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Abstract
Background: Based on their nutritional benefits, oat is classified as a cereal of great importance for both human andanimal feeding. Throughout the production process, species and variety identification are vital for agricultural systems.The present work establishes SeedFlow, a method for image acquisition, processing, and classification of oat grains usingdeep learning techniques. We apply these techniques to the identification of the grains from the different oat species
Avena sativa and Avena strigosa and to classify grains as varieties of Avena sativa, such as UPFA Ouro, UPFA Fuerza, andUPFA Gaudéria. Results: To achieve this proposition, we executed our solution considering six different deep learningarchitectures to evaluate which model presents the best performance. This approach attained an accuracy of 99.7%for oat species identification and 89.7% for oat varieties classification using DenseNet architecture. Conclusions: As aresult, this tool can provide high value for practical quality control applications, and it is feasible to use in pre-screeningtests, laboratory analysis pipelines, or computer support tools geared toward breeding programs or intellectual propertyassessment.
Keywords: Classification; computer vision; deep learning; oat.
Resumo
Background: A aveia é um cereal de grande importância para a alimentação humana e animal devido aos benefíciosnutricionais que oferece. Ao longo do processo de produção, a identificação de espécies e cultivares é vital para os sistemasagrícolas. O presente trabalho estabelece SeedFlow, uma metodologia para aquisição, processamento e classificaçãode imagens de grãos de aveia utilizando técnicas de aprendizado profundo. Estas técnicas são empregadas para aidentificação de espécies de aveia Avena sativa e Avena strigosa, e para classificar grãos quanto a cultivar de Avena sativa,como UPFA Ouro, UPFA Fuerza , e UPFA Gaudéria. Resultados: Para tanto, a solução proposta foi executada considerandoseis diferentes arquiteturas de aprendizado profundo para avaliar qual modelo apresenta o melhor desempenho. Estaabordagem atingiu uma precisão de 99,7% para identificação de espécies de aveia e 89,7% para classificação de cultivaresde aveia usando a arquitetura DenseNet. Conclusões: Como resultado, esta ferramenta pode ser vista como de alto valorpara aplicações práticas de controle de qualidade, viável para ser usada em testes de pré-triagem, em fluxo de análiselaboratorial, ou como ferramenta de suporte computacional voltada para programas de melhoramento ou avaliação depropriedade intelectual.
Palavras-Chave: Aprendizado profundo; aveia; classificação; visão computacional.

1 Introduction
Oat holds a vital importance for world grain production.According to Food and of the United Nations (2022), 22.9million tonnes were produced globally in 2016. The resultsof this production were mainly aimed for human and

animal feeding, due to the high nutritional value and thehigh amount of dietary fiber. While the grain morphologyis similar to other cereals, the oat grain is longer andthinner when compared to wheat and barley and may ormay not have hairiness (Ramaswamy and Riahi, 2003).
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Examples of usage are varied and include: functionaland fiber-rich diets, food stabilizer, heat resistance inchocolates, and moisture retainer in bakery flour.Classification systems are tools that aid the grainmarketing processes. In the oat production chain, thesesystems have an essential role in addressing the needs ofbuyers and, at the same time, encouraging producers toseek the desired quality by providing means to produceequitable returns concerning what is being marketed.Handling, transportation, processing, treatment, andstorage operations are significantly influenced by thecharacteristics of the grain classification system that isadopted. Grains produced and harvested in the field arephysically heterogeneous due to the diversity of the otherelements present, such as as plants, insects, inert matter,and soil. Environmental conditions also influence so thatthe grains do not have uniform characteristics in theirphysical appearance. Therefore, the classification processwill consist of segregating mixed material into a set ofclasses that will reflect the characteristics of essentialqualities for consumers (Hulasare et al., 2003).Indeed, the use of image processing and computervision applications to better address the challengeto classify assets automatically has grown in thelast decade due to reduced equipment costs andincreased computational power. Also, the interestin non-destructive methods in food assessment andclassification (Mahajan et al., 2015) has increasedsubstantially. The use of these techniques presentsadvantages when compared with traditional methods ofclassification that are based on manual work, allowing araise in the quality of the final product in an automated,non-destructive and economically efficient way (Patrícioand Rieder, 2018).In contrast to automatic methods, manual grainassessment are challenging even for individuals whoare able to perform these tasks. One of the difficultiesof such methods is the lack of specific training ofthe evaluators. There are scarce places that trainpeople with the necessary quality. Another issue isthe time required to carry out such evaluations, whichmakes it impossible to make decisions quickly andevaluate subjects on a large scale (Zareiforoush et al.,2015). Although automatic grains assessment can providebenefits in this context, the task of identification andclassification is hugely challenging and computationallyintensive (Visen et al., 2002) due to the natural variabilityof the products. One way to overcome those limitationswould be to use techniques combined with patternrecognition algorithms and automatic classification toolsto address this challenge (Vithu and Moses, 2016).Another area that can be benefited by the use of anautomatic classification system is cultivar developmentand commercialization. A new cultivar requires agreat deal of effort in the genetic improvement process.Developing new varieties and focusing on cost-effectivereturns are key objectives of breeding companies andbreeders (Yang et al., 2020). Therefore, it is essential thatthe protection of the cultivar generated in order to ensurethat the breeder can expect commercial return relative tothis intense work when it is accomplished.A variety is distinguishable from other known varieties

through a set of descriptors, being homogeneousand stable for these descriptors through successivegenerations (Kays, 2011). It is up to the qualified entitiesto establish these descriptors and for breeders to assessthe stability of cultivars over generations when they wishto ensure the intellectual property. Once the variety isready for the market, another critical stage is necessaryfor it to be effectively used. The selection of the cultivarto be used in the field by the producer primarily involveseconomic circumstances, maturity, and resistanceto diseases. However, the primary challenge in thiscontext would be in guaranteeing the purity of a cultivar,considering that phenol-typical characteristics of thegrains are very similar (Ansari et al., 2021). Once thecultivar which will be used in the field is chosen, a secondchallenge that would be face would be how the inspectionwill be done for royalties.Consequently, it is understood that there is a demandfor fast methods to identify cultivars at different pointsalong the oat production chain, from the stage of creationand registration of new varieties, through planting andfinishing with grain processing by the industry. Grainpurity is also an important aspect evaluated by theindustry upon receipt of a new delivery of grains. Inregard to this, a manual approach would require time andavailability of specific laboratories.Some approaches have been presented to address theproblem of identifying species from grains. Sabanciet al. (2017) presented a system capable of classifyingwheat grains of the species Triticum aestivum (common)and Triticum durum (hard) according to their visualcharacteristics through the use of artificial neuralnetworks. Olgun et al. (2016) evaluated the performanceof the use of the DSIFT (Dense Scale Invariant FeatureTransform) technique, in conjunction with an SVM(Support Vector Machine) classifier to classify wheatgrains in 40 different species. Kuo et al. (2016) developeda high-resolution grain imaging system to classify 30rice varieties. Studies have shown that the use ofdeep learning and computer vision, when applied tothose areas, can provide high accuracy, surpassingthe commonly used image processing techniques, suchas those presented earlier (Kamilaris and Prenafeta-Boldú, 2018). Sun et al. (2016) compared the classifiersSVM, BPNN (Back-Propagation Neural Network), CNN(Convolution Neural Network) and DBN (Deep BeliefNetwork) towards detecting fungal colonies in rice causedby microorganisms, such as Aspergillus and Penicillium.In his work, CNN (Convolutional Neural Network) waspresented to have the highest accuracy when compared tothe other methods. Barré et al. (2017) used deep learningto identify plant species. One of his conclusions was thatlearning the features through a CNN can provide betterfeature representation for leaf images when comparedto hand-crafted features. That characteristic of deeplearning models is one of the most attractive benefitsof this technology since it greatly simplifies the imageprocessing and classification. Cheng et al. (2017) achievedsimilar results when SVM classifiers were compared withCNN to identify pests in a complex background.Considering the above, it would be interesting toevaluate the effectiveness of the classification through
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the use of state of the art deep learning techniques foroat grain classification, along with how to apply it in aproven robust pipeline. Ali et al. (2020) introduce anoptimized hybrid features classification framework, forthe classification of corn seed varieties. For each corn seedimage, a total of fifty-five hybrid-features was acquired onevery non-overlapping region of interest. A MLP approachperformed outstanding classification accuracy (98.93%).Thakur et al. (2022) propose laser backscattering and deeptransfer learning based photonics sensor for automaticidentification and classification of high-quality soybeanseeds. Transfer learning-based processing framework isproposed for only analysing speckle data. High accuracy(97.88%) was obtained for classifying high- and low-quality seeds.In this context, we proposed SeedFlow, a methodologythrough a computer vision system to automaticallyidentify oat species and classify oat varieties using digitalimages of grain samples in order to decrease the time ofanalysis, reduce the necessity of the specialist presence,and increase the reliability and efficiency of the overallprocess. Six common deep learning architectures wereevaluated (LeNet5, AlexNet, VGG16, InceptionV3, ResNet,DenseNet121), and several techniques of computer visionand image processing (e.g. background subtraction, imagedenoising and segmentation) were combined to provide afull pipeline in the classification of oat grains. We selectedthese deep CNN architectures because they representclassic algorithms from deep learning literature Alzubaidiet al. (2021), trained on large datasets such as ImageNetfor image recognition purposes Deng et al. (2009).Although several different deep network models can beused to this task, we aim to show that simple CNN models,like AlexNet, can have similar results when compared tomore complex models, like DenseNet. We also analyzedour methodology by using human accuracy to verifythe feasibility of using it in real applications, such aslaboratory tasks for grain analysis. With all this in mind,the solution can be considered a valuable tool to the oatproduction process.
2 Materials and Methods
In comparison with the related work, we observed that noapproach had as an object of study the classification of oatgrains, an relevant food in human and animal nutrition.Although other studies have considered technologies forgrains, we noted a gap in the study of classificationmethods for this crop. With this in mind, we presentSeedFlow, a method for image acquisition, processing, andclassification of oat grains using deep learning techniques.The main contribution of our proposal is to present a usefulcomputational tool for the seed analysis laboratories’ dailyroutine, enable to count and classify cultivar oats by specie.The proposed computer vision system is composedof image acquisition, image processing, and resultpresentation (Fig. 1). The image processing stepis subdivided in preprocessing, segmentation andclassification parts.To acquire images, a photographic scanner providedwith CCD (Charged Coupled Device) sensor like EpsonPerfection V370 was used. Scanners provided with CIS

(Contact Image Sensor) were not adequate because of theirinability to scan three-dimensional objects, such as grains.Due to its cylindrical shape, not all the grain’s surface willbe in direct contact with scanner glass. Two cases areconsidered in this work: grain quality and intellectualproperty assessment. In the first case, the identificationof different oat species was evaluated since this was aparameter commonly evaluated in grain samples analysisin order to assess the purity of the batch. In the secondcase, the classification of different oat varieties wasevaluated since this information is beneficial for thebreeding programs and intellectual property assessments.An image database containing RGB images of 224x224pixels was built through scanning the grains andperforming background removal and segmentationoperations. It was used for the training and testing ofthe evaluated CNN models. Grains were scattered in thescanner in an unrestricted way. The database is composedof two datasets, one for oat species classification andother for oat varieties identification. Table 1 presents thecategories subdivision and the picture amount related toeach one. Fig. 2 depicted some sample images of oat grains.Each dataset used a 75/25 split ratio of training/testingimages sets, with images being randomly selected fromeach group. Training images were used to obtain theoptimal parameters for the model, and testing imageswere used to evaluate the final performance of the model.
Table 1: Oat categories and pictures amount.Name Amount Name Amounta) Oat Species b) Oat Varieties

Avena strigosa 5000 UPFA Ouro 2500
Avena sativa 5000 UPFA Fuerza 2500Total 10000 UPFA Gaudéria 2500Total 7500

The default white background of the scanner wasreplaced with a blue background to improve theeffectiveness of the background removal step. Thepre-processing step was primarily intended to removethe background from the image. Initially, the RGB imagesacquired in the previous step were converted to the HSVcolor model. Using this color model, the hue channel wasselected to separate the grains and the background, asthe blue tone vector has the most substantial angulardistance with the predominant shades of the grains.Through this method, the use of binarization methodsis facilitated, and the method of automatic binarizationemployed is Otsu (Otsu, 1979). Next, flood fill methodsare used to eliminate the holes in the mask. Removal ofthe background is achieved through the use of a binarysubtraction operation between the input image and thegenerated mask. In the segmentation stage, the binarizedimage is also used for edge detection.In some cases, small objects may have borders that aredetected due to noises or small artifacts captured in theimage. In this regard, objects with 10% small area sizeof the most significant area size found in the image wereautomatically ignored. Finally, the image is segmentedusing the information of the identified contours (Suzukiand be, 1985). For each contour extracted, the region
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Figure 1: Computer vision system schematic.
of interest maintaining the original dimensions of thegrain, and each segment is generated using a squareaspect ratio. This approach allows each segment to beresized to the most appropriate size of each classificationalgorithm without the proportions of the original imagebeing modified. It is to be noted that grain overlap casesare not considered.In the classification step, a pre-trained classifier isused to assign classes to the segments determined in theprevious steps. The overall process is depicted in Fig. 3.Six CNN models were evaluated: LeNet5, AlexNet,VGG16, InceptionV3, Resnet, and DenseNet121.

LeNet5 is a CNN comprised of seven layers:convolutional layer with six features maps, subsamplinglayer with six features maps, convolutional layer with 16feature maps, subsampling layer with 16 feature maps,convolutional layer with 120 feature maps, fully connectedlayer with 84 units and, finally, an output layer (Lecunet al., 1998).
AlexNet is composed of five convolutional layers andthree fully connected layers. The second and thirdconvolutional layers received the input of the predecessorlayer after max poling and normalization operations.In addition, AlexNet architecture uses ReLu neurons toreduce the time necessary to train it. Two dropout layerswith a probability of 0.5 were also positioned between thefirst and second fully connected layers (Krizhevsky et al.,2017).
VGG is an architecture composed by convolutionallayers with 3x3 filters with stride and pad of 1 and 2x2 max-pooling layers with stride 2 organized in the sequence:input, two convolutional layers 64 feature maps, maxpooling, two convolutional layers 128 feature maps, maxpooling, three convolutional layers 256 feature maps, maxpooling, three convolutional layers 512 feature maps, maxpooling, three convolutional layers 512 feature maps, maxpooling, and three fully connected layers. It uses ReLu as aneuron model and reinforces the notion that the networkdepth is related to the hierarchical representation of visualdata (Simonyan and Zisserman, 2014).
Inception presents a design to allow create deepernetworks while also keeping the number of parameters

from growing too large. The approach apply the use ofmultiple filter sizes on the same level instead of chainingconvolutional layers with different filter sizes. As such,the network would get “wider” rather than “deeper”. Thisconcept would thus be defined as the inception module.The architecture has 22 layers deep when only the layerswith params are counted and 27 if we also consider themax-pooling layers (Szegedy et al., 2015).
ResNet proposes the concept of a residual block toaddress the degradation of training accuracy in deeperarchitectures. Using shortcuts connections, it is possibleto transfer activation data much deeper into the network,thereby reducing the effect of vanishing gradient problem.When the gradient is back-propagated to the earlier layers,the gradient can become very small, and the performancecan degrade severely (He et al., 2015).
DenseNet is an architecture based on ResNet idea thatdeeper networks can be more efficiently trained if theycontain shorter connections between the layers. Mainly,each layer in a DenseNet (Densely connected convolutionalnetwork) are is connected to every other layer in a feed-forward fashion. As the creators pointed out, thereare many advantages when this is compared to plainarchitectures, and these would include the mitigation ofvanishing gradient problem, strength feature propagation,and parameters number reduction (Huang et al., 2016).One of the main objectives of this work would thusbe to show that CNN models can be used in oat grainclassification and to evaluate which model has the bestaccuracy for the dataset utilized. According to Barbedo(2018), several aspects may affect the performance of CNNmodels. In the present work some of those aspects wereaddressed to reduce their impact on the final results. Thedataset was built from scanned images of the grains. WhenCNN is used, the availability of an image database correctlylabeled is one of the significant aspects. In this context, theground truth is guaranteed by the origin of the samples.Each category was acquired separately from the others.This process is slow and expensive, and not through theuse of specialized hardware, but demanded man workhours. Grains are harsh when attempting to determinetheir origin if they are mixed.
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Figure 2: Oat grain samples after background removaland segmentation. a) and b) Avena strigosa - UPFAMoreninha, c) and d) Avena sativa - UPFA Fuerza, e) andf) Avena sativa - UPFA Gaudéria, g) and h) Avena sativa -UPFA Ouro.
Another important aspect is the image captureconditions. A scanner was chosen in order to provide thesame conditions of illumination and image background toevery acquired image. Backgrounds may contain elementsthat interfere in the training process, and thereby reducingtheir efficacy. To avoid non-realistic results, the grainsused to train the CNN models were obtained from differentbatches and grown under different crop conditions.
All the pipeline of preprocessing, segmentation, andtraining was automated using Python scripts. Table 2

present resources used to develop the entire pipeline. Eachevaluated CNN model was trained using Batch StochasticGradient Descent optimizer with Nesterov Momentumwith value 0.9. When training neural networks, this isoften used to reduce the learning rate when the modelsteps, in order to improve accuracy. In order to achievethis, it a variable learning rate starting in 0.1 was adopted.At every five epochs without improvement, the learningrate was divided by two until the minimum of 0.0001. Allmodels were trained until 100 epochs.
Table 2: Experiment setup.Hardware SoftwareCPU: Intel Core i7 6700 Windows 10Memory: 16 GB DDR4 CUDA 9.0 +CuDNN 6.1GPU: NVIDIA GTX1070 (8GB GDDR5) Python 3.6KerasTensorflow

3 Results and discussion
In order to compare human accuracy with the CNN modelaccuracy, a small experiment was performed through theuse of six technical volunteers that usually performedthis operation in a seed laboratory daily routine. Theexperiment consists of evaluating the accuracy of oatspecies identification using SeedFlow. Two species areused: Avena sativa (cultivar UPFA Ouro) and Avena strigosa(cultivar UPFA Moreninha). The kit consists of 20 planksof 100 grains each, totaling 2000 grains. Each plankhas a random amount of species and therefore did notnecessarily contain a 50/50 ratio.The UPF Seed Laboratory, certified by the BrazilianMinistry of Agriculture, Livestock, and Food Supply,provided the seed samples containing the cultivaridentification. A senior seed analyst prepared these planksfor the experiment using the laboratory categorization.Once the experiment started, the participants wereinstructed to evaluate all the planks until the end of theexperiment so that we can also evaluate whether fatigueaffects accuracy throughout its performance. The plankswere marked with the coordinates of the cells so thatthe user can use it to indicate which species each cellcorresponds to.
3.1 Oat species identification and varieties

classification

As expected, the CNN models obtained high values foraccuracy, highlighting DenseNet as the best performance:99.7% for oat species classification and 89.7% for oatvariety classification. DenseNet also was more efficientin memory usage and number of epochs that converged.Table 3 and Table 4 presented the values for accuracy andthe training time for 100 epochs and evaluation time for1600 grains to the different CNN models.Conversely, AlexNet obtained excellent results,although it was shallower and older compared to
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Figure 3: Preprocessing and segmentation schematic.
Table 3: Comparison of results for identification of oat species. Training: 100 epochs. Evaluation: 1600 grains.Model ValidationAccuracy ValidationLoss TrainingTime Epoch Evaluation TimeNo GPU Evaluation TimeGPULeNet5 0.978 0.143 3368.915 72 41s 6sAlexNet 0.992 0.019 9198.336 79 269s 9sVGG16 0.992 0.045 13598.435 73 386s 14sInceptionV3 0.989 0.050 8832.317 61 148s 9sResNet 0.996 0.030 12207.191 74 355s 10sDenseNet121 0.997 0.012 12892.266 22 440s 10s

Table 4: Comparison of results for classification of oat varieties. Training: 100 epochs. Evaluation: 1600 grains.Model ValidationAccuracy ValidationLoss TrainingTime Epoch Evaluation TimeNo GPU Evaluation TimeGPULeNet5 0.657 2.244 2553.968 97 39s 5sAlexNet 0.859 0.439 6954.503 75 264s 16sVGG16 0.715 2.733 13489.934 43 369s 9sInceptionV3 0.852 0.749 6649.607 45 160s 8sResNet 0.838 0.744 8921.818 58 353s 9sDenseNet121 0.897 0.414 9811.436 53 465s 11s

DenseNet and ResNet, both of which applied residualnetwork concepts to improve accuracy. These results canbe attributed to the fact that grain images have a simpleshape and a very similar structure. They have the sameoval form and small color spectrum. Therefore, a simplernetwork such as AlexNet would already be able to identifyand classify the images. Fig. 4 and Fig. 5 present theaccuracy and loss for the evaluated models. Also, Fig. 6and Fig. 7 present the confusion matrix for AlexNet andDenseNet models.
The effect of using GPU was also measured. As theTable 3 and Table 4 shows, this kind of specializedhardware reduces, on average, times the time necessaryto evaluate 1600 grains by 25 times.
To evaluate the AlexNet and DenseNet modelsperformance on a limited dataset, k-Fold cross-validationwas performed using ten folds. Table 5 shows the mean,maximum, minimum and standard deviation values forthe two models analyzed.

3.2 Human accuracy in oat species classification

The average human accuracy found in the experiment was93.77% (5.72% of standard deviation). The preliminarytests have shown that it is a hard task for a person todetermine which variety corresponds to each grain. Theapproach customarily applied is through identifying itssimilarity, and a grain is rarely analyzed in an isolated way.Each person spends about 1 to 2 hours evaluating the 20planks. In comparison, the computer that utilizes the GPUspends about 10 seconds on the same task with an accuracyof 99.7%, disregarding the time expended to capture theimages. No reasons were identified to confirm that fatiguecan interfere in the final accuracy. However, a majority ofthe participant comments included the comment that thetask was exhaustive.Another point worth highlighting is that even withthe participants who were trained in the same way androutinely performed the task of identifying oat species,the experiment showed high variability in the accuracy ofthe participants (Fig. 8). The objective of this experimentwas not to have a definitive conclusion about accuracy.Rather, it was to provide a start point to human-computercomparison and evaluate whether, as seen in this scenario,
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Table 5: k-Fold cross validation for AlexNet and DenseNet models.
k-Fold Cross Validation AlexNet DenseNetMin Max Avg Std. Dev. Min Max Avg Std. Dev.UPFA Moreninha ×

Avena sativa 0.978 0.993 0.986 0.004 0.985 0.995 0.990 0.003
UPFA Ouro ×UPFA Fuerza ×UPFA Gaudéria 0.798 0.859 0.833 0.016 0.803 0.887 0.830 0.026

Figure 4: Classification results between UPFA Moreninha × Avena sativa.
the replacing of human labor with by computer analysisis feasible.
3.3 Methodology Analysis

In the present method, only a scanner device wasevaluated to acquire grain images. Different grain imageacquisitions could be evaluated to decide the most efficientdevice and process, considering a protocol to reducelighting influences. One approach would be the use ofcameras to provide still photos or video stream to real-time analysis of the grains. In addition to the cameras,smartphones could be explored to capture images.CNN models are suitable to be embedded in asmartphone application and make our solution moreflexible and portable. Once the network is trained, it is nolonger necessary to use advanced hardware. Thus singleboard computers could be exploited embedding a morecompact and adaptive solution for most diverse situations.Another improvement could be the training of theneural network in a workstation different from the oneto be used for grain analysis. Thus, GPU clustering couldbe exploited to increase the number of classes and imagesused in network training without the processing time

required to make the process unfeasible. In additionto the six models explored in this paper other modelspresented in the literature can be evaluated. Althoughwe have selected the most representative models available,a different model could bring some relevant results forour tests. Another approach would be the developmentof a specific model for grains considering their specificcharacteristics.Finally, the most valuable contribution is that theSeedFlow methodology could be used for other oatcultivars or for other grain crops.
4 Conclusion
In this study, six CNN models were compared using ourmethodology in order to use as a classifier of oat grains ina controlled environment. The obtained accuracy of theevaluated methods have shown that it is feasible to classifygrains as species and as cultivar using such methods. Forthe case of oat species, Avena sativa and Avena strigosa, theaccuracy reached 99.7% using the DenseNet model. Forthe case of oat cultivars, the accuracy reached 89.7%. Ina preliminary study, it was identified that this result issuperior to a human inputted one when tested against the
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Figure 5: Identification results between UPFA Ouro × UPFA Fuerza × UPFA Gaudéria.

Figure 6: Confusion matrix of oat species identification - UPFA Moreninha × Avena sativa.
oat species classification case.The main contribution of this work was SeedFlow, acomputational methodology for oat cultivars classificationusing computer vision and deep learning. The applicationdesign considered its use in a workstation using low-costhardware and a graphical interface that facilitates the useof the software without extensive prior training of users.However, we highlight that it is still necessary to evaluatethe use of our tool considering a larger sample of subjects.CNN models are a vast area of knowledge, and severalimprovements are released frequently. Future studiesof SeedFlow must evaluate newer architectures, suchas Spatial Networks, YOLO, and Vision Transformers,

to improve seed classification accuracy. Furthermore,another species can be tested in order to produce a morerobust neural network capable of use within the industry.The same process presented in this study can be usedfor other grain crops. Other future works could includedeveloping an embedded device equipped with smallsingle-board computers that can be used outside of thelaboratory environment. Such a device could then becoupled to a conveyor belt and be used when the industryreceives the product in a pre-screening phase of oat grainprocessing.
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Figure 7: Confusion matrix of oat varieties identification - UPFA Ouro × UPFA Fuerza × UPFA Gaudéria.

Figure 8: Comparison of accuracy for oat species identification task considering experiment volunteers (R1 to R6) andthe proposed method (Machine).
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