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Abstract

Background: Based on their nutritional benefits, oat is classified as a cereal of great importance for both human and
animal feeding. Throughout the production process, species and variety identification are vital for agricultural systems.
The present work establishes SeedFlow, a method for image acquisition, processing, and classification of oat grains using
deep learning techniques. We apply these techniques to the identification of the grains from the different oat species
Avena sativa and Avena strigosa and to classify grains as varieties of Avena sativa, such as UPFA Ouro, UPFA Fuerza, and
UPFA Gaudéria. Results: To achieve this proposition, we executed our solution considering six different deep learning
architectures to evaluate which model presents the best performance. This approach attained an accuracy of 99.7%
for oat species identification and 89.7% for oat varieties classification using DenseNet architecture. Conclusions: As a
result, this tool can provide high value for practical quality control applications, and it is feasible to use in pre-screening
tests, laboratory analysis pipelines, or computer support tools geared toward breeding programs or intellectual property
assessment.

Keywords: Classification; computer vision; deep learning; oat.

Resumo

Background: A aveia é um cereal de grande importancia para a alimentagdao humana e animal devido aos beneficios
nutricionais que oferece. Ao longo do processo de produgdo, a identificacdo de espécies e cultivares é vital para os sistemas
agricolas. O presente trabalho estabelece SeedFlow, uma metodologia para aquisi¢ao, processamento e classificagdo
de imagens de graos de aveia utilizando técnicas de aprendizado profundo. Estas técnicas sdo empregadas para a
identificacdo de espécies de aveia Avena sativa e Avena strigosa, e para classificar graos quanto a cultivar de Avena sativa,
como UPFA Ouro, UPFA Fuerza , e UPFA Gaudéria. Resultados: Para tanto, a solugdo proposta foi executada considerando
seis diferentes arquiteturas de aprendizado profundo para avaliar qual modelo apresenta o melhor desempenho. Esta
abordagem atingiu uma precisdo de 99,7% para identificacdo de espécies de aveia e 89,7% para classificacdo de cultivares
de aveia usando a arquitetura DenseNet. Conclusdes: Como resultado, esta ferramenta pode ser vista como de alto valor
para aplicacdes praticas de controle de qualidade, viavel para ser usada em testes de pré-triagem, em fluxo de andlise
laboratorial, ou como ferramenta de suporte computacional voltada para programas de melhoramento ou avaliacdo de
propriedade intelectual.

Palavras-Chave: Aprendizado profundo; aveia; classificacdo; visdao computacional.

1 Introduction animal feeding, due to the high nutritional value and the

o . . high amount of dietary fiber. While the grain morphology
Oat holds a vital importance for world grain production. s similar to other cereals, the oat grain is longer and
According to Food and of the United Nations (2022),22.9  thinner when compared to wheat and barley and may or

million tonnes were produced globally in2016. The results may not have hairiness (Ramaswamy and Riahi, 2003).
of this production were mainly aimed for human and
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Examples of usage are varied and include: functional
and fiber-rich diets, food stabilizer, heat resistance in
chocolates, and moisture retainer in bakery flour.

Classification systems are tools that aid the grain
marketing processes. In the oat production chain, these
systems have an essential role in addressing the needs of
buyers and, at the same time, encouraging producers to
seek the desired quality by providing means to produce
equitable returns concerning what is being marketed.
Handling, transportation, processing, treatment, and
storage operations are significantly influenced by the
characteristics of the grain classification system that is
adopted. Grains produced and harvested in the field are
physically heterogeneous due to the diversity of the other
elements present, such as as plants, insects, inert matter,
and soil. Environmental conditions also influence so that
the grains do not have uniform characteristics in their
physical appearance. Therefore, the classification process
will consist of segregating mixed material into a set of
classes that will reflect the characteristics of essential
qualities for consumers (Hulasare et al., 2003).

Indeed, the use of image processing and computer
vision applications to better address the challenge
to classify assets automatically has grown in the
last decade due to reduced equipment costs and
increased computational power. Also, the interest
in non-destructive methods in food assessment and
classification (Mahajan et al., 2015) has increased
substantially. The use of these techniques presents
advantages when compared with traditional methods of
classification that are based on manual work, allowing a
raise in the quality of the final product in an automated,
non-destructive and economically efficient way (Patricio
and Rieder, 2018).

In contrast to automatic methods, manual grain
assessment are challenging even for individuals who
are able to perform these tasks. One of the difficulties
of such methods is the lack of specific training of
the evaluators. There are scarce places that train
people with the necessary quality. Another issue is
the time required to carry out such evaluations, which
makes it impossible to make decisions quickly and
evaluate subjects on a large scale (Zareiforoush et al.,
2015). Although automatic grains assessment can provide
benefits in this context, the task of identification and
classification is hugely challenging and computationally
intensive (Visen et al., 2002) due to the natural variability
of the products. One way to overcome those limitations
would be to use techniques combined with pattern
recognition algorithms and automatic classification tools
to address this challenge (Vithu and Moses, 2016).

Another area that can be benefited by the use of an
automatic classification system is cultivar development
and commercialization. A new cultivar requires a
great deal of effort in the genetic improvement process.
Developing new varieties and focusing on cost-effective
returns are key objectives of breeding companies and
breeders (Yang et al., 2020). Therefore, it is essential that
the protection of the cultivar generated in order to ensure
that the breeder can expect commercial return relative to
this intense work when it is accomplished.

Avariety is distinguishable from other known varieties

through a set of descriptors, being homogeneous
and stable for these descriptors through successive
generations (Kays, 2011). It is up to the qualified entities
to establish these descriptors and for breeders to assess
the stability of cultivars over generations when they wish
to ensure the intellectual property. Once the variety is
ready for the market, another critical stage is necessary
for it to be effectively used. The selection of the cultivar
to be used in the field by the producer primarily involves
economic circumstances, maturity, and resistance
to diseases. However, the primary challenge in this
context would be in guaranteeing the purity of a cultivar,
considering that phenol-typical characteristics of the
grains are very similar (Ansari et al., 2021). Once the
cultivar which will be used in the field is chosen, a second
challenge that would be face would be how the inspection
will be done for royalties.

Consequently, it is understood that there is a demand
for fast methods to identify cultivars at different points
along the oat production chain, from the stage of creation
and registration of new varieties, through planting and
finishing with grain processing by the industry. Grain
purity is also an important aspect evaluated by the
industry upon receipt of a new delivery of grains. In
regard to this, a manual approach would require time and
availability of specific laboratories.

Some approaches have been presented to address the
problem of identifying species from grains. Sabanci
et al. (2017) presented a system capable of classifying
wheat grains of the species Triticum aestivum (common)
and Triticum durum (hard) according to their visual
characteristics through the use of artificial neural
networks. Olgun et al. (2016) evaluated the performance
of the use of the DSIFT (Dense Scale Invariant Feature
Transform) technique, in conjunction with an SVM
(Support Vector Machine) classifier to classify wheat
grains in 40 different species. Kuo et al. (2016) developed
a high-resolution grain imaging system to classify 30
rice varieties. Studies have shown that the use of
deep learning and computer vision, when applied to
those areas, can provide high accuracy, surpassing
the commonly used image processing techniques, such
as those presented earlier (Kamilaris and Prenafeta-
Boldd, 2018). Sun et al. (2016) compared the classifiers
SVM, BPNN (Back-Propagation Neural Network), CNN
(Convolution Neural Network) and DBN (Deep Belief
Network) towards detecting fungal colonies in rice caused
by microorganisms, such as Aspergillus and Penicillium.
In his work, CNN (Convolutional Neural Network) was
presented to have the highest accuracy when compared to
the other methods. Barré et al. (2017) used deep learning
to identify plant species. One of his conclusions was that
learning the features through a CNN can provide better
feature representation for leaf images when compared
to hand-crafted features. That characteristic of deep
learning models is one of the most attractive benefits
of this technology since it greatly simplifies the image
processing and classification. Cheng et al. (2017) achieved
similar results when SVM classifiers were compared with
CNN to identify pests in a complex background.

Considering the above, it would be interesting to
evaluate the effectiveness of the classification through
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the use of state of the art deep learning techniques for
oat grain classification, along with how to apply it in a
proven robust pipeline. Ali et al. (2020) introduce an
optimized hybrid features classification framework, for
the classification of corn seed varieties. For each corn seed
image, a total of fifty-five hybrid-features was acquired on
every non-overlapping region of interest. A MLP approach
performed outstanding classification accuracy (98.93%).
Thakur et al. (2022) propose laser backscattering and deep
transfer learning based photonics sensor for automatic
identification and classification of high-quality soybean
seeds. Transfer learning-based processing framework is
proposed for only analysing speckle data. High accuracy
(97.88%) was obtained for classifying high- and low-
quality seeds.

In this context, we proposed SeedFlow, a methodology
through a computer vision system to automatically
identify oat species and classify oat varieties using digital
images of grain samples in order to decrease the time of
analysis, reduce the necessity of the specialist presence,
and increase the reliability and efficiency of the overall
process. Six common deep learning architectures were
evaluated (LeNet5, AlexNet, VGG16, InceptionV3, ResNet,
DenseNet121), and several techniques of computer vision
and image processing (e.g. background subtraction, image
denoising and segmentation) were combined to provide a
full pipeline in the classification of oat grains. We selected
these deep CNN architectures because they represent
classic algorithms from deep learning literature Alzubaidi
etal. (2021), trained on large datasets such as ImageNet
for image recognition purposes Deng et al. (2009).

Although several different deep network models can be
used to this task, we aim to show that simple CNN models,
like AlexNet, can have similar results when compared to
more complex models, like DenseNet. We also analyzed
our methodology by using human accuracy to verify
the feasibility of using it in real applications, such as
laboratory tasks for grain analysis. With all this in mind,
the solution can be considered a valuable tool to the oat
production process.

2 Materials and Methods

In comparison with the related work, we observed that no
approach had as an object of study the classification of oat
grains, an relevant food in human and animal nutrition.
Although other studies have considered technologies for
grains, we noted a gap in the study of classification
methods for this crop. With this in mind, we present
SeedFlow, a method for image acquisition, processing, and
classification of oat grains using deep learning techniques.
The main contribution of our proposal is to present a useful
computational tool for the seed analysis laboratories’ daily
routine, enable to count and classify cultivar oats by specie.

The proposed computer vision system is composed
of image acquisition, image processing, and result
presentation (Fig. 1). The image processing step
is subdivided in preprocessing, segmentation and
classification parts.

To acquire images, a photographic scanner provided
with CCD (Charged Coupled Device) sensor like Epson
Perfection V370 was used. Scanners provided with CIS

(Contact Image Sensor) were not adequate because of their
inability to scan three-dimensional objects, such as grains.
Due to its cylindrical shape, not all the grain’s surface will
be in direct contact with scanner glass. Two cases are
considered in this work: grain quality and intellectual
property assessment. In the first case, the identification
of different oat species was evaluated since this was a
parameter commonly evaluated in grain samples analysis
in order to assess the purity of the batch. In the second
case, the classification of different oat varieties was
evaluated since this information is beneficial for the
breeding programs and intellectual property assessments.

An image database containing RGB images of 224x22/
pixels was built through scanning the grains and
performing background removal and segmentation
operations. It was used for the training and testing of
the evaluated CNN models. Grains were scattered in the
scanner in an unrestricted way. The database is composed
of two datasets, one for oat species classification and
other for oat varieties identification. Table 1 presents the
categories subdivision and the picture amount related to
each one. Fig. 2 depicted some sample images of oat grains.
Each dataset used a 75/25 split ratio of training/testing
images sets, with images being randomly selected from
each group. Training images were used to obtain the
optimal parameters for the model, and testing images
were used to evaluate the final performance of the model.

Table 1: Oat categories and pictures amount.

Name Amount Name Amount
a) Oat Species b) Oat Varieties
Avena sstrigosa 5000 UPFA Ouro 2500
Avena sativa 5000 UPFA Fuerza 2500
Total 10000 UPFA Gaudéria 2500
Total 7500

The default white background of the scanner was
replaced with a blue background to improve the
effectiveness of the background removal step. The
pre-processing step was primarily intended to remove
the background from the image. Initially, the RGB images
acquired in the previous step were converted to the HSV
color model. Using this color model, the hue channel was
selected to separate the grains and the background, as
the blue tone vector has the most substantial angular
distance with the predominant shades of the grains.
Through this method, the use of binarization methods
is facilitated, and the method of automatic binarization
employed is Otsu (Otsu, 1979). Next, flood fill methods
are used to eliminate the holes in the mask. Removal of
the background is achieved through the use of a binary
subtraction operation between the input image and the
generated mask. In the segmentation stage, the binarized
image is also used for edge detection.

In some cases, small objects may have borders that are
detected due to noises or small artifacts captured in the
image. In this regard, objects with 10% small area size
of the most significant area size found in the image were
automatically ignored. Finally, the image is segmented
using the information of the identified contours (Suzuki
and be, 1985). For each contour extracted, the region
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Figure 1: Computer vision system schematic.

of interest maintaining the original dimensions of the
grain, and each segment is generated using a square
aspect ratio. This approach allows each segment to be
resized to the most appropriate size of each classification
algorithm without the proportions of the original image
being modified. It is to be noted that grain overlap cases
are not considered.

In the classification step, a pre-trained classifier is
used to assign classes to the segments determined in the
previous steps. The overall process is depicted in Fig. 3.

Six CNN models were evaluated: LeNet5, AlexNet,
VGG16, InceptionV3, Resnet, and DenseNet121.

LeNet5 is a CNN comprised of seven layers:
convolutional layer with six features maps, subsampling
layer with six features maps, convolutional layer with 16
feature maps, subsampling layer with 16 feature maps,
convolutional layer with 120 feature maps, fully connected
layer with 84 units and, finally, an output layer (Lecun
etal., 1998).

AlexNet is composed of five convolutional layers and
three fully connected layers. The second and third
convolutional layers received the input of the predecessor
layer after max poling and normalization operations.
In addition, AlexNet architecture uses ReLu neurons to
reduce the time necessary to train it. Two dropout layers
with a probability of 0.5 were also positioned between the
first and second fully connected layers (Krizhevsky et al.,
2017).

VGG is an architecture composed by convolutional
layers with 3x3 filters with stride and pad of 1and 2x2 max-
pooling layers with stride 2 organized in the sequence:
input, two convolutional layers 64 feature maps, max
pooling, two convolutional layers 128 feature maps, max
pooling, three convolutional layers 256 feature maps, max
pooling, three convolutional layers 512 feature maps, max
pooling, three convolutional layers 512 feature maps, max
pooling, and three fully connected layers. It uses ReLu as a
neuron model and reinforces the notion that the network
depth is related to the hierarchical representation of visual
data (Simonyan and Zisserman, 2014).

Inception presents a design to allow create deeper
networks while also keeping the number of parameters

from growing too large. The approach apply the use of
multiple filter sizes on the same level instead of chaining
convolutional layers with different filter sizes. As such,
the network would get “wider” rather than “deeper”. This
concept would thus be defined as the inception module.
The architecture has 22 layers deep when only the layers
with params are counted and 27 if we also consider the
max-pooling layers (Szegedy et al., 2015).

ResNet proposes the concept of a residual block to
address the degradation of training accuracy in deeper
architectures. Using shortcuts connections, it is possible
to transfer activation data much deeper into the network,
thereby reducing the effect of vanishing gradient problem.
When the gradient is back-propagated to the earlier layers,
the gradient can become very small, and the performance
can degrade severely (He et al., 2015).

DenseNet is an architecture based on ResNet idea that
deeper networks can be more efficiently trained if they
contain shorter connections between the layers. Mainly,
each layer in a DenseNet (Densely connected convolutional
network) are is connected to every other layer in a feed-
forward fashion. As the creators pointed out, there
are many advantages when this is compared to plain
architectures, and these would include the mitigation of
vanishing gradient problem, strength feature propagation,
and parameters number reduction (Huang et al., 2016).

One of the main objectives of this work would thus
be to show that CNN models can be used in oat grain
classification and to evaluate which model has the best
accuracy for the dataset utilized. According to Barbedo
(2018), several aspects may affect the performance of CNN
models. In the present work some of those aspects were
addressed to reduce their impact on the final results. The
dataset was built from scanned images of the grains. When
CNN is used, the availability of an image database correctly
labeled is one of the significant aspects. In this context, the
ground truth is guaranteed by the origin of the samples.
Each category was acquired separately from the others.
This process is slow and expensive, and not through the
use of specialized hardware, but demanded man work
hours. Grains are harsh when attempting to determine
their origin if they are mixed.
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Figure 2: Oat grain samples after background removal
and segmentation. a) and b) Avena strigosa - UPFA
Moreninha, c¢) and d) Avena sativa - UPFA Fuerza, e) and
f) Avena sativa - UPFA Gaudéria, g) and h) Avena sativa -
UPFA Ouro.

Another important aspect is the image capture
conditions. A scanner was chosen in order to provide the
same conditions of illumination and image background to
every acquired image. Backgrounds may contain elements
thatinterfere in the training process, and thereby reducing
their efficacy. To avoid non-realistic results, the grains
used to train the CNN models were obtained from different
batches and grown under different crop conditions.

All the pipeline of preprocessing, segmentation, and
training was automated using Python scripts. Table 2

present resources used to develop the entire pipeline. Each
evaluated CNN model was trained using Batch Stochastic
Gradient Descent optimizer with Nesterov Momentum
with value 0.9. When training neural networks, this is
often used to reduce the learning rate when the model
steps, in order to improve accuracy. In order to achieve
this, it a variable learning rate starting in 0.1 was adopted.
At every five epochs without improvement, the learning
rate was divided by two until the minimum of 0.0001. All
models were trained until 100 epochs.

Table 2: Experiment setup.

Hardware Software
CPU: Intel Core i7 6700 Windows 10
Memory: 16 GB DDR4 CUDA9.0 +
CuDNN 6.1
GPU: NVIDIA GTX1070 (8GB GDDR5)  Python 3.6
Keras
Tensorflow

3 Results and discussion

In order to compare human accuracy with the CNN model
accuracy, a small experiment was performed through the
use of six technical volunteers that usually performed
this operation in a seed laboratory daily routine. The
experiment consists of evaluating the accuracy of oat
species identification using SeedFlow. Two species are
used: Avena sativa (cultivar UPFA Ouro) and Avena strigosa
(cultivar UPFA Moreninha). The kit consists of 20 planks
of 100 grains each, totaling 2000 grains. Each plank
has a random amount of species and therefore did not
necessarily contain a 50/50 ratio.

The UPF Seed Laboratory, certified by the Brazilian
Ministry of Agriculture, Livestock, and Food Supply,
provided the seed samples containing the cultivar
identification. A senior seed analyst prepared these planks
for the experiment using the laboratory categorization.

Once the experiment started, the participants were
instructed to evaluate all the planks until the end of the
experiment so that we can also evaluate whether fatigue
affects accuracy throughout its performance. The planks
were marked with the coordinates of the cells so that
the user can use it to indicate which species each cell
corresponds to.

3.1 Oat species identification and varieties
classification

As expected, the CNN models obtained high values for
accuracy, highlighting DenseNet as the best performance:
99.7% for oat species classification and 89.7% for oat
variety classification. DenseNet also was more efficient
in memory usage and number of epochs that converged.
Table 3 and Table 4 presented the values for accuracy and
the training time for 100 epochs and evaluation time for
1600 grains to the different CNN models.

Conversely, AlexNet obtained excellent results,
although it was shallower and older compared to
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Table 3: Comparison of results for identification of oat species. Training: 100 epochs. Evaluation: 1600 grains.

Model Validation Validation = Training Epoch Evaluation Time Evaluation Time
Accuracy  Loss Time No GPU GPU
LeNets 0.978 0.143 3368.915 72 41s 6s
AlexNet 0.992 0.019 9198.336 79 269s 9s
VGG16 0.992 0.045 13598.435 73 386s 14s
InceptionV3 0.989 0.050 8832.317 61 148s 9s
ResNet 0.996 0.030  12207.191 /A 3558 10s
DenseNet121 0.997 0.012 12892.266 22 4408 10s

Table 4: Comparison of results for classification of oat varieties. Training: 100 epochs. Evaluation: 1600 grains.

Model Validation Validation  Training Epoch Evaluation Time Evaluation Time
Accuracy  Loss Time No GPU GPU
LeNets 0.657 2.244 2553.968 97 39s 5s
AlexNet 0.859 0.439  6954.503 75 264s 16s
VGG16 0.715 2733 13489.934 43 369s 9s
InceptionV3 0.852 0749  6649.607 45 160s 8s
ResNet 0.838 0.744 8921.818 58 353s s
DenseNet121 0.897 0.414 0811.436 53 465S 11s

DenseNet and ResNet, both of which applied residual
network concepts to improve accuracy. These results can
be attributed to the fact that grain images have a simple
shape and a very similar structure. They have the same
oval form and small color spectrum. Therefore, a simpler
network such as AlexNet would already be able to identify
and classify the images. Fig. 4 and Fig. 5 present the
accuracy and loss for the evaluated models. Also, Fig. 6
and Fig. 7 present the confusion matrix for AlexNet and
DenseNet models.

The effect of using GPU was also measured. As the
Table 3 and Table 4 shows, this kind of specialized
hardware reduces, on average, times the time necessary
to evaluate 1600 grains by 25 times.

To evaluate the AlexNet and DenseNet models
performance on a limited dataset, k-Fold cross-validation
was performed using ten folds. Table 5 shows the mean,
maximum, minimum and standard deviation values for
the two models analyzed.

3.2 Human accuracy in oat species classification

The average human accuracy found in the experiment was
93.77% (5.72% of standard deviation). The preliminary
tests have shown that it is a hard task for a person to
determine which variety corresponds to each grain. The
approach customarily applied is through identifying its
similarity, and a grain is rarely analyzed in an isolated way.
Each person spends about 1 to 2 hours evaluating the 20
planks. In comparison, the computer that utilizes the GPU
spends about 10 seconds on the same task with an accuracy
of 99.7%, disregarding the time expended to capture the
images. No reasons were identified to confirm that fatigue
can interfere in the final accuracy. However, a majority of
the participant comments included the comment that the
task was exhaustive.

Another point worth highlighting is that even with
the participants who were trained in the same way and
routinely performed the task of identifying oat species,
the experiment showed high variability in the accuracy of
the participants (Fig. 8). The objective of this experiment
was not to have a definitive conclusion about accuracy.
Rather, it was to provide a start point to human-computer
comparison and evaluate whether, as seen in this scenario,
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Table 5: k-Fold cross validation for AlexNet and DenseNet models.

. AlexNet DenseNet
k-Fold Cross Validation Min Max Avg Std.Dev. | Min Max  Avg  Std. Dev.
UPFA Moreninha x
Avena sativa 0.978 0.993 0.986 0.004 ‘ 0.985 0.995 0.990 0.003
UPFA Ouro x
UPFA Fuerza x 0.798 0.859 0.833 0.016 0.803 0.887 0.830 0.026
UPFA Gaudéria
1.0 == — —— 8
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Figure 4: Classification results between UPFA Moreninha x Avena sativa.

the replacing of human labor with by computer analysis
is feasible.

3.3 Methodology Analysis

In the present method, only a scanner device was
evaluated to acquire grain images. Different grain image
acquisitions could be evaluated to decide the most efficient
device and process, considering a protocol to reduce
lighting influences. One approach would be the use of
cameras to provide still photos or video stream to real-
time analysis of the grains. In addition to the cameras,
smartphones could be explored to capture images.

CNN models are suitable to be embedded in a
smartphone application and make our solution more
flexible and portable. Once the network is trained, it is no
longer necessary to use advanced hardware. Thus single
board computers could be exploited embedding a more
compact and adaptive solution for most diverse situations.

Another improvement could be the training of the
neural network in a workstation different from the one
to be used for grain analysis. Thus, GPU clustering could
be exploited to increase the number of classes and images
used in network training without the processing time

required to make the process unfeasible. In addition
to the six models explored in this paper other models
presented in the literature can be evaluated. Although
we have selected the most representative models available,
a different model could bring some relevant results for
our tests. Another approach would be the development
of a specific model for grains considering their specific
characteristics.

Finally, the most valuable contribution is that the
SeedFlow methodology could be used for other oat
cultivars or for other grain crops.

4 Conclusion

In this study, six CNN models were compared using our
methodology in order to use as a classifier of oat grains in
a controlled environment. The obtained accuracy of the
evaluated methods have shown that it is feasible to classify
grains as species and as cultivar using such methods. For
the case of oat species, Avena sativa and Avena strigosa, the
accuracy reached 99.7% using the DenseNet model. For
the case of oat cultivars, the accuracy reached 89.7%. In
a preliminary study, it was identified that this result is
superior to a human inputted one when tested against the
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Figure 6: Confusion matrix of oat species identification - UPFA Moreninha x Avena sativa.

oat species classification case.

The main contribution of this work was SeedFlow, a
computational methodology for oat cultivars classification
using computer vision and deep learning. The application
design considered its use in a workstation using low-cost
hardware and a graphical interface that facilitates the use

of the software without extensive prior training of users.

However, we highlight that it is still necessary to evaluate

the use of our tool considering a larger sample of subjects.

CNN models are a vast area of knowledge, and several
improvements are released frequently. Future studies
of SeedFlow must evaluate newer architectures, such
as Spatial Networks, YOLO, and Vision Transformers,

to improve seed classification accuracy. Furthermore,
another species can be tested in order to produce a more
robust neural network capable of use within the industry.
The same process presented in this study can be used
for other grain crops. Other future works could include
developing an embedded device equipped with small
single-board computers that can be used outside of the
laboratory environment. Such a device could then be
coupled to a conveyor belt and be used when the industry
receives the product in a pre-screening phase of oat grain
processing.
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