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Abstract
The last decade was marked by increased neuroscience research involving machine Learning (ML) and medical imagessuch as electroencephalogram (EEG). Since ML models tend to be sensitive to the input data, different strategies forexperiment design significantly impact the results achieved. Therefore, the suppression of information about designand results makes comparing works challenging. On average, 53% of critical data was missing from the papers retrieved,making it hard to produce a fair comparison and results analysis; all papers retrieved would be considered with a high"risk of bias" and as having "concerns regarding applicability" by a Quadas-2 analysis. This corroborates the lack of aguideline to provide a standard model for data reports on the field. This work presents the GRSR, a guideline protocol tosupport primary studies covering critical data for studies to demonstrate when using EEG and ML to address neurologicaldisorders. Using GRSR can reduce the chance of being evaluated as having a high risk of bias and having concernregarding applicability based on the metrics of Quadas-2. This improves the research field by allowing real comparisonbetween reported results, narrowing the search for the best methods for neural disorders diagnoses using ML and EEG.
Keywords: Machine Learning; Electroencephalogram; standard presentation; ML; EEG
Resumo
A última década foi marcada pelo aumento da pesquisa em neurociência envolvendo aprendizagem de máquina (MachineLearning, ML) e imagens médicas, como eletroencefalograma (Electroencephalogram, EEG). Como modelos de MLtendem a ser sensíveis aos dados de entrada, diferentes estratégias no design do experimento afetam significativamenteos resultados. Portanto, a ausência de dados sobre o experimento torna difícil compará-los. Em média 53% dos dadoscríticos estavam faltando nos artigos recuperados, dificultando uma comparação justa; todos os artigos recuperadosseriam considerados com alto “risco de viés" (ARV) e como tendo "preocupações quanto à aplicabilidade" (PA) por umaanálise do Quadas-2. Isso corrobora a falta de uma diretriz para fornecer um modelo padrão para artigos primários nessecampo. Este trabalho apresenta o GRSR, um protocolo de orientação para estudos primários, cobrindo dados críticospara serem demonstrados em estudos utilizando EEG e ML com objetivo de analisar distúrbios neurológicos. Seguirtodas as etapas do GRSR pode reduzir a chance de ser avaliado como tendo ARV e PA com base no Quadas-2. Isso resultaem uma melhoria no campo de pesquisa, permitindo a comparação real entre os resultados relatados, estreitando assima busca pelos melhores métodos para diagnósticos de distúrbios neurais usando ML e EEG.
Palavras-Chave: Machine Learning; Eletroencefalograma; Protocolo de Orientação; ML; EEG
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1 Introduction
The human brain complexity imposes challenges tounderstanding the many Neurological disorders. Inthe last decade, Machine Learning (ML) methods havebeen used to investigate the difference between healthysubjects (Control Group, CG) and subjects of a specificcondition (Disorder Group, DG), such as Attention Deficitand Hyperactivity Disorder (ADHD) (Ghiassian et al.,2013; Hale et al., 2014), Autism Spectrum Disorder (ASD)(Rodrigues et al., 2022), Alzheimer’s (Payan and Montana,2015; Sarraf et al., 2017), Parkinson’s (Shinde et al.,2019), and Schizophrenia (Qureshi et al., 2019). However,there are many challenges in investigating neurologicaldisorders using ML, such as the lack of data to train, test,and validate the models (Wolfers et al., 2015); and the lackof a standard model to exhibit the results.The lack of data can be solved by broad sharing ofacquisition data, allowing researchers to access thosesubjects they will conduct the acquisition and othersalready acquired for third part institutions.The second challenge mentioned, the need for astandard model, can be solved by a standard protocol forprimary studies, such as Quadas-2 (Whiting et al., 2011)for secondary studies. This way, tools to improve primarystudies reports allow fair comparisons between differentapproaches.There are many types of medical images used in brainresearch. Between the most used, we can enumerateMagnetic Resonance Image (MRI) (Eslami et al., 2021),functional MRI (fMRI) (Santana et al., 2022), andElectroencephalogram (EEG) (Peya et al., 2020). Thoseare well-known techniques used to acquire brain datathrough minimally invasive approaches, allowing in vivoinvestigations of the brain structure, the oxygen level, andthe electrical impulses, respectively.Many papers use ML applied to bioinformatics(de Almeida Paiva et al., 2022) to better understandbiological relations. Further, ML is applied to medicalimages to diagnose neural disorders (Santana et al., 2022).However, there is a lack of crucial data to ensure a lowrisk of bias, as pointed out in a systematic review withmeta-analysis of ML applied to fMRI to diagnose AutismSpectrum Disorder (ASD) (Santana et al., 2022).ASD is a lifelong neural disorder, with a ratio of 1:44children under eight years old (Maenner et al., 2020)and heritability of 87% (Carvalho et al., 2020). Studiesregarding ASD range from animal models (Silva et al.,2020; Penatti and Silva, 2014) to brain images (Rodrigueset al., 2022; Ghiassian et al., 2013). We chose to focus thispaper on ASD; however, the guideline presented here canbe used by any study using ML and EEG to classify CGversus DG.To the best of our knowledge, no previous protocolaims to address primary studies’ result reports. In thiswork, we propose the Guideline for Reporting StudiesResults (GRSR), a protocol guideline for reporting resultsconcerning the diagnosis of neurological disorders usingML applied to EEG. Aim to close the gap of a standard onthe results reports of primary studies on neural disordersdiagnosis using ML applied to EEG. We highlight crucialdata to be present in those studies to secure their reliability

and reproducibility. Therefore, we evaluate criteria such asthe recruitment process, acquisition process, the sampleused, data preprocessing, feature selection, ML methods,validation process, and results. Moreover, we showquantitative comparisons between the selected papers.
2 Methods
This section describes our methods for reaching the finalmodel proposed in this paper. The first step was to analyzethe available literature through a systematic review(Section 2.1) to ensure a solid base for comparison betweenworks. Then the recruitment process (Section 2.2),followed by the extraction of the information regardingthe data shared, including the acquisition process(Section 2.3), the sample used (Section 2.4), preprocessingapproaches (Section 2.5), feature selection (Section 2.6),ML methods (Section 2.7), validation process (Section 2.8),and the results (Section 2.9).The comparison between the results is not part ofthis scope once we aim to propose a guideline for thepresentation of the results, and the lack of some dataon works makes it hard to perform a fair comparisonbetween a set of approaches, given the complexity of theclassification task on neurological disorders.
2.1 Systematic Review

To evaluate the field, we conducted a systematic reviewto gather primary papers reporting results on ML appliedto EEG. We aimed to quantify the critical data missingin the field in general. The Systematic Review searchon IEEE Xplore for papers that use ML and EEG appliedto ASD diagnosis. IEEE Xplore was selected because itis a renowned Computer Science database. The reasonfor limiting ASD was the familiarity of the researchgroup with the field, allowing for better and fasterevaluation of the recovered papers. Once we aimed tosurvey the primary information regarding EEG and MLmethods, the chosen condition will not impact the results.There were no limitations regardless of published dateor limitations for journals or conferences. Therefore, allworks retrieved by the search string were submitted tothe Inclusion/Exclusion criteria filter and are listed in theTable 4 or Table 3. The search string used was:
( ("All Metadata": ML) OR ("All Metadata": Machine

Learning)) AND (("All Metadata": ASD) OR ("All
Metadata": Autism)) AND ("All Metadata": EEG) AND
((distinguishing) OR (classification) OR (classify) OR
(Feature extraction))After defining the search string, we chose a selectioncriterion, as seen in Table 1, and four exclusion criteria,shown in Table 2. Finally, Silva and Rodrigues evaluated allworks retrieved by the search. The designated criteria foreach study are listed in Table 3, and the screening selectionflow is shown in Fig. 1.Therefore, we selected five of the 11 works returned toextract the data. Additionally, we used five papers alreadyknown by the authors on the issue and not retrieved bythe search, which can be seen in Table 4. Accordingly,all fit the determined inclusion criteria and do not fit the
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Table 1: Inclusion Criteria
IC Inclusion Description

1
Publications that use ML techniques to classifysubjects between ASD and TD, and have resultsbased only on EEG. With or without additionalresults for incremental data.

Table 2: Exclusion Criteria
EC Exclusion Description

1 Publications that seek to understand andcharacterize the ASD brain network, but do notperform the classification of subjects.2 Publications that are not scientific papers.
3

Publications whose objective was to findthe relationship between functionalconnectivity and specific activities but do notperform the classification of subjects.4 Articles not published in English.

exclusion criteria.The following Subsections show the extracted datafrom the final ten works selected from Tables 3 and 4.
2.2 Recruitment Process Data

The recruitment process is usually the first substantialinformation about the reported results. Clarifying thisprocess is crucial for further comparisons once the mentaldisorder diagnosis can change over time. Numerousexamples can be seen by comparison of criteria andclassification on the many DSM reports (ASSOCIATION,1952, 1968, 1980, 1994, 2013). Therefore, a subject with apositive diagnosis may be considered negative by adoptingdifferent criteria.Moreover, the clarity of the recruitment process, andthe diagnosis criteria adopted, allows other works toperform a fair comparison. Another option is to usetools to convert the diagnosis for similar diagnosiscriteria. However, well-established diagnostic protocolswith individual scores linked to each EEG are crucial toallow this process.This way, a table with phenotype data containing thediagnosis criteria and respective scores for each subjectEEG is recommended to be included. This table should alsoinclude data on subjects excluded from the trial and thecriteria used to exclude them.
2.3 Data Acquisition Process

Data acquisition is a process that can directly affect theresults (Gaddale, 2015). The EEG acquisition setup canvastly change between works and directly impact theresults due to the different features analyzed (Gaddale,2015).Therefore, we extracted the following information fromthe selected works:
• Equipment Used;• Electrodes Position System;• Channel;

Table 3: Articles Selection from IEEE Xplore
Id Article Criteria
∆1 Peya et al. (2020) IC1– Aslam and Altaf (2019) EC1,EC3– Gao et al. (2015) EC3– Aslam and Altaf (2020) EC3
∆2 Jayawardana et al. (2019) IC1– 5th ISSNIP (2014) EC2
∆3 Thapaliya et al. (2018) IC1
∆4 Bhaskarachary et al. (2020) IC1– Fan et al. (2017) EC3– Yavuz and Aydemir (2017) EC4
∆5 Bouallegue and Djemal (2020) IC1

Figure 1: Screening and selection of studies for theSystematic Review.
• Sampling Rate;• Band-pass Filtered;• Frequency Band;• Additional Resources;• Acquisition Time;• EEG Segmentation;• Eye State; and• Activity Description.

The description of the equipment used for acquiringthe EEG can help new researchers choose which to use,especially if any was previously available. The acquisitionwill be made specifically to start the research.The electrodes Position System selected must beincluded to compare results. It should contain thereference electrodes used once each electrode placementwill reflect the brain electrical activity of a specific brainregion and those adjacent (Teplan et al., 2002).The used channels must also be described oncedifferent subsets of channels better fit differentclassification tasks (Alotaiby et al., 2015). Therefore,allowing us to interpret the findings by understandingwhere the different patterns occur and compare theresults, both new samples as much as work using thesame dataset.The sample rate is relevant to be present due to itssubstantial importance for analysis (Weiergräber et al.,2016). Considering the task of diagnosing using MLand EEG, we can highlight two reasons: first, the highfrequencies have high-detail information, and second, thesample rate impacts the amount of data for the segmentwhen the EEG signal is segmented, as most works do.These two reasons impact the raw data available, whichaccounts for the features used for raw and processed data.
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Table 4: Articles Selection from authors
ID Article Criteria
∆6 Abdolzadegan et al. (2020) IC1
∆7 Grossi et al. (2017) IC1
∆8 Ibrahim et al. (2018) IC1
∆9 Kang et al. (2020) IC1
∆10 Alhaddad et al. (2012) IC1

The band-pass Filtered must be included once it is astep in almost all preprocessing EEG (Baranowski andPiątek, 2017). Additionally, it is a process that can seriouslychange both the acquired signals and the results obtained(Baranowski and Piątek, 2017). This process excludespart of the data, which generally is considered noise.Therefore, this information gives a better understandingof the results. Additionally, allowing other work to eitherstart by excluding these details, considered noise, ortesting to verify if these details are noise or a featurerelevant to discriminate the classes.Additional Resources should be informed if they wereused or not. Additionally, resources are all kinds of datanot acquired by the EEG machine. Some examples are eyetracking and social cognition measure tests, but they arenot limited to these.Acquisition Time is the time a subject has the EEGequipment recording data. This help set up further worksand measure the amount of data generated, making clearthe total discarded data, if any.EEG Segmentation is a broadly used techniqueto increase the amount of data by subdividing thetotal acquisition sample from a subject into manysegmentations. It clarifies how long each segment is orthat segmentation was not used. Moreover, it is crucialto discriminate how were segmentation used in theexperiment. Once employing a segment from the samesubject on training, test, and validation can create a bias,summarizing, if the training step uses a segment, allsegments from that subject will only be used for training,and the same is valid for test and validation.Eye state is essential information to be provided onceit is possible to detect changes in eye state using EEG(Saghafi et al., 2017). Therefore, it is reasonable to supposethis state will influence the readings acquired during theprocess.Activity description is also relevant for two reasons.First, the stimuli and brain processes can vary from oneactivity to another. Second, activities involving movementcan impact the acquisition process. Therefore, all thisinformation should be carefully detailed in the resultsreport.
2.4 Sample Data

The sample is directly related to the results and theprobability of the software solving the problem instead ofonly creating discrimination for that specific sample used.However, the sample size is a recurrent challenge for MLapproaches aiming to study neurological disorders usingbrain images (Wolfers et al., 2015), which reinforces theneed for more shared data and better specifications aboutthe sample used in each work.

Some of the important data about the sample are:
• Total Sample Size;• Distribution (group control vs. group case);• Age;• Sex;• Gender;• Full-Scale Intelligence Quotient (FIQ);• Scores.

The total sample size and distribution (Case andControl) will give direct information about the bestvalidation process and help estimate the generalizationcapability of the work. Of course, there needs to be morethan the size to ensure a good representation of the work.However, small sample sizes tend to need to be morerepresentative to ensure that the solution found will bethe final answer for the investigation.The following four items must be shown individuallyfor each subject and as statistics for each group namedaverage, maximum, minimum, and standard deviation.In addition, comparing the statistics between each groupwith the p–value is also essential.Here we demonstrate these results in three Tables 5to 7. The first shows a subject-by-subject presentation,where the Id is an identification that links a subject to anEEG. The second and third tables are statistics for eachdiagnosis group. The remaining fields are the diagnosisgroup if Case or Control. In this case, age is shown as yearsbut could be presented as months, weeks, or days sincethe unity used has not been clear. Sex, if male or female,if a code was used, the meaning of the code needs to beclarified. The FIQ should show the score for each subject,while the score for the diagnosis protocol also should beshown. Here we show α β γ, in replacement for actualdiagnostic scores criteria, which should be replaced bythe scores used on each work depending on the diagnosisprotocol. In the case of codes being used as scores, thetranslation needs to be available.
Table 5: Subject Demographic

ID Group AGE SEX Gndr FIQ α β γ1 1 2.3 1 1 100 10 10 102 2 5.3 2 2 110 5 5 5
Here Gndr represents gender, and α, β, and γ representscores for the diagnose protocol, should be replaced by theones used in each research.

The reason for showing α β, and γ is explained inSection 2.2. Furthermore, age, sex (Phellan et al., 2019),and IQ (Jiang et al., 2020) were previously pointed out asaffecting the brain, justifying the presence of this dataregarding the used sample.
2.5 Preprocessing Data

Preprocessing is the step that transforms the raw data intothe ML algorithm input. The ML depends on the featuresreceived as input, which depends on the preprocessingdata (Du and Swamy, 2006). Therefore, this processdescription, in a straightforward manner, is crucial to
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Table 6: Sample DemographicAge Distribution
Group AVG MAX MIN STD1 2.3 2.3 2.3 02 5.3 5.3 5.3 0

FIQ Distribution
Group AVG MAX MIN STD1 100 100 100 02 110 110 110 0

α Distribution
Group AVG MAX MIN STD1 10 10 10 02 5 5 5 0

β Distribution
Group AVG MAX MIN STD1 10 10 10 02 5 5 5 0

γ Distribution
Group AVG MAX MIN STD1 10 10 10 02 5 5 5 0
Here α, β, and γ represent scores for thediagnose protocol, should be replaced bythe ones used in each research.AVG: Average, MAX maximum value,MIN: minimum value, STD: standarddeviation.

Table 7: Sex DistributionSex Distribution
Group Total Male Female1 1 1 02 1 0 1

allow the experiment reproducibility and to understandthe results once some artifact removal can differ theinterpretability from the point of view of raw data. Thismeans that a lack of description of the preprocessing couldlead physicians to interpret removed artifacts as one of thehighlighted features. E.g., removing some spikes on theEEG signal that was considered noise in a channel that washighlighted to be higher in a group, when not explicitlythat were removed, could lead some physicians to interpretit as a marker when analyzing the raw image. Therefore,in this subsection, we put together the data reported onthe returned papers to give a guideline on what to showwhen reporting ML results for EEG classification, named:
• Band-pass Filtering;• Artifacts removal;• Data removal;• Epoch used and Segmentation.

Band-pass Filtering is a linear transformation of thedata that eliminates all components other than the onesinside the specified band of frequencies (Christiano andFitzgerald, 2003). That is crucial once it makes explicitthe range of data analyzed by the experiment.Artifact removal has a similar impact on data as Band-pass Filtering, which also removes data from the originalraw data. Some common artifacts removal are ocular

artifacts, muscle artifacts, and cardiac activity (Urigüenand Garcia-Zapirain, 2015). This process can range fromsoftware to mark the data for visual inspection to softwareto subtract data based on the cerebral activity (Urigüen andGarcia-Zapirain, 2015). Due to its broad possible methods,it required a detailed description, providing details on thesoftware used and its goal. Moreover, a link to access thesoftware must be available. Finally, if the work did notuse any artifact removal, the report must be explicit aboutit. Furthermore, whether or not any manual inspectionwas used must be evident. If so, a detailed presentation isrequired.
Any additional data removal should be declared(Jayawardana et al., 2019) such as removed channelInterpolation. The reason for the data removal also shouldbe reported.
Different epoch lengths can impact the power spectrumanalysis of the EEG (Levy, 1987; Fraschini et al., 2016).Therefore, the segmentation length for each epoch shouldbe reported, along with the total number of epochs. If anyepoch was discarded, the specific epoch discarded and thereason for it should also be reported. The length should beexpressed as data segmentation using seconds as referenceunity, and the number of epochs should be expressed as aunit sum.

2.6 Feature Selection Data

Feature Selection refers to the selection of data input forthe ML algorithm. It can be classified into three categories:filter, wrapper, and embedded methods (Miao and Niu,2016). Filter methods evaluate the features selecting thosewith the most discerning characteristics. It is appliedbefore the data is sent to the ML algorithm (Miao andNiu, 2016), often considered a preprocessing step. Filtermethods use predetermined criteria to rank and select thehighest-ranked features. This approach uses the intendedlearning algorithm to evaluate the features (Miao and Niu,2016). Finally, embedded methods send all preprocesseddata to the ML and let them use the decision weight bytheir means (Benkessirat and Benblidia, 2019).
Once feature selection can overlap with preprocessingor ML method, depending on the used approach, weconsidered it an aspect apart from both, requiring asubsection. Moreover, once two sets of features areused on the same setup of an ML can result in differentresults. Consequently, explaining the features selectedor the algorithm used to select them is crucial to a fairresults comparison and understanding of the potentiallydiscriminating patterns between two or more groups.
Therefore, an explanation of the feature selectionprocess should be reported, including the discriminationof the selected features or the algorithm used. When analgorithm is used, an external link for the algorithm or thecitation of the original publication should be used to avoidin-deep explanation in addition to a brief explanation ofthe method.
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2.7 ML Methods Data

Machine Learning algorithms use mathematical methodsto discriminate two or more groups from each other.Usually, ML uses a sample named "training set" tobalance weights on variables of the selected mathematicalequation, which is then tested in a sample named"validation set" until reaching the best weights, aimingthe high accuracy when applying the equation to the testset. After that, an additional sample named "test set"should be used to verify the generalization capability ofthe ML for the problem faced. It is reported to reduce therisk of bias that these three sets are composed of differentsubjects, as detailed in Section 2.8.There are many different ML methods withinfinite combinations and setup options. Therefore,the description of the ML used should include allcustomization applied to the setup once a single parametercould change the result, making the reproduction of theexperiment unfeasible.Once each method has its singularity, we will onlyenumerate the parameters needed for a good result report.However, all parameters used must be reported, includingthe standard ones.Additionally, studies using multiple ML methodsshould provide the setup and parameters used for eachone. Finally, sometimes different ML methods require adifferent structure of the input. E.g., the SVM requiresas input a vector, while an ANN can use a matrix asinput; thus, if the ANN is using a matrix, ideally, anotherexperiment where the ANN uses the same vector as theSVM should be used.
2.8 Validation Process Data

In the context of ML, validation is a process that aimsto verify if the training and test steps resulted in ageneralization of the problem in a way that allows solvingthe same issue for a different dataset. Meantime, also aimto ensure a lower bias due to over-fit/under-fit.Therefore, all studies on ML applications should includea validation process. Although the validation process is acrucial step to secure the reliability of the results, over-fitcan give a misleading impression that the problem wassolved, especially considering the low data availability onthe field.One validation process prevalent is the k-fold. Itconsists of splitting the sample in k-fold, using the k-1folds for training and validation, then using one fold forthe test, repeating this process k times, and using theaverage from the k times as the final accuracy. Adoptingten as the k is very usual, but the sample size should drivethe choice, with ten being indicated for samples over 200subjects (Bengio and Grandvalet, 2004; Rodriguez et al.,2009; Fushiki, 2011).
2.9 Results Data

If the work shows all data from the previous subsectionsby presenting accuracy, sensitivity, and specificity, it doesbring important information. It is crucial to be explicitabout the group used for the sensitivity and which for the

specificity. Nonetheless, usually, sensitivity has been usedfor the control group. The lack of its description can beprejudicial for comparison. Additionally, providing moredata on results make the paper more robust (Sokolovaet al., 2006). In this subsection, we describe some crucialdata to be presented in the results section, including thethree aforementioned.All the following data about the results should bemeasured based only on results over the validationsample, not in the entire sample, which would create thetraining-test bias on the result. For example, supposethe experiment uses a k-fold-like process, where all thesample is eventually used as training-test and validation.In that case, the measurement should be an average ofthe results for each validation step, considering only thesample used as validation for that step (Maleki et al., 2020;Marcot and Hanea, 2020).Accuracy refers to the number of correct predictions thealgorithm makes on all groups. Sensitivity refers to thenumber of correct algorithm predictions on the diagnosedgroup (positive cases). Finally, specificity refers to thenumber of correct algorithm predictions on the controlgroup (negatives cases) (Sokolova et al., 2006).Statistical information is a powerful tool for describingand interpreting the results. This is true, especially forunbalanced samples, where one group has more samplesthan the other, which allows for creating a more fairmeasurement. Some examples are Receiver OperatingCharacteristic (ROC) Curve, Area Under the ROC Curve(AUC), Matthews correlation coefficient (MCC), Youden’sindex, Likelihoods, and Discriminant power (Chicco andJurman, 2020; Sokolova et al., 2006).
3 Results
In this section, we show the results of our study. Then,in Section 3.1, we compare the selected papers, while inSection 3.2, we show the Quadas-2 analysis from eachpaper. Finally, in Subsection Section 3.3, we summarizeall aspects and data to be shown in a paper.
3.1 Papers Comparison

In this subsection, we summarize the data presented bythe selected papers. We classify each piece of data asmissing, present, or unclear.
The data acquisition process will allow thereproduction of the experiment with other subjects.Therefore, the setup, the equipment used, and theposition of the electrodes are crucial information.Additionally, it must be informed if any subject was underthe influence of drugs, as research points to changesin brain activity due to drug effects. Table 9 shows thepresence (Y) or not (N) for each piece of information ineach paper.
Recruitment Process data will allow further studies toreproduce the experiment for new subjects. Therefore, itis important to make clear the diagnosis protocol used,the inclusion criteria for subjects included in the study,and the exclusion criteria for subjects not included in thestudy. Table 10 shows which paper presents detailed data
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regarding recruitment.
Sample Used explains the sample demographicsused. It is essential to understand the study contextwhile conjecturing potential differences in sex-age-related findings (Phellan et al., 2019). Table 11 showsdemographic information regarding each selected paper.
The preprocessing step represents the transformationof the raw data, an essential step to the experiment’sreproducibility by further research. Therefore, we lookif the algorithm is publicly available and if was applied anymanual steps. Table 12 shows the information regardingpreprocessing.
Feature Selection description allows reproducingthe experiment once pre-selected features are used,drastically impacting an ML algorithm’s optimizationprocess. Therefore, it must offer the process descriptionand makes the algorithm publicly available. Table 13 showsthe presence or not of both of those pieces of information.
ML Methods will provide information concerning thealgorithm used to perform the classification task. Resultsfrom different approaches can be very distinct, and thesetup for the hyper-parameters can change the resultseven within the same ML approach. Table 14 shows thealgorithm’s information for each selected paper.
Validation is the process applied to an experiment toreduce the risk of bias, reducing the risk of the algorithmbeing only valid for one specific database instead of beinga possible solution for the issue of the study. Thus, beingclear on the selected method permits the experiment’sreproducibility through further research. Table 15 showsinformation regarding the validation process.
Results allow comparison between experiments, butmore than only showing the accuracy. Although it is morecritical for unbalanced samples (those with more subjectsfrom one class than another), other data about the resultsare needed, such as specificity and sensibility, that allowdiscerning if there is any bias towards a class. Finally, it isrecommended to show a statistical tool representing thisbalance once it gives a better understanding of the results.Table 16 shows the results data of each selected paper.Of the selected papers, only two showed more than 70%of the information ((Jayawardana et al., 2019) and (Grossiet al., 2017)), while another showed more than 60% ((Peyaet al., 2020)), and two more showed 50% ((Abdolzadeganet al., 2020) and (Alhaddad et al., 2012)). All the other fiveshowed less than 50% of the data ((Thapaliya et al., 2018),(Bhaskarachary et al., 2020), (Bouallegue and Djemal,2020), (Ibrahim et al., 2018), and (Kang et al., 2020)),Table 8 shows the distribution by each step presented inSection 2.9.Summarizing, Data acquisition aspect presented anaverage of 2.8 data informed from a maximum possible of5 (56%), range from 0 to 4, and a standard deviation (STD)of 1.619. Recruit process aspect presented an average of0.5 from a maximum possible of 3 (17%), and range from 0to 1 and 0.52 of STD. Sample used, had the bigger averageof 3.5 with a maximum total of 7(50%), ranging from0 to 6 with 1.58 STD. Preprocessing aspect average 1.4of 3(47%), ranging from 0 to 3 with 1,07 STD. Feature

Selection average 1.2 of 2(60%), ranging from 1 to 2 withan STD of 0.42. Machine Learning aspect average 1.1 of3(37%), ranging from 1 to 2, with 0.31 STD. Validation

process average 1.7 from 3(57%), range from 0 to 3 with1.49 STD. Results aspect average 1.9 from 4(47%), rangefrom 1 to 4, with 1.1 STD. Considering all aspects together,the average was 14.1 from 30(47%), ranging from 6 to 22,with a 5.21 STD.To summarize, the data acquisition aspect presentedan average of 2.8 out of 7 possible (56%), ranging from0 to 4 with a 1.62 standard deviation (STD). The recruit
process aspect presented an average of 0.5 out of 3 possible(17%), ranging from 0 to 1 with 0.52 STD. The sample
used had the highest average, 3.5 out of 7 possible (50%),ranging from 0 to 6 with 1.58 STD. The preprocessingaspect presented an average of 1.4 out of 3 possible (47%),ranging from 0 to 3 with 1.07 STD. The feature Selectionshowed an average of 1.2 out of 2 possible (60%), rangingfrom 1 to 2 with 0.42 STD. The machine learning aspectpresented an average of 1.1 out of 3 possible (37%), rangingfrom 1 to 2 with 0.31 STD. The validation process showedan average of 1.7 out of 3 possible (57%), ranging from 0to 3 with 1.49 STD. Finally, the results aspect presented anaverage of 1.9 out of 4 possible (47%), ranging from 1 to 4with 1.1 STD. Considering all aspects, the average was 14.1from 30 possible (47%), ranging from 6 to 22 with 5.21STD.

Table 8: Compacted Data Report
ID DA RP SU PP FS ML V R T
∆ 1 4 1 4 3 1 1 3 1 18
∆ 2 4 1 6 1 2 1 3 3 21
∆ 3 1 0 2 1 1 1 3 1 10
∆ 4 0 0 0 0 1 1 0 4 6
∆ 5 1 0 3 2 1 1 0 1 9
∆ 6 4 1 4 2 1 1 0 2 15
∆ 7 4 1 4 3 2 2 3 3 22
∆ 8 2 0 4 0 1 1 2 1 11
∆ 9 4 1 4 1 1 1 0 2 14
∆ 10 4 0 4 1 1 1 3 1 15PT 5 3 7 3 2 3 3 4 30

DA: Data Acquisition, RP: Recruit process, SU: SampleUsed, PP: Preprocessing, FS: Feature Selection, ML:Machine Learning method, V: Validation process, R:Results, T: Total information showed by each paper, PT:Total information to show.

3.2 Quadas-2 Evaluation

Quadas-2 is a tool to assess the quality of the diagnosticaccuracy presented by studies included in systematicreviews (Whiting et al., 2011). It is a recommendedapproach by the Agency for Healthcare Research andQuality, Cochrane Collaboration (Reitsma et al., 2009). Itconsists of a checklist based on the 4-stage procedure,aiming for a more transparent rating of bias andapplicability of primary diagnostic accuracy studies(Whiting et al., 2011). Quadas-2 aim to support secondarystudies to evaluate results from primary studies.Quadas-2 judged a study as "low risk of bias" or"low concern regarding applicability" for study evaluatedas "low" for all domains. Otherwise, when one ormore domains are evaluated "high" or "not clear", it
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is judged "at risk of bias" or as having "concernsregarding applicability". In this context, the "risk ofbias" represents the possibility of the decisions in theexperiment design influencing the results; likewise, thelack of description in the results reports could createambiguous interpretations. Meanwhile, the "concernsregarding applicability" represent the possibility of theexperiment being reproduced in populations other thanthe one used in the experiment being evaluated; therefore,the lack of information could lead to a negative evaluationof the studies. Thus, a protocol to support primary studiesshould guarantee that an evaluation of Quadas-2 will bepositive in both these domains.
In this subsection, we applied Quadas-2 to assess therisk of bias in each paper. We evaluate the four domains,Patient Selection, Index Test, Reference Standard, andFlow and Timing. Those domains were applied for Risk ofBias, while only the first three were applied to Concernsabout Application, following the recommendations of(Whiting et al., 2011).
Figs. 2 and 3 show results for risk of bias and concernsabout the application, respectively. Both Patient Selectionand Flow and Timing had an unclear risk of bias for allpapers. For Patient Selection, evaluates if the paper had todescribe the inclusions and exclusions criteria used, whichis critical for this domain. Flow and Timing evaluate if thepaper describes the delay between the standard diagnosisand the EEG acquisition. Moreover, no description of anyintervention was applied between the standard diagnosisand the EEG acquisition.
The lack of information about ethnicity, IQ scores,age, sex, and family income, does not allow guaranteethe representative of the selected samples, which makesit unclear if the patient selection can be applied in thereal world; therefore, all papers have unclear concernsabout the application. Manual steps on preprocessing andfeature selections generate concern about applying theindex test once it is impossible to reproduce the steps. Incontrast, the lack of insurance that any manual steps wereused makes it unclear. The lack of description on whichReference Standard was used to diagnose and how it wasapplied makes an unclear "concern about application".

Figure 2: Quadas-2 Risk of Bias.
Only (Grossi et al., 2017) was evaluated as having alow risk of bias and no concerns in both the Index test

Figure 3: Quadas-2 Concerns About Application.
and Reference Standard. While only (Peya et al., 2020)and (Jayawardana et al., 2019) were unclear on Index testconcerns but had a low risk of bias in the same domainand low risk of bias and no concerns on reference standard.While (Abdolzadegan et al., 2020) was evaluated as unclearon the risk bias of the Index test and low risk of biason reference standard, but no concerns in both domains.Therefore, all papers evaluated should be judged "at riskof bias" and as having "concerns regarding applicability".
3.3 Guideline Steps

After gathering the relevant data from each aspect andapplying the Quadas-2 tool to assess risk bias, wesummarize the data from each feature required for solidresults report on work on Diagnose using EEG andML. Fig. 4 shows all relevant data separated by eachcomponent.Cover all data in Fig. 4 ensures that Quadas-2 evaluationwill result in a low Risk of bias for experiments correcteddesigned. Therefore, we recommend reading (Whitinget al., 2011) before starting the experiment to ensurea correctly designed investigation, mainly aiming tounderstand which practices will ensure a low risk of biasand no concern about the application.
4 Discussion
On average, only 47% of the data was present on thosepapers, with the recruitment process having an average of17% while Feature Selection has an average of 60%. Half ofthe selected papers showed less than 50% of the requireddata. Table 8 shows the uneven distribution of informationpresent. By comparing papers with the most information,compatibility on which data is present is not achieved.In Table 9, none of the papers have an explicitdeclaration about the absence or not of drugs in thesystem of the subjects while acquiring the data. Moreover,four works did not describe the equipment used in theacquisition process. It is worth mentioning that even whileusing third-party datasets, the paper should describe allacquisition processes, covering at least the five criteriadefined in Table 9.Moreover, the recruitment process is an aspect with
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Figure 4: EEG report Guidelines. Steps and theirrespective data needs.
crucial data. As shown in Table 10, only five papersdescribe the diagnosis protocol used, while none describethe inclusion and exclusion criteria for select subjects forthe experiment, which leads to an Unclear risk of bias andconcerns about the application in Patient Selection on theQuadas-2 evaluation.

Regarding the sample used data, except for FIQ,Diagnose Scores, and Individual data, most papers coverall other information. However, none present any dataabout FIQ or another IQ measurement. At the sametime, only one showed data about Diagnose Scores andIndividual data, while another presented partial data aboutDiagnose Scores, as shown in Table 11. Impacting on theIndex test "concerns about the application" of Quadas-2evaluation.
The Preprocessing information, as shown in Table 12,has two papers without any data presented, with onlythree of them with publicly available algorithms. While

six used a manual step that was impossible to replicateby readers or did not make explicit that they did not use amanual step in the process.The Feature Selection, the most extensively covereddata for the selected papers, as shown in Table 13, has onepaper where this aspect did not apply as a question onceused the ML with all preprocessed information, one thatdescribes and makes the algorithm public available. Incontrast, all other eight papers only describe the process.As shown in Table 14, all papers describe the MLmethod used. However, only two have at least partiallybeen made publicly available. Furthermore, nonedescribed all the hyper-parameter settings, while onlyfive have at least partly explained those.The validation process is crucial to ensure biasreduction in an experiment, as shown in Table 15.However, four did not make clear if they used anyvalidation process, while another only partially describedthe process. Moreover, six papers explicitly inform thevalidation process used. Nonetheless, two only used atraining/test or training/validation/test split of the sample,which is not the most indicated to reduce bias once it couldbe affected by over/under training, while four used k-foldwith a k of 10. Besides, none of the papers have a samplesize greater than 200 samples, which is the indicated valueto use k-fold with k of 10 (Marcot and Hanea, 2020); allk-fold used was with the k of 10.Finally, Table 16 shows that only two presented theresult of specificity and sensibility, which are critical forevaluating the results, especially with unbalanced samplesizes. Another presented the result for sensibility, arguingthat specificity was not needed once the sample size forthe correspondent class was too small. However, whenthis occurs, this value is even more critical once the biasrisk toward not being given any classification for thisclass increases. Moreover, only three papers used somestatistical tools to evaluate the result.
5 Conclusion
In this paper, we used a systematic review to apply dataextraction and Quadas-2 to gather data relevant to a workof Diagnose using EEG and ML. The Quadas–2 is the toolfor evaluating diagnosis studies Cochrane recommends.Here, we offered a guideline for primary studies reportresults that allow a paper to be judged as having a lowrisk of bias. Furthermore, it allows a fair comparisonbetween approaches of different papers, an essential toolfor evaluating state-of-the-art from any field related toML and EEG.All the reviewed papers were judged "at risk of bias"and as having "concerns regarding applicability". Thisimplies an unclear validation of the method for real-lifeapplications, even for those reaching 100% accuracy onthe classification test. Therefore, this corroborates theneed for a standard for reporting study results on ML andEEG data.It is worth noting that besides 10-fold being widelyused, for any data-set size, the k-fold using ten as k is notrecommended for sizes smaller than 200 samples (Marcotand Hanea, 2020). Hence, applying a validation processwith the recommended setup is crucial for solid results.
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Finally, starting research by following this guidelineallows for more robust report results, which would benefitthe entire research field.
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Table 9: Extraction of DataAcquisition
ID C1 C2 C3 C4 C5
∆ 1 Y Y Y NC Y
∆ 2 Y Y Y NC Y
∆ 3 NC NC NC NC Y
∆ 4 NC NC NC NC NC
∆ 5 NC Y NC NC NC
∆ 6 Y Y Y NC Y
∆ 7 Y Y Y NC Y
∆ 8 NC Y Y NC NC
∆ 9 Y Y Y NC Y
∆ 10 Y Y Y NC Y

C1: Equipment used, C2: ElectrodesPosition, C3: Setup, C4: Drugs used,C5: DescriptionNC: not clearly

Table 10: Extraction ofRecruitment Process
ID C1 C2 C3
∆ 1 Y NC NC
∆ 2 Y NC NC
∆ 3 NC NC NC
∆ 4 NC NC NC
∆ 5 NC NC NC
∆ 6 Y NC NC
∆ 7 Y NC NC
∆ 8 NC NC NC
∆ 9 Y NC NC
∆ 10 NC NC NC

C1: Diagnose protocol,C2: Inclusion criteria,C3: Exclusion criteriaNC: not clearly

Table 11: Extraction of DemographicInformation
ID C1 C2 C3 C4 C5 C6 C7
∆ 1 Y Y Y Y N N N
∆ 2 Y Y Y Y NC Y Y
∆ 3 Y Y NC NC NC NC N
∆ 4 NC NC N N N N N
∆ 5 Y Y Y N N N N
∆ 6 Y Y Y Y N N N
∆ 7 Y Y Y Y N P N
∆ 8 Y Y Y Y N N N
∆ 9 Y Y Y Y N N N
∆ 10 Y Y Y Y N N N

C1: total, C2: distribution, C3: age, C4: sex, C5:FIQ, C6: Scores, C7: Individual dataNC: not clearly, P: partially

Table 12: Extraction ofPreprocessing
ID C1 C2 C3
∆ 1 Y N NA
∆ 2 Y NC NC
∆ 3 N Y N
∆ 4 N NC NC
∆ 5 N N NA
∆ 6 N N NA
∆ 7 Y N NA
∆ 8 N NC NC
∆ 9 N Y N
∆ 10 N Y N

C1: Algorithm publicavailable, C2: Usedof manual process,C3: It is possible toreproduce the manualpreprocessing step?NC: not clearly, NA:not applied

Table 13:Extraction ofFeature Selection
ID C1 C2
∆ 1 NA N
∆ 2 Y Y
∆ 3 Y N
∆ 4 Y N
∆ 5 Y N
∆ 6 Y N
∆ 7 Y Y
∆ 8 Y N
∆ 9 Y N
∆ 10 Y N

C1: descriptionof the selectionprocess, C2:algorithmpublic availableNA: not applied
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Table 14: Extraction ofML Method
ID C1 C2 C3
∆ 1 Y N N
∆ 2 Y N N
∆ 3 Y P P
∆ 4 Y N N
∆ 5 Y N P
∆ 6 Y N N
∆ 7 Y Y P
∆ 8 Y N N
∆ 9 Y N P
∆ 10 Y N P

C1: Descriptionof algorithm,C2: Algorithmpublic available, C3:Algorithm SettingsdescriptionP: partially

Table 15: Extraction of ValidationProcess
ID C1 C2 C3
∆ 1 Y Y trainig,test
∆ 2 Y Y 10-FOLD
∆ 3 Y Y trainig,validation,test
∆ 4 NC N N
∆ 5 NC N N
∆ 6 NC N N
∆ 7 Y Y 10-fold/training test
∆ 8 Y P 10-fold
∆ 9 NC N N
∆ 10 Y Y 10-fold

C1: Use of validation process, C2:Description of validation process, C3:Which Validation was usedNC: not clearly, P: partially

Table 16: Extraction of Results
ID C1 C2 C3 C4
∆ 1 Y N N N
∆ 2 Y N Y F1 SCORE, RECALL, PRECISION
∆ 3 Y N N N
∆ 4 Y Y Y AUC, Recall
∆ 5 Y N N N
∆ 6 Y N Y N
∆ 7 Y Y Y N
∆ 8 Y N N N
∆ 9 Y N N AUC
∆ 10 Y N N N

C1: ACC, C2: SPC, C3: SNS, C4: Statistical Tool.
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