm (Rusu and Cousins,2011) and down-sampled to facilitate visualization,meshing generation, and processing, since the alignedand combined point clouds may have an excessiveand redundant number of vertices and there is noguarantee that the sampling density is sufficient forproper reconstruction (Bernardini and Rushmeier, 2002).A voxel grid filter Rusu and Cousins (2011) is usedto downsampling the point cloud, joining points closeenough. The resulting point cloud is used in the next stepsof the pipeline.

3.3 Surface reconstruction

The mesh generation step is characterized by thereconstruction of the surface, a process in which a 3Dcontinuous surface is inferred from a collection of discretepoints that prove the object’s shape (Berger et al., 2017).For this step, we use the algorithm Screened PoissonSurface Reconstruction (Kazhdan and Hoppe, 2013) fromMeshLab. This algorithm seeks to find a surface in whichthe gradient of its points is the closest to the normalsof the vertices of the input point cloud. The choice ofthis parametric method for the surface reconstruction isjustified by the robustness in the geometric fidelity andthe possibility of using numerical methods to improve theresults. Also, the resulting meshes are almost regular andsmooth.
3.4 Texture synthesis

Applying textures to reconstructed 3D models is one ofthe keys to realism (Waechter et al., 2014). High-qualitytexture mapping aims to avoid seams, smoothing thetransition of an image used for applying texture and itsadjacent one (Muratov et al., 2016).The texture synthesis phase of the proposed pipelinecomprises the combination of the high-resolutionpictures captured with an external digital camerawith the integrated model obtained from the surfacereconstruction.The high-resolution photos taken with a digital camerawith the poses calculated using SfM, will be used toperform the generation of texture coordinates and atlas ofthe model, avoiding a time-consuming manual process.For this texturing stage, we used the algorithm proposedby Waechter et al. (2014).The images with poses from SfM may not be ableto apply a texture on faces not visible by any imageused for the reconstruction, causing non-textured meshsurfaces in the three-dimensional model. To overcomethis limitation, we post-apply the texture, mergingcamera relative poses result from SfM with new photos,calculating the new poses using photogrammetry resultrelative coordinate system.The need for additional photos is determined bynon-textured surfaces in the final texturing result andis manually solved using a user interface programlike MeshLab’s (Cignoni et al., 2008), followed by amutual information filter (Corsini et al., 2009) for fineadjustments finding and a transformation matrix for thenew photo. Note that as this is a post-processed step, thenew image of the object can be inserted even if the photois taken from another environment.Using a suitable output format, the new camera’s poseis added to the output of the SfM module, and the texturingalgorithm must be run again.
4 Experiments and evaluation
For evaluation, we run the proposed pipeline on tabletopobjects of varying size and complexity. We present theresults for a porcelain horse-shaped object (“Porcelain
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(a) Super-Resolution point cloud (b) Initial point clouds alignment(Kinect) (c) SfM shape and camera poseestimation

(d) MVS point cloud output beforefiltering (e) MVS point cloud output afterfiltering (f) Kinect improved initial alignmentand filtering

(g) Merged point cloud (h) Poisson generated mesh (i) Textured model
Figure 4: Porcelain horse. With the richness of details that this object has, as in the head and saddle, we use thephotogrammetry method for distinguishing them with the highest level of detail. At the same time it has a low numberof characteristics in predominantly smoothness regions, as the base of the structure and the body of the animal, we usethe depth sensor capture approach where this factor does not influence the 3D acquisition process.

horse”, Fig. 4), a jaguar and a turtle-shaped claypan replicas (“Jaguar pan”, Fig. 5 and “Turtle pan”,Fig. 6 respectively). These last two objects mentionedare replicas of cultural objects from the collectionof Federal University of Bahia’s Brazilian Museum ofArchaeology and Ethnology (MAE/UFBA) and were three-dimensionally reconstructed and 3D printed. In addition,the turtle replica was colored by hydrographic printing.In our experiments we used Microsoft Kinect version 1,however, any other low-cost sensor can be used to capturedepth images. This sensor is affordable and capturescolor and depth information with a resolution of 640x480pixels. To produce point clouds from the low-cost 3Dscanner, we used the Super-Resolution approach proposedby Raimundo and Apaza-Agüero (2020) with 16 Low-Resolution (LR) depth frames.The photos used as input to the passive 3Dreconstruction method were taken with a RedmiNote 8 camera for all evaluated models. The number ofphotos was arbitrarily chosen to maximize the coverageof the object. For the SfM pipeline, the RGB imageswere processed using COLMAP (Schonberger and Frahm,

2016) to calculate camera poses and sparse shapereconstruction. OpenMVS (Cernea, 2020) was used fordense reconstruction.Some software tools were developed from third-partylibraries for various purposes. For instance, OpenCV(Bradski, 2000) and PCL (Rusu and Cousins, 2011) wereused to handle and process depth images and point clouds,libfreenect (OpenKinect, 2012) was used for the depthacquisition application to access and retrieve data from theMicrosoft Kinect. MeshLab’s system (Cignoni et al., 2008)has been used for Poisson reconstruction and adjustmentsin 3D point clouds and meshes when necessary.Details for reproducing the results can be found in theproject repository.Figs. 4 and 5 show the acquisition, merging, andreconstruction steps proposed by this pipeline for thePorcelain Horse and Jaguar Pan respectively. The figuresalso bring the discussion of the main challenges for eachreconstruction and how they were handled by the pipeline.The algorithms and main components of each experimentare described in Table 1.The resolution of clouds obtained by the low-cost

https://github.com/Eberty/LowCost3DReconstruction
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(a) Super-Resolution point cloud (b) Initial point clouds alignment(Kinect) (c) SfM shape and camera poseestimation

(d) MVS point cloud output beforefiltering (e) MVS point cloud output afterfiltering (f) Kinect improved initial alignmentand filtering

(g) Merged point cloud (h) Poisson generated mesh (i) Textured model
Figure 5: Jaguar pan replica. Even with some visual characteristics generated by the 3D printing process, the object hasvery few distinguishable features. This factor makes the reconstruction process by SfM and MVS difficult. With this, weuse the environment to assist in detecting the positions and orientation of the cameras. The data captured by thelow-cost depth sensor aggregated information where there are no relevant representations in the photogrammetrymethod, as can be seen at the legs of the jaguar.
sensor, even with SR, is considerably lower than theclouds obtained by photogrammetry and therefore thesepoint clouds, although represent geometry well, don’tdescribe with good precision small object details. Thelow-cost sensor captures also presented a scale limitation,making it difficult to retrieve the geometry of small objectssuch as the Turtle replica (Fig. 6). However, it has theadvantage of making new captures of the object even if ithas moved in the scene. The photogrammetry presentedlimitations when it tries to describe featureless regionsof any object (as shown in Fig. 3 and Fig. 5e). This doesnot happen with the depth sensor, since the coloring doesnot influence on the captures. The point clouds obtainedby photogrammetry were capable of representing, withgood quality, distinguishable details on a millimeter scale.The merging of point clouds was helpful to express ingreater detail the objects that were reconstructed, takingthe advantages of both captures.

Point clouds were meshed using the Screened PoissonSurface Reconstruction feature in MeshLab (Cignoni et al.,

2008) using reconstruction depth 7 and 3 as the minimumnumber of samples. It is important to note that theproduction of a mesh is a highly dependent process onthe variables used to generate the surface. We consideras standard for all reconstructions the Poisson SurfaceReconstruction, the parameters defined in this paragraph.
For quantitative validation, the 3D surfacesreconstructions of the Jaguar were compared witha ground truth, a mesh 3D which was printed and used asthe target of our reconstructions (Fig. 7f), making thisanalysis possible. In order to make an evaluation withprevious works, this paper also provides a comparisonwith the results produced using publicly availableimplementations based in KinectFusion system, thePCL Kinfu (Rusu and Cousins, 2011) and ReconstructMe(Heindl et al., 2015). For the comparison, we used theone-sided Hausdorff Distance tool of MeshLab (Cignoniet al., 2008). The results are graphically represented onFig. 7 and discussed on Table 2.
It was observed that the capture approach with super-
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Table 1: Algorithms and main components of each experiment.
Object Porcelain horse Jaguar pan Turtle pan

Dimensions (cm) 35 x 12 x 31 21.5 x 15 x 7 9 x 6.5 x 3.5
Texture Handmade Predominantly white Hydrographic printing

Num. of RGB images 108 65 29
RGB images resolution 8000 x 6000px 4000 x1844px 8000 x 6000px

SfM algorithm COLMAP* COLMAP* COLMAP*
MVS algorithm OpenMVS+ OpenMVS+ OpenMVS+

Depth sensor Kinect V1 Kinect V1 Kinect V1
LR frames per capture 16 16 16

SR point clouds 26 22 20* (Schonberger and Frahm, 2016)+ (Cernea, 2020)

(a) Reconstruction from MVSoutput after filtering (b) Reconstruction from SRKinect captures with improvedalignment
(c) Reconstruction from mergedpoint clouds (d) Ground truth mesh

Figure 6: Screened Poisson Surface Reconstruction results for the Turtle point clouds. In (a) the limiting factor was thebottom part of the object that is not inferred by the photogrammetry process. (b) shows that the low-cost depth sensorwas unable to identify details of the model, this is due to the small size of the object, making it difficult to obtain details,however, this mesh was able to represent the model in all directions, including the bottom. The merged mesh (c) wasable to reproduce all the small details found by photogrammetry and include regions that were represented only bydepth sensor captures. For comparison, (d) presents the model’s ground truth used for 3D printing.
Table 2: One-sided Hausdorff distances for 3D surface reconstructions of the Jaguar. Each sampled face from thereconstructed models is searched to the closest point on the ground truth. Values in the mesh units and concerning thediagonal of the bounding box of the ground truth mesh. It was used a denser sampling approach over the meshes.

Mesh MVS Kinect SR Merged PCL Kinfu ReconstructMe
Vertices 12513 13034 13147 70812 27505

Faces 25022 26064 26290 23390 54500
Samples 42000 42000 42000 42000 42000

Minimum 0.000004 0.000000 0.000000 0.000000 0.000000
Maximum 0.775509 0.172886 0.136019 0.169612 0.194958

Mean 0.124142 0.017680 0.019820 0.023655 0.031021
RMS 0.208610 0.028585 0.026591 0.031335 0.043607

Reference Fig. 7a Fig. 7b Fig. 7c Fig. 7d Fig. 7e

resolution manages to get very close to the real geometryof the object, even losing details, that can be recoveredby the MVS approach. The KinectFusion based systems,once not having an adequate treatment of the data,as SR, despite representing the geometry well, is alsounable to reproduce small details because of the temporalinconsistency of the Kinect.
All objects evaluated were benefited from the mergingof point clouds. For the jaguar pan, the captureswith the depth sensor added information in the legsof the jaguar and the belly (bottom) not acquiredby photogrammetry. Poisson’s surface reconstructionidentifies and differentiates nearby geometric details,some of them are added by the merging. For the horse,small depressions in the mouth and eye of the original

model were not well recovered in the reconstructed model.Nonetheless, small reliefs of the saddle and mane werewell-preserved.
Texturing results using surfaces from merged pointclouds are shown in Figs. 4i, 5i and 8. This stage issatisfactory due to the high quality of the images usedand from the camera positions correctly aligned andundistorted with the target object from SfM results.
Every procedure described in this section wasperformed on a notebook Avell G1550 MUV, Intel Corei7-9750H CPU @ 2.60GHz x 12, 16 GB of RAM, GeForceRTX 2070 graphics card, on Ubuntu 16.04 64-bits(Windows 10 for ReconstructMe).
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(a) Reconstruction from MVS outputafter filtering (b) Reconstruction from SR Kinectcaptures with improved alignment (c) Reconstruction from merged pointclouds

(d) PCL Kinfu reconstruction (e) ReconstructMe reconstruction (f) Ground truth mesh (21635 verticesand 43266 faces)
Figure 7: One-sided Hausdorff Distances for Jaguar’ meshes. For each face sampled over the reconstructed meshes,were searched the closest point on ground truth (f). The red-green-blue color map was truncated to facilitate thecomparison between results using a minimum of 0.0 (red, good) and a maximum of 0.2 (blue, bad). Values in the meshunits and concerning the diagonal of the bounding box of the ground truth mesh. Details of the Hausdorff Distances foreach evaluated mesh are presented on Table 2. Color created using the tool "Colorized by vertex quality" from MeshLab(Cignoni et al., 2008). The meshes (d) and (e) were made using PCL Kinfu (Rusu and Cousins, 2011) and ReconstructMe(Heindl et al., 2015) respectively, with the environment and outliers manually removed.

5 Conclusion
With the proposed pipeline, it is possible to add 3D captureinformation, reconstructing details beyond what a singlelow-cost capture method initially provides. A low-costdepth sensor allows preliminary verification of data duringacquisition. The Super-Resolution methodology reducesthe incidence of noise and mitigates the low amount ofdetails from depth maps acquired using low-cost RGB-Dhardware. Photogrammetry, despite capturing a higherlevel of detail, has certain limitations related to the numberof resources, like geometric and feature details.The texturing process that uses high definition imagesfrom SfM output and adds possible missing parts, ifneeded, also helps to achieve greater visual realism to thereconstructed 3D model.The proposed techniques are not novel, but adaptedfrom known methods. Their combination to composea low-cost 3D reconstruction is a novelty, and itdemonstrates a good surface representation of tabletopobjects, even for small details.The pipeline, despite being robust, has somelimitations. If after merging point clouds betweendifferent capture methods, it is still not possible torecognize part of the object, the surface reconstructioncan stay too smoothed or distorted. If the registrationbetween captures does not reach a desirable alignmentresult, the surface reconstruction may become bad. Thephotogrammetry model is usually denser than the Kinectone, which can make it difficult in the alignment andsurface reconstruction process. Texturing for regions notcovered by photogrammetry needs manual intervention.

Future research involves a quantitative analysis of the3D reconstruction after the texturing step. It is alsoprojected a better evaluation of the automated alignmentof point clouds using the scale-based iterative closestpoint algorithm (scaled PCA-ICP) and the application ofthis pipeline to digital preservation of artifacts from thecultural heritage of the MAE/UFBA.
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