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Abstract
Data augmentation (DA) is a widely known strategy for effectiveness improvement in computer vision models such asDeep Convolutional Neural Networks (DCNN). Although it enables improving model generalization by increasing datadiversity, in this work we propose to investigate its effects with respect to two different sources of dataset imbalance (i.e.,Content and Sampling imbalance) in a plant species recognition task. We systematically evaluated several techniques togenerate the augmented datasets used to train the DCNN models that enabled a thorough investigation over the effectsof DA in terms of imbalance attenuation. The results allowed inferring that data augmentation enables mitigating thenegative effects related to underrepresentation mainly caused by the dataset imbalance.
Keywords: Data Augmentation; Deep Learning; Plant Recognition.
Resumo
O Data augmentation (DA) é uma estratégia amplamente conhecida para melhoria da eficácia em modelos de visãocomputacional, como Deep Convolutional Neural Networks (DCNN). Embora permita melhorar a generalização domodelo aumentando a diversidade de dados, neste trabalho propomos investigar seus efeitos em relação a duas fontesdiferentes de desequilíbrio de conjunto de dados (ou seja, desequilíbrio de conteúdo e amostragem) em uma tarefa dereconhecimento de espécies de plantas. Avaliamos sistematicamente várias técnicas para gerar os conjuntos de dadosaumentados usados para treinar os modelos DCNN que permitiram uma investigação completa sobre os efeitos da DAem termos de atenuação do desequilíbrio. Os resultados permitiram inferir que o aumento de dados permite mitigar osefeitos negativos relacionados à sub-representação causada principalmente pelo desequilíbrio do conjunto de dados.
Palavras-Chave: Aprendizagem profunda; Dados aumentados; Reconhecimento de plantas.

1 Introduction

For several years, machine learning algorithms fortackling computer vision problems involved handcraftedsolutions for specific domains. In the context of plants,for instance, most studies regarded low-level featuresin single-organ (e.g., flower, fruit or leaves) tasks likedetection, recognition, and segmentation (Chatfieldet al., 2014). Such solutions have been continuouslyoutperformed since Deep Learning (DL) architectures

such as Deep Convolutional Neural Networks (DCNN)became more efficient and popular, after being consideredinfeasible for a long time.
The use of high-end parallel computing architecturesassociated to the automatic extraction of increasinglyhigh-level characteristics from data (Lee et al.,2017) allowed to overcome important barrierspreviously associated to handcraft feature extractionalgorithms (Pawara, Okafor, Surinta, Schomaker andWiering, 2017; Chatfield et al., 2014; Mehdipour Ghazi
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et al., 2017). Motivated by the capacity of achievingsurprisingly high classification performance in severaldomains, this breakthrough motivated a notable endeavorof acquiring larger datasets to provide the massiveamounts DL models often require.Regarding plant species identification, the effortfrom botany experts and the interested community forscanning and cataloging thousands of specimens allowedbuilding large repositories with data from several regionsaround the world through different sources (Kumaret al., 2012; Soltis, 2017; Beech et al., 2017; Goëau et al.,2019). This fostered the development of DCNN modelscapable of even surpassing human experts in speciesidentification challenges (Goëau et al., 2018; Bonnet et al.,2018). Despite that, there are regions of the worldfor which there is still not enough data also with poorrepresentativeness of species visual variations. Thisresults in irregularity within datasets classes distributionsand visual diversity (Buda et al., 2018; Graves et al., 2016;Picek et al., 2019) which may cause DCNN models to overfitand deteriorate its generalization ability for species withonly a few sample images available.These adversities are naturally expected due todifficulties behind the process of sample acquisition thatalso could be related to occurrence and incidence of thespecimens in nature. There are examples of domainsin which these issues are extraordinarily significant,to the point that the frequency of one class (e.g., adisease) being 1000 times less incident than another (e.g.,healthy patient) (Buda et al., 2018). These challengesmotivated researchers, specially in the field of plantrecognition, to explore Data Augmentation (DA) toattenuate the lack of large amounts of samples andrepresentative variations. DA allows to artificially extenda dataset through the application of label-preservingtransformations over real samples. Therefore, itseffectiveness in attenuating dataset imbalance, reducingoverfitting and introducing invariance in DL models hasbeing widely discussed (Shorten and Khoshgoftaar, 2019;Taylor and Nitschke, 2018; Cubuk et al., 2019; MehdipourGhazi et al., 2017).In this context, DA has been shown an indispensabletool for achieving state-of-the-art classificationperformance (Mehdipour Ghazi et al., 2017; Sulc et al.,2018; Haupt et al., 2018). However, as previously discussedin Dourado Filho and Calumby (2021), DA has been mostlyused in an ad-hoc way, through empirical heuristics.The concernings with this approach is that it can limitthe optimization of model training and classificationperformance, even more so, considering increasedproportion studies involving larger datasets. Anothermajor concern is the suitability of the augmentationtechniques with respect to every context of application (i.e.,organ type, photo type, background, herbarium sheet,etc). Is comprehensible that exploring search spaces ofastronomical magnitudes can still be computationallyprohibitive, due to the complexity of the state-of-the-art DCNN models, although, adequate analysis andunderstanding of data augmentation impacts on tasksin different domains is essential to improve modeloptimization and performance gains.Considering that, this work presents a set of analyzes

from the perspective of some combination strategiesof commonly used data augmentation techniques byrelevant works in the literature. In this sense, the resultsobtained through the proposed experimental analyzesalso represents our attempts to validate some of the mainempirical strategies popularly employed. In additionto that, we raised some of the aspects identified aspossibly decisive from the point of view of the performanceimprovement provided by DA, which allowed to conducta more in-depth investigation regarding the underlyingoperating mechanisms that enables its effectiveness. Notonly it allowed to obtain more insightful conclusions withregard to that but it corroborated with the process ofvalidating some intuitions about the selection criteriabehind these empirical strategies. In light of thatwe also attempt to consolidate the DA emergence asa promising alternative not only for introducing datavariation and model generalization but also to overcomeserious underrepresentation and extreme data imbalance.Considering the above, this paper thoroughly discussthe investigation of performance improvements behindthe utilization of Data Augmentation for training DCNNsto perform plant recognition. Following our preliminarywork Dourado Filho and Calumby (2021), we investigatethe impact of several DA approaches for plant speciesrecognition while also introduce significant novelcontributions, including:
i. An extended analysis that considers therecognition performance for every image sub-categorycorresponding to each plant organ or view (Leaf, Flower,Fruit, Stem and Entire plant).ii. A comprehensive analysis of the data augmentationimpacts considering multiple levels of representationfor different sources of dataset imbalance (i.e., Samplingor Content: sub-type uneven distributions).

2 Related Work
Data Augmentation enables to artificially increase adataset by obtaining transformed samples from theoriginal ones Buda et al. (2018). This process enablesimproving DCNNs generalization power, through aninvariance hardcoding procedure (Mehdipour Ghazi et al.,2017) that happens behind the process of training withimages that presents variations of angle, position, light,brightness, alongside with the original correspondingversions. Consequently, the models are able to becomemore invariant to these adversities, increasing theircapability of performing well for unseen data (Shortenand Khoshgoftaar, 2019; Mehdipour Ghazi et al., 2017).For the image classification task, DA techniques areregarded as geometric when they cause modificationsto the geometric constitution of the images (Fig. 1), oras photometric when changes performed in the colorspace (Taylor and Nitschke, 2018). Traditional geometrictechniques includes: Crop, Flip (horizontally, vertically),Translate, Rotate, whereas photometric transformationsmainly involves changes in brightness, light, color orsaturation (Shorten and Khoshgoftaar, 2019). In terms ofheuristics, these techniques (geometric or photometric)are usually applied individually or combined through
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Figure 1: Illustration of geometric augmentation techniques.
sequential or parallel application procedures, referredas augmentation policies (illustrated in Fig. 1). In the
Sequential modality, for example, samples are obtainedfrom the chained application of multiple augmentationtechniques over the same image. Fig. 1 illustratesthe sequential heuristic with a Flip x Rotate example(highlighted in red). This process generates two rotatedand vertically-flipped images from the application of Flipfollowed by Rotate. In turn, the Parallel approach yieldsaugmentation policies from the independent applicationof two or more techniques over the image and inclusion ofthe obtained images to a unique set (illustrated in Fig. 1 inblue). Besides that, some researchers have also proposedto use more complex heuristics, such as through Deep-Learning-based methods (Wang et al., 2017).In the context of plant recognition, the work of Pawara,Okafor, Schomaker and Wiering (2017) some DAtechniques, mainly photometric ones, which included:Rotation, Blur, Contrast, Scaling, Illumination andProjection, combined through a parallel heuristic.Three datasets were considered: Folio (600 leaf imagesfrom 32 species), Swedish (1.000 images on a plainbackground of 15 Swedish tree species) and Agril Plant(3.000 images of 10 fruit species). Although promisingresults were demonstrated, the limited size and lowcomplexity of the datasets used do not allow the findingsto represent the effectiveness for plant recognition in thewild. More specifically, the perfectly balanced classes,high background homogeneity (except for Agril Plant)and the small number of species/specimens made theclassification scenarios too simple and hardly realistic.In Zhang et al. (2015) the authors proposed a CNNarchitecture for leaf classification and used the Flaviadataset (1907 images of 32 species). The modelwas trained with traditional DA techniques (Translate,Scale, Rotate, Contrast and Sharpening) randomlyselected according to a desired augmentation factor(5x, 10x or 20x). In a similar way, the authorsachieved a reasonable effectiveness improvement withDA, although, no significant differences were observed forthe techniques assessed. Moreover, the low complexityof the dataset weakens the conclusions regarding thegeneral effectiveness of the augmentation approaches.Similarly, in Pandian et al. (2019) the authors assessed

many traditional DA techniques, including Flip, Rotate,Crop, color transformation, PCA and noise injection, aswell as DL-based techniques (WGAN, DCGAN, neuralstyle transfer). An imbalanced plant dataset was usedwith around 54 thousand specimens from 38 classesincluding healthy and diseased leaves. At the expense ofhigher complexity, processing and optimization time, theparallel application of DL-based approaches only slightlyoutperformed the parallel application of traditionalones. Additionally, the authors demonstrated that usingall augmentation techniques at once lead to higherperformance in contrast to the use in isolation.As reported in Mehdipour Ghazi et al. (2017), thecombination by sequential and parallel application ofvertical flip, rotation, and scaling techniques through animage patch extraction pipeline, allowed to achieve state-of-the-art performance in a multi-organ, large-scaleplant classification task involving about 1,000 species.The authors observed a decrease of overfitting and theimprovement of the benefits of fine-tuning. They alsoshowed that an 80-fold augmentation outperformed a 10-fold by roughly 6% in accuracy. This illustrates how largethe augmentation factor usually is to allow reasonableimprovements as well as how some augmentationheuristics can generate large datasets that increasetraining costs.In general, large-scale DA studies demonstrated itsimportant role towards developing real-world plantrecognition systems. Nevertheless, most studies werenot successful on determining general techniques orcombining heuristics, mainly due to the low complexityof the data or the limited amount of DA techniquesassessed. Hence, this work aims at assessing several DAtechniques through different combination heuristicsand a representative scenario of large-scale plantrecognition in terms of class imbalance, visual imageheterogeneity (multiple plant organs), number of speciesand specimens.
3 Experimental setup
The characteristics of the classification task and data usedare decisive for robust DA studies involving DCNN (Pawara,
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Figure 2: Samples of images with multiple organs ofdifferent species divided by the categories “Sheet asBackground” and “Natural Background”.
Okafor, Schomaker and Wiering, 2017). While small or toosimple datasets weakens in-depth analysis of real-worldchallenges, mainly due to the limited amount of samplesand/or classes and its irregular distribution large-scaleor more complex datasets closer to real-world scenariosmakes comprehensive systematic analysis infeasible,specially considering the multiple possible variations andcombinations of DA techniques.In order to enable large experimentation, consideringthe depicted challanges, the analysis in this workwas conducted over the PlantCLEF2013 (PC2013)dataset (Goëau et al., 2013), a dataset considered asmid-range, in terms of scale and complexity. It presents26,077 images of 250 plant species from the Frenchflora, from which 5092 ( 20%) images were separatedfor testing purposes. Introducing additional complexity,the dataset includes images of multiple plant organs orviews considering different perspectives, resulting in twoimage types and 6 sub-types as illustrated in Fig. 2. Thetwo main types are: Sheet as Background (a homogeneoussurface of uniform white background) representing42% of the total images (11,031 samples) and Natural
Background, with 15,046 samples representing 58% oftotal images, composed of natural photographs capturedoutdoors from different perspectives of different organs.An additional challenge imposed by this type of dataregards the high intra-class variations and inter-classsimilarity, which significantly increase the difficulty ofclass generalization and discriminative feature learning.For the task of plant species recognition, transferlearning based on the ResNet He et al. (2016) DCNNarchitecture was performed considering pre-trainedweights from the Imagenet Russakovsky et al. (2015)dataset. The ResNet is a highly recognized effectivenetwork architecture that achieved the first place atthe ILSVRC 2015 classification task with 3.57% erroron the ImageNet test set (Russakovsky et al., 2015).Considering that our experiments were conducted uponthe performance comparison between the networktrained without augmentation (baseline) versus themodel performance upon training with each proposedaugmentation policy based on a corresponding combining

heuristic (Individual, Sequential or Parallel, as illustratedin Fig. 1). Similarly Dourado Filho and Calumby (2021)in this work the ResNet50 model was considered forevaluation whereas in the effectiveness assessmentstep considering the independent test set, the modelperformance for each sample sub-type was taken intoconsideration, in order to account for a more factoredanalysis as proposed.
This way, for test set images, the same dataaugmentation policies as in the training phase wereapplied. Considering the recognition is performed for1+N images (1 original + N augmented versions), theclass prediction is performed according to Softmax ofthe average class scores. All the DA policies assessed, theresulting amount images, and augmentation factors arepresented in Table 1. For the DA techniques, the followingconfigurations were considered: Translate (4 differentdirections with offsets equivalent to 20% of the imagewidth over the horizontal axis and 20% of the heightover the vertical axis with black pixel padding); Rotate(30 degrees clockwise and counterclockwise); Crop (fourcorner patches and a central crop with 50% of the imagesize).

Table 1: DA policies and number of images. Augmentationfactor: size in relation to the original dataset (Bold).
Dataset Train+Validation Test SetOriginal Dataset 20.985 5092Flip 41.970 10.184 (2x)Rotate 62.955 15.276 (3x)Flip x Rotate 62.955 15.276 (3x)Flip + Rotate 83.940 20.368 (4x)Translate 104.925 25.460 (5x)Crop 125.910 30.552 (6x)Flip x Crop 125.910 30.552 (6x)Flip + Translate 125.910 30.552 (6x)Flip + Crop 146.895 35.644 (7x)Translate + Rotate 146.895 35.644 (7x)Crop + Rotate 167.880 40.736 (8x)Translate x Rotate 188.865 45.828 (9x)Translate + Crop 209.850 50.920 (10x)Translate x Crop 440.685 106.932 (20x)

The evaluation was conducted with a stratified randomsampling protocol to keep class proportion in trainingand validation sets. More specifically, we considered80% of the training data for model construction andthe 20% for validation, followed by the testing with theindependent held-out test set. To ensure comparability,instead of performing individualized optimizations, allmodels were trained with the same configurations, fora fixed number of epochs (75) and amount of trainableweights. The Categorical Crossentropy loss function andthe Accuracy measure were considered in the trainingphase, whereas the Micro-F1 measure was computed toaccount for class imbalance in the test phase. For weightupdate and optimization the Adam optimizer (Kingmaand Ba, 2017) with a batch size of 64 was proposed. Firstand Second Moment exponential decays and Epsilon wereset to default (0.9, 0.99 and 10–7, respectively), and the
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learning rate was set to 2 × 10–6.
4 Results

The classification models were trained using theIndividual, Parallel and Sequential heuristics. Theoverall performance presented in Table 2 demonstratesthat the models trained over the augmented datasetsyielded expressively superior results in comparison tothe baseline, with relative increases from 0.37% up toroughly 55% in Micro-F1. In terms of heuristics, theParallel policies generally outperformed the Sequentialand Individual ones. The overall worst performing Parallelpolicy (Flip + Rotate, Micro-F1=0.4255) allowed resultssimilar to the best performing Sequential policy (Flip xCrop, Micro-F1=0.4271).The models trained with data augmented by theSequential heuristics presented consistently inferiorperformance to the ones trained with the best Individualpolicies. Such inferior results may be a consequence ofthe Sequential application of multiple geometric policieswhich increases the chances of violation of the label-preservation principle of data augmentation.For instance, techniques that are inherently proneto promote more intense distortions, when combinedthrough Sequential heuristics may end up producingpolicies with higher chances of enhancing irrelevantimage regions (e.g., background) or specific regionsthat does not necessarily include relevant features. TheTranslate x Crop policy results in poor effectivenesseven though Translate and Crop techniques composesthe best performing Individual policies. The Individualgeometric procedures performed by the Translate andCrop techniques, when applied sequentially (Translate xCrop) are more likely to deteriorate the visual informationcorrespondent to the label associated with the generatedimage. In contrast to that, the same Sequential associationbut with Flip and Crop techniques, that conduct lessintense visual distortions, resulted in the best performingpolicy (Flip x Crop) for this type of heuristic.Considering the number of resulting images (Table 1),our findings demonstrate that the DA policies that yieldedbetter results were not necessarily the ones of higheraugmentation factors. For instance, the Translate x Croppolicy increased the original dataset to over 440.000images (20x factor) and yet allowed only 0.37% gain inrelation to the baseline. In contrast, the single applicationof Flip (2x factor) allowed an improvement of roughly 28%while the the best performing policy (Translate + Crop)with a 10x factor resulted in a 55% improvement.These results enabled inferring the effects of dataaugmentation combining heuristics over the performanceof the models trained over the derived policies. Despitethe augmentation factor has also being considered asa relevant aspect of investigation, it was able to verifythat deeper analyzes should be necessary to enable moreassertive conclusions with respect to data augmentationeffectiveness. In light of this a more factored performanceanalysis of the models in terms of individual organ (imagesub-type) was conducted and is further presented inSection 4.1. Moreover the different amounts of image sub-

Table 2: ResNet50 results: Combination heuristics andAugmentation Policies (Micro-F1 on test set).
Baseline

Augmentation Micro-F1
None (Original data) 0.3177

Individual Application
Crop 0.4636
Translate 0.4550
Flip 0.4094
Rotate 0.4049

Sequential Application
Flip x Crop 0.4271
Translate x Rotate 0.4010
Flip x Rotate 0.3800
Translate x Crop 0.3189

Parallel Application
Translate + Crop 0.4919
Flip + Crop 0.4672
Crop + Rotate 0.4573
Translate + Rotate 0.4522
Flip + Translate 0.4518
Flip + Rotate 0.4255

Table 3: ResNet50 results: Heuristics, AugmentationPolicies and performance for the image sub-types(Accuracy on test set).
BaselinePolicy Scanned Leaf Flower Fruit Stem Leaf Entire OverallOriginal Dataset 0.5608 0.2368 0.2442 0.3206 0.2924 0.1051 0.3177Individual ApplicationCrop 0.5624 0.5182 0.3980 0.4049 0.4037 0.2809 0.4636Translate 0.6368 0.4655 0.3557 0.3702 0.3746 0.2809 0.4550Flip 0.5960 0.4201 0.3038 0.3487 0.3759 0.1902 0.4094Rotate 0.5488 0.4306 0.3250 0.3652 0.3582 0.2132 0.4049Sequential ApplicationFlip x Crop 0.5320 0.4906 0.3538 0.4016 0.3658 0.2449 0.4271Translate x Rotate 0.5072 0.4282 0.3153 0.3851 0.3341 0.2521 0.4010Flip x Rotate 0.5192 0.3998 0.3019 0.3438 0.3506 0.1916 0.3800Translate x Crop 0.3600 0.4168 0.3076 0.2363 0.2341 0.2247 0.3189ParallelTranslate + Crop 0.6280 0.5498 0.4500 0.4016 0.4101 0.3472 0.4919Flip + Crop 0.5832 0.5296 0.4288 0.4264 0.4151 0.2708 0.4672Crop + Rotate 0.5440 0.5482 0.4442 0.3603 0.4012 0.2982 0.4573Translate + Rotate 0.6160 0.4882 0.3750 0.3570 0.3949 0.2997 0.4522Flip + Translate 0.6200 0.4801 0.3692 0.3834 0.3784 0.3040 0.4518Flip + Rotate 0.5720 0.4533 0.3403 0.3884 0.3822 0.2579 0.4255

types is not only a characteristic of the whole data set, butis also present in the set of images of each plant species.This motivated the investigation of how decisive DA canbe in overcoming different sources of data imbalance asinvestigated and discussed in Section 4.2.
4.1 Single-Organ Analysis

As described in Section 3, the dataset is composed byhomogeneous background (42%) and natural background(58%) images. These can be divided in 6 imagesub-types (see Fig. 2) according to the correspondingplant organs or views: Scanned Leaves (42%), Leaf(16%), Flower (18%), Fruit (8%), Stem (8%) and Entireplant(8%). In this context, classification performancecan be affected by many aspects including the uneventraining data distribution, which could deteriorate themodel performance for some image sub-types. Moreover,for different organs, the suitability of the selectedaugmentation policy and the specific classification ratesmust be considered. Therefore, given that the training
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data imbalance and the inherent classification challengesfor different organs play a key role on the resultingperformance, the impact of each augmentation policy wasevaluated for each image sub-type.Table 3 presents the results for all combining heuristicsand each policy performance with respect to every imagesub-type. In terms of top performing heuristic, similarresult was achieved for all image sub-types. In general,the Parallel heuristic allowed the best results, while theSequential heuristic was not able to outperform the bestIndividual policies. The Parallel heuristic yielded the topperforming policies for all image sub-types, except for theScanned Leaf which was best classified with the Individualapplication of the Translate policy.Considering the top-performing policies, the bestresults for each image sub-type was allowed by differentpolicies. While Translate + Crop allowed the best resultsfor Flower, Fruit and Entire, the Flip + Crop was the bestpolicy for Stem and Leaf. Nevertheless, regarding all imagesub-types, the parallel Translate + Crop was the overallbest policy (Micro-F1=0.4919), given it was significantlysuperior for some sub-types while also quite similar to thetop performing policies for the others.More specifically, the results demonstrate that, forScanned Leaf images, the most frequent sub-type (42%of the dataset), even the baseline (no DA) was capableof presenting reasonable performance with Micro-F1over 0.50, while the performance of the less frequentsub-types was below 0.33. Nevertheless, Scanned Leafimages with homogeneous background may be the lesschallenging image sub-type in comparison with the othersub-types with natural background. On the other hand,the result for equally frequent sub-types, such as Stemand Entire, were quite different, with the entire sub-typerepresenting a harder classification task. Such differencesare consistently noticed regardless of the DA policies andheuristics.Fig. 3 presents for each image sub-type the relativegains of the best augmentation policies of each heuristic inrelation to the best Individual policy for the correspondingsub-type (baseline).No composed augmentation policy was able tooutperform the best Individual policy for ScannedLeaf sub-type. In this case, considering the baseline(Translate), the data generated by the additionalapplication of the Crop operation (Translate + Crop)demonstrated to slightly inferiorize effectiveness. Thatresult was possibly influenced by irrelevant informationthat the corner crops have may have introduced in themodel by mostly covering white background regions andreducing the actual leaf area depicted (as illustrated inFig. 1). Similarly, Sequential policies achieved almostnone or even negative gains in relation to the baseline.Finally, the Parallel policies achieved significant gainsfrom roughly 3% up to roughly 24% (for the entiresub-type). These results (Fig. 3) indicate the potentialof generalization of the DA techniques with respect tothe mixed organ classification and also in the analysisfor specific image sub-types. More specifically, the bestresults were achieved through parallel combinationinvolving Crop, Translate and Flip operations.Despite promising, the smaller amount of samples of

Figure 3: Micro-F1 gain (%) w.r.t best Individual DApolicies for each Heuristic and correspondent sub-types.
some image sub-types may have prevented the learningof better representations. For instance, the althoughTranslate + Crop policy only achieved Micro-F1=0.34,enabled leveraging the performance for the entire sub-type by 230% in contrast to the baseline. The expressivegains for the less represented sub-types suggest thepotential of Data Augmentation techniques in attenuatingthe problems for underrepresented types of organs.
4.2 Data Imbalance

A statistical analysis of the data revealed two importanttypes of imbalance. Specifically, the dataset presentsdifferent amounts of images for each species and alsoan irregular intra-class distribution for a given speciesregarding the image sub-types. The number of samples ofeach plant species (classes) ranges in a broad interval from11 to 260 images. This source of imbalance was previouslyreferred as Sampling imbalance in Seeland et al. (2019),and widely known for causing low accuracy on under-represented classes. Another source of imbalance worthof investigation regards how well represented a class is interms of the possible image sub-types and how balancedthe sub-types are. This Content imbalance (Seeland et al.,2019), is also an obstacle that can result in classificationbiases for species with underrepresented sub-types. TheDA impact in relation to these problems are investigatedin Sections 4.2.1 and 4.2.2.
4.2.1 Inter-class - Sampling imbalance Analysis
The class size distribution is presented in Fig. 4 (outliersremoved). While the number of samples per class rangesfrom 11 to 260, the median class size is 45. The distributionalso shows that 25% of the classes presents more than 120samples. In contrast, 50% of the classes has less than 45samples and a considerable 25% of the classes have lessthan 25 samples. These amount of samples are quite belowthe estimated 100-500 images per species necessary to
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learn accurate visual representations for precise speciesrecognition (Carranza-Rojas et al., 2017; Seeland et al.,2019). Precisely, X classes ( 70% of the dataset) have lessthan 100 samples, which imposes a significant challengefor the learning of effective and generalized classificationmodels.

Figure 4: Distribution from the number of samples byclass for the original dataset.
Fig. 5 presents for each class, the contrastive resultsbetween the DA and the original dataset (baseline). Tobetter visualize and understand the performance variationin light of the class size, the classes were groupedaccording to the size distribution quartiles as presented inFig. 4. For simplicity, the small-size classes (1st and 2ndquartiles) were merged into a single category ranging from

11 to 45 samples, which represented a concise interval. Inturn, the remaining quartiles were used to define medium
and large-size classes, ranging from 46-115 and 116-270samples, respectively. The dashed diagonal lines representequal performance between the methods.Fig. 5-a depicts the distribution of the comparativeresults of the overall best DA in relation to the baseline.Following the overall results presented in Table 2, thisdetailed analysis shows that the overall best DA (parallel)allowed superior effectiveness for the vast majority of theclasses. Additionally, the distributions in Fig. 5-a showsthat the most significant results (far from the diagonal)were achieved for the smaller classes (in green).Similarly, Fig. 5-b presents the comparative resultsof the worst performing DA method against the baseline.Once again the greater improvements were achieved forthe smaller classes. Moreover, while such DA method wasgenerally equivalent to the baseline in terms of Micro-F1,the results shows that for some classes the DA deterioratedthe performance in comparison to the baseline, morenoticeably for the larger classes (in red).Similarly to Fig. 5-a and b, Fig. 5-c and d presentsa comparative of the baseline in relation to the otherheuristics (Individual and Sequential). Once again, thebest results were achieved for the smaller classes also witha lesser deterioration of the performance for the biggerclasses.Finally, Fig. 5 highlighted the expressive improvementsallowed by the DA, specially for the classes with theworst original baseline results or small sample sets.These findings demonstrate the DA was successful in

attenuating the problems related to data imbalance andlack of representativeness of some species.
4.2.2 Intra-class - Content imbalanceConsidering the intra-class content imbalance, i.e.,uneven intra-class image sub-type distributions,we investigated the impact of the utilization of DataAugmentation in light of the imbalance degrees. Torepresent the imbalance degree of the internal sub-typedistribution of the classes (species), the sub-type Entropywithin the classes were computed for the training datasetaccording to Eq. (1). The Entropy (H) with respect to arandom variable (X) can be defined in terms of the averagelevel of surprise inherent to its possible n outcomes, given
x1, x2, ..., xn, possible outcomes of X which may occur withprobability P(x1),P(x2), ...,P(xn).

H(X) = – n∑
i=1
P(xi) log(P(xi)) (1)

With Eq. (1), the Entropy level for a given species (S) iscomputed by averaging the product between the outcomeprobability and its correspondent surprise, consideringthe six possible sub-types within S. Therefore, the Entropyis used to quantify the level of internal imbalance ofeach species in the dataset, which enabled to investigatethe impact of data augmentation over this source ofimbalance1.The resulting entropy values were grouped accordingto three sub-intervals to represent the different entropylevels, specifically: Small Entropy Classes ([0.4,0.6]),
Medium Entropy Classes (]0.6,0.8]) and High Entropy
Classes (]0.8,1]). It allowed to analyze the relationshipbetween the imbalance degree and the correspondingperformance improvements provided by the utilizationof data augmentation. For that we related the entropydegree (small/medium/high) and the Delta-F1, whichcorresponds to the test-set Micro-F1 difference, betweenthe model trained with best DA policy (Crop + Translate)and the model trained with the Original dataset (noaugmentation) policy.

Imbalance Average Entropy Average Delta-F1High 0.5390 ± 0.0531 0.2528 ± 0.2485Medium 0.7088 ± 0.0520 0.2958 ± 0.2279Low 0.8663 ± 0.0496 0.1821 ± 0.1549
Table 4: Micro (Content) Imbalance Results

Table 4 presents the average improvements providedby Data Augmentation with respect to the defined levelsof imbalance. The low entropy deviation means thateach group includes the species with similar entropy(imbalance). Despite the high Delta-F1 variability (high
1In order to deal with the possible absence of samples for a given sub-type, Laplace Smoothing (with default K=1) was used to avoid P(xi) =0. Min-max normalization was used to scale the Entropy between 0and 1.
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Figure 5: a & b - Micro-F1 (DA) x Micro-F1 (Baseline) performance for the Crop + Translate and Crop x Translatepolicies. c & d - Micro-F1 (DA) x Micro-F1 (Baseline) for the Crop and Flip x Crop policies.
standard deviation), the average Delta-F1 was positive.Besides the Delta-F1 for the species with low imbalancewas positive, the performance improvement was evenhigher for the species with medium and high imbalance.It suggests, the DA allowed performance improvementsfor all levels of imbalance, but more significantly for theclasses with higher internal distribution irregularity,attenuating poor data representativeness even forextremely imbalanced situations.As demonstrated in Table 4, the model trained with thebest DA allowed an average performance improvementof roughly 0.25 per class for the more irregular classes(Low Entropy). These results represented a substantial
39% increase in relation to the High Entropy classes thatobtained average 0.18 Micro-F1 improvement per class.Considering that the classes that most benefited fromthe DA were the most irregular ones (Low and MediumEntropy), which represents together roughly 75% of the
dataset, these findings are aligned with the hypothesisthat data augmentation acts more significantly in poorlydistributed classes, enabling leveraging performance

more considerably in comparison with better distributedones.

5 Conclusion

In this work, the performance improvement providedby the utilization of Data Augmentation for trainingDCNN models to perform plant species recognitionfrom images was thoroughly investigated in terms ofseveral aspects including image sub-type and datasetimbalance. This results demonstrated that DA actedsignificantly by leveraging classification performancehence enabling models to learn more accurate visualrepresentations, mostly over underrepresented classes.Besides that, these findings emphasized how promisingData Augmentation could be for attenuating classimbalance and its potential effectiveness for applicationin small-size or underrepresented classes, in case ofcomputational resources limitations. Otherwise integralor even contextual (dynamic) utilization of techniques
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suitable for specific image sub-types should also providebetter performance improvement.We believe that the findings and analyzes presentedcan represent some aspects that designers of DCNN-basedplant recognition systems should consider for developingmore rigorous applications when facing imbalanceddatasets. Furthermore, the dataset imbalance analyzesshowed that despite promising, Data Augmentationdemonstrates potential for enhancement in terms of intra-class content imbalance. In this sense we believe thatrandom heuristics instead of deterministic approachesmay lead to more substantial performance improvements,therefore, future work addressing this topic may beprospective to provide more insightful analysis with thisrespect.
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