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Abstract

The last decade was marked by increased neuroscience research involving machine Learning (ML) and medical images
such as electroencephalogram (EEG). Since ML models tend to be sensitive to the input data, different strategies for
experiment design significantly impact the results achieved. Therefore, the suppression of information about design
and results makes comparing works challenging. On average, 53% of critical data was missing from the papers retrieved,
making it hard to produce a fair comparison and results analysis; all papers retrieved would be considered with a high
"risk of bias'" and as having "concerns regarding applicability" by a Quadas-2 analysis. This corroborates the lack of a
guideline to provide a standard model for data reports on the field. This work presents the GRSR, a guideline protocol to
support primary studies covering critical data for studies to demonstrate when using EEG and ML to address neurological
disorders. Using GRSR can reduce the chance of being evaluated as having a high risk of bias and having concern
regarding applicability based on the metrics of Quadas-2. This improves the research field by allowing real comparison
between reported results, narrowing the search for the best methods for neural disorders diagnoses using ML and EEG.

Keywords: Machine Learning; Electroencephalogram; standard presentation; ML; EEG

Resumo

Altima década foi marcada pelo aumento da pesquisa em neurociéncia envolvendo aprendizagem de maquina (Machine
Learning, ML) e imagens médicas, como eletroencefalograma (Electroencephalogram, EEG). Como modelos de ML
tendem a ser sensiveis aos dados de entrada, diferentes estratégias no design do experimento afetam significativamente
os resultados. Portanto, a auséncia de dados sobre o experimento torna dificil compara-los. Em média 53% dos dados
criticos estavam faltando nos artigos recuperados, dificultando uma comparagao justa; todos os artigos recuperados
seriam considerados com alto “risco de viés" (ARV) e como tendo "preocupagdes quanto a aplicabilidade" (PA) por uma
analise do Quadas-2. Isso corrobora a falta de uma diretriz para fornecer um modelo padrio para artigos primarios nesse
campo. Este trabalho apresenta o GRSR, um protocolo de orientag¢do para estudos primarios, cobrindo dados criticos
para serem demonstrados em estudos utilizando EEG e ML com objetivo de analisar disttrbios neuroldgicos. Seguir
todas as etapas do GRSR pode reduzir a chance de ser avaliado como tendo ARV e PA com base no Quadas-2. Isso resulta
em uma melhoria no campo de pesquisa, permitindo a comparacao real entre os resultados relatados, estreitando assim
a busca pelos melhores métodos para diagnésticos de distirbios neurais usando ML e EEG.

Palavras-Chave: Machine Learning; Eletroencefalograma; Protocolo de Orientagdo; ML; EEG
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1 Introduction

The human brain complexity imposes challenges to
understanding the many Neurological disorders. In
the last decade, Machine Learning (ML) methods have
been used to investigate the difference between healthy
subjects (Control Group, CG) and subjects of a specific
condition (Disorder Group, DG), such as Attention Deficit
and Hyperactivity Disorder (ADHD) (Ghiassian et al.,
2013; Hale et al., 2014), Autism Spectrum Disorder (ASD)
(Rodrigues et al., 2022), Alzheimer’s (Payan and Montana,
2015; Sarraf et al., 2017), Parkinson’s (Shinde et al.,
2019), and Schizophrenia (Qureshi et al., 2019). However,
there are many challenges in investigating neurological
disorders using ML, such as the lack of data to train, test,
and validate the models (Wolfers et al., 2015); and the lack
of a standard model to exhibit the results.

The lack of data can be solved by broad sharing of
acquisition data, allowing researchers to access those
subjects they will conduct the acquisition and others
already acquired for third part institutions.

The second challenge mentioned, the need for a
standard model, can be solved by a standard protocol for
primary studies, such as Quadas-2 (Whiting et al., 2011)
for secondary studies. This way, tools to improve primary
studies reports allow fair comparisons between different
approaches.

There are many types of medical images used in brain
research. Between the most used, we can enumerate
Magnetic Resonance Image (MRI) (Eslami et al., 2021),
functional MRI (fMRI) (Santana et al.,, 2022), and
Electroencephalogram (EEG) (Peya et al., 2020). Those
are well-known techniques used to acquire brain data
through minimally invasive approaches, allowing in vivo
investigations of the brain structure, the oxygen level, and
the electrical impulses, respectively.

Many papers use ML applied to bioinformatics
(de Almeida Paiva et al., 2022) to better understand
biological relations. Further, ML is applied to medical
images to diagnose neural disorders (Santana et al., 2022).
However, there is a lack of crucial data to ensure a low
risk of bias, as pointed out in a systematic review with
meta-analysis of ML applied to fMRI to diagnose Autism
Spectrum Disorder (ASD) (Santana et al., 2022).

ASD is a lifelong neural disorder, with a ratio of 1:44
children under eight years old (Maenner et al., 2020)
and heritability of 87% (Carvalho et al., 2020). Studies
regarding ASD range from animal models (Silva et al.,
2020; Penatti and Silva, 2014) to brain images (Rodrigues
etal., 2022; Ghiassian et al., 2013). We chose to focus this
paper on ASD; however, the guideline presented here can
be used by any study using ML and EEG to classify CG
versus DG.

To the best of our knowledge, no previous protocol
aims to address primary studies’ result reports. In this
work, we propose the Guideline for Reporting Studies
Results (GRSR), a protocol guideline for reporting results
concerning the diagnosis of neurological disorders using
ML applied to EEG. Aim to close the gap of a standard on
the results reports of primary studies on neural disorders
diagnosis using ML applied to EEG. We highlight crucial
data to be present in those studies to secure their reliability

and reproducibility. Therefore, we evaluate criteria such as
the recruitment process, acquisition process, the sample
used, data preprocessing, feature selection, ML methods,
validation process, and results. Moreover, we show
quantitative comparisons between the selected papers.

2 Methods

This section describes our methods for reaching the final
model proposed in this paper. The first step was to analyze
the available literature through a systematic review
(Section 2.1) to ensure a solid base for comparison between
works. Then the recruitment process (Section 2.2),
followed by the extraction of the information regarding
the data shared, including the acquisition process
(Section 2.3), the sample used (Section 2.4), preprocessing
approaches (Section 2.5), feature selection (Section 2.6),
ML methods (Section 2.7), validation process (Section 2.8),
and the results (Section 2.9).

The comparison between the results is not part of
this scope once we aim to propose a guideline for the
presentation of the results, and the lack of some data
on works makes it hard to perform a fair comparison
between a set of approaches, given the complexity of the
classification task on neurological disorders.

2.1 Systematic Review

To evaluate the field, we conducted a systematic review
to gather primary papers reporting results on ML applied
to EEG. We aimed to quantify the critical data missing
in the field in general. The Systematic Review search
on IEEE Xplore for papers that use ML and EEG applied
to ASD diagnosis. IEEE Xplore was selected because it
is a renowned Computer Science database. The reason
for limiting ASD was the familiarity of the research
group with the field, allowing for better and faster
evaluation of the recovered papers. Once we aimed to
survey the primary information regarding EEG and ML
methods, the chosen condition will not impact the results.
There were no limitations regardless of published date
or limitations for journals or conferences. Therefore, all
works retrieved by the search string were submitted to
the Inclusion/Exclusion criteria filter and are listed in the
Table 4 or Table 3. The search string used was:

( ("All Metadata": ML) OR ("All Metadata': Machine
Learning)) AND (("All Metadata": ASD) OR ("All
Metadata': Autism)) AND ("All Metadata": EEG) AND
((distinguishing) OR (classification) OR (classify) OR
(Feature extraction))

After defining the search string, we chose a selection
criterion, as seen in Table 1, and four exclusion criteria,
shown in Table 2. Finally, Silva and Rodrigues evaluated all
works retrieved by the search. The designated criteria for
each study are listed in Table 3, and the screening selection
flow is shown in Fig. 1.

Therefore, we selected five of the 11 works returned to
extract the data. Additionally, we used five papers already
known by the authors on the issue and not retrieved by
the search, which can be seen in Table 4. Accordingly,
all fit the determined inclusion criteria and do not fit the
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Table 1: Inclusion Criteria
IC Inclusion Description
Publications that use ML techniques to classify
subjects between ASD and TD, and have results
based only on EEG. With or without additional
results for incremental data.

Table 2: Exclusion Criteria
EC Exclusion Description
Publications that seek to understand and
1 | characterize the ASD brain network, but do not
perform the classification of subjects.
2 | Publications that are not scientific papers.
Publications whose objective was to find
the relationship between functional
connectivity and specific activities but do not
perform the classification of subjects.
4 | Articles not published in English.

exclusion criteria.
The following Subsections show the extracted data
from the final ten works selected from Tables 3 and 4.

2.2 Recruitment Process Data

The recruitment process is usually the first substantial
information about the reported results. Clarifying this
process is crucial for further comparisons once the mental
disorder diagnosis can change over time. Numerous
examples can be seen by comparison of criteria and
classification on the many DSM reports (ASSOCIATION,
1952, 1968, 1980, 1994, 2013). Therefore, a subject with a
positive diagnosis may be considered negative by adopting
different criteria.

Moreover, the clarity of the recruitment process, and
the diagnosis criteria adopted, allows other works to
perform a fair comparison. Another option is to use
tools to convert the diagnosis for similar diagnosis
criteria. However, well-established diagnostic protocols
with individual scores linked to each EEG are crucial to
allow this process.

This way, a table with phenotype data containing the
diagnosis criteria and respective scores for each subject
EEG is recommended to be included. This table should also
include data on subjects excluded from the trial and the
criteria used to exclude them.

2.3 Data Acquisition Process

Data acquisition is a process that can directly affect the
results (Gaddale, 2015). The EEG acquisition setup can
vastly change between works and directly impact the
results due to the different features analyzed (Gaddale,
2015).

Therefore, we extracted the following information from
the selected works:

- Equipment Used;
- Electrodes Position System,;
- Channel,;

Table 3: Articles Selection from IEEE Xplore

Id | Article Criteria
A1l | Peyaetal. (2020) IC1
— | Aslam and Altaf (2019) EC1,EC3
- Gao et al. (2015) EC3
— | Aslam and Altaf (2020) EC3
A2 | Jayawardana et al. (2019) 1C1
- 5th ISSNIP (2014) EC2
A3 | Thapaliya et al. (2018) IC1
A/ | Bhaskarachary etal. (2020) IC1
- Fan et al. (2017) EC3
— | Yavuz and Aydemir (2017) EC4
A5 | Bouallegue and Djemal (2020) | IC1

6 papers
removed by the

|EEE Digital Library
(L] triage process

selected papers
data the review
(10) (10)

Papers out of IEEE Total articles sglecled for

Figure 1: Screening and selection of studies for the
Systematic Review.

- Sampling Rate;

+ Band-pass Filtered;

- Frequency Band;

- Additional Resources;
+ Acquisition Time;

- EEG Segmentation;

- Eye State;and

- Activity Description.

The description of the equipment used for acquiring
the EEG can help new researchers choose which to use,
especially if any was previously available. The acquisition
will be made specifically to start the research.

The electrodes Position System selected must be
included to compare results. It should contain the
reference electrodes used once each electrode placement
will reflect the brain electrical activity of a specific brain
region and those adjacent (Teplan et al., 2002).

The used channels must also be described once
different subsets of channels better fit different
classification tasks (Alotaiby et al., 2015). Therefore,
allowing us to interpret the findings by understanding
where the different patterns occur and compare the
results, both new samples as much as work using the
same dataset.

The sample rate is relevant to be present due to its
substantial importance for analysis (Weiergraber et al.,
2016). Considering the task of diagnosing using ML
and EEG, we can highlight two reasons: first, the high
frequencies have high-detail information, and second, the
sample rate impacts the amount of data for the segment
when the EEG signal is segmented, as most works do.
These two reasons impact the raw data available, which
accounts for the features used for raw and processed data.
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Table 4: Articles Selection from authors

ID | Article Criteria
A6 | Abdolzadeganetal. (2020) | IC1

A7 | Grossietal. (2017) IC1

A8 | Ibrahim et al. (2018) IC1

A9 | Kangetal. (2020) IC1
A10 | Alhaddad et al. (2012) IC1

The band-pass Filtered must be included once it is a
step in almost all preprocessing EEG (Baranowski and
Piatek, 2017). Additionally, it is a process that can seriously
change both the acquired signals and the results obtained
(Baranowski and Piatek, 2017). This process excludes
part of the data, which generally is considered noise.
Therefore, this information gives a better understanding
of the results. Additionally, allowing other work to either
start by excluding these details, considered noise, or
testing to verify if these details are noise or a feature
relevant to discriminate the classes.

Additional Resources should be informed if they were
used or not. Additionally, resources are all kinds of data
not acquired by the EEG machine. Some examples are eye
tracking and social cognition measure tests, but they are
not limited to these.

Acquisition Time is the time a subject has the EEG
equipment recording data. This help set up further works
and measure the amount of data generated, making clear
the total discarded data, if any.

EEG Segmentation is a broadly used technique
to increase the amount of data by subdividing the
total acquisition sample from a subject into many
segmentations. It clarifies how long each segment is or
that segmentation was not used. Moreover, it is crucial
to discriminate how were segmentation used in the
experiment. Once employing a segment from the same
subject on training, test, and validation can create a bias,
summarizing, if the training step uses a segment, all
segments from that subject will only be used for training,
and the same is valid for test and validation.

Eye state is essential information to be provided once
it is possible to detect changes in eye state using EEG
(Saghafietal., 2017). Therefore, it is reasonable to suppose
this state will influence the readings acquired during the
process.

Activity description is also relevant for two reasons.
First, the stimuli and brain processes can vary from one
activity to another. Second, activities involving movement
can impact the acquisition process. Therefore, all this
information should be carefully detailed in the results
report.

2.4 Sample Data

The sample is directly related to the results and the
probability of the software solving the problem instead of
only creating discrimination for that specific sample used.
However, the sample size is a recurrent challenge for ML
approaches aiming to study neurological disorders using
brain images (Wolfers et al., 2015), which reinforces the
need for more shared data and better specifications about
the sample used in each work.

Some of the important data about the sample are:

- Total Sample Size;

- Distribution (group control vs. group case);
- Age;

- Sex;

- Gender;

- Full-Scale Intelligence Quotient (FIQ);

- Scores.

The total sample size and distribution (Case and
Control) will give direct information about the best
validation process and help estimate the generalization
capability of the work. Of course, there needs to be more
than the size to ensure a good representation of the work.
However, small sample sizes tend to need to be more
representative to ensure that the solution found will be
the final answer for the investigation.

The following four items must be shown individually
for each subject and as statistics for each group named
average, maximum, minimum, and standard deviation.
In addition, comparing the statistics between each group
with the p—value is also essential.

Here we demonstrate these results in three Tables 5
to 7. The first shows a subject-by-subject presentation,
where the Id is an identification that links a subject to an
EEG. The second and third tables are statistics for each
diagnosis group. The remaining fields are the diagnosis
group if Case or Control. In this case, age is shown as years
but could be presented as months, weeks, or days since
the unity used has not been clear. Sex, if male or female,
if a code was used, the meaning of the code needs to be
clarified. The FIQ should show the score for each subject,
while the score for the diagnosis protocol also should be
shown. Here we show « 3 v, in replacement for actual
diagnostic scores criteria, which should be replaced by
the scores used on each work depending on the diagnosis
protocol. In the case of codes being used as scores, the
translation needs to be available.

Table 5: Subject Demographic
ID | Group | AGE | SEX | Gndr | FIQ | « B 5y
1 23 1 1 100 | 10 | 10 | 10
2 5.3 2 2 110 5 5 5
Here Gndr represents gender, and «, 3, and ~ represent

scores for the diagnose protocol, should be replaced by the
ones used in each research.

N[ =

The reason for showing « 3, and v is explained in
Section 2.2. Furthermore, age, sex (Phellan et al., 2019),
and IQ (Jiang et al., 2020) were previously pointed out as
affecting the brain, justifying the presence of this data
regarding the used sample.

2.5 Preprocessing Data

Preprocessing is the step that transforms the raw data into
the ML algorithm input. The ML depends on the features
received as input, which depends on the preprocessing
data (Du and Swamy, 2006). Therefore, this process
description, in a straightforward manner, is crucial to
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Table 6: Sample Demographic

Age Distribution
Group | AVG | MAX | MIN | STD
1 23 2.3 2.3 0
2 5.3 53 5.3 0
FIQ Distribution
Group | AVG | MAX | MIN | STD
1 100 100 100 0
2 110 110 110 0
« Distribution
Group | AVG | MAX | MIN | STD
1 10 10 10 0
2 5 5 5 0
3 Distribution
Group | AVG | MAX | MIN | STD
1 10 10 10 0
2 5 5 5 0
~ Distribution
Group | AVG | MAX | MIN | STD
1 10 10 10 0
2 5 5 5 0

Here «, 8, and v represent scores for the
diagnose protocol, should be replaced by
the ones used in each research.

AVG: Average, MAX maximum value,
MIN: minimum value, STD: standard
deviation.

Table 7: Sex Distribution

Sex Distribution
Group | Total | Male | Female
1 1 1 0
2 1 0 1

allow the experiment reproducibility and to understand
the results once some artifact removal can differ the
interpretability from the point of view of raw data. This
means that a lack of description of the preprocessing could
lead physicians to interpret removed artifacts as one of the
highlighted features. E.g., removing some spikes on the
EEG signal that was considered noise in a channel that was
highlighted to be higher in a group, when not explicitly
that were removed, could lead some physicians to interpret
it as a marker when analyzing the raw image. Therefore,
in this subsection, we put together the data reported on
the returned papers to give a guideline on what to show
when reporting ML results for EEG classification, named:

- Band-pass Filtering;

- Artifacts removal,

- Data removal;

- Epoch used and Segmentation.

Band-pass Filtering is a linear transformation of the
data that eliminates all components other than the ones
inside the specified band of frequencies (Christiano and
Fitzgerald, 2003). That is crucial once it makes explicit
the range of data analyzed by the experiment.

Artifact removal has a similar impact on data as Band-
pass Filtering, which also removes data from the original
raw data. Some common artifacts removal are ocular

artifacts, muscle artifacts, and cardiac activity (Urigiien
and Garcia-Zapirain, 2015). This process can range from
software to mark the data for visual inspection to software
to subtract data based on the cerebral activity (Urigiien and
Garcia-Zapirain, 2015). Due to its broad possible methods,
it required a detailed description, providing details on the
software used and its goal. Moreover, a link to access the
software must be available. Finally, if the work did not
use any artifact removal, the report must be explicit about
it. Furthermore, whether or not any manual inspection
was used must be evident. If so, a detailed presentation is
required.

Any additional data removal should be declared
(Jayawardana et al., 2019) such as removed channel
Interpolation. The reason for the data removal also should
be reported.

Different epoch lengths can impact the power spectrum
analysis of the EEG (Levy, 1987; Fraschini et al., 2016).
Therefore, the segmentation length for each epoch should
be reported, along with the total number of epochs. If any
epoch was discarded, the specific epoch discarded and the
reason for it should also be reported. The length should be
expressed as data segmentation using seconds as reference
unity, and the number of epochs should be expressed as a
unit sum.

2.6 Feature Selection Data

Feature Selection refers to the selection of data input for
the ML algorithm. It can be classified into three categories:
filter, wrapper, and embedded methods (Miao and Niu,
2016). Filter methods evaluate the features selecting those
with the most discerning characteristics. It is applied
before the data is sent to the ML algorithm (Miao and
Niu, 2016), often considered a preprocessing step. Filter
methods use predetermined criteria to rank and select the
highest-ranked features. This approach uses the intended
learning algorithm to evaluate the features (Miao and Niu,
2016). Finally, embedded methods send all preprocessed
data to the ML and let them use the decision weight by
their means (Benkessirat and Benblidia, 2019).

Once feature selection can overlap with preprocessing
or ML method, depending on the used approach, we
considered it an aspect apart from both, requiring a
subsection. Moreover, once two sets of features are
used on the same setup of an ML can result in different
results. Consequently, explaining the features selected
or the algorithm used to select them is crucial to a fair
results comparison and understanding of the potentially
discriminating patterns between two or more groups.

Therefore, an explanation of the feature selection
process should be reported, including the discrimination
of the selected features or the algorithm used. When an
algorithm is used, an external link for the algorithm or the
citation of the original publication should be used to avoid
in-deep explanation in addition to a brief explanation of
the method.
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2.7 ML Methods Data

Machine Learning algorithms use mathematical methods
to discriminate two or more groups from each other.
Usually, ML uses a sample named "training set" to
balance weights on variables of the selected mathematical
equation, which is then tested in a sample named
"validation set" until reaching the best weights, aiming
the high accuracy when applying the equation to the test
set. After that, an additional sample named '"test set"
should be used to verify the generalization capability of
the ML for the problem faced. It is reported to reduce the
risk of bias that these three sets are composed of different
subjects, as detailed in Section 2.8.

There are many different ML methods with
infinite combinations and setup options. Therefore,
the description of the ML used should include all
customization applied to the setup once a single parameter
could change the result, making the reproduction of the
experiment unfeasible.

Once each method has its singularity, we will only
enumerate the parameters needed for a good result report.
However, all parameters used must be reported, including
the standard ones.

Additionally, studies using multiple ML methods
should provide the setup and parameters used for each
one. Finally, sometimes different ML methods require a
different structure of the input. E.g., the SVM requires
as input a vector, while an ANN can use a matrix as
input; thus, if the ANN is using a matrix, ideally, another
experiment where the ANN uses the same vector as the
SVM should be used.

2.8 Validation Process Data

In the context of ML, validation is a process that aims
to verify if the training and test steps resulted in a
generalization of the problem in a way that allows solving
the same issue for a different dataset. Meantime, also aim
to ensure a lower bias due to over-fit/under-fit.

Therefore, all studies on ML applications should include
a validation process. Although the validation process is a
crucial step to secure the reliability of the results, over-fit
can give a misleading impression that the problem was
solved, especially considering the low data availability on
the field.

One validation process prevalent is the k-fold. It
consists of splitting the sample in k-fold, using the k-1
folds for training and validation, then using one fold for
the test, repeating this process k times, and using the
average from the k times as the final accuracy. Adopting
ten as the k is very usual, but the sample size should drive
the choice, with ten being indicated for samples over 200
subjects (Bengio and Grandvalet, 2004; Rodriguez et al.,
2009; Fushiki, 2011).

2.9 Results Data

If the work shows all data from the previous subsections
by presenting accuracy, sensitivity, and specificity, it does
bring important information. It is crucial to be explicit
about the group used for the sensitivity and which for the

specificity. Nonetheless, usually, sensitivity has been used
for the control group. The lack of its description can be
prejudicial for comparison. Additionally, providing more
data on results make the paper more robust (Sokolova
etal., 2006). In this subsection, we describe some crucial
data to be presented in the results section, including the
three aforementioned.

All the following data about the results should be
measured based only on results over the validation
sample, not in the entire sample, which would create the
training-test bias on the result. For example, suppose
the experiment uses a k-fold-like process, where all the
sample is eventually used as training-test and validation.
In that case, the measurement should be an average of
the results for each validation step, considering only the
sample used as validation for that step (Maleki et al., 2020;
Marcot and Hanea, 2020).

Accuracy refers to the number of correct predictions the
algorithm makes on all groups. Sensitivity refers to the
number of correct algorithm predictions on the diagnosed
group (positive cases). Finally, specificity refers to the
number of correct algorithm predictions on the control
group (negatives cases) (Sokolova et al., 2006).

Statistical information is a powerful tool for describing
and interpreting the results. This is true, especially for
unbalanced samples, where one group has more samples
than the other, which allows for creating a more fair
measurement. Some examples are Receiver Operating
Characteristic (ROC) Curve, Area Under the ROC Curve
(AUC), Matthews correlation coefficient (MCC), Youden’s
index, Likelihoods, and Discriminant power (Chicco and
Jurman, 2020; Sokolova et al., 2006).

3 Results

In this section, we show the results of our study. Then,
in Section 3.1, we compare the selected papers, while in
Section 3.2, we show the Quadas-2 analysis from each
paper. Finally, in Subsection Section 3.3, we summarize
all aspects and data to be shown in a paper.

3.1 Papers Comparison

In this subsection, we summarize the data presented by
the selected papers. We classify each piece of data as
missing, present, or unclear.

The data acquisition process will allow the
reproduction of the experiment with other subjects.
Therefore, the setup, the equipment used, and the
position of the electrodes are crucial information.
Additionally, it must be informed if any subject was under
the influence of drugs, as research points to changes
in brain activity due to drug effects. Table 9 shows the
presence (Y) or not (N) for each piece of information in
each paper.

Recruitment Process data will allow further studies to
reproduce the experiment for new subjects. Therefore, it
is important to make clear the diagnosis protocol used,
the inclusion criteria for subjects included in the study,
and the exclusion criteria for subjects not included in the
study. Table 10 shows which paper presents detailed data
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regarding recruitment.

Sample Used explains the sample demographics
used. It is essential to understand the study context
while conjecturing potential differences in sex-age-
related findings (Phellan et al., 2019). Table 11 shows
demographic information regarding each selected paper.

The preprocessing step represents the transformation
of the raw data, an essential step to the experiment’s
reproducibility by further research. Therefore, we look
if the algorithm is publicly available and if was applied any
manual steps. Table 12 shows the information regarding
preprocessing.

Feature Selection description allows reproducing
the experiment once pre-selected features are used,
drastically impacting an ML algorithm’s optimization
process. Therefore, it must offer the process description
and makes the algorithm publicly available. Table 13 shows
the presence or not of both of those pieces of information.

ML Methods will provide information concerning the
algorithm used to perform the classification task. Results
from different approaches can be very distinct, and the
setup for the hyper-parameters can change the results
even within the same ML approach. Table 14 shows the
algorithm’s information for each selected paper.

Validation is the process applied to an experiment to
reduce the risk of bias, reducing the risk of the algorithm
being only valid for one specific database instead of being
a possible solution for the issue of the study. Thus, being
clear on the selected method permits the experiment’s
reproducibility through further research. Table 15 shows
information regarding the validation process.

Results allow comparison between experiments, but
more than only showing the accuracy. Although it is more
critical for unbalanced samples (those with more subjects
from one class than another), other data about the results
are needed, such as specificity and sensibility, that allow
discerning if there is any bias towards a class. Finally, it is
recommended to show a statistical tool representing this
balance once it gives a better understanding of the results.
Table 16 shows the results data of each selected paper.

Of the selected papers, only two showed more than 70%
of the information ((Jayawardana et al., 2019) and (Grossi
etal., 2017)), while another showed more than 60% ((Peya
etal., 2020)), and two more showed 50% ((Abdolzadegan
etal., 2020) and (Alhaddad et al., 2012)). All the other five
showed less than 50% of the data ((Thapaliya et al., 2018),
(Bhaskarachary et al., 2020), (Bouallegue and Djemal,
2020), (Ibrahim et al., 2018), and (Kang et al., 2020)),
Table 8 shows the distribution by each step presented in
Section 2.9.

Summarizing, Data acquisition aspect presented an
average of 2.8 data informed from a maximum possible of
5(56%), range from 0 to 4, and a standard deviation (STD)
of 1.619. Recruit process aspect presented an average of
0.5 from a maximum possible of 3 (17%), and range from 0
to1and 0.52 of STD. Sample used, had the bigger average
of 3.5 with a maximum total of 7(50%), ranging from
0 to 6 with 1.58 STD. Preprocessing aspect average 1.4
of 3(47%), ranging from o0 to 3 with 1,07 STD. Feature
Selection average 1.2 of 2(60%), ranging from 1 to 2 with
an STD of 0.42. Machine Learning aspect average 1.1 of
3(37%), ranging from 1 to 2, with 0.31 STD. Validation

process average 1.7 from 3(57%), range from 0 to 3 with
1.49 STD. Results aspect average 1.9 from 4(47%), range
from 1 to 4, with 1.1 STD. Considering all aspects together,
the average was 14.1 from 30(47%), ranging from 6 to 22,
with a 5.21 STD.

To summarize, the data acquisition aspect presented
an average of 2.8 out of 7 possible (56%), ranging from
0 to 4 with a 1.62 standard deviation (STD). The recruit
process aspect presented an average of 0.5 out of 3 possible
(17%), ranging from 0 to 1 with 0.52 STD. The sample
used had the highest average, 3.5 out of 7 possible (50%),
ranging from 0 to 6 with 1.58 STD. The preprocessing
aspect presented an average of 1.4 out of 3 possible (47%),
ranging from 0 to 3 with 1.07 STD. The feature Selection
showed an average of 1.2 out of 2 possible (60%), ranging
from 1 to 2 with 0.42 STD. The machine learning aspect
presented an average of 1.1 out of 3 possible (37%), ranging
from 1 to 2 with 0.31 STD. The validation process showed
an average of 1.7 out of 3 possible (57%), ranging from o
to 3 with 1.49 STD. Finally, the results aspect presented an
average of 1.9 out of 4 possible (47%), ranging from 1 to 4
with 1.1 STD. Considering all aspects, the average was 14.1
from 30 possible (47%), ranging from 6 to 22 with 5.21
STD.

Table 8: Compacted Data Report

ID DA | RP | SU | PP | FS| ML | V| R T
A1l 4 1 4 3 1 1 [ 3] 118
A2 | 4 1 6 1 2 1 |3 | 321
A3 1 0 2 1 1 1 | 3] 1] 10
N 0 0 0 1 1 0| 4| 6
A5 1 0 3 2 1 1 (o] 1] 9
A6 | 4 1 L | 2 1 1 o] 2115
A7 4 1 4 3 2 2 3 13|22
A8 [ 2 0 L | o 1 1 |2 1|1
A9 | 4 1 4 1 1 1 |0 2] 14
A10 | 4 0 A 1 1 1 3] 1] 15
PT 5 3 7 3 2 3 3| 4| 30

DA: Data Acquisition, RP: Recruit process, SU: Sample
Used, PP: Preprocessing, FS: Feature Selection, ML:
Machine Learning method, V: Validation process, R:
Results, T: Total information showed by each paper, PT:
Total information to show.

3.2 Quadas-2 Evaluation

Quadas-2 is a tool to assess the quality of the diagnostic
accuracy presented by studies included in systematic
reviews (Whiting et al., 2011). It is a recommended
approach by the Agency for Healthcare Research and
Quality, Cochrane Collaboration (Reitsma et al., 2009). It
consists of a checklist based on the 4-stage procedure,
aiming for a more transparent rating of bias and
applicability of primary diagnostic accuracy studies
(Whiting et al., 2011). Quadas-2 aim to support secondary
studies to evaluate results from primary studies.
Quadas-2 judged a study as "low risk of bias" or
"low concern regarding applicability" for study evaluated
as "low" for all domains. Otherwise, when one or
more domains are evaluated "high" or "not clear", it
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is judged "at risk of bias" or as having 'concerns
regarding applicability". In this context, the "risk of
bias'" represents the possibility of the decisions in the
experiment design influencing the results; likewise, the
lack of description in the results reports could create
ambiguous interpretations. Meanwhile, the "concerns
regarding applicability" represent the possibility of the
experiment being reproduced in populations other than
the one used in the experiment being evaluated; therefore,
the lack of information could lead to a negative evaluation
of the studies. Thus, a protocol to support primary studies
should guarantee that an evaluation of Quadas-2 will be
positive in both these domains.

In this subsection, we applied Quadas-2 to assess the
risk of bias in each paper. We evaluate the four domains,
Patient Selection, Index Test, Reference Standard, and
Flow and Timing. Those domains were applied for Risk of
Bias, while only the first three were applied to Concerns
about Application, following the recommendations of
(Whiting et al., 2011).

Figs. 2 and 3 show results for risk of bias and concerns
about the application, respectively. Both Patient Selection
and Flow and Timing had an unclear risk of bias for all
papers. For Patient Selection, evaluates if the paper had to
describe the inclusions and exclusions criteria used, which
is critical for this domain. Flow and Timing evaluate if the
paper describes the delay between the standard diagnosis
and the EEG acquisition. Moreover, no description of any
intervention was applied between the standard diagnosis
and the EEG acquisition.

The lack of information about ethnicity, IQ scores,
age, sex, and family income, does not allow guarantee
the representative of the selected samples, which makes
it unclear if the patient selection can be applied in the
real world; therefore, all papers have unclear concerns
about the application. Manual steps on preprocessing and
feature selections generate concern about applying the
index test once it is impossible to reproduce the steps. In
contrast, the lack of insurance that any manual steps were
used makes it unclear. The lack of description on which
Reference Standard was used to diagnose and how it was
applied makes an unclear "concern about application'.

WHigh OUnclear OLow

Patient Selection * 10 4
Index Test + 4 | 6 |
Reference Standard + 5 l 5 I
Flow and nmmg+ 10 %

0 1 2 3 4 5 6 7 8 9 10

Figure 2: Quadas-2 Risk of Bias.

Only (Grossi et al., 2017) was evaluated as having a
low risk of bias and no concerns in both the Index test

BYes OUnclear ONo

Patlent Sdealm _
Imex.reSt - ' :

Reference Standard 5 5

0 1 2 3 4 5 6 7 8 9 10

Figure 3: Quadas-2 Concerns About Application.

and Reference Standard. While only (Peya et al., 2020)
and (Jayawardana et al., 2019) were unclear on Index test
concerns but had a low risk of bias in the same domain
and low risk of bias and no concerns on reference standard.
While (Abdolzadegan et al., 2020) was evaluated as unclear
on the risk bias of the Index test and low risk of bias
on reference standard, but no concerns in both domains.
Therefore, all papers evaluated should be judged "at risk
of bias'" and as having "concerns regarding applicability".

3.3 Guideline Steps

After gathering the relevant data from each aspect and
applying the Quadas-2 tool to assess risk bias, we
summarize the data from each feature required for solid
results report on work on Diagnose using EEG and
ML. Fig. 4 shows all relevant data separated by each
component.

Cover all data in Fig. 4 ensures that Quadas-2 evaluation
will result in a low Risk of bias for experiments corrected
designed. Therefore, we recommend reading (Whiting
et al., 2011) before starting the experiment to ensure
a correctly designed investigation, mainly aiming to
understand which practices will ensure a low risk of bias
and no concern about the application.

4 Discussion

On average, only 47% of the data was present on those
papers, with the recruitment process having an average of
17% while Feature Selection has an average of 60%. Half of
the selected papers showed less than 50% of the required
data. Table 8 shows the uneven distribution of information
present. By comparing papers with the most information,
compatibility on which data is present is not achieved.

In Table 9, none of the papers have an explicit
declaration about the absence or not of drugs in the
system of the subjects while acquiring the data. Moreover,
four works did not describe the equipment used in the
acquisition process. It is worth mentioning that even while
using third-party datasets, the paper should describe all
acquisition processes, covering at least the five criteria
defined in Table 9.

Moreover, the recruitment process is an aspect with
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Figure 4: EEG report Guidelines. Steps and their
respective data needs.

crucial data. As shown in Table 10, only five papers
describe the diagnosis protocol used, while none describe
the inclusion and exclusion criteria for select subjects for
the experiment, which leads to an Unclear risk of bias and
concerns about the application in Patient Selection on the
Quadas-2 evaluation.

Regarding the sample used data, except for FIQ,
Diagnose Scores, and Individual data, most papers cover
all other information. However, none present any data
about FIQ or another IQ measurement. At the same
time, only one showed data about Diagnose Scores and
Individual data, while another presented partial data about
Diagnose Scores, as shown in Table 11. Impacting on the
Index test "concerns about the application' of Quadas-2
evaluation.

The Preprocessing information, as shown in Table 12,
has two papers without any data presented, with only
three of them with publicly available algorithms. While

six used a manual step that was impossible to replicate
by readers or did not make explicit that they did not use a
manual step in the process.

The Feature Selection, the most extensively covered
data for the selected papers, as shown in Table 13, has one
paper where this aspect did not apply as a question once
used the ML with all preprocessed information, one that
describes and makes the algorithm public available. In
contrast, all other eight papers only describe the process.

As shown in Table 14, all papers describe the ML
method used. However, only two have at least partially
been made publicly available. Furthermore, none
described all the hyper-parameter settings, while only
five have at least partly explained those.

The validation process is crucial to ensure bias
reduction in an experiment, as shown in Table 15.
However, four did not make clear if they used any
validation process, while another only partially described
the process. Moreover, six papers explicitly inform the
validation process used. Nonetheless, two only used a
training/test or training/validation/test split of the sample,
which is not the most indicated to reduce bias once it could
be affected by over/under training, while four used k-fold
with a k of 10. Besides, none of the papers have a sample
size greater than 200 samples, which is the indicated value
to use k-fold with k of 10 (Marcot and Hanea, 2020); all
k-fold used was with the k of 10.

Finally, Table 16 shows that only two presented the
result of specificity and sensibility, which are critical for
evaluating the results, especially with unbalanced sample
sizes. Another presented the result for sensibility, arguing
that specificity was not needed once the sample size for
the correspondent class was too small. However, when
this occurs, this value is even more critical once the bias
risk toward not being given any classification for this
class increases. Moreover, only three papers used some
statistical tools to evaluate the result.

5 Conclusion

In this paper, we used a systematic review to apply data
extraction and Quadas-2 to gather data relevant to a work
of Diagnose using EEG and ML. The Quadas—2 is the tool
for evaluating diagnosis studies Cochrane recommends.
Here, we offered a guideline for primary studies report
results that allow a paper to be judged as having a low
risk of bias. Furthermore, it allows a fair comparison
between approaches of different papers, an essential tool
for evaluating state-of-the-art from any field related to
ML and EEG.

All the reviewed papers were judged "at risk of bias"
and as having '"concerns regarding applicability". This
implies an unclear validation of the method for real-life
applications, even for those reaching 100% accuracy on
the classification test. Therefore, this corroborates the
need for a standard for reporting study results on ML and
EEG data.

It is worth noting that besides 10-fold being widely
used, for any data-set size, the k-fold using ten as k is not
recommended for sizes smaller than 200 samples (Marcot
and Hanea, 2020). Hence, applying a validation process
with the recommended setup is crucial for solid results.
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Finally, starting research by following this guideline
allows for more robust report results, which would benefit
the entire research field.
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A Tables Paper Comparison
P P Table 11: Extraction of Demographic

Information
. ID Ci | C2|C3|C4|C5|C6|C

Table 9: Extraction of Data Al | Y | Y | Y| Y | N | N I\'I7

Acquisition A2 | Y | Y | Y| Y |NC| Y |Y

ID | C | C2|C|C4 | C5 A3 | Y| Y [NC|NC|NC|NC|N

Al | Y | Y | Y |[NC| Y AL [NCINC[|N | N|N|[NJN

A2 | Y| Y| Y [NC| Y A5 | Y | Y| Y| N | N | N|N

A3 |[NC|NC|NC|NC| Y A6 | Y | Y | Y | Y | N|N|N

A4 | NC | NC | NC | NC | NC A7 Y Y Y Y N P N

A5 [NC| Y [ NC [ NC | NC A8 | Y | Y| Y| Y | N | N[N

A6 | Y | Y | Y INC| Y A9 [Y [ Y| Y[ Y[N|[N|[N

2 g 1\31{c g z Eg 1\31(C A10| Y | Y| Y| Y| N|N|N
Ao Y Y Y NCT| Y C1: total, C2: distribution, C3: age, C4: sex, C5:

oY v v T Ne T ¥ FIQ, C6: Scores, C7: Individual data
NC: not clearly, P: partially

C1: Equipment used, C2: Electrodes
Position, C3: Setup, C4: Drugs used,
Cs5: Description

NC: not clearly Table 12: Extraction of
Preprocessing
ID Ci| C2 | C3
Al Y N | NA
. A2 Y | NC | NC
Table 10: Extraction of A3 [N | Y [N
Recruitment Process
A4 | N | NC | NC
ID Ci1| C2| C3
A5 N N | NA
Al Y | NC | NC
A6 N N | NA
A2 Y | NC | NC
A7 [ Y| N [ NA
A3 | NC | NC | NC
A8 N | NC | NC
A4 | NC | NC | NC
A5 | NC | NC | NC A9 [N | ¥ | N
> A0 [N | Y | N

A6 Y | NC | NC - -
A7 Y | NC | NC C1: Algorithm public

A8 | NC | NC | NC available, C2: Used
A9 | Y | NC | NC of manual process,

Aio T NC TNC NG C3: It is possible to

reproduce the manual
C1: Diagnose protocol, preprocessing step?
C2: Inclusion criteria, NC: not clearly, NA:
C3: Exclusion criteria not applied
NC: not clearly
Table 13:
Extraction of
Feature Selection
ID C1 | C2
A1 | NA| N
A2 Y Y
A3 | Y | N
AL | Y | N
A5 Y N
A6 Y N
A7 Y Y
A8 Y N
A9 | Y | N
A 10 Y N

C1: description
of the selection
process, C2:
algorithm
public available
NA: not applied
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Table 14: Extraction of

ML Method
ID Ci1 | C2|C3
A1l Y N N
A2 Y N N
A3 Y P p
AL | Y | N | N
A5 | Y | N | P
A6 Y N N
A7 Y Y P
A8 Y N N
A9 Y N p
Al10 | Y N p
C1: Description
of algorithm,
C2: Algorithm

public available, C3:
Algorithm Settings
description
P: partially

Table 15: Extraction of Validation

Process

ID Ci | C2|C3

A1l Y Y | trainig,test

A2 Y Y 10-FOLD

A3 Y Y | trainig,validation,test
AL |[NC| N [N

A5 NC N N

A6 NC N N

A7 Y Y | 10-fold/training test
A8 Y P | 10-fold

A9 |[NC| N | N
A10 | Y Y | 10-fold

C1: Use of validation process, C2:
Description of validation process, C3:
Which Validation was used
NC: not clearly, P: partially

Table 16: Extraction of Results

ID Ci1 | C2|C3 | C4
A1l Y N N N
A2 Y N Y F1 SCORE, RECALL, PRECISION
A3 | Y| N| N[N
Al Y Y Y | AUC, Recall
A5 Y N N N
A6 Y N Y N
A7 [ Y| Y| Y [N
A8 Y N N N
A9 | Y | N | N | AUC
A 10 Y N N N

C1: ACC, C2: SPC, C3: SNS, C4: Statistical Tool.
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