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Abstract

In this work, a solution for the distributed storage of data in Smart Cities is presented. An Edge-Fog-Cloud architecture
that partitions the data through the Sharding technique proposes a hierarchical model that manipulates IoT data
generated by Smart Cities. The problem is related to the approaches used to promote an integrated environment. Related
works tend to use cloud-focused approaches that generate high latency rates, and those that use Fog Computing only
use the layer as middleware, not exploring greater possibilities for use. In this context, this work presents the DASTData
model that aims to enable lower latency rates, more data security, fault tolerance, high availability, and concurrent
queries to promote a better experience in data management and availability in smart cities. In addition, our contribution
to the literature is related to the proposition of an architecture focused on enabling the traceability of users who have
mobile behavior in the city, providing the ability to analyze patterns and occurrences through the consolidation of data
from one or more individuals. In the results obtained through the tests carried out in this work, we observed that in
queries DASTData is up to 73% more efficient.

Keywords: Cloud Computing; Data Sharding; Data Traceability; Distributed Storage; Fog Computing.

Resumo

Neste trabalho é apresentada uma solugéo para armazenamento distribuido de dados em Smart Cities. Através de uma
arquitetura Edge-Fog-Cloud que particiona os dados através da técnica Sharding, é proposto um modelo hierarquico que
manipula dados IoT gerados por Smart Cities. O problema esta relacionado com as abordagens utilizadas para promover
um ambiente integrado. Trabalhos relacionados tendem a utilizar abordagens focadas em nuvem que geram altas taxas
de laténcia, e os que utilizam Fog Computing utilizam apenas a camada como middleware, ndao explorando maiores
possibilidades de uso. Nesse contexto, este trabalho apresenta o modelo DASTData que visa possibilitar menores taxas de
laténcia, mais seguranca de dados, tolerancia a falhas, alta disponibilidade e consultas simultaneas para promover uma
melhor experiéncia no gerenciamento e disponibilidade de dados em cidades inteligentes. Além disso, nossa contribuicio
para a literatura, esta relacionada a proposicdo de uma arquitetura focada em possibilitar a rastreabilidade de usuarios
que possuem um comportamento mével na cidade, proporcionando a capacidade de analisar padrdes e ocorréncias
através da consolidacdo de dados de um ou mais individuos. Nos resultados obtidos através dos testes realizados neste
trabalho, observa-se que em consultas o DASTData é até 73% mais eficiente.

Palavras-Chave: Armazenamento Distribuido; Computacdo em Neblina; Computa¢do em Nuvem; Fragmentagdo de
Dados; Rastreabilidade de Dados.

1 Introduction

With the urban population growth in the great centers,
Smart Cities become an ever closer reality. The possibility
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of integration between the various areas of a city brings the
expectation of improvements in public management in all
its attributions, such as mobility, health, education, and
infrastructure (Lai et al., 2020). Integrating the generated
data is also a desire of the users, who can keep active
control of their health, schedule, and home to improve
their productivity and have more time and quality of life.
However, the tasks of storing and querying this data need
to be as performant and transparent as possible.

Data management is the critical factor for the success
of an intelligent ecosystem (Benhamida et al., 2022). This
is because smart cities, from their sensors, generate a
massive amount of data (Sasubilli et al., 2020) that needs
to be stored efficiently to guarantee better performance in
the processing and analysis of this data. In this context, it
is noted that dealing with data at the edge of the network
reduces latency, increases security, and reduces the load
on the network when compared to a distant model such
as the one based only on Cloud Computing (Vilela et al.,
2020). One way to implement this manipulation closer to
the data is through clusters (or nodes) of Fog Computing
(Naeem et al., 2019) that are distributed in the city and are
more efficient in the data processing.

Furthermore, Relational Database Management
Systems (RDBMS) are complicated or add more
complexity in this application context, requiring
greater flexibility. On the other hand, Non-Relational
Databases (NoSQL) have flexibility in the data schema
as their native characteristic. They were born to be
easily distributed and scaled from techniques such as
Sharding (Abdelhafiz and Elhadef, 2021) that partitions
data horizontally among several database instances.

This work is linked to the Minha Histéria Digital
(My Digital History) project. It aims mainly at the
proposition and implementation of a storage architecture
in hierarchical nodes in the Edge-Fog-Cloud model for
smart cities, focusing on the storage and traceability
of vital data generated through IoT sensors. This
architecture should promote geographic proximity to
clients, reduced latency, increased security, reduced
data flow, fault tolerance, concurrent queries, and easy
scalability of resources. Some architectural propositions
were analyzed to support the concepts and approaches
already studied, seeking to find possible gaps in the
literature.

After analyzing the related work (Kudo, 2018;
Sinaeepourfard et al., 2018; Shwe et al., 2016; Abreu et al.,
2016; Lomotey et al., 2018; Zhang, 2020; Benhamida et al.,
2022), it was observed the need to propose an architecture
that meets all the aforementioned requirements, seeking
to fill gaps in the literature related to the ability to trace
user data dispersed in distributed architectures and the
reduction of connection latency between services and
IoT devices. In this context, this article presents the
DASTData model, an acronym for Distributed Architecture
to Store and Trace Data, which mainly addresses how
to store and trace data in complex and distributed
architectures such as those of Smart Cities through the
joint use of technologies such as Sharding and concepts
like Fog and Cloud Computing. With the proportions
that a smart city architecture can take and observe the
distributed storage problems that need to be solved in this

context, the present work aims to develop a data storage
and traceability model for smart cities. Our contribution
can be summarizes as follows:

i. Proposal of a fog-cloud model that uses the sharding
technique for efficient distribution and traceability of
IoT data in smart cities.

This work is organized into seven sections. In Section 1,
the work’s problem and justifications are contextualized,
as well as the objectives of the present research. Section 2
defines the concepts relevant to the model’s proposition.
In Section 3, we expose the methodology for selecting
the works that are directly related to this research. We
also detail relevant aspects of each one to check for gaps
in the propositions. In Section 4, we quote the design
decisions taken in light of the related works’ positive and
negative points. We also define and present the proposed
architecture to solve the verified problems. Moving
on to Section 5, we discuss how the model evaluation
methodology was defined to prove its efficiency. In
Section 6 we present some preliminary results obtained
through the implementation of the prototype. Finally, in
Section 7, we present a summary of what was exposed in
Section 4, we also discuss the expected contributions of
the proposed architecture and comment on future works.

2 Fundamentals

This section addresses the concepts cited in this work
to clarify and support the research developed. From the
description of Cloud Computing, Fog Computing, the
Internet of Things, Smart Cities, and Data Fragmentation,
it will be possible to advance in the research by keeping
the concepts updated with previous studies that define
these subjects.

2.1 Internet of Things

Internet of Things is a concept directly related to the
transparent interaction between the devices of our daily
lives in an M2M! model (Patel et al., 2016). Each of
these devices is located at a level called Edge of the
network as they are very close to end users. They
generate a massive amount of data at all times through
small sensors, wearable devices, smart cameras, or even
devices that mediate communications such as gateways
and middlewares, among others, depending on the high-
level architecture shown in Fig. 1.

An application of IoT technologies can be observed in
the smart bracelets that are increasingly popular today.
They have smart sensors capable of monitoring vital signs
such as heart rate, blood pressure, and blood oxygenation
and send this data to the owner’s phone. Later, some
smartphone applications can perform analysis and trigger
alerts on the device, or it can automatically send this data
to an external service that will run Artificial Intelligence

1Machine to Machine (M2M): a concept that describes the
communication between machines, sensors, and devices in
general with no or minimal human intervention.
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algorithms and make predictions about the user’s health,
for example.

There are significant challenges when we talk about
IoT devices integrated into people’s daily lives in smart
ecosystems (Chen et al., 2014). Smart cars can interact
with smart semaphores to improve traffic control.
Instant payments can be made by walking into an
establishment, picking up a product, and walking out
the door, all integrated with a digital wallet. Finally, the
applications are diverse, such as cities, hospitals, homes,
supermarkets, and other intelligent services that interact
with each other through the internet to facilitate people’s
daily lives.

2.2 Cloud and Fog Computing

Cloud Computing (Mell and Grance, 2011), is a concept
that applies to network resources, servers, storage,
applications, and on-demand services made available
through the internet to different customers with little
management effort and reduced cost.

As a new paradigm, it brought some innovations to
computing. Providers can share resources with different
users who pay only for what is used (pay-as-you-go
system), not generating wasted resources and allowing
the ideal service to be acquired for each need. Furthermore,
resources are not necessarily close to users and other
services but relatively centralized in large data centers.
This feature can be beneficial in terms of costs and
maintenance.

Although it is a very beneficial technology for many
cases, there are some open problems regarding smart
cities and IoT devices. The centralization of data centers is
aproblem for applications sensitive to high demand (Vilela
etal., 2020), as network congestion or large geographic
distances can generate critical latency for these systems.

Therefore, with the growing number of IoT devices,
there was a need for an intermediate layer to communicate
with services in the Cloud (Naeem et al., 2019). From this,
the concept of Fog Computing emerges as a layer that
allows processing prior to Cloud, closer to edge devices.
With particular functions, it provides better response
times, lower infrastructure costs, more performance,
better scalability, and more security over data.

Fog Servers

Figure 2: Hierarchical Edge-Fog-Cloud architecture that
exemplifies device scale and latency relationships
depending on proximity to users at each tier.

Fog is an emerging concept that seeks to complement
the use of the Cloud. In other words, the purpose is not to
be a replacement but a new layer, a complement (Bonomi
et al., 2012). Fig. 2 shows that Fog is closer to users
connecting with Edge devices and Cloud data centers.

This proximity allows for lower latencies in interactions
between clients and servers, as well as reducing the
amount of data sent to the Cloud, as Fog performs trivial
processing for the devices, and only essential requests are
sent to the applications in the Cloud (for consolidation
of information or heavier processing, for example).
In addition, a Fog approach improves performance in
responding to devices (Vilela et al., 2020), as the workload
per server is significantly reduced, which reduces the
chances of overloading a single point in the network.

2.3 Smart Cities

Due to the accelerated population growth of urban
environments, we must have more cities with efficient
locations and services to serve citizens. The concept of
Smart Cities arises from this need, which is complex
systems, often called "systems of systems' (Khatoun
and Zeadally, 2016), because they deal with integrating
different devices and services. As illustrated in Fig. 3, most
intelligent city models have six components: government,
economy, mobility, environment, housing, and people.
However, there are some latent challenges when
dealing with smart cities, and most of them are linked
to scalability and QoS? of the model, as they deal with
integrations between critical and high-priority systems,
such as, for example, transit traffic (mobility component)
and public health management (housing component).
The treatment and storage of data are one of these
challenges since, in a smart city, data integration is the key
to more efficient management. In addition, the amount of
data generated in Smart Cities (Chang, 2021) is enormous.
Understanding, storing, and retrieving this data in the

2Quality of Service (QoS): concept applied in networks that prioritize
high-performance applications and that concern them. Suitable
parameters related to bandwidth, latency, packet losses, and jitter
(latency variation).
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best possible way requires a solid, scalable, and secure
architecture. One of the data sources of smart cities is IoT
devices (Section 2.1). The key to a robust architecture that
can meet it can be found in Fig. 2 from the union between
these devices (on the Edge) with Cloud and Fog Computing
(Section 2.2).

2.4 Data Sharding

In a relational database (RDBMS) data is usually
semantically organized into tables, columns, and rows.
Rows are the stored records, columns are the attributes
of those records, and tables are the groupings of that
data into a standard set. This robust structure has
met several academic and market solutions for years.
However, there is a particular difficulty in dealing with
this architecture regarding Big Data, distributed storage,
high performance, and concurrency.

For this purpose, non-relational databases (NoSQL)
emerged, which were conceived with the idea of having
flexible schemas, being scalable and prepared to meet the
architecture that requires high availability and storage
performance (Al Jawarneh et al., 2021). Furthermore,
when we talk about these types of databases, a concept
that comes to the fore is Data Fragmentation or Sharding.
Sharding is not a new term, nor is it unique to NoSQL,
but it has become popular because most NoSQL databases
bring this feature and apply it natively in a simplified way.

The concept deals with the technique of dividing, based
on an established criterion, a group of data into different
subgroups (Corbellini et al., 2017) located on nodes of
the database network. There are different ways to shard
the data using Sharding. An example would be the
division using an equality criterion of item quantity per
node, always trying to keep the same quantity in each to
provide the load balance between them. Another possible
application would be the definition of a division criterion
from one or more fields of the stored data, and ranges or
exact values are defined per node.

Internet
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Economy

Smart
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Smart
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Figure 3: Components of Smart Cities

Due to their dynamic structure, NoSQL databases
usually have the Sharding feature. Some of them
even offer more robust solutions for application in a
distributed storage architecture that bring numerous
advantages, such as the possibility of concurrency to solve
aquery, proximity between clients and persisted data, data
replication to improve architectural fault tolerance, and
even sharded cache per split unit.

3 Related Work

This section details the related work linked with the
research we are conducting. The selection of articles
was made by searching reliable databases such as IEEE

Xplore3, SpringerLink*, ScienceDirect>, MDPI® and ACM
Digital Library’ and aimed primarily at finding related
articles that focused on distributed storage architectures,
layered hierarchical architectures, and traceability of
data distributed in smart cities that have an architecture
composed of Fog and/or Cloud. The search and analysis
resulted in 7 articles, according to Table 1, considered
adherent to one or more relevant aspects of this research
and that directly contribute to the basis of the work to be
developed.

Table 1: Selection of Related Works

Database Work Title
IEEE Kudo (2018) Fog computing with distributed
database
. Data preservation through fog-to-
IEEE Sinaeepourfard et al. cloud (F2C) data management in
(2018) =
smart cities
An IoT-oriented data storage
IEEE Shwe et al. (2016) framework in smart city
applications
Springer A resilient Internet of Things
Link Abreu etal. (2016) architecture for smart cities
. Traceability and visual analytics
Spr.lnger Lomotey et al. for the Internet-of-Things (IoT)
Link (2018) .
architecture
Science Design and application of fog
- Zhang (2020) computing and Internet of Things
Direct : :
service platform for smart city
Dynamic architecture for
MDPI Benhamida et al. | collaborative distributed
(2022) storage of collected data in
fog environments

In (Kudo, 2018) the authors proposed an architecture
for storing data generated by IoT devices. Due to the large
amount of information that these sensors can generate,
it is proposed that this data be pre-stored at the Fog level
in non-relational Databases due to its high scalability
capacity and the dynamic data structures supported by
this model. Furthermore, these databases work very well
in a distributed way, which for a Smart City, for example,
is highly positive, as it allows users to be geographically

3IEEE Xplore: https://ieecexplore.ieee.org/
4SpringerLink: https://link.springer.com/
5ScienceDirect: https://www.sciencedirect.com/
6MDPI: https://wuw.mdpi.com/

7ACM Digital Library: https://dl.acm.org/
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close. In this work, MongoDB was used through the GridFS
feature, which allows storing documents more significant
than 16 MB (MongoDB document size limit) and access to
data portions without needing to load the entire registry.
This feature allows for storing large amounts of data
because instead of storing all the data in a single document,
it divides it into parts.

Also, in this article, the author proposes a storage model
based on three levels. The first stores the original sensor
data in Fog. The second and third levels are located in the
Cloud. At the second level, data extracted from primary
processing is stored. Moreover, the third level stores the
results of the extracted data analysis. This architecture
provides data access to be performed both through the
Cloud and directly on the Fog nodes but is not concerned
with user mobility.

In (Sinaeepourfard et al., 2018), the work’s concern
with data lifecycle management is notable, which links
it directly to this research. The proposed model
was successfully validated in Barcelona, Spain, and is
concerned with three main phases covering the entire data
lifecycle: acquisition, processing, and preservation. These
phases were proposed for a Smart City that uses a three-
layer architecture: Fog layers 1 and 2 and the Cloud layer.
The first layer, Fog 1 or Edge, is the layer closest to the
users who interface the users and their devices with Fog 2.
The second layer, Fog 2, is an intermediate layer between
the Cloud and Fog 1 and is responsible for processing and
storing data with a higher access rate. The third and most
superior layer, the Cloud, is the point furthest from the
users, which generates more latency. It is responsible for
storing historical data and performing heavier processing.

The work (Shwe et al., 2016) proposes a distributed
storage framework that is structured in two layers. The
first layer is a mesh backbone network that stores real-
time system data in a distributed manner. The second
layer is responsible for central storage. Both layers were
designed for the Cloud, but the work does not exclude the
possibility of implementing some services, such as Fog,
in the first layer (mesh). Each node (or Access Point) in
the first layer has its own storage network and contributes
to the formation of a mesh network where each node
has access to the data of the others. Recurring access
and latency-sensitive data are stored in the first tier, and
historical and long-term data is sent to the upper tier
through aggregation routines running in the background.

In (Abreu et al.,, 2016) the main objective is the
concern with the resilience and fault tolerance of an IoT
architecture for Smart Cities. This research was applied
to the city of Lisbon in Portugal and implements services
capable of providing dashboards that assist in decision-
making by government institutions and allow, through
data analysis, the prediction and performance of routines
in the city without human intervention. The proposed
model is divided into three layers (10T, Fog, and Cloud),
and in each layer, multiple instances of microservices
are implemented. In this way, the unavailability of
a single service does not disable the others, and the
redundancy of instances and load balancing ensures
greater availability of the executed applications. The
work reaffirms the importance of the Fog-Cloud union for
workload distribution and latency reduction and places

this structure as a critical factor for a resilient architecture
in intelligent cities.

In (Lomotey et al.,, 2018), the authors proposed
a multilayer IoT architecture model that facilitates
traceability through cloud-based storage that records
device information and metadata of requests made. On-
demand, the metadata repository must be requested to
respond to the tracking of specific data between devices
on the network. In addition, through visualization tools,
the proposed methodologies allow for determining the
link between IoT devices in order to understand the
flow of data on the network. This architecture seeks to
solve the problem of correlation between different data
from the same users since the mobility in the Smart City
network and the different IoT devices generate massive
data. However, as it is a Cloud-based model, recording and
writing latency is challenging.

In (Zhang, 2020), the advantages of the collaborative
use of Fog and Cloud Computing to handle IoT data in
Smart Cities were emphasized. The proposed architecture
is based on a layered model that handles the data coming
from IoT devices in the Fog Computing layer and later
in the Cloud Computing layer. Each node in Fog has
some virtualized services that perform aggregation and
consolidation operations. When there is overhead (or
identification of possible overhead), the data in the Fog is
forwarded to the Cloud. Although this strategy increases,
latency can benefit the model as a whole. The proposal
was made with cities in China in mind, a country with
an accelerated urbanization process. In future works, the
concern with optimizing the allocation of computational
resources for the Fog has been brought up, as this layer
has limited resources by hardware.

Finally, in (Benhamida et al., 2022) the authors
proposed a dynamic architecture for distributed storage of
information collected in Fog environments. Dynamicity is
related to the inherent mobility of Fog and IoT devices and
distribution with data storage in Fog nodes. This research
also addresses a collaborative model between Fog and
Cloud to minimize access to the Cloud and, consequently,
reduce latency. The architecture is hierarchically divided
into three layers: Fog Edge (with Fog Nodes), Fog Server
(with Fog Servers), and Cloud. In short, the model is
responsible for locating the records through local storage
on each Fog Server periodically updated in ""assignment
tables" that link the IoT sensor to the Fog Node. In
addition, authorization requests are synchronous, and
data and assignment tables are replicated at each tier.

The works were analyzed among themselves through
nine crucial competencies for the context of a distributed
architecture of data storage in Fog and Cloud Computing
in Smart Cities in order to allow the traceability of
information and users, have a resilient system, and
achieve low levels of latency (according to Table 2). The
characteristics analyzed are:

« Traceability (C1) — data is easily traceable from
requests made to any node in the network.

- Interoperability (C2) — the different architecture
services are easily integrated between different layers
and nodes to make communication standardized and
transparent.
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Table 2: Comparison between selected articles.
Work C1 C2 C3 C4 Cs C6 C7 C8 C9
Kudo (2018) N v v v N N N Yes, data in the Fog is later extracted tothe | Yes, parses data pre-processed by
Cloud Fog
Yes, data in Fog is data that needs real- Yes. it does massive processing and
Sinaeepourfard et al. (2018) N Y Y N Y N Y time analysis, or that can withstand little ! 1 Iysi p g
delay complex analysis
Shwe et al. (2016) N v v N N - N Yes, mesh petwork that distributively | Yes, central storage of historical and
stores real-time data long-term data
Yes, pre-process data to handle Sr;eii dle\S/\far;,(:Cisowleavyeir boatrll1dla Ie(g
Abreu et al. (2016) N Y Y N Y Y Y heterogeneity and be processed in ’ ? A
- . can take part in Fog and Cloud to
Cloud services (or some in Fog) handle specific demands
No, it focuses on traceability between IoT | Yes, data analytics services are in
Lomotey et al. (2018) Y Y N N N N N devices and the Cloud the Cloud
Yes, Fog is in a single horizontal layer that Yes, the Cloud processes more
Zhang (2020) N Y Y N N N N h ’ o complex data that was not able to
andles critical latency demands be processed by Fog
Yes, it has two layers of Fog: one closer
to the user at the edge of the architecture gg;g&siglougn%erfhoirsr;iitc}ﬁ rg;)ts;
. and another one further up that performs ng
Benhamida et al. (2022) Y Y Y N N Y N . R : processing. It also has a copy of the
the processing. Data is replicated at each attribution table and also has the
tier, and there is a local assignment table data of the lower lavers replicated
at each node 4 P

- Hierarchical (C3) — the proposed architecture has a
hierarchy or some division into layers to better divide
responsibilities and load, facilitating the management
of services.

- Has Data Fragmentation (C4) — data is stored in a
fragmented way allowing for distributed storage and
concurrent queries to different portions of one or more
data.

- Has Cache (C5) — has some caching system that
improves response time and avoids unnecessary I/O
operations for previously queried information.

+ Has Replication (C6) — has some form of redundancy
of the proposed services and stored data to be a fault-
tolerant architecture and have a better QoS.

- Validated in some real city (C7) — the proposed

architecture has already been validated in a real city

or simulation that reproduces it.

Has Fog (C8) — the architecture encompasses Fog

Computing nodes close to the devices and/or at the edge

of the network.

+ Has Cloud (C9) — the architecture encompasses
communication with cloud services that are not
necessarily close to the devices.

Analyzing Table 2, it is possible to see that all jobs are
processed in Cloud Computing and that, in most cases,
this layer is responsible for processing long-term data
that is extracted from the nodes further down, but that
it also responds for immediate requests, which brings
higher latencies to the model since there is no geographic
proximity in this case. As for Fog Computing, most
works have a Fog layer that, in some cases, is optional
or with unexplored potential, being mentioned only as a
possibility and not addressed as the main application of
the model. Herefore, it has many advantages. The use
of intermediate processing closer to the users is still not
unanimous in all the proposed architectures.

Regarding the validation in an actual city (C7) it
is possible to see that only two works validated its
architecture in a real environment or applied it to a
simulation of the real scope. According to Sinaeepourfard
et al. (2018), validation was carried out in the city of
Barcelona in Spain and (Abreu et al., 2016) in the city of

Lisbon in Portugal. In addition, we see another extreme in
terms of the Traceability (C1), Data Fragmentation (C4),
Cache (C5), and Replication (C6) competencies, which
together make a massive contribution to a distributed
model and which in no case were mentioned in the same
architectural proposition.

Therefore, it is possible to observe some gaps in the
propositions of the related works. First, we do not have
a model that integrates several essential characteristics
for data traceability in a distributed storage architecture.
That is, more propositions need to be addressing efficient
tracking of stored data. In addition, many approaches
perform excess replication of metadata and/or records of
IoT devices in several layers of the model, which generates
an overload in the network that could be avoided using
some centralized mechanism of metadata storage that can
locate the data we store locally on each Fog Node. Finally, a
fewapproaches specify which type and/or database system
will be used in the architecture, which is a significant point
for model implementation decisions.

4 Proposed Model

This section describes the DASTData model (an acronym
for Distributed Architecture to Store and Trace Data). Based
on the Theoretical Foundation ( Section 2) and Related
Work (Section 3), it was possible to define essential aspects
to design a storage model for Smart Cities. In this way, the
model’s focus was defined as the proposition of a three-
layer architecture (Edge, Fog, and Cloud) for distributed
storage in smart cities. This architecture must include
traceability and concurrent access to data from Edge layer
devices stored in the Fog.

To detail each aspect, in the Section 4.1 we quote and
justify the design decisions that were taken in elaborating
the architecture. Then, in Section 4.2 we describe in detail
the characteristics of the architecture in order to explain
and exemplify its objectives. Finally, in the Section 4.3, we
conclude with the definition of the services and routines
that will be initially proposed.
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4.1 Design Decisions

As seen in Section 3 regarding related work, especially
from the analysis performed and summarized in Table 2,
there are some essential competencies in building a
model for a storage architecture. Therefore, some design
decisions were made regarding the definition of what
the model must have and meet, arriving at the following
scenario:

- We will have three layers in the architecture called
Edge, Fog, and Cloud. They will communicate through
blocking and non-blocking interactions. They must
also work in an integrated way to deal with the data
running through their services in the architecture.

+ NoSQL database will be used due to its advantages in a
distributed context and data with dynamic structure,
as mentioned before.

+ Layers must be hierarchical so that each sub-layer deals
with data specific to its competence to be defined.

- Device data storage must be partitioned via Sharding
and distributed across Fog nodes to enable concurrent
queries and geographic proximity to users.

- The architecture must be able to handle data from
mobile users in order to allow the traceability of these
users between the various nodes that compose it.

- The database instances on each node of the Fog will
be interconnected through the network formed by the
use of Sharding. This approach makes load-balancing
actions between nodes less costly, as there is no need for
prior data transmission for a new node to be responsible
for the demand.

+ In order to ensure greater data availability and
redundancy in case of failure, databases must have
replication. This approach is transparent to the user as
data access is centralized, and the DBMS takes care of
replication management.

4.2 Architecture

The architecture proposed from the design decisions
mentioned in the previous subsection is divided into three
layers: Edge, Fog, and Cloud. In this context, we have that
the model’s focus is on the distributed storage in the Fog
and on the traceability of the data. In order to concentrate
services sensitive to latency, the Fog Computing nodes will
be placed geographically close to the clients at the Edge.
Regarding the Cloud, thislayer will usually be further away
and can easily be in another state or country, depending
on the service provider. This structure is aimed at a Smart
City for generic use but could be used in different contexts,
such as public health management. In this case, vital signs
data generated at the Edge from IoT sensors such as smart
bracelets communicate with a Fog Node that stores these
records locally.

In short, the Edge layer is responsible for generating
the data for the model. Fog for storing this data in a
distributed way and processing critical data that need a
prompt response and low latency. Finally, the Cloud is
responsible for heavier computations that demand more
time and for being the input channel for actors interested
in Smart City management, such as public managers,

institutions, governments, etc. Fig. 4 illustrates the
proposed architecture and the arrangement of storage
clusters between the different Fog nodes. In addition, the
following subsections detail each level and aspect of the
architecture, detailing the Edge, Fog, and Cloud layers,
Data Fragmentation, and Replication.

4.2.1 Edge

The edge layer is composed of intelligent devices and
environments such as IoT gateways, smartphones,
wristbands, cars, cameras, traffic lights, smart homes,
hospitals, and all those IoT devices that citizens can own.
Edge Devices connect to Fog primarily through a session
log. This procedure enables the device to communicate
with a specific Fog Node and use its available services. In
addition, devices on the Edge can have a mobile behavior;
at some point, they are connected to a Fog Node, and
later they move around the city and end up connecting
to another Fog Node. This routine for the Edge Device is
identical to the first connection to any Fog Node, making
the procedures performed by the model transparent to the
end user to enable mobility and subsequent data tracking.

4.2.2 Fog

The Fog layer is located between the Edge and the
Cloud architecture. It is responsible for performing the
most latency-sensitive processing for Edge Devices, such
as vital signs analysis or traffic management. This
layer has the services that help operate the Smart City,
some being implemented in the architecture presented
in this work and others with the possibility of future
implementation. There are possibilities, for example,
Edge Device connection control services (Section 4.3.1),
saving services (Section 4.3.2), data search, analysis and
consolidation, load balancing, among others. Within Fog,
there is also a process of ranking the nodes so that nodes
closer to the Cloud store more consolidated data than at
lower levels in their local database. This approach also
makes it possible for services to be scaled on a bottom-
up model so that, when deemed necessary, a service can
transfer an operation to the parent node.

Although the data is geographically isolated and close
to the users through the Sharding technique, this feature
allows all instances to access each other’s data. In this way,
load balancing algorithms, for example, when deciding
that a particular task should be performed on the parent
node, do not need to overload the network by previously
transferring data from one database to another. As the
nodes are all interconnected, the data needed to perform
the task in the node with more free resources is accessible
for processing, leaving the responsibility of loading the
data necessary for the requested service. In addition, since
Fog nodes are independent and handle a smaller set of data,
consolidation tasks that require information from more
than one Fog Node can be performed concurrently.

In this work, we consider that the Fog nodes are
arranged in the city according to future implantation
decisions. It isassumed that the database interconnections
are between all Fog Nodes, but the scale routines are
bottom-up as mentioned before. Therefore, the scope of
the Fog Nodes is in zones so that a neighborhood can
have one or more responsible Fog Nodes depending on
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the analysis of the traffic in that region of the city. Another
possible implementation would be arranged so that several
adjacent neighborhoods with less traffic form a region
with only one Fog Node. At this point, the architecture is
flexible about these implementations.

In order to meet the objectives of this work related to the
storage and traceability capabilities of Edge data for Fog,
within the scope of this research, two Fog services will be
implemented, which will be addressed in the Section 4.3.
Although itis not part of and not addressed by the proposed
model, a relevant point to be mentioned is the Fog Node
selection algorithm. As it is an architecture prepared to
deal with the mobility of devices at the Edge, there is the
premise that there will be a service at the Edge and/or Fog
responsible for controlling when to request the session
registration on a new Fog Node.

4.2.3 Cloud

The Retrieve Data service and the user tracking metadata
storage service (OTS - Object Tracking Service) are
available in the Cloud. In this model, the Cloud is the

furthest layer from the users and concentrates services
that tolerate a longer response time. The distance of
the Cloud concerning other services can reach large
proportions on the scale of different states and countries,
which can generate high latency rates and is a problem
for applications that need a prompt response. In this
architecture, two Cloud services are proposed that will
help consolidate data and tolerate longer response times.

The first is the OTS, responsible for storing historical
data on the displacement of users between Fog nodes. The
second service is the data query service, Retrieve Data,
which communicates with the OTS and Fog. To compose
a traceability record of mobile devices in the city, Retrieve
Data obtains the history contained in the OTS and, from
this information, consults the data stored in the Fog Nodes.
The idea is that from the Cloud, actors interested in city
data have access to consolidated graphs, dashboards, and
reports. In Section 4.3 we describe in more detail the data
structures, responsibilities, objectives, and functioning of
these services.
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Figure 4: Distributed storage architecture proposal for Smart Cities.
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4.2.4, Data Fragmentation and Replication
Data from Edge devices will be stored in Fog databases
through the Sharding technique, performing the
fragmentation from the identifier code of the respective
Fog Node. In each Fog Node, there is a NoSQL database
which is a partition of the global mass of data. This
database has a service linked to it called Router, which
is responsible for accessing the database, and defining
the best execution plan for the requested read or write
operation. As described in Section 2.4 it is necessary to
define a key field as the fragmentation criterion and one of
the records indexers. Therefore, as there is a data-saving
service that consistently links the Fog Node identifier in
the registry, the shard_server field was defined as a good
option for the key to divide the data geographically.
Finally, each database instance on the Fog Nodes
must be replicated to two more instances. Replication
is essential to increase availability and add a layer of
fault tolerance to the model. The replication will follow
the master/slave model. When forming the replication,
the DBMS elects an instance to be the main one that
will receive all requests from the Router. A new election
defines the primary instance if any unavailability occurs.
This procedure does not generate losses, as the data
is replicated in each instance. Another advantage of
replication is the response time for read operations. As
the data is replicated across the instances, it is possible
to configure settings for multiple instances to respond
to read operations, so that load balancing occurs and
parallelism can process these requests.

4.3 Operation

The functioning of this model depends on some critical
services. The following subsections describe the four
primary services that enable distributed storage and user
traceability.

4.3.1 Fog Register Session

The Fog Nodes Register Session module is responsible
for receiving initial connection requests from devices
on the Edge, generating a session identifier, making
this information available to the requesting device, and
asynchronously persisting this data in the OTS. Fig. 5
presents the sequence diagram of the session registration
operation performed from an Edge Device to a new Fog
Node. This procedure must be performed every time a Fog
Node is responsible for performing tasks from an Edge
Device. The flow starts with the registration request made
by the Edge Device. The Fog Node receives this request

and generates an identifier UUID version 12 to represent
the new session called session_id, stores this record in a
local database of the service and returns the identifier to
be used later by the Edge Device in subsequent requests.
In addition, Register Session makes an asynchronous
call to the OTS Cloud service that registers this session
and, if there is a previous connection on another Fog
Node, asynchronously requests that the old session be

8UUID vi: it is a universally unique identifier generated from a
timestamp and the MAC address of the computer that is generating it.

expired. The way these asynchronous calls will be
performed and handled does not concern the proposed
model, so this decision is open for future implementations.
However, it is suggested that some fault-tolerant method
be used to guarantee that the procedures will be executed
successfully, for example, with the use of queue services
or with the publish/subscribe message exchange pattern.

4.3.2 Fog Save Data

Save Data is the name of the service responsible for
receiving requests that store data from Edge devices on
Fog Nodes. It operates in conjunction with the replicated
and partitioned database via Sharding. In addition, it acts
as a wrapper, adding more information to the data that will
be stored, such as Fog Node, session, and user identifiers.
Its communication with the database is through the Router
contained in each Fog Node and the storage metadata
service called Config.

Fig. 6 shows two examples of data stored in Fog Nodes
and how the records of the same user moving between
two Fog Nodes would look like. The session_id field varies
only when there is a context change. The id field is
a unique identifier with the format that best suits the
implementation’s database. It should be noted that the
data field has a flexible structure, as it contains the data
sent by the device or service to be stored.

In addition, Fig. 7 shows the sequence diagram of
operations performed in the data-saving flow from Edge
to Fog. The main flow consists of the Edge Device sending
the request to save data in the Fog Node passing a valid
session_id. Fog Node validates the informed session and
saves the record. The validations regarding the session
by the Fog Node are to verify if a session identifier was
informed and if the value informed is valid or not.

4.3.3 Cloud OTS

This service is located in the Cloud and is responsible for
storing the global tracking metadata of users in the city. In
Fig. 8 an example of the base structure of the data stored in
the OTSis presented, and in the sequence diagram of Fig. 5
it was previously shown how the data would reach the OTS
through of asynchronous requests. The field shard_server
will be the fragmentation key. That is, from this field, the
stored data will be linked to the corresponding partition of
the database. The field session_id is the session identifier
and one of the data indices. It is used to group data from
the same session, linking the OTS records with the Fog
Nodes data.

From these OTS historical records, it will be possible
to calculate the time spent on each node through the
connection time, perform the tracking and extract useful
information from these stored data. Different services
can use the traceability returned by the OTS for different
purposes. One of these applications is the search for datain
Fog Nodes based on a user identifier and a period presented
in the following subsection with the Retrieve Data service.
However, the application of OTS history is not limited to
the search for data in Fog Nodes. There may be "brother"
services to Retrieve Data that manipulate this data to obtain
other information.
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Figure 5: Sequence diagram of the synchronous and asynchronous operations performed to register a new session in a
Fog Node.

1 (a) 1 (b)

Figure 6: Example of a data structure for the same user
stored in two different Fog Nodes. Side (a) represents data
from different sessions for the same user, while side (b)
represents data from the same session for the same user.

4.3.4 Cloud Retrieve Data

This service is an example of the integration between the
OTS and the data stored in the Fog Nodes to unite the
distributed storage with the traceability of the users. Fig. 9
shows a user’s data search operation sequence diagram
in a given period. A generic interface requests the data
for the service Retrieve Data that forwards a query to the
OTS and, after receiving the return, decides the best route
to request the data, taking into account variables such as
the current availability of Routers. Once the best routes
are defined, concurrent queries are performed directly
for each Fog Node that owns the records. This approach
provides high performance for the model, fetching data
stored in a distributed fashion. After the end of the queries,
the data is aggregated in JSON format to be returned to the
interface that made the request.
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Figure 7: Sequence Diagram of the Save Data service of
the Fog Nodes.

5 Evaluation Methodology

We implemented a prototype that simulates the
organization of a Smart City and allows the installation of
several database instances to obtain evaluation metrics
that allow the analysis of the results of the proposed
model. Therefore, in this section, the validation process
will be described. The Section 5.1 describes how the
model prototyping and emulation will be done. In the
Section 5.2, the test infrastructure set up to evaluate
the architecture and which devices will be used in the
emulation is presented. Then, the variants considered
for the tests will be described in the Section 5.3. Finally,
the metrics used to evaluate the model are defined in the
Section 5.4.

5.1 Prototype and Data Emulation

The prototype created to enable the emulation contains
the implementation of the Edge, Fog, and Cloud layers,
according to Section 4.2. To meet the objectives of the
proposed model, the selected database was MongoDB
v4.2°. Being NoSQL and document-oriented, this database
fits the model, as it natively has flexible data structures
and sharding resources by zones and replication. The
programming language chosen for the prototype services

9 MongoDB: https : //www.mongodb. com/docs /manual/

"id": "<unique-id>",

"shard_server": 1002,

"router_address": "layer-10-node-02.fog.com.br",
"connected_at": "2022-06-01T08:00:00.000Z",
"user_id": "d9e4b8cc-b2b0-4ee8-955c-4511f63a7c22",

"session_1id": "48a88774-e599-1lec-8fea-0242ac120002"

"id": "<unique-id>",

"shard_server": 1003,

"router_address": "layer-10-node-03.fog.com.br",
"connected_at": "2022-06-01T11:45:34.000Z2",
"user_id": "d9e4b8cc-b2b0-4ee8-955c-4511f63a7c22",

"session_1id": "9fcd4526-beda-43ff-92ff-0242ac120003"

"id": "<unique-id>",

"shard_server": 1002,

"router_address": "layer-10-node-02.fog.com.br",
"connected_at": "2022-06-01T18:30:15.000Z2",
"user_id": "d9e4b8cc-b2b0-4ee8-955c-4511f63a7c22",

"session_1id": "elc97d5f-e599-11lec-8fea-0242ac120002"

Figure 8: Example of structure of data stored in OTS.

was JavaScript in association with runtime for server-side
code execution Node.js v16'°. The ease of integration
between the programming language and this database
through ODM" Mongoose'* was a critical factor in its
choice.

The data generated from the Edge were simulated from
the generation of datasets using the library Faker.js'3. In
the repository available at https://github.com/daniell
ferreira/fog-sharded-storage, the infrastructure of a
Fog Node and its services Register Session and Save Data
were implemented. Cloud services OTS and Retrieve Data
were implemented in the repositories https://github
.com/daniellferreira/ots and https://github.com/d
aniellferreira/ots-retrieve-data respectively. The
emulation sought to reproduce read and write operations
in the databases of the Fog Nodes of a Smart City, both for
the single manipulation of the records in the Fog Nodes
and from the search for the traceability of a given user
from the Cloud.

5.2 Testing Infrastructure

The infrastructure used to evaluate the model was
composed of the following items by layers:

- Edge — was used a computer with an Intel Core i7-

1Node.js: https://nodejs.org/

H1QObject Document Mapper (ODM): an application that maps and
abstracts documents (records) in the database to structures known
by programming languages .

12 Mongoose: https://mongoosejs . com/

BFakerz. js: https://fakerjs.dev/


https://www.mongodb.com/docs/manual/
https://github.com/daniellferreira/fog-sharded-storage
https://github.com/daniellferreira/fog-sharded-storage
https://github.com/daniellferreira/ots
https://github.com/daniellferreira/ots
https://github.com/daniellferreira/ots-retrieve-data
https://github.com/daniellferreira/ots-retrieve-data
 https://nodejs.org/
https://mongoosejs.com/
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Figure 9: Sequence diagram of the Retrieve Data service.

9750H Hexa-core processor with 2.6 GHz of clock,
16 GB of DDR4 RAM with a minimum frequency
of 2667 MHz, and operating system macOS version
11.6.5. Locally, multiple instances of Edge Devices were
simulated through the Apache JMeter'% application that
made calls to Fog services.

- Fog — a computer was used to represent two Fog Nodes
by running independent Docker containers. Fog’s Save
Data, Config and Router services and the MongoDB
database with sharding and replication in two instances
were implemented. Regarding the configuration of
this computer, it is a quad-core processor Intel Core i5-
8265U with 1.6 GHz of clock, 20 GB of DDR4 RAM with
a minimum frequency of 2666 MHz, and an operating
system Linux distribution Linux Mint 20.3. In addition,
the ngrok!> service was used to proxy the Fog Nodes,
exposing applications running locally to the internet
and access to the Cloud.

+ Cloud — the Retrieve Data and OTS services were
deployed on the Heroku platform'®, and the OTS
database was deployed on the MongoDB Atlas
platform'7. Both platforms are Cloud abstractions for

servers and databases and use the resources of Amazon
Web Services'® (AWS) to host your services. In this
way, the same AWS data center in the US (us-east-1)
was selected, so it is possible to reduce the latency of
communication between Cloud services and databases.

5.3 Scenarios and parameters

In order to evaluate the model in this research, the
following two scenarios were implemented:

i. Scenario A — in the first scenario, the response time
for reading and writing operations from the Edge in
the database of a single Fog Node was evaluated. As
a parameter, the number of Edge Devices was varied,
progressing the number of devices from 1 to 30. In
addition, ten calls were made per Edge Device, so in the
last iteration, 30 simultaneous requests were made and
a total of 300 requests. A random delay of a maximum of
100ms was also used so that the sending of requests
had a slightly more natural behavior. This scenario
allowed the reproduction of the operation of the Smart
City regarding the interaction of Edge Devices with Fog
Nodes.
ii. Scenario B — the second scenario simulated the
traceability of users performed from the Cloud service
Retrieve Data. The number of Fog Nodes (from 1 to
4) or a centralized approach were used as parameters.
In each Fog Node, a dataset with 1000 records was
inserted, from which approximately 100 records should
be returned in the query performed. Thus, for the
centralized approach, the mass of data ranged from 1000
to 4000 records and should return approximately 100 to
£400.

This scenario varied in 3 approaches and was executed
ten times for each. The first is proposed by the
DASTData model: data distributed in Fog Nodes and the
query via the Cloud performed concurrently. The second
approach also used distributed storage, but querying the
Fog Nodes was changed in the Register Session service to
be performed sequentially. Finally, the third approach
used centralized storage in Fog to simulate approaches
that do not distribute data across Fog Nodes. Each of
these approaches represents a possible implementation
for the traceability of distributed data. This scenario
could, for example, be querying user data through a
cloud dashboard.

5.4 Evaluation Metrics

The evaluation metrics used in the first scenario evaluate
the model’s performance. Therefore, the mean, median,
9oth percentile (P90), 95th percentile (P95), 99th
percentile, and minimum and maximum latency values
in milliseconds were used. In the second scenario, as the
evaluation is comparative between different approaches,
the average latency in milliseconds for the executions was
compared.

14Apache JMeter: https://jmeter.apache.org/
15 ngrok: https://ngrok.com/

16Heroku: https://www.heroku.com/
17MongoDB Atlas: https://www.mongodb. com/atlas/database 18 Amazon Web Services (AWS): https://aws.amazon.com/
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Figure 10: Scenario A results for read (side a) and write (side b) operations on databases distributed across Fog Nodes.

6 Results

This section will present the results obtained through
the evaluation methodology presented in Section 5. In
addition, the following subsections directly reference the
scenarios described earlier.

6.1 Scenario A

The results shown in Fig. 10 demonstrate that reading
operations are faster than writing operations. Latency
averages, for example, show that reading can be up
to 80% faster than writing. This is because write
operations replicate this information in each database
instance contained in the Fog Node at the time of including
the information. Furthermore, as read operations do
not compromise data integrity, they are performed
concurrently by each database instance. Another point
observed in the figure is related to the latency increase
when eight simultaneous users are exceeded. This
happens because, as described in Section 5.2, the processor
of the Fog Nodes in this emulation is a quad-core with four
physical and four logical cores.

6.2 ScenarioB

Fig. 11 presents the results of the test scenario that
simulated how the search for user traceability would
be in the Cloud (Retrieve Data for OTS) and later the
search for data in Fog Nodes. Analyzing this graph, it
is possible to conclude that using distributed storage
with concurrent queries is more efficient than centralized
storage. In addition, there is also the advantage of
using concurrency in the task of querying distributed
data, as in this approach, there is no need to wait for a
response from a server to request data from the next one.
Therefore, through the results presented in this scenario,
it is observed that the approach of the model proposed
in this research can be approximately up to 74% more
efficient than in a centralized model and up to 53% more
efficient compared to a distributed sequential model.

W cConcurrent Distributed M Sequential Distributed Centralized

1250
1000

750

500
[l ll

1 (1000 records) 2{(2000 records) 3 (3000 records) 4 (4000 records)

Time in milliseconds

Fog MNodes

Figure 11: Scenario B results for fetching a user’s data in
the model.

6.3 Discussion

From the results presented, it is possible to discuss some
points of the architecture related to the scalability of
Fog Nodes. Although access is decentralized, there may
still be problems related to population concentration
in specific Fog Nodes to the detriment of others. The
high number of concurrent users showed in Scenario A
that concentrating access to just one database could be
detrimental to the model’s response latency from a certain
point onwards. For this reason, a solution could be related
to using on-demand subshardings in each Fog Node to
provide horizontal scalability internally. In this case, more
databases could be implemented that equally share the
workload to resolve to write and read operations within a
single Fog Node.

Another relevant point is the implementation of
MongoDB as the main engine for the evaluation. Some
of the results may be biased due to using a single DBMS.
Therefore, it may be relevant to study and implement the
DASTData model in other Non-Relational Databases with
replication support in order to determine whether the
chosen resource’s algorithms are not also contributing
to the observed improvement points.
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7 Conclusion

In this work, the DASTData model was presented,
an architecture proposal for distributed storage that
enables the traceability of Smart Cities users. Through
high-performance approaches such as concurrency,
replication, and sharding, this research demonstrated the
advantages of DASTData concerning centralized models
and/or models that do not use concurrent operations.
It is expected that this model will contribute to the
academic literature as a possible storage architecture to
be implemented in Smart Cities.

Although the model meets the objectives of the
work, the results showed some limitations related to
the high demand of several Edge Devices to the Fog
Nodes concomitantly. Furthermore, the model needs to
cover some points about implementing asynchrony and
switching decision algorithms between Fog Nodes. There
was also no detail on performing load balancing between
Fog Nodes. Therefore, there are some future works to
propose improvements to the limitations mentioned and
also related to the emulation environment. It would be
highly relevant to carry out tests in the proportions of a
city in order to obtain more authentic results than those
of a real operation.
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