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Abstract

The reliability and resource management of products for warranty is important. Furthermore, the number of failures of a
product over time of use and level of expenditure can assume different distributions. Approaches with parametric models
bring good results when there is a normal distribution, and the application of Deep Learning (DL) is very promising. We
show a new methodology for the application of DL models with transfer learning to bivariate forecasts of repair rates in
products that are under warranty. The solution was applied to data from an American company, recorded from 2015 to
2022, of 12 different types of parts from 69 different types of cars. An evaluation of the absolute error of the forecasts was
performed for each combination of part, car and model year. Tests showed that the model performed well in predicting
data for 70 months in service and 70,000 miles, using data from cars with at least 15 months in service and 1,000 miles
as input. It was also concluded that the solution is robust for cases of incomplete data and distributions far from the
normal distribution.

Keywords: Forecast of repair rates; machine learning; reliability; warranty data analysis.

Resumo

A confiabilidade e o gerenciamento de recursos de produtos com garantia sdo importantes. Além disso, o nimero de
falhas de um produto ao longo do tempo de uso e nivel de gastos pode assumir diferentes distribuicdes. Abordagens
com modelos paramétricos trazem bons resultados quando ha uma distribuicdo normal, e a aplicacdo de Aprendizado
Profundo (Deep Learning - DL) é muito promissora. Apresentamos uma nova metodologia para a aplica¢do de modelos
de DL com aprendizado transferido para previsdes bivariadas das taxas de reparo em produtos sob garantia. A solu¢do foi
aplicada a dados de uma empresa americana, registrados de 2015 a 2022, referentes a 12 tipos diferentes de pecas de 69
tipos diferentes de carros. Uma avaliacdo do erro absoluto das previsdes foi realizada para cada combinacdo de pega,
carro e ano do modelo. Os testes mostraram que o modelo teve um bom desempenho na previsdo de dados para 70 meses
de servico e 70.000 milhas, usando dados de carros com pelo menos 15 meses de servigo e 1.000 milhas como entrada.
Concluiu-se também que a solucdo é robusta para casos de dados incompletos e distribui¢des distantes da distribuicdo
normal.

Palavras-Chave: Andlise de dados de garantia; aprendizado de méaquina; confiabilidade; previsdo de taxas de reparo.

1 Introduction

Customers value a good product warranty. However,
they become dissatisfied and lose confidence when they
have a problem, even in the face of efficient repairs or
exchanges. Many product manufacturing companies
need technological solutions for predicting the amount

of products that will have some type of failure within a
time interval before the event. This is because warranty
and reliability costs are important when measuring a
corporation’s performance. They need active action even
in production time, as the early identification of a failure
trend in a set of products can make big differences in the
budget (Lee et al., 2021; Wang et al., 2017; Wang and Xie,
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2018). This active action can be preventive maintenance
or even the release of a fix (He et al., 2018; Khoshkangini
et al., 2020; Rai and Singh*, 2005; Wu, 2012).

In particular, there are technological solutions proposed
in the literature for the prediction of warranty claims.
Among them, we can mention solutions for forecasting
based on time series models, such as the Markov, Box-
Jenkins Model and Multi Layer Perceptron, which are
promising in the theme. Other technical engagement work
focused on predicting a specific failure for each product
already sold and in use. In this case, the objective is to
obtain a portion of the products that will present a specific
failure, with a determined period of relatively short time
in advance. With this, it is possible to act proactively to
improve the user experience and assist in decision making.
This technique can be used in the context of confidence
assurance, but also has limitations with respect to the
prediction time in advance (Xu et al., 2003). Assuming
that the failures are related to the age and level of usage
of the products, the exploration of solutions for bivariate
forecasting becomes very important (Chehade et al., 2022;
Gupta et al., 2014, 2017).

Among the problems to be faced in the construction
of such solutions, there are the non-maturity of the data,
failure rate depending on time in service and level of use,
and high level of complexity for the ideal parameterization
of each chosen model. Time-in-service failure rate
curves change according to the emergence of new failures
or new products being produced/sold over time. The
phenomenon of non-maturity occurs when the curves
do not represent the real failure rate for time in service
and current usage level. In this context, although there
are many promising techniques, some improvements can
be made, such as applying them together with a simplified
methodology.

On the other hand, DL techniques have great
potential and are already being used in this type of
application. In particular, neural networks are great
generic approximants of functions, which can be the
substitute of other parametrics models (Xu et al., 2003;
Zainuddin and Pauline, 2008).In addition, new techniques
were introduced to improve the performance of this tool
when applied to problems where there are few examples
observed, such as oversampling, data ensemble and
transfer learning (Feng et al., 2019).

Abibliographic review was carried out on forecasting
expenses with product warranty in general and
applications of computing techniques in this problem,
using the Google Scholar search as the main tool. The
principal scope is in the study of an integrated solution
that can be automated. Therefore, solutions with machine
learning models received more attention than those
with parametric models. The main contributions were
separated, without discarding the solutions based on
parametric models, so that a more integrated solution
can be made, but with a reduced scope. These steps were
taken to provide the necessary tools for modeling, testing
and analyzing the results.

The article is divided as follows: Section 2 provides an
overview of the problem in the current context, along with
a discussion of previous work. Section 3 presents related
works that have also contributed to the formulation of the

proposed solution. Section 4 describes the modeling of
the proposed solution, the dataset, applications, and tests
conducted. In Section 5, the results are discussed. Finally,
conclusions are drawn, and future steps for improving the
work are outlined in Section 6.

2 Background

Some of the main ways of predicting auto warranty claims
are forecasting based on past warranty claim data, and
classifying the instantaneous state of each car being
used by customers. Khoshkangini et al. (2020) made
a comparison between these two methodologies, for
this, they built machine learning models, one for linear
regression and the other for classification, respectively.
Linear regression provides the expected warranty claim
rate value per time in service for a specific component
of cars sold. However, this proposed solution has focus
on exploring the applicability of data obtained from cars
always connected and sending data to the cloud in real
time.

Thinking of proposing a solution for three-dimensional
analysis of warranty data, Gupta et al. (2014) determined
the usage rate as the division between the usage level (m -
mileage) and the time in service (t), as two independent
variables, that is, with low correlation. Considering only
the guarantee interval, the probability of failure in this
interval is calculated. Where the observed fault density is
given by Eq. (1).

- - -4
p(t <= to,m <=mo) = N (1)

In Eq. (1), q is the cumulative number of failures and N
is the number of products sold, for t <= to and m <= mo.
Where t, is the limit for the warranty in the direction of
time in service and my is the limit for the warranty in the
direction of the mileage axis, which mileage represents the
level of use of the cars. Similarly, Xie et al. (2017) provided
an approach for bivariate modeling of the number of
warranty claims as a non-homogeneous Poisson process
(NHPP) distribution. They considered that the distribution
of warranty claims is related to both the level of use and
the age of the products under study.

He etal. (2018) proposed a reliability model considering
the engineering learning effect and use effect. The
engineering learning effect concerns the possible inverse
relationship of component failure rate with the new
version or model year released. The hypothesis is that the
more recent the component version, the lower the failure
rate, as observed in some datasets. The use effect concerns
the possible relationship between the level of use of the
cars and the failure rates. In this modeling, they assumed
that the failure rate of the studied components follows a
Weibull or Log-Normal distribution.

The phenomenon of data immaturity can be a big
problem in most analysis for forecasting. To address
this, Chehade et al. (2022) proposed a model based on
the Conditional Gaussian Mixture Model (CGMM) that
describes this distribution as a function of the time in use
of a product. The idea is that there are components that
have similar warranty claim distributions, despite many



Pires, Torelli & Escobar |

Revista Brasileira de Computagdo Aplicada (2023), v.15, n.2, pp.51—59 53

of these components being distinct from one another. So,
they proposed a clustering, which groups the historical
warranty data. Thus, through an inference using CGMM,
it is possible to obtain the behavior most similar to the
distribution to be analyzed. However, it is necessary to
ensure that the normalized behavior of the number of
warranty claims is close to a normal distribution, through
an observation on a data set.

On the other hand, Artificial Neural Networks (ANN)
can be used in the context of forecasting as approximators
of functions that describe the failure rate (Schmidt-Hieber,
2020). Zainuddin and Pauline (2008) compared different
types of ANN models to approximate different curve
shapes. The study was conducted based on the basic
structure of an ANN with a hidden layer, varying the
activation of this layer with the Mexican Hat, Gaussian
Wavelet (WNN), Morlet and Gaussian (RBFN) functions.
It is concluded that the activation function in the hidden
layers of an ANN has a high weight in the behavior in the
result (Yang et al., 2013).

In a comparison between different types of models
for forecasting the reliability of automobile components,
Lee et al. (2021) showed that, in the tests, ANNs
performed better when compared to parametric models.
In addition, it was possible to perceive that there are
many distributions that are very distant from a normal
distribution and that modeling manually may not bring
good results and be costly.

These works allowed us to notice that the application
of parametric models has promising results but requires
a priori certification that the behavior of warranty claims
follows a known distribution. In addition, it can be
concluded that deep ANN has potential for application to
forecast warranty claims, especially when the distribution
of these data is unknown.

3 Related Works

Gupta et al. (2014) presented a model based on Weibull
and Exponential Distribution, to describe the probability
of failure as a function of time and level of use of products,
algorithm from the nlm package of the R language to
optimize it. The fitted model approximates the observed
probability. Gupta et al. (2017) also presented some
problems about bivariate forecasts, in a literature review.
Dai et al. (2019) also showed a model for forecasting
warranty claims based on the non-homogeneous Poisson
process. They used synthetic data and data obtained from
a Chinese car manufacturer to fit and validate the model.
Chehade et al. (2022) optimized a model for clustering
product repair distributions (CGMM) with the Expectation
and Optimization algorithm to apply in a parametric
model for forecasting. As validation, it was applied to
estimate car warranty claims using data provided by Ford.
This data is composed of information of 15,000 parts
of 10 million vehicles, from model years from 2010 to
2013. Rai and Singh* (2005) explored the application of
the type of ANN called radial basis function (RBFN) to
forecast vehicle warranty costs. Lee et al. (2021) compared
the application of different types of reliability forecast
models for car components. The different types were

Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN), Sequence To Sequence Model, Support
Vector Machine, Decision Tree Ensamble, ARIMA and
Weibull Distribution. RNN had the best performance while
the Weibull parametric model had the worst, in tests with
a database built with information from 147 car parts from
9 different model years. Mitra et al. (n.d.) presented a
model similar to an ensemble for retail forecasting. It is a
linear regression model that is fitted with data from the
combination of inference from the Random Forest and
XGBoost models. They used data from a company selling
various products to compare the proposed solution with
existing architectures, such as AdaBoost, XGBoost and
Random Forest and RN, with the metrics Mean Squared
Error, Mean Absolute Error and R2. The Table 1 shows a
summary of the closest works found.

4 Proposed Solution

The proposed solution integrates some results found in
the literature. This solution is a machine learning model
that takes the learning obtained from historical data and
merges it with the new observed data to make a bivariate
forecast. For this, a model of Deep ANN is built with the
different existing distributions in the database, called base
model. These distributions are the data from past repairs,
which occurred over the years up to a cut-off point; this
cut-off point could be years or months behind the analysis
date. From this base model, another model is adjusted,
but retrieving the parameters of the base model (learning
transfer), with the data available for adjustment of the
distribution (current data) that one wants to make the
prediction. Considering that all data that were used to
adjust the base model are already matured, it is understood
that this model describes the shape of past distributions
without the phenomenon of immaturity. From there, the
distribution of the base model closest to the current data
is obtained and adjusted. The result of this adjustment is a
sub-model that describes the behavior of the extrapolated
current distribution.

4.1 Modeling

Consider the scenario in which you have a set of historical
repair data for several components of a company with
information about these components and the date of
occurrence. We want to obtain a model that describes the
repair rate (z) of a specific component as a function of time
in service (t), in months, and level of use (m), in miles.
The values of these two variables, t and m, represent the
level of stress that such components or products suffered
until the moment of repair. It is assumed that, a priori,
the distribution of z is not known, and there exists a
relationship between z and t and m. It is also assumed
that a deep ANN model can be approximated to follow the
z-distribution behavior.

The Deep ANN models can be used for regression
without defining the behavior form beforehand. Thinking
about the normalized distributions of products as a
function of time of use and expenditure, it is assumed
that there is at least one DNN model, for each one, that
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Table 1: Related works
Authors Objective Tools Bivariate Consider non With transfer
maturity learning
Gupta et al. (2014) Bivariate forecast Weibull Yes Yes No
of failure
probability as a
function of time
and level of
product use
Gupta et al. (2017) Bivariate forecast Weibull Yes Yes No
of product failure
rate
Dai et al. (2019) Bivariate forecast non- Yes Yes No
of warranty claims homogeneous
Poisson process
Chehade et al. Bivariate forecast Normal Yes Yes No
(2022) of product repair Distribution,
Gaussian Mixture
Model
Rai and Singh* Forecast of radial basis No Yes No
(2005) warranty costs function
over time
Lee et al. (2021) Comparison of several No Yes No
techniques for
forecasting
Mitraetal. (n.d.) Forecast of product  Linear Regression, No No No
retail Xg Boost, Random

Forest

describes them in an interval. Consider F;,(X), the model
that describes the behavior of any distribution, d,.

Consider a DNN, F(X), which represents the sum of all
Fs, so it behaves like an Fy according to the input. In other
words, it is considered that it is possible to find all models
of DNN’s that describe all distributions of the dataset and
that there is another larger DNN that is the composition
of all of them, observe the abstraction of this modeling in
the Fig. 1and Fig. 2.
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Figure 1: Abstract model for F, and F for k DNN’s of 3
layers and n neurons. F, is a DNN. The arrows represent
the data transition, where the base of the arrows
represents the origin and the tip represents the
destination

DNN_1

DNN_n

F(X)
Figure 2: Abstraction of F(x).

Similar to a model for classifying X, F(X) obtains the
Fy that follows the closest distribution of X. Take X as a
vector of the form

X =[[my,t1,q1],...,[ml, t;, g;]], tom; and t; € R

Where g is a value, in binary, that represents the
identification of the distribution to which m and t belong.
It is found by comparing the current distribution X with
each distribution used to build F, through the Frobenius
norm. The current distribution is the data available to
forecast the product to be analyzed, which is a pair X, z.
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Assuming that the historical database has d distributions,
g is described as

g=a,0,..,a,t0]= ;gggg; = length(g),d e N

Thus, X = [m,t,a,as, ..., q;]. The macro view of the
architecture of the proposed solution can be represented
by Fig. 3.

History .—Da:a—i Base Model
Dataset
Weights and bias
l_‘_ Bivariate Forecast
Current [ Datz—™ Sub Model Dats
Bistribution

Figure 3: Macro architecture of the proposed system. The
DNN’s are in blue. Base Model is the representation of F

Therefore, the base model (F) has the function of
describing the different forms of distributions and the
submodel receives the transfer learning from F to describe
the current distribution.

4.2 Dataset

The dataset consists of a historical distribution of car parts
exchange records from model years 2015 to 2021, from an
American car manufacturer. There were 69 different types
of cars distributed among these model years. The database
was filtered to only have records of 12 different types of
car components (part number), manually selected by a
person specializing in the company’s warranty. Data from
the model years from 2015 to 2017 were separated for the
adjustment of the base model (History Data - D1), while
the other remaining data were left for the adjustment and
validation of the sub models (Current Data - D2).

The database obtained consists of two matrices, one
with information on part number exchanges (W,,,) and
another on the quantity produced (Wy,q). Wy, has

the following columns: vin, model_year, vehicle_line,
part_number, tis, mileage. Whereas W4 has the

following columns: vin, model year, vehicle line. A
unique combination of model_year, vehicle_line and
part_number identifies a distribution, called a filter.
Thinking about the application of the modeling
proposed in the previous section, D1 and D2 are sets of
fault density distributions, for each filter, built with a
Python algorithm using Equation 3. Also, a normalization
was applied to the datasets so that each distribution has
values between 0 and 1. 199 distributions were obtained
for D1 and 266 for D2, thus, D; = Df1,Dgy; -3 Dfrgg and

Dz = Df200) Df201’ ey Df465'
Each Dy; has a maximum of 4900 elements, because
the warranty limit is defined for tis <= 70 and mileage <=

70,000 and z is defined for all elements of the cartesian
product between tis and mileage.

4.3 Application and Tests

The proposed solution works in two stages, the first
consists of building and testing the base model, and
the second consists of adjusting and validating the sub-
models. The base model architecture is shown in Fig. 4.
This model was thought to be robust to non-linear
distributions, to have good generalization power and to
be able to learn the 199 different distributions present in
the historical database.

Figure 4: Base model architecture.

In this Fig. 4, Dense is an artificial neural network
layer with 36 neurons fully connected to the input vector
with 10 elements, with output activated by the ReLU
(Rectified Linear Unit) function. The Normalization layer
is responsible for dragging and normalizing the result of
the previous layer by mean and variance (Ba et al., 2016).
Dropout is a regularization layer to decrease overfitting
and increase the model’s generalization power (Srivastava
etal., 2014). The last layer is activated by a linear function,
#(x) = x.

The base model was fitted with dataset D;. Noise
was added to the D, distributions, with 2.5% of the
maximum value, following a Gaussian distribution. Since
the maximum value of all distributions belonging to D; is
1, the noise distribution has the configuration x = 0.025
and ¢ = 0.025, with z,,i, = z + noise. The z vector was
concatenated with the z,,y;5.. This noise also assumes the
role of regularization in the model.

The vector g for each distribution is defined by
enumerating the database, from 0 to 198, therefore, 8
positions are needed to represent it. The model was
adjusted using the Adam optimizer (Kingma and Ba, 2014),
Mean Absolute Error (MAE) as an error computation
and metric, with an early stop when reaching 20 epochs
without error reduction and with a tolerance of up to 20
thousand epochs. The size of the data packet per epoch was
128 elements, randomized. To arrive at the architecture
of Fig. 4, we started by adjusting the model with only 3
layers of 16 neurons. As the error was high, the number
of neurons was increased and the adjustment process
was performed again. This process of checking the error
and adjusting the model architecture was repeated until a
satisfactory level of error was reached. Thus, the adjusted
model was obtained to describe curve shapes with an error
close to 0.004.

The storage of this model is done together with the
maximum value of each normalized distribution, the
maximum value for tis and mileage, and the dataset D,
cutted for mileage <= x, and tis <=y, this last database is
called M. This process was repeated to x;, = 25,000 and
Vi = 25, and to x;, = 15,000 and y;, = 15. Datasets D; and
My, are illustrated in Fig. 5.

The second step is very similar to the solutions available
in the literature. If, on the one hand, there are parametric
models, which describe a specific behavior and take this
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Figure 5: Description of dataset D; with 199 distributions.
The part in green represents the data enumerated and
copied to Mgp,.

behavior and adjust it to the experimental data, on the
other hand, the base model provides different behaviors,
such behaviors can also be adjusted to the experimental
data.

For data in D2, there is the problem of non-maturity,
which is when the data is not yet complete. For example,
component data for 2021 model year cars that were sold in
January are only complete for tis <= 2 when captured in
March 2021, because all of these cars have only completed
2 months in service at that time. Knowing this, only the
complete part of a sub model is taken for adjustment.
Noise is also added to D, proportionally to the maximum
value for each distribution. The value of g is defined by
comparing M, (green part in D;) with the equivalent part
in Dy, using the Frobenius norm. This step to find the
value of g for distributions other than D; can be replaced
by a clustering model such as K Means, Gaussian Mixture
Model and DNN.

Each filter has a submodel that describes it. This
submodel is obtained by adjusting the base model with a
separate dataset for fitting. For each filter, D; was divided
into training data, where mileage is less than or equal to
Xc, and tis is less than or equal to yc, and validation data,
where mileage is greater than x¢ and tis is greater than
yc. The fitting process was performed for a maximum of
1000 epochs, with a stopping condition of no reduction in
absolute error for 30 consecutive epochs. The model with
the lowest error was stored during this process. The batch
size for training was 16 randomly selected elements. After
this fitting process, a comparison was made between the
model’s inference and the observed distribution for each
distribution.

5 Results and Discussions

Two variations were made for the adjustments and tests
of the models that describe a forecast distribution. One
with the dataset clipped at xc = 20000 and y. = 20, and the
other at xc = 1000 and y. = 15. Table 2 shows a summary
of the mean absolute error of the models in inferring each
distribution separated for testing.

In this Table 2, the values for the models with cutoff
at xc = 20000 and y. = 20 were slightly better than with
the second cutoff because the first provides more data for

the model to be fitted. Note that the errors were low, since
the adopted metric is the sum of the absolute differences
divided by the size of the vector, where each vector has
between 1500 and 4900 elements. The “25%” column
refers to the error value that up to 25% of the models
reached, and so on for the “50%” and “75%” columns.
Figs. 6 and 7 shows an example of an observed versus
predicted distribution.

000
T0000

Figure 6: Observed distribution to a filter.

Z pred

Figure 7: Description of dataset D; with 199 distributions.
The part in green represents the data enumerated and
copied to Mgp,.
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Table 2: MAE for models fitted with data clipped in mileage <= xc and tis <= yc

min mean 25% 50% 75 % max
X¢ = 20,000 and y¢ = 20 0.034891 0.448511 0.127836 0.186426 0.376528 8.494953
Xc =1000 and y¢ = 15 0.070525 0.702727 0.26611/ 0.425506 0.688175 8.831922

To the both figures, the part number has been omitted
for data confidentiality reasons. The dashed lines describe
the portion of data clipped by x¢ = 1000 and y¢ = 15. It
shows that the model follows a surface shape with values
very close to the observed values, with MAE = 1.519368.
Regarding axes, mileage = milge (mileages) and tis =
tis_wsd (months), z-axis is in percentage, z = (q/N) * 100.
Another example is shown in Figs. 8 and 9, this time
providing more data for the model.

15000
Milge 20000 —
25000

30000

Figure 8: Description of dataset D, with 199 distributions.
The part in green represents the data enumerated and
copied to Mp,.

A deeper analysis of the inner workings of the proposed
model can be done later to understand why the model
continued to follow the same distribution for mileage
> xc and tis > yc. However, it was observed that the
model returned a smoother surface as the regularization
increased. On the other hand, with more regularization,
we had greater error during the adjustment of the base
model, so the model was increased so that it describes all
the shapes present in the historical base but returns the
smoothest possible surfaces. Thus, it is understood that an
adjustment in the model’s architecture may be necessary
when new components with matured data appear to be
included.

Nevertheless, the model may fail when we have a
distribution that is very different from those learned by the
base model. This can occur when the historical database
is not robust or contains bias. Figs. 10 and 11 illustrates an

Z pred

Figure 9: Description of dataset D, with 199 distributions.
The part in green represents the data enumerated and
copied to Mg,

unusual surface shape in the separate dataset for adjusting
the base model, but which is very common in the separate
dataset for forecasting, due to the large difference in years
between the two bases. Ideally, the base model should
be updated gradually over the years so that this does not
occur, for study purposes, a large part of the most recent
data was separated, so that validation could be carried out.
That is, if the most recent dataset were used to fit the base
model, there would be few copies to fit the submodels and
perform validation.

It should be remembered that this forecast is based
on past events, including the actions of the company’s
engineers when they encounter a problem with a part
number or product model in general. Also, it is worth
noting that the historical base used must be representative
and its robustness can be increased with synthetic data
inserted in it, such as the more common Weibull and
Lognormal distributions.

6 Conclusion

An approach for bivariate forecasting using deep Artificial
Neural Networks was shown, which can be easily
automated. This methodology takes into account state-of-
the-art techniques for assembling a model that forecasts
failures of a part number, considering historical behaviors
as a basis, through transfer learning. The base model



58 Pires, Torelli & Escobar |

Revista Brasileira de Computagdo Aplicada (2023), v.15, n.2, pp.51—59

70000

Figure 10: Distribution of a part number that takes longer
to start to fail.

developed presented MAE close to 0.004 in the description
of the 199 different dataset distributions. This model
means the description of all failure behaviors that occurred
with all part numbers considered. It can be gradually
updated every time there is a new set of matured data of
any part number. Was shown that it is possible that a DNN
model can extrapolate surfaces keeping them smooth,
through the tests done. As possible improvements, we
can highlight the study of replacing the M;b base by a
clustering model, which can be modeled separately or
integrated as a layer in the base model itself, if it is a DNN
model. Furthermore, the enumeration, g, can be done in
an ordered way by, by some parameter, as the maximum
value of the distributions, thus exploring the proximity
relationship between them. A study focused on the inner
workings of the DNN, applied to forecasting, can also be
done to understand why it is possible that it continues to
return values following the same distribution even outside
the interval that was last adjusted. Therefore, this new
approach demonstrates potential contribution in product
reliability analysis and opens up a range of possibilities to
be explored.
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