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Abstract

Data augmentation (DA) is a widely known strategy for effectiveness improvement in computer vision models such as
Deep Convolutional Neural Networks (DCNN). Although it enables improving model generalization by increasing data
diversity, in this work we propose to investigate its effects with respect to two different sources of dataset imbalance (i.e.,
Content and Sampling imbalance) in a plant species recognition task. We systematically evaluated several techniques to
generate the augmented datasets used to train the DCNN models that enabled a thorough investigation over the effects
of DA in terms of imbalance attenuation. The results allowed inferring that data augmentation enables mitigating the
negative effects related to underrepresentation mainly caused by the dataset imbalance.

Keywords: Data Augmentation; Deep Learning; Plant Recognition.

Resumo

O Data augmentation (DA) é uma estratégia amplamente conhecida para melhoria da eficacia em modelos de visdo
computacional, como Deep Convolutional Neural Networks (DCNN). Embora permita melhorar a generalizacao do
modelo aumentando a diversidade de dados, neste trabalho propomos investigar seus efeitos em relacao a duas fontes
diferentes de desequilibrio de conjunto de dados (ou seja, desequilibrio de contetido e amostragem) em uma tarefa de
reconhecimento de espécies de plantas. Avaliamos sistematicamente varias técnicas para gerar os conjuntos de dados
aumentados usados para treinar os modelos DCNN que permitiram uma investigacao completa sobre os efeitos da DA
em termos de atenuacdo do desequilibrio. Os resultados permitiram inferir que o aumento de dados permite mitigar os
efeitos negativos relacionados a sub-representagdo causada principalmente pelo desequilibrio do conjunto de dados.

Palavras-Chave: Aprendizagem profunda; Dados aumentados; Reconhecimento de plantas.

1 Introduction

For several years, machine learning algorithms for
tackling computer vision problems involved handcrafted
solutions for specific domains. In the context of plants,
for instance, most studies regarded low-level features
in single-organ (e.g., flower, fruit or leaves) tasks like
detection, recognition, and segmentation (Chatfield
et al., 2014). Such solutions have been continuously
outperformed since Deep Learning (DL) architectures

such as Deep Convolutional Neural Networks (DCNN)
became more efficient and popular, after being considered
infeasible for a long time.

The use of high-end parallel computing architectures
associated to the automatic extraction of increasingly
high-level characteristics from data (Lee et al.,
2017) allowed to overcome important barriers
previously associated to handcraft feature extraction
algorithms (Pawara, Okafor, Surinta, Schomaker and
Wiering, 2017; Chatfield et al., 2014; Mehdipour Ghazi
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et al., 2017). Motivated by the capacity of achieving
surprisingly high classification performance in several
domains, this breakthrough motivated a notable endeavor
of acquiring larger datasets to provide the massive
amounts DL models often require.

Regarding plant species identification, the effort
from botany experts and the interested community for
scanning and cataloging thousands of specimens allowed
building large repositories with data from several regions
around the world through different sources (Kumar
et al., 2012; Soltis, 2017; Beech et al., 2017; Goéau et al.,
2019). This fostered the development of DCNN models
capable of even surpassing human experts in species
identification challenges (Goéau et al., 2018; Bonnet et al.,
2018). Despite that, there are regions of the world
for which there is still not enough data also with poor
representativeness of species visual variations. This
results in irregularity within datasets classes distributions
and visual diversity (Buda et al., 2018; Graves et al., 2016;
Picek etal., 2019) which may cause DCNN models to overfit
and deteriorate its generalization ability for species with
only a few sample images available.

These adversities are naturally expected due to
difficulties behind the process of sample acquisition that
also could be related to occurrence and incidence of the
specimens in nature. There are examples of domains
in which these issues are extraordinarily significant,
to the point that the frequency of one class (e.g., a
disease) being 1000 times less incident than another (e.g.,
healthy patient) (Buda et al., 2018). These challenges
motivated researchers, specially in the field of plant
recognition, to explore Data Augmentation (DA) to
attenuate the lack of large amounts of samples and
representative variations. DA allows to artificially extend
a dataset through the application of label-preserving
transformations over real samples. Therefore, its
effectiveness in attenuating dataset imbalance, reducing
overfitting and introducing invariance in DL models has
being widely discussed (Shorten and Khoshgoftaar, 2019;
Taylor and Nitschke, 2018; Cubuk et al., 2019; Mehdipour
Ghazietal., 2017).

In this context, DA has been shown an indispensable
tool for achieving state-of-the-art classification
performance (Mehdipour Ghazi et al., 2017; Sulc et al.,
2018; Haupt et al., 2018). However, as previously discussed
in Dourado Filho and Calumby (2021), DA has been mostly
used in an ad-hoc way, through empirical heuristics.
The concernings with this approach is that it can limit
the optimization of model training and classification
performance, even more so, considering increased
proportion studies involving larger datasets. Another
major concern is the suitability of the augmentation
techniques with respect to every context of application (i.e.,
organ type, photo type, background, herbarium sheet,
etc). Is comprehensible that exploring search spaces of
astronomical magnitudes can still be computationally
prohibitive, due to the complexity of the state-of-the-
art DCNN models, although, adequate analysis and
understanding of data augmentation impacts on tasks
in different domains is essential to improve model
optimization and performance gains.

Considering that, this work presents a set of analyzes

from the perspective of some combination strategies
of commonly used data augmentation techniques by
relevant works in the literature. In this sense, the results
obtained through the proposed experimental analyzes
also represents our attempts to validate some of the main
empirical strategies popularly employed. In addition
to that, we raised some of the aspects identified as
possibly decisive from the point of view of the performance
improvement provided by DA, which allowed to conduct
a more in-depth investigation regarding the underlying
operating mechanisms that enables its effectiveness. Not
only it allowed to obtain more insightful conclusions with
regard to that but it corroborated with the process of
validating some intuitions about the selection criteria
behind these empirical strategies. In light of that
we also attempt to consolidate the DA emergence as
a promising alternative not only for introducing data
variation and model generalization but also to overcome
serious underrepresentation and extreme data imbalance.

Considering the above, this paper thoroughly discuss
the investigation of performance improvements behind
the utilization of Data Augmentation for training DCNNs
to perform plant recognition. Following our preliminary
work Dourado Filho and Calumby (2021), we investigate
the impact of several DA approaches for plant species
recognition while also introduce significant novel
contributions, including:

i. An extended analysis that considers the
recognition performance for every image sub-category
corresponding to each plant organ or view (Leaf, Flower,
Fruit, Stem and Entire plant).
ii. Acomprehensive analysis of the data augmentation
impacts considering multiple levels of representation
for different sources of dataset imbalance (i.e., Sampling
or Content: sub-type uneven distributions).

2 Related Work

Data Augmentation enables to artificially increase a
dataset by obtaining transformed samples from the
original ones Buda et al. (2018). This process enables
improving DCNNs generalization power, through an
invariance hardcoding procedure (Mehdipour Ghazi et al.,
2017) that happens behind the process of training with
images that presents variations of angle, position, light,
brightness, alongside with the original corresponding
versions. Consequently, the models are able to become
more invariant to these adversities, increasing their
capability of performing well for unseen data (Shorten
and Khoshgoftaar, 2019; Mehdipour Ghazi et al., 2017).
For the image classification task, DA techniques are
regarded as geometric when they cause modifications
to the geometric constitution of the images (Fig. 1), or
as photometric when changes performed in the color
space (Taylor and Nitschke, 2018). Traditional geometric
techniques includes: Crop, Flip (horizontally, vertically),
Translate, Rotate, whereas photometric transformations
mainly involves changes in brightness, light, color or
saturation (Shorten and Khoshgoftaar, 2019). In terms of
heuristics, these techniques (geometric or photometric)
are usually applied individually or combined through
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Figure 1: Illustration of geometric augmentation techniques.

sequential or parallel application procedures, referred
as augmentation policies (illustrated in Fig. 1). In the
Sequential modality, for example, samples are obtained
from the chained application of multiple augmentation
techniques over the same image. Fig. 1 illustrates
the sequential heuristic with a Flip x Rotate example
(highlighted in red). This process generates two rotated
and vertically-flipped images from the application of Flip
followed by Rotate. In turn, the Parallel approach yields
augmentation policies from the independent application
of two or more techniques over the image and inclusion of
the obtained images to a unique set (illustrated in Fig. 1in
blue). Besides that, some researchers have also proposed
to use more complex heuristics, such as through Deep-
Learning-based methods (Wang et al., 2017).

In the context of plant recognition, the work of Pawara,
Okafor, Schomaker and Wiering (2017) some DA
techniques, mainly photometric ones, which included:
Rotation, Blur, Contrast, Scaling, Illumination and
Projection, combined through a parallel heuristic.
Three datasets were considered: Folio (600 leaf images
from 32 species), Swedish (1.000 images on a plain
background of 15 Swedish tree species) and Agril Plant
(3.000 images of 10 fruit species). Although promising
results were demonstrated, the limited size and low
complexity of the datasets used do not allow the findings
to represent the effectiveness for plant recognition in the
wild. More specifically, the perfectly balanced classes,
high background homogeneity (except for Agril Plant)
and the small number of species/specimens made the
classification scenarios too simple and hardly realistic.

In Zhang et al. (2015) the authors proposed a CNN
architecture for leaf classification and used the Flavia
dataset (1907 images of 32 species). The model
was trained with traditional DA techniques (Translate,
Scale, Rotate, Contrast and Sharpening) randomly
selected according to a desired augmentation factor
(5%, 10x or 20x). In a similar way, the authors
achieved a reasonable effectiveness improvement with
DA, although, no significant differences were observed for
the techniques assessed. Moreover, the low complexity
of the dataset weakens the conclusions regarding the
general effectiveness of the augmentation approaches.
Similarly, in Pandian et al. (2019) the authors assessed

many traditional DA techniques, including Flip, Rotate,
Crop, color transformation, PCA and noise injection, as
well as DL-based techniques (WGAN, DCGAN, neural
style transfer). An imbalanced plant dataset was used
with around 54 thousand specimens from 38 classes
including healthy and diseased leaves. At the expense of
higher complexity, processing and optimization time, the
parallel application of DL-based approaches only slightly
outperformed the parallel application of traditional
ones. Additionally, the authors demonstrated that using
all augmentation techniques at once lead to higher
performance in contrast to the use in isolation.

As reported in Mehdipour Ghazi et al. (2017), the
combination by sequential and parallel application of
vertical flip, rotation, and scaling techniques through an
image patch extraction pipeline, allowed to achieve state-
of-the-art performance in a multi-organ, large-scale
plant classification task involving about 1,000 species.
The authors observed a decrease of overfitting and the
improvement of the benefits of fine-tuning. They also
showed that an 80-fold augmentation outperformed a 10-
fold by roughly 6% in accuracy. This illustrates how large
the augmentation factor usually is to allow reasonable
improvements as well as how some augmentation
heuristics can generate large datasets that increase
training costs.

In general, large-scale DA studies demonstrated its
important role towards developing real-world plant
recognition systems. Nevertheless, most studies were
not successful on determining general techniques or
combining heuristics, mainly due to the low complexity
of the data or the limited amount of DA techniques
assessed. Hence, this work aims at assessing several DA
techniques through different combination heuristics
and a representative scenario of large-scale plant
recognition in terms of class imbalance, visual image
heterogeneity (multiple plant organs), number of species
and specimens.

3 Experimental setup

The characteristics of the classification task and data used
are decisive for robust DA studies involving DCNN (Pawara,
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Figure 2: Samples of images with multiple organs of
different species divided by the categories “Sheet as
Background” and “Natural Background”.

Okafor, Schomaker and Wiering, 2017). While small or too
simple datasets weakens in-depth analysis of real-world
challenges, mainly due to the limited amount of samples
and/or classes and its irregular distribution large-scale
or more complex datasets closer to real-world scenarios
makes comprehensive systematic analysis infeasible,
specially considering the multiple possible variations and
combinations of DA techniques.

In order to enable large experimentation, considering
the depicted challanges, the analysis in this work
was conducted over the PlantCLEF2013 (PC2013)
dataset (Goéau et al., 2013), a dataset considered as
mid-range, in terms of scale and complexity. It presents
26,077 images of 250 plant species from the French
flora, from which 5092 ( 20%) images were separated
for testing purposes. Introducing additional complexity,
the dataset includes images of multiple plant organs or
views considering different perspectives, resulting in two
image types and 6 sub-types as illustrated in Fig. 2. The
two main types are: Sheet as Background (a homogeneous
surface of uniform white background) representing
42% of the total images (11,031 samples) and Natural
Background, with 15,046 samples representing 58% of
total images, composed of natural photographs captured
outdoors from different perspectives of different organs.
An additional challenge imposed by this type of data
regards the high intra-class variations and inter-class
similarity, which significantly increase the difficulty of
class generalization and discriminative feature learning.

For the task of plant species recognition, transfer
learning based on the ResNet He et al. (2016) DCNN
architecture was performed considering pre-trained
weights from the Imagenet Russakovsky et al. (2015)
dataset. The ResNet is a highly recognized effective
network architecture that achieved the first place at
the ILSVRC 2015 classification task with 3.57% error

on the ImageNet test set (Russakovsky et al., 2015).

Considering that our experiments were conducted upon
the performance comparison between the network
trained without augmentation (baseline) versus the
model performance upon training with each proposed
augmentation policy based on a corresponding combining

heuristic (Individual, Sequential or Parallel, as illustrated
in Fig. 1). Similarly Dourado Filho and Calumby (2021)
in this work the ResNet50 model was considered for
evaluation whereas in the effectiveness assessment
step considering the independent test set, the model
performance for each sample sub-type was taken into
consideration, in order to account for a more factored
analysis as proposed.

This way, for test set images, the same data
augmentation policies as in the training phase were
applied. Considering the recognition is performed for
1+N images (1 original + N augmented versions), the
class prediction is performed according to Softmax of
the average class scores. All the DA policies assessed, the
resulting amount images, and augmentation factors are
presented in Table 1. For the DA techniques, the following
configurations were considered: Translate (4 different
directions with offsets equivalent to 20% of the image
width over the horizontal axis and 20% of the height
over the vertical axis with black pixel padding); Rotate
(30 degrees clockwise and counterclockwise); Crop (four
corner patches and a central crop with 50% of the image
size).

Table 1: DA policies and number of images. Augmentation
factor: size in relation to the original dataset (Bold).

Dataset Train+Validation Test Set
Original Dataset 20.985 5092
Flip £41.970 10.184 (2x)
Rotate 62.955 15.276 (3x)
Flip x Rotate 62.955 15.276 (3x)
Flip + Rotate 83.940 20.368 (4x)
Translate 104.925 25.460 (5X)
Crop 125.910 30.552 (6x)
Flip x Crop 125.910 30.552 (6x)
Flip + Translate 125.910 30.552 (6x)
Flip + Crop 146.895 35.644, (7X)
Translate + Rotate 146.895 35.644 (7X)
Crop + Rotate 167.880 40.736 (8x%)
Translate x Rotate 188.865 45.828 (9x)
Translate + Crop 209.850 50.920 (10X)
Translate x Crop 44,0.685 106.932 (20X)

The evaluation was conducted with a stratified random
sampling protocol to keep class proportion in training
and validation sets. More specifically, we considered
80% of the training data for model construction and
the 20% for validation, followed by the testing with the
independent held-out test set. To ensure comparability,
instead of performing individualized optimizations, all
models were trained with the same configurations, for
a fixed number of epochs (75) and amount of trainable
weights. The Categorical Crossentropy loss function and
the Accuracy measure were considered in the training
phase, whereas the Micro-F1 measure was computed to
account for class imbalance in the test phase. For weight
update and optimization the Adam optimizer (Kingma
and Ba, 2017) with a batch size of 64 was proposed. First
and Second Moment exponential decays and Epsilon were
set to default (0.9, 0.99 and 1077, respectively), and the
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learning rate was set to 2 x 107°.

4 Results

The classification models were trained using the
Individual, Parallel and Sequential heuristics. The
overall performance presented in Table 2 demonstrates
that the models trained over the augmented datasets
yielded expressively superior results in comparison to
the baseline, with relative increases from 0.37% up to
roughly 55% in Micro-F1. In terms of heuristics, the
Parallel policies generally outperformed the Sequential
and Individual ones. The overall worst performing Parallel
policy (Flip + Rotate, Micro-F1=0.4255) allowed results
similar to the best performing Sequential policy (Flip x
Crop, Micro-F1=0.4271).

The models trained with data augmented by the
Sequential heuristics presented consistently inferior
performance to the ones trained with the best Individual
policies. Such inferior results may be a consequence of
the Sequential application of multiple geometric policies
which increases the chances of violation of the label-
preservation principle of data augmentation.

For instance, techniques that are inherently prone
to promote more intense distortions, when combined
through Sequential heuristics may end up producing
policies with higher chances of enhancing irrelevant
image regions (e.g., background) or specific regions
that does not necessarily include relevant features. The
Translate x Crop policy results in poor effectiveness
even though Translate and Crop techniques composes
the best performing Individual policies. The Individual
geometric procedures performed by the Translate and
Crop techniques, when applied sequentially (Translate x
Crop) are more likely to deteriorate the visual information
correspondent to the label associated with the generated
image. In contrast to that, the same Sequential association
but with Flip and Crop techniques, that conduct less
intense visual distortions, resulted in the best performing
policy (Flip x Crop) for this type of heuristic.

Considering the number of resulting images (Table 1),
our findings demonstrate that the DA policies that yielded
better results were not necessarily the ones of higher
augmentation factors. For instance, the Translate x Crop
policy increased the original dataset to over 440.000
images (20x factor) and yet allowed only 0.37% gain in
relation to the baseline. In contrast, the single application
of Flip (2x factor) allowed an improvement of roughly 28%
while the the best performing policy (Translate + Crop)
with a 10x factor resulted in a 55% improvement.

These results enabled inferring the effects of data
augmentation combining heuristics over the performance
of the models trained over the derived policies. Despite
the augmentation factor has also being considered as
a relevant aspect of investigation, it was able to verify
that deeper analyzes should be necessary to enable more
assertive conclusions with respect to data augmentation
effectiveness. In light of this a more factored performance
analysis of the models in terms of individual organ (image
sub-type) was conducted and is further presented in
Section 4.1. Moreover the different amounts of image sub-

Table 2: ResNet50 results: Combination heuristics and
Augmentation Policies (Micro-F1 on test set).

Baseline
Augmentation Micro-F1
None (Original data) 0.3177

Individual Application
Crop 0.4636
Translate 0.4550
Flip 0.4094
Rotate 0.4049

Sequential Application
Flip x Crop 0.4271
Translate x Rotate 0.4,010
Flip x Rotate 0.3800
Translate x Crop 0.3189

Parallel Application

Translate + Crop 0.4919
Flip + Crop 0.4672
Crop + Rotate 0.4573
Translate + Rotate 0.4522
Flip + Translate 0.4518
Flip + Rotate 0.4255

Table 3: ResNet50 results: Heuristics, Augmentation
Policies and performance for the image sub-types
(Accuracy on test set).

Baseline
Policy | Scanned Leaf | Flower | Fruit | Stem | Leaf | Entire | Overall
Original Dataset | 05608 [ 0.2368 | 0.2442 | 03206 | 0.2924 | 0.1051 | 03177
Individual Application

Crop 05624 0.5182 | 03980 | 0.4049 | 0.4037 | 0.2809 | 0.4636
Translate 0.6368 0.4655 | 03557 | 03702 | 03746 | 0.2809 | 0.4550
Flip 05960 04201 | 03038 | 03487 | 03759 | 01902 | 0.4094
Rotate 0.5488 0.4306 | 03250 | 03652 | 03582 | 02132 | 0.4049

Sequential Application

Flip x Crop 0.5320 0.4906 | 0.3538 | 0.4016 [ 03658 [ 02449 | 0.4271

Translate x Rotate 0.5072 0.4282 | 03153 | 03851 | 03341 | 0.2521 | 0.4010

Flip x Rotate 0.5192. 03998 | 03019 | 03438 | 03506 | 0.1916 | 0.3800

Translate x Crop 0.3600 0.4168 | 03076 | 0.2363 | 0.2341 | 0.2247 | 03189
Parallel

Translate + Crop 0.6280 0.5498 | 0.4500 [ 0.4016 | 0.4101 [ 0.3472 | 0.4919

Flip + Crop 0.5832 0.5296 | 0.4288 | 0.4264 | 0.4151 | 0.2708 | 0.4672

Crop + Rotate 0.5440 05482 | 0.4442 | 03603 | 0.4012 | 02982 | 0.4573
Translate + Rotate 0.6160 0.4882 [ 03750 | 03570 | 03949 | 0.2997 | 0.4522.
Flip + Translate 0.6200 0.4801 | 03692 | 03834 | 03784 | 03040 | 0.4518
Flip + Rotate 0.5720 0.4533 0.3403 0.3884 | 03822 | 0.2579 0.4255

types is not only a characteristic of the whole data set, but
is also present in the set of images of each plant species.
This motivated the investigation of how decisive DA can
be in overcoming different sources of data imbalance as
investigated and discussed in Section 4.2.

4.1 Single-Organ Analysis

As described in Section 3, the dataset is composed by
homogeneous background (42%) and natural background
(58%) images. These can be divided in 6 image
sub-types (see Fig. 2) according to the corresponding
plant organs or views: Scanned Leaves (42%), Leaf
(16%), Flower (18%), Fruit (8%), Stem (8%) and Entire
plant(8%). In this context, classification performance
can be affected by many aspects including the uneven
training data distribution, which could deteriorate the
model performance for some image sub-types. Moreover,
for different organs, the suitability of the selected
augmentation policy and the specific classification rates
must be considered. Therefore, given that the training
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data imbalance and the inherent classification challenges
for different organs play a key role on the resulting
performance, the impact of each augmentation policy was
evaluated for each image sub-type.

Table 3 presents the results for all combining heuristics
and each policy performance with respect to every image
sub-type. In terms of top performing heuristic, similar
result was achieved for all image sub-types. In general,
the Parallel heuristic allowed the best results, while the
Sequential heuristic was not able to outperform the best
Individual policies. The Parallel heuristic yielded the top
performing policies for all image sub-types, except for the
Scanned Leaf which was best classified with the Individual
application of the Translate policy.

Considering the top-performing policies, the best
results for each image sub-type was allowed by different
policies. While Translate + Crop allowed the best results
for Flower, Fruit and Entire, the Flip + Crop was the best
policy for Stem and Leaf. Nevertheless, regarding all image
sub-types, the parallel Translate + Crop was the overall
best policy (Micro-F1=0.4919), given it was significantly
superior for some sub-types while also quite similar to the
top performing policies for the others.

More specifically, the results demonstrate that, for
Scanned Leaf images, the most frequent sub-type (42%
of the dataset), even the baseline (no DA) was capable
of presenting reasonable performance with Micro-Fi
over 0.50, while the performance of the less frequent
sub-types was below 0.33. Nevertheless, Scanned Leaf
images with homogeneous background may be the less
challenging image sub-type in comparison with the other
sub-types with natural background. On the other hand,
the result for equally frequent sub-types, such as Stem
and Entire, were quite different, with the entire sub-type
representing a harder classification task. Such differences
are consistently noticed regardless of the DA policies and
heuristics.

Fig. 3 presents for each image sub-type the relative
gains of the best augmentation policies of each heuristic in
relation to the best Individual policy for the corresponding
sub-type (baseline).

No composed augmentation policy was able to
outperform the best Individual policy for Scanned
Leaf sub-type. In this case, considering the baseline
(Translate), the data generated by the additional
application of the Crop operation (Translate + Crop)
demonstrated to slightly inferiorize effectiveness. That
result was possibly influenced by irrelevant information
that the corner crops have may have introduced in the
model by mostly covering white background regions and
reducing the actual leaf area depicted (as illustrated in
Fig. 1). Similarly, Sequential policies achieved almost

none or even negative gains in relation to the baseline.

Finally, the Parallel policies achieved significant gains
from roughly 3% up to roughly 24% (for the entire
sub-type). These results (Fig. 3) indicate the potential
of generalization of the DA techniques with respect to
the mixed organ classification and also in the analysis
for specific image sub-types. More specifically, the best
results were achieved through parallel combination
involving Crop, Translate and Flip operations.

Despite promising, the smaller amount of samples of

or each sub-type

(%) w.r.t the Best Individual DA F
° “«

Micro-F1 Relative Gain (%) w.r.t the Be:
*

Figure 3: Micro-F1 gain (%) w.r.t best Individual DA
policies for each Heuristic and correspondent sub-types.

some image sub-types may have prevented the learning
of better representations. For instance, the although
Translate + Crop policy only achieved Micro-F1=0.34,
enabled leveraging the performance for the entire sub-
type by 230% in contrast to the baseline. The expressive
gains for the less represented sub-types suggest the
potential of Data Augmentation techniques in attenuating
the problems for underrepresented types of organs.

4.2 Data Imbalance

A statistical analysis of the data revealed two important
types of imbalance. Specifically, the dataset presents
different amounts of images for each species and also
an irregular intra-class distribution for a given species
regarding the image sub-types. The number of samples of
each plant species (classes) ranges in a broad interval from
11 to 260 images. This source of imbalance was previously
referred as Sampling imbalance in Seeland et al. (2019),
and widely known for causing low accuracy on under-
represented classes. Another source of imbalance worth
of investigation regards how well represented a class is in
terms of the possible image sub-types and how balanced
the sub-types are. This Content imbalance (Seeland et al.,
2019), is also an obstacle that can result in classification
biases for species with underrepresented sub-types. The
DA impact in relation to these problems are investigated
in Sections 4.2.1and 4.2.2.

4.2.1 Inter-class - Sampling imbalance Analysis

The class size distribution is presented in Fig. 4 (outliers
removed). While the number of samples per class ranges
from 11 to 260, the median class size is 45. The distribution
also shows that 25% of the classes presents more than 120
samples. In contrast, 50% of the classes has less than 45
samples and a considerable 25% of the classes have less
than 25 samples. These amount of samples are quite below
the estimated 100-500 images per species necessary to
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learn accurate visual representations for precise species
recognition (Carranza-Rojas et al., 2017; Seeland et al.,
2019). Precisely, X classes ( 70% of the dataset) have less
than 100 samples, which imposes a significant challenge
for the learning of effective and generalized classification
models.

275
250
25
200
175
150
125

Number of Samples

25

Classes

Figure 4: Distribution from the number of samples by
class for the original dataset.

Fig. 5 presents for each class, the contrastive results
between the DA and the original dataset (baseline). To
better visualize and understand the performance variation
in light of the class size, the classes were grouped
according to the size distribution quartiles as presented in
Fig. 4. For simplicity, the small-size classes (1st and 2nd
quartiles) were merged into a single category ranging from
11 to 45 samples, which represented a concise interval. In
turn, the remaining quartiles were used to define medium
and large-size classes, ranging from 46-115 and 116-270
samples, respectively. The dashed diagonal lines represent
equal performance between the methods.

Fig. 5-a depicts the distribution of the comparative
results of the overall best DA in relation to the baseline.
Following the overall results presented in Table 2, this
detailed analysis shows that the overall best DA (parallel)
allowed superior effectiveness for the vast majority of the
classes. Additionally, the distributions in Fig. 5-a shows
that the most significant results (far from the diagonal)
were achieved for the smaller classes (in green).

Similarly, Fig. 5-b presents the comparative results
of the worst performing DA method against the baseline.
Once again the greater improvements were achieved for
the smaller classes. Moreover, while such DA method was
generally equivalent to the baseline in terms of Micro-F1,
the results shows that for some classes the DA deteriorated
the performance in comparison to the baseline, more
noticeably for the larger classes (in red).

Similarly to Fig. 5-a and b, Fig. 5-c and d presents
a comparative of the baseline in relation to the other
heuristics (Individual and Sequential). Once again, the
best results were achieved for the smaller classes also with
a lesser deterioration of the performance for the bigger
classes.

Finally, Fig. 5 highlighted the expressive improvements
allowed by the DA, specially for the classes with the
worst original baseline results or small sample sets.
These findings demonstrate the DA was successful in

attenuating the problems related to data imbalance and
lack of representativeness of some species.

4.2.2 Intra-class - Content imbalance

Considering the intra-class content imbalance, ie.,
uneven intra-class image sub-type distributions,
we investigated the impact of the utilization of Data
Augmentation in light of the imbalance degrees. To
represent the imbalance degree of the internal sub-type
distribution of the classes (species), the sub-type Entropy
within the classes were computed for the training dataset
according to Eq. (1). The Entropy (H) with respect to a
random variable (X) can be defined in terms of the average
level of surprise inherent to its possible n outcomes, given
X1, X2, ..., Xn, possible outcomes of X which may occur with
probability P(x;), P(x2), ..., P(xn).

HX) = — > P(x) log(P(x,)) (1)

i=1

With Eq. (1), the Entropy level for a given species (S) is
computed by averaging the product between the outcome
probability and its correspondent surprise, considering
the six possible sub-types within S. Therefore, the Entropy
is used to quantify the level of internal imbalance of
each species in the dataset, which enabled to investigate
the impact of data augmentation over this source of
imbalance’.

The resulting entropy values were grouped according
to three sub-intervals to represent the different entropy
levels, specifically: Small Entropy Classes ([0.4,0.6]),
Medium Entropy Classes (]0.6,0.8]) and High Entropy
Classes (]0.8,1]). It allowed to analyze the relationship
between the imbalance degree and the corresponding
performance improvements provided by the utilization
of data augmentation. For that we related the entropy
degree (small/medium/high) and the Delta-F1, which
corresponds to the test-set Micro-F1 difference, between
the model trained with best DA policy (Crop + Translate)
and the model trained with the Original dataset (no
augmentation) policy.

Imbalance | Average Entropy | Average Delta-F1
High 0.5390 + 0.0531 | 0.2528 + 0.2485
Medium 0.7088 + 0.0520 | 0.2958 + 0.2279
Low 0.8663 £ 0.0496 | 0.1821 + 0.1549

Table 4: Micro (Content) Imbalance Results

Table 4 presents the average improvements provided
by Data Augmentation with respect to the defined levels
of imbalance. The low entropy deviation means that
each group includes the species with similar entropy
(imbalance). Despite the high Delta-F1 variability (high

In order to deal with the possible absence of samples for a given sub-
type, Laplace Smoothing (with default K=1) was used to avoid P(x;) =
0. Min-max normalization was used to scale the Entropy between o
and 1.
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Figure 5: a & b - Micro-F1 (DA) x Micro-F1 (Baseline) performance for the Crop + Translate and Crop x Translate
policies. ¢ & d - Micro-F1 (DA) x Micro-F1 (Baseline) for the Crop and Flip x Crop policies.

standard deviation), the average Delta-F1 was positive.

Besides the Delta-F1 for the species with low imbalance
was positive, the performance improvement was even

higher for the species with medium and high imbalance.

It suggests, the DA allowed performance improvements
for all levels of imbalance, but more significantly for the
classes with higher internal distribution irregularity,
attenuating poor data representativeness even for
extremely imbalanced situations.

As demonstrated in Table 4, the model trained with the
best DA allowed an average performance improvement
of roughly 0.25 per class for the more irregular classes
(Low Entropy). These results represented a substantial
39% increase in relation to the High Entropy classes that
obtained average 0.18 Micro-F1 improvement per class.

Considering that the classes that most benefited from
the DA were the most irregular ones (Low and Medium
Entropy), which represents together roughly 75% of the
dataset, these findings are aligned with the hypothesis
that data augmentation acts more significantly in poorly
distributed classes, enabling leveraging performance

more considerably in comparison with better distributed
ones.

5 Conclusion

In this work, the performance improvement provided
by the utilization of Data Augmentation for training
DCNN models to perform plant species recognition
from images was thoroughly investigated in terms of
several aspects including image sub-type and dataset
imbalance. This results demonstrated that DA acted
significantly by leveraging classification performance
hence enabling models to learn more accurate visual
representations, mostly over underrepresented classes.
Besides that, these findings emphasized how promising
Data Augmentation could be for attenuating class
imbalance and its potential effectiveness for application
in small-size or underrepresented classes, in case of
computational resources limitations. Otherwise integral
or even contextual (dynamic) utilization of techniques
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suitable for specific image sub-types should also provide
better performance improvement.

We believe that the findings and analyzes presented
can represent some aspects that designers of DCNN-based
plant recognition systems should consider for developing
more rigorous applications when facing imbalanced
datasets. Furthermore, the dataset imbalance analyzes
showed that despite promising, Data Augmentation
demonstrates potential for enhancement in terms of intra-
class content imbalance. In this sense we believe that
random heuristics instead of deterministic approaches
may lead to more substantial performance improvements,
therefore, future work addressing this topic may be
prospective to provide more insightful analysis with this
respect.
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