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Abstract
The reliability and resource management of products for warranty is important. Furthermore, the number of failures of aproduct over time of use and level of expenditure can assume different distributions. Approaches with parametric modelsbring good results when there is a normal distribution, and the application of Deep Learning (DL) is very promising. Weshow a new methodology for the application of DL models with transfer learning to bivariate forecasts of repair rates inproducts that are under warranty. The solution was applied to data from an American company, recorded from 2015 to2022, of 12 different types of parts from 69 different types of cars. An evaluation of the absolute error of the forecasts wasperformed for each combination of part, car and model year. Tests showed that the model performed well in predictingdata for 70 months in service and 70,000 miles, using data from cars with at least 15 months in service and 1,000 milesas input. It was also concluded that the solution is robust for cases of incomplete data and distributions far from thenormal distribution.
Keywords: Forecast of repair rates; machine learning; reliability; warranty data analysis.
Resumo
A confiabilidade e o gerenciamento de recursos de produtos com garantia são importantes. Além disso, o número defalhas de um produto ao longo do tempo de uso e nível de gastos pode assumir diferentes distribuições. Abordagenscom modelos paramétricos trazem bons resultados quando há uma distribuição normal, e a aplicação de AprendizadoProfundo (Deep Learning - DL) é muito promissora. Apresentamos uma nova metodologia para a aplicação de modelosde DL com aprendizado transferido para previsões bivariadas das taxas de reparo em produtos sob garantia. A solução foiaplicada a dados de uma empresa americana, registrados de 2015 a 2022, referentes a 12 tipos diferentes de peças de 69tipos diferentes de carros. Uma avaliação do erro absoluto das previsões foi realizada para cada combinação de peça,carro e ano do modelo. Os testes mostraram que o modelo teve um bom desempenho na previsão de dados para 70 mesesde serviço e 70.000 milhas, usando dados de carros com pelo menos 15 meses de serviço e 1.000 milhas como entrada.Concluiu-se também que a solução é robusta para casos de dados incompletos e distribuições distantes da distribuiçãonormal.
Palavras-Chave: Análise de dados de garantia; aprendizado de máquina; confiabilidade; previsão de taxas de reparo.

1 Introduction

Customers value a good product warranty. However,they become dissatisfied and lose confidence when theyhave a problem, even in the face of efficient repairs orexchanges. Many product manufacturing companiesneed technological solutions for predicting the amount

of products that will have some type of failure within atime interval before the event. This is because warrantyand reliability costs are important when measuring acorporation’s performance. They need active action evenin production time, as the early identification of a failuretrend in a set of products can make big differences in thebudget (Lee et al., 2021; Wang et al., 2017; Wang and Xie,
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2018). This active action can be preventive maintenanceor even the release of a fix (He et al., 2018; Khoshkanginiet al., 2020; Rai and Singh*, 2005; Wu, 2012).In particular, there are technological solutions proposedin the literature for the prediction of warranty claims.Among them, we can mention solutions for forecastingbased on time series models, such as the Markov, Box-Jenkins Model and Multi Layer Perceptron, which arepromising in the theme. Other technical engagement workfocused on predicting a specific failure for each productalready sold and in use. In this case, the objective is toobtain a portion of the products that will present a specificfailure, with a determined period of relatively short timein advance. With this, it is possible to act proactively toimprove the user experience and assist in decision making.This technique can be used in the context of confidenceassurance, but also has limitations with respect to theprediction time in advance (Xu et al., 2003). Assumingthat the failures are related to the age and level of usageof the products, the exploration of solutions for bivariateforecasting becomes very important (Chehade et al., 2022;Gupta et al., 2014, 2017).Among the problems to be faced in the constructionof such solutions, there are the non-maturity of the data,failure rate depending on time in service and level of use,and high level of complexity for the ideal parameterizationof each chosen model. Time-in-service failure ratecurves change according to the emergence of new failuresor new products being produced/sold over time. Thephenomenon of non-maturity occurs when the curvesdo not represent the real failure rate for time in serviceand current usage level. In this context, although thereare many promising techniques, some improvements canbe made, such as applying them together with a simplifiedmethodology.On the other hand, DL techniques have greatpotential and are already being used in this type ofapplication. In particular, neural networks are greatgeneric approximants of functions, which can be thesubstitute of other parametrics models (Xu et al., 2003;Zainuddin and Pauline, 2008).In addition, new techniqueswere introduced to improve the performance of this toolwhen applied to problems where there are few examplesobserved, such as oversampling, data ensemble andtransfer learning (Feng et al., 2019).A bibliographic review was carried out on forecastingexpenses with product warranty in general andapplications of computing techniques in this problem,using the Google Scholar search as the main tool. Theprincipal scope is in the study of an integrated solutionthat can be automated. Therefore, solutions with machinelearning models received more attention than thosewith parametric models. The main contributions wereseparated, without discarding the solutions based onparametric models, so that a more integrated solutioncan be made, but with a reduced scope. These steps weretaken to provide the necessary tools for modeling, testingand analyzing the results.The article is divided as follows: Section 2 provides anoverview of the problem in the current context, along witha discussion of previous work. Section 3 presents relatedworks that have also contributed to the formulation of the

proposed solution. Section 4 describes the modeling ofthe proposed solution, the dataset, applications, and testsconducted. In Section 5, the results are discussed. Finally,conclusions are drawn, and future steps for improving thework are outlined in Section 6.
2 Background
Some of the main ways of predicting auto warranty claimsare forecasting based on past warranty claim data, andclassifying the instantaneous state of each car beingused by customers. Khoshkangini et al. (2020) madea comparison between these two methodologies, forthis, they built machine learning models, one for linearregression and the other for classification, respectively.Linear regression provides the expected warranty claimrate value per time in service for a specific componentof cars sold. However, this proposed solution has focuson exploring the applicability of data obtained from carsalways connected and sending data to the cloud in realtime.Thinking of proposing a solution for three-dimensionalanalysis of warranty data, Gupta et al. (2014) determinedthe usage rate as the division between the usage level (m -mileage) and the time in service (t), as two independentvariables, that is, with low correlation. Considering onlythe guarantee interval, the probability of failure in thisinterval is calculated. Where the observed fault density isgiven by Eq. (1).

p(t <= t0, m <= m0) = q
N (1)

In Eq. (1), q is the cumulative number of failures and Nis the number of products sold, for t <= t0 and m <= m0.Where t0 is the limit for the warranty in the direction oftime in service and m0 is the limit for the warranty in thedirection of the mileage axis, which mileage represents thelevel of use of the cars. Similarly, Xie et al. (2017) providedan approach for bivariate modeling of the number ofwarranty claims as a non-homogeneous Poisson process(NHPP) distribution. They considered that the distributionof warranty claims is related to both the level of use andthe age of the products under study.He et al. (2018) proposed a reliability model consideringthe engineering learning effect and use effect. Theengineering learning effect concerns the possible inverserelationship of component failure rate with the newversion or model year released. The hypothesis is that themore recent the component version, the lower the failurerate, as observed in some datasets. The use effect concernsthe possible relationship between the level of use of thecars and the failure rates. In this modeling, they assumedthat the failure rate of the studied components follows aWeibull or Log-Normal distribution.The phenomenon of data immaturity can be a bigproblem in most analysis for forecasting. To addressthis, Chehade et al. (2022) proposed a model based onthe Conditional Gaussian Mixture Model (CGMM) thatdescribes this distribution as a function of the time in useof a product. The idea is that there are components thathave similar warranty claim distributions, despite many
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of these components being distinct from one another. So,they proposed a clustering, which groups the historicalwarranty data. Thus, through an inference using CGMM,it is possible to obtain the behavior most similar to thedistribution to be analyzed. However, it is necessary toensure that the normalized behavior of the number ofwarranty claims is close to a normal distribution, throughan observation on a data set.On the other hand, Artificial Neural Networks (ANN)can be used in the context of forecasting as approximatorsof functions that describe the failure rate (Schmidt-Hieber,2020). Zainuddin and Pauline (2008) compared differenttypes of ANN models to approximate different curveshapes. The study was conducted based on the basicstructure of an ANN with a hidden layer, varying theactivation of this layer with the Mexican Hat, GaussianWavelet (WNN), Morlet and Gaussian (RBFN) functions.It is concluded that the activation function in the hiddenlayers of an ANN has a high weight in the behavior in theresult (Yang et al., 2013).In a comparison between different types of modelsfor forecasting the reliability of automobile components,Lee et al. (2021) showed that, in the tests, ANNsperformed better when compared to parametric models.In addition, it was possible to perceive that there aremany distributions that are very distant from a normaldistribution and that modeling manually may not bringgood results and be costly.These works allowed us to notice that the applicationof parametric models has promising results but requiresa priori certification that the behavior of warranty claimsfollows a known distribution. In addition, it can beconcluded that deep ANN has potential for application toforecast warranty claims, especially when the distributionof these data is unknown.
3 Related Works

Gupta et al. (2014) presented a model based on Weibulland Exponential Distribution, to describe the probabilityof failure as a function of time and level of use of products,algorithm from the nlm package of the R language tooptimize it. The fitted model approximates the observedprobability. Gupta et al. (2017) also presented someproblems about bivariate forecasts, in a literature review.Dai et al. (2019) also showed a model for forecastingwarranty claims based on the non-homogeneous Poissonprocess. They used synthetic data and data obtained froma Chinese car manufacturer to fit and validate the model.Chehade et al. (2022) optimized a model for clusteringproduct repair distributions (CGMM) with the Expectationand Optimization algorithm to apply in a parametricmodel for forecasting. As validation, it was applied toestimate car warranty claims using data provided by Ford.This data is composed of information of 15,000 partsof 10 million vehicles, from model years from 2010 to2013. Rai and Singh* (2005) explored the application ofthe type of ANN called radial basis function (RBFN) toforecast vehicle warranty costs. Lee et al. (2021) comparedthe application of different types of reliability forecastmodels for car components. The different types were

Convolutional Neural Networks (CNN), Recurrent NeuralNetworks (RNN), Sequence To Sequence Model, SupportVector Machine, Decision Tree Ensamble, ARIMA andWeibull Distribution. RNN had the best performance whilethe Weibull parametric model had the worst, in tests witha database built with information from 147 car parts from9 different model years. Mitra et al. (n.d.) presented amodel similar to an ensemble for retail forecasting. It is alinear regression model that is fitted with data from thecombination of inference from the Random Forest andXGBoost models. They used data from a company sellingvarious products to compare the proposed solution withexisting architectures, such as AdaBoost, XGBoost andRandom Forest and RN, with the metrics Mean SquaredError, Mean Absolute Error and R2. The Table 1 shows asummary of the closest works found.
4 Proposed Solution
The proposed solution integrates some results found inthe literature. This solution is a machine learning modelthat takes the learning obtained from historical data andmerges it with the new observed data to make a bivariateforecast. For this, a model of Deep ANN is built with thedifferent existing distributions in the database, called basemodel. These distributions are the data from past repairs,which occurred over the years up to a cut-off point; thiscut-off point could be years or months behind the analysisdate. From this base model, another model is adjusted,but retrieving the parameters of the base model (learningtransfer), with the data available for adjustment of thedistribution (current data) that one wants to make theprediction. Considering that all data that were used toadjust the base model are already matured, it is understoodthat this model describes the shape of past distributionswithout the phenomenon of immaturity. From there, thedistribution of the base model closest to the current datais obtained and adjusted. The result of this adjustment is asub-model that describes the behavior of the extrapolatedcurrent distribution.
4.1 Modeling

Consider the scenario in which you have a set of historicalrepair data for several components of a company withinformation about these components and the date ofoccurrence. We want to obtain a model that describes therepair rate (z) of a specific component as a function of timein service (t), in months, and level of use (m), in miles.The values of these two variables, t and m, represent thelevel of stress that such components or products suffereduntil the moment of repair. It is assumed that, a priori,the distribution of z is not known, and there exists arelationship between z and t and m. It is also assumedthat a deep ANN model can be approximated to follow thez-distribution behavior.The Deep ANN models can be used for regressionwithout defining the behavior form beforehand. Thinkingabout the normalized distributions of products as afunction of time of use and expenditure, it is assumedthat there is at least one DNN model, for each one, that
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Table 1: Related works
Authors Objective Tools Bivariate Consider non

maturity
With transfer

learning
Gupta et al. (2014) Bivariate forecastof failureprobability as afunction of timeand level ofproduct use

Weibull Yes Yes No

Gupta et al. (2017) Bivariate forecastof product failurerate
Weibull Yes Yes No

Dai et al. (2019) Bivariate forecastof warranty claims non-homogeneousPoisson process
Yes Yes No

Chehade et al.(2022) Bivariate forecastof product repair NormalDistribution,Gaussian MixtureModel

Yes Yes No

Rai and Singh*(2005) Forecast ofwarranty costsover time
radial basisfunction No Yes No

Lee et al. (2021) Comparison oftechniques forforecasting
several No Yes No

Mitra et al. (n.d.) Forecast of productretail Linear Regression,Xg Boost, RandomForest
No No No

describes them in an interval. Consider Fk(X), the modelthat describes the behavior of any distribution, dk.
Consider a DNN, F(X), which represents the sum of all

F′
ks, so it behaves like an Fk according to the input. In otherwords, it is considered that it is possible to find all modelsof DNN’s that describe all distributions of the dataset andthat there is another larger DNN that is the compositionof all of them, observe the abstraction of this modeling inthe Fig. 1 and Fig. 2.

Figure 1: Abstract model for Fk and F for k DNN’s of 3layers and n neurons. Fk is a DNN. The arrows representthe data transition, where the base of the arrowsrepresents the origin and the tip represents thedestination

Figure 2: Abstraction of F(x).
Similar to a model for classifying X, F(X) obtains the

Fk that follows the closest distribution of X. Take X as avector of the form
X = [[m1, t1, g1], . . . , [ml, tl, gl]], to mi and ti ∈ R
Where g is a value, in binary, that represents theidentification of the distribution to which m and t belong.It is found by comparing the current distribution X witheach distribution used to build F, through the Frobeniusnorm. The current distribution is the data available toforecast the product to be analyzed, which is a pair X, z.
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Assuming that the historical database has d distributions,
g is described as

g = a1, a2, ..., aj, to j = log(d)
log(2) = length(g), d ∈ N

Thus, X = [m, t, a1, a2, ..., aj]. The macro view of thearchitecture of the proposed solution can be representedby Fig. 3.

Figure 3: Macro architecture of the proposed system. TheDNN’s are in blue. Base Model is the representation of F
Therefore, the base model (F) has the function ofdescribing the different forms of distributions and thesubmodel receives the transfer learning from F to describethe current distribution.

4.2 Dataset

The dataset consists of a historical distribution of car partsexchange records from model years 2015 to 2021, from anAmerican car manufacturer. There were 69 different typesof cars distributed among these model years. The databasewas filtered to only have records of 12 different types ofcar components (part number), manually selected by aperson specializing in the company’s warranty. Data fromthe model years from 2015 to 2017 were separated for theadjustment of the base model (History Data - D1), whilethe other remaining data were left for the adjustment andvalidation of the sub models (Current Data - D2).The database obtained consists of two matrices, onewith information on part number exchanges (Wclm) andanother on the quantity produced (Wprod). Wclm hasthe following columns: vin, model_year, vehicle_line,part_number, tis, mileage. Whereas Wprod has thefollowing columns: vin, model_year, vehicle_line. Aunique combination of model_year, vehicle_line andpart_number identifies a distribution, called a filter.Thinking about the application of the modelingproposed in the previous section, D1 and D2 are sets offault density distributions, for each filter, built with aPython algorithm using Equation 3. Also, a normalizationwas applied to the datasets so that each distribution hasvalues between 0 and 1. 199 distributions were obtainedfor D1 and 266 for D2, thus, D1 = Df1, Df2, . . . , Df199 and
D2 = Df200, Df201, . . . , Df465.Each Dfi has a maximum of 4900 elements, becausethe warranty limit is defined for tis <= 70 and mileage <=70,000 and z is defined for all elements of the cartesianproduct between tis and mileage.

4.3 Application and Tests

The proposed solution works in two stages, the firstconsists of building and testing the base model, andthe second consists of adjusting and validating the sub-models. The base model architecture is shown in Fig. 4.This model was thought to be robust to non-lineardistributions, to have good generalization power and tobe able to learn the 199 different distributions present inthe historical database.

Figure 4: Base model architecture.
In this Fig. 4, Dense is an artificial neural networklayer with 36 neurons fully connected to the input vectorwith 10 elements, with output activated by the ReLU(Rectified Linear Unit) function. The Normalization layeris responsible for dragging and normalizing the result ofthe previous layer by mean and variance (Ba et al., 2016).Dropout is a regularization layer to decrease overfittingand increase the model’s generalization power (Srivastavaet al., 2014). The last layer is activated by a linear function,

ϕ(x) = x.The base model was fitted with dataset D1. Noisewas added to the D1 distributions, with 2.5% of themaximum value, following a Gaussian distribution. Sincethe maximum value of all distributions belonging to D1 is1, the noise distribution has the configuration µ = 0.025and σ = 0.025, with znoise = z + noise. The z vector wasconcatenated with the znoise. This noise also assumes therole of regularization in the model.The vector g for each distribution is defined byenumerating the database, from 0 to 198, therefore, 8positions are needed to represent it. The model wasadjusted using the Adam optimizer (Kingma and Ba, 2014),Mean Absolute Error (MAE) as an error computationand metric, with an early stop when reaching 20 epochswithout error reduction and with a tolerance of up to 20thousand epochs. The size of the data packet per epoch was128 elements, randomized. To arrive at the architectureof Fig. 4, we started by adjusting the model with only 3layers of 16 neurons. As the error was high, the numberof neurons was increased and the adjustment processwas performed again. This process of checking the errorand adjusting the model architecture was repeated until asatisfactory level of error was reached. Thus, the adjustedmodel was obtained to describe curve shapes with an errorclose to 0.004.The storage of this model is done together with themaximum value of each normalized distribution, themaximum value for tis and mileage, and the dataset D1cutted for mileage <= xk and tis <= yk, this last database iscalled Mdb. This process was repeated to xk = 25, 000 and
yk = 25, and to xk = 15, 000 and yk = 15. Datasets D1 and
Mdb are illustrated in Fig. 5.The second step is very similar to the solutions availablein the literature. If, on the one hand, there are parametricmodels, which describe a specific behavior and take this
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Figure 5: Description of dataset D1 with 199 distributions.The part in green represents the data enumerated andcopied to Mdb.
behavior and adjust it to the experimental data, on theother hand, the base model provides different behaviors,such behaviors can also be adjusted to the experimentaldata.For data in D2, there is the problem of non-maturity,which is when the data is not yet complete. For example,component data for 2021 model year cars that were sold inJanuary are only complete for tis <= 2 when captured inMarch 2021, because all of these cars have only completed2 months in service at that time. Knowing this, only thecomplete part of a sub model is taken for adjustment.Noise is also added to D2 proportionally to the maximumvalue for each distribution. The value of g is defined bycomparing Mdb (green part in D1) with the equivalent partin D1, using the Frobenius norm. This step to find thevalue of g for distributions other than D1 can be replacedby a clustering model such as K Means, Gaussian MixtureModel and DNN.Each filter has a submodel that describes it. Thissubmodel is obtained by adjusting the base model with aseparate dataset for fitting. For each filter, D1 was dividedinto training data, where mileage is less than or equal to
xc, and tis is less than or equal to yc, and validation data,where mileage is greater than xc and tis is greater than
yc. The fitting process was performed for a maximum of1000 epochs, with a stopping condition of no reduction inabsolute error for 30 consecutive epochs. The model withthe lowest error was stored during this process. The batchsize for training was 16 randomly selected elements. Afterthis fitting process, a comparison was made between themodel’s inference and the observed distribution for eachdistribution.
5 Results and Discussions
Two variations were made for the adjustments and testsof the models that describe a forecast distribution. Onewith the dataset clipped at xc = 20000 and yc = 20, and theother at xc = 1000 and yc = 15. Table 2 shows a summaryof the mean absolute error of the models in inferring eachdistribution separated for testing.In this Table 2, the values for the models with cutoffat xc = 20000 and yc = 20 were slightly better than withthe second cutoff because the first provides more data for

the model to be fitted. Note that the errors were low, sincethe adopted metric is the sum of the absolute differencesdivided by the size of the vector, where each vector hasbetween 1500 and 4900 elements. The “25%” columnrefers to the error value that up to 25% of the modelsreached, and so on for the “50%” and “75%” columns.Figs. 6 and 7 shows an example of an observed versuspredicted distribution.

Figure 6: Observed distribution to a filter.

Figure 7: Description of dataset D1 with 199 distributions.The part in green represents the data enumerated andcopied to Mdb.
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Table 2: MAE for models fitted with data clipped in mileage <= xc and tis <= yc
min mean 25% 50% 75 % max

xc = 20, 000 and yc = 20 0.034891 0.448511 0.127836 0.186426 0.376528 8.494953
xc = 1000 and yc = 15 0.070525 0.702727 0.266114 0.425506 0.688175 8.831922

To the both figures, the part number has been omittedfor data confidentiality reasons. The dashed lines describethe portion of data clipped by xc = 1000 and yc = 15. Itshows that the model follows a surface shape with valuesvery close to the observed values, with MAE = 1.519368.Regarding axes, mileage = milge (mileages) and tis =tis_wsd (months), z-axis is in percentage, z = (q/N) ∗ 100.Another example is shown in Figs. 8 and 9, this timeproviding more data for the model.

Figure 8: Description of dataset D1 with 199 distributions.The part in green represents the data enumerated andcopied to Mdb.
A deeper analysis of the inner workings of the proposedmodel can be done later to understand why the modelcontinued to follow the same distribution for mileage> xc and tis > yc. However, it was observed that themodel returned a smoother surface as the regularizationincreased. On the other hand, with more regularization,we had greater error during the adjustment of the basemodel, so the model was increased so that it describes allthe shapes present in the historical base but returns thesmoothest possible surfaces. Thus, it is understood that anadjustment in the model’s architecture may be necessarywhen new components with matured data appear to beincluded.
Nevertheless, the model may fail when we have adistribution that is very different from those learned by thebase model. This can occur when the historical databaseis not robust or contains bias. Figs. 10 and 11 illustrates an

Figure 9: Description of dataset D1 with 199 distributions.The part in green represents the data enumerated andcopied to Mdb.
unusual surface shape in the separate dataset for adjustingthe base model, but which is very common in the separatedataset for forecasting, due to the large difference in yearsbetween the two bases. Ideally, the base model shouldbe updated gradually over the years so that this does notoccur, for study purposes, a large part of the most recentdata was separated, so that validation could be carried out.That is, if the most recent dataset were used to fit the basemodel, there would be few copies to fit the submodels andperform validation.It should be remembered that this forecast is basedon past events, including the actions of the company’sengineers when they encounter a problem with a partnumber or product model in general. Also, it is worthnoting that the historical base used must be representativeand its robustness can be increased with synthetic datainserted in it, such as the more common Weibull andLognormal distributions.
6 Conclusion
An approach for bivariate forecasting using deep ArtificialNeural Networks was shown, which can be easilyautomated. This methodology takes into account state-of-the-art techniques for assembling a model that forecastsfailures of a part number, considering historical behaviorsas a basis, through transfer learning. The base model
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Figure 10: Distribution of a part number that takes longerto start to fail.
developed presented MAE close to 0.004 in the descriptionof the 199 different dataset distributions. This modelmeans the description of all failure behaviors that occurredwith all part numbers considered. It can be graduallyupdated every time there is a new set of matured data ofany part number. Was shown that it is possible that a DNNmodel can extrapolate surfaces keeping them smooth,through the tests done. As possible improvements, wecan highlight the study of replacing the Mdb base by aclustering model, which can be modeled separately orintegrated as a layer in the base model itself, if it is a DNNmodel. Furthermore, the enumeration, g, can be done inan ordered way by, by some parameter, as the maximumvalue of the distributions, thus exploring the proximityrelationship between them. A study focused on the innerworkings of the DNN, applied to forecasting, can also bedone to understand why it is possible that it continues toreturn values following the same distribution even outsidethe interval that was last adjusted. Therefore, this newapproach demonstrates potential contribution in productreliability analysis and opens up a range of possibilities tobe explored.
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