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Abstract
Studies concerning the characteristics of phenomena/experiments over time, such as longitudinal studies or thosefocused on the time until an event of interest occurs, are increasingly essential in various fields. There may be instanceswhere the investigation of the relationship between one or more longitudinal responses and an event of interest iswarranted, a task achievable through the joint model of longitudinal and survival data. However, these models may haveconvergence problems and be computationally demanding, making their use unfeasible in many cases. In considerationof these factors, the objective of this study is to conduct a Monte Carlo simulation study involving various censoringpercentages and correlation structures. The proposed cross-coverage probability will be employed as a diagnostic toolto identify circumstances conducive to numerical convergence, aiming to obtain maximum likelihood estimates forjoint models applied to longitudinal and survival data. The results indicated similarity in terms of inference among themodels, accounting for the impact of both the correlation structure and the censoring percentage. It was determinedthat the cross-coverage probability contributes to diagnosing the favorable behavior of the data, thereby facilitating theimplementation of joint modeling.
Keywords: Censorship; longitudinal data; mixed linear models; simulation; survival analysis
Resumo
Estudos relacionados a características de fenômenos/experimentos no tempo, como estudos longitudinais ou do tempoaté a ocorrência de um evento de interesse, se fazem cada vez mais necessários em diversas áreas. Podem existir situaçõesem que se objetiva investigar a relação entre uma ou mais respostas longitudinais e um evento de interesse, que pode serrealizada com o auxilio da modelagem conjunta de dados longitudinais e de sobrevivência. Entretanto, esses modelospodem apresentar problemas de convergência e serem computacionalmente exigentes, tornando inviável a utilizaçãodos mesmos em muitos casos. Tendo em vista esses fatores, o objetivo deste trabalho é realizar um estudo de simulaçãode Monte Carlo envolvendo diversas percentagens de censura e estruturas de correlação. A probabilidade de coberturacruzada proposta será utilizada como ferramenta de diagnóstico para identificar circunstâncias favoráveis à convergêncianumérica, visando à obtenção de estimativas de máxima verossimilhança para modelos conjuntos aplicados a dadoslongitudinais e de sobrevivência. Como resultados, verificou-se a existência similaridade em termos de inferência entreos modelos, com efeito da estrutura de correlação e do percentual de censura. Constatou-se que a probabilidade decobertura cruzada contribui com um diagnóstico sobre o bom comportamento dos dados, auxiliando para realização damodelagem conjunta.
Palavras-Chave: Censura; dados longitudinais; modelos lineares de efeitos mistos; simulação; análise de sobrevivência

http://dx.doi.org/10.5335/rbca.v16i3.15375
http://seer.upf.br/index.php/rbca/index
https://orcid.org/0000-0002-0003-6965
https://orcid.org/0000-0002-9703-3698
https://orcid.org/0000-0002-2647-439X


2 Gonçalves, Fonseca & Cirillo | Revista Brasileira de Computação Aplicada (2024), v.16, n.3, pp.1–9

1 Introduction
Many pieces of information are currently collected overtime, known as longitudinal data, obtained from the samesample elements over an extended period. Longitudinaldata represent repeated observations of a random variableof interest, collected at different time points for the sameindividual or object (Hu and Szymczak, 2023).In statistics, numerous methodologies are available foranalyzing such data. Among these techniques, mixed-effects linear and survival models stand out, with the latterbeing particularly useful when dealing with censored data(incomplete observations of the response variable).Mixed-effects linear models are defined as models thatinclude both fixed effects and random effects. They areprimarily used to describe the relationship between aresponse variable and covariates in data grouped accordingto one or more classification factors (Pinheiro and Bates,2006).These models enable the prediction of how individualresponse trajectories change over time and the estimationof parameters describing how the mean response changesin the population of interest. They can accommodateany degree of imbalance in the data, meaning that thenumber of measurements does not need to be the samefor each individual or object. Additionally, random effectsaccount for the correlation between repeated measures ina relatively efficient manner (Verbeke et al., 1997).Survival models are designed for situations wherethe goal is to evaluate the time until the occurrenceof one or more events of interest, often referred to asfailures. However, the exact time of occurrence of theevent of interest is not always known, or the event maynot be observed at all, leading to censoring in survivalmodels. Censored observations are partial or incompleteobservations of the response variable (Colosimo and Giolo,2006).Thus, survival models are distinguished by theircapacity to accommodate these incomplete (censored)observations in analysis, thereby enabling robuststatistical conclusions by incorporating information aboutthe time until the occurrence of the event of interest forthe sampled elements.There is also the possibility to investigate therelationship between one or more longitudinal responsesand an event of interest. The statistical treatment ofresponses repeated over a period of time and observed inthe same experimental unit can be applied in differentsituations involving specific models. In view of the aboveand given a longitudinal study considering n individuals,the use of a joint model (Viviani et al., 2014) allows thetime until the occurrence of an event of interest to bemodeled, including covariates that vary over time. In thiscase, Wu and Carroll (1988) suggest joint modeling usingsurvival analysis techniques with random effects models.The relationship between the mixed linear modelswith analysis of survival data such that random effectsact linearly on the survival time of the individual orexperimental unit is mentioned by Do Ha and Lee (2005).Rizopoulos (2012) includes random effects in survival data,allowing for the prediction of dynamic individual responsetrajectories over the observed period.

A joint model that simultaneously contemplates thelongitudinal responses in the presence of censoring hasbeen proposed. Zhang et al. (2014) recommend applyingthis in situations represented by survival models withmeasurement errors, missing data with time-dependentcovariates and longitudinal models. However, in manycases, the numerical complexity of fitting these modelscan make them unfeasible since including randomeffects becomes computationally demanding as theirdimensionality increases (Murray and Philipson, 2022).Notably, the longitudinal process and the survivalprocess are associated with latent variables. In thiscontext, Rizopoulos and Lesaffre (2014) highlight thatmodels with latent variables are defined based on theassumption of conditional independence. In practice,these models are difficult to implement since the specifiedintegral with respect to the latent variable does not have aform. Therefore, numerical integration is needed, makingthese models very computationally demanding.Another important issue is mentioned by Rizopoulos(2010): considering the accelerated time to failure, thespecification of the joint model requires a completelongitudinal history for calculating the survival functionand the risk function; in many applications, individualsand/or units may exhibit highly nonlinear longitudinaltrajectories.Given the previous description and considering theconvergence problems that may occur, the use of latentvariables and their implications in solving the integralwith required computational demand, preliminarilyevaluating the behavior of the data through individualprocess modeling of survival and longitudinal is worthinvestigating since similar parameter estimation resultsmay otherwise occur. Therefore, the performance of a jointmodel can be better analyzed than that of other models.This perspective justifies the contributions of thisstudy, which presents a methodology that obtains thecross coverage probability. In the proposed methodology,the estimates of the longitudinal model parametersare computed based on the confidence interval of theparameters of the survival model. Thus, the coverageprobabilities for the survival model are generated byinverting the intervals.The main contribution of this work is the introductionand application of cross-coverage probability as adiagnostic tool. This tool is employed to identifycircumstances conducive to numerical convergence inobtaining maximum likelihood estimates for joint modelsapplied to longitudinal and survival data. This diagnosticsignificantly aids in overcoming convergence issuesand the computational demands often associated withthese models, thereby enhancing applicability in studiesinvolving such data types and yielding more preciseresults while leveraging the advantages these modelsoffer.Notably, the coverage probabilities in both models werenot computed based on the parametric values. Rather, theywere computed considering sample estimates, intuitivelythe bootstrap approach, in which the sample estimateis considered a parametric value for interval confidencelevels estimated in the subsamples.In view of the above, this study proposes using
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the measure of the probability of cross-coverage as adiagnostic tool for connecting longitudinal and survivalmodels. This can help the researcher estimate a jointmodel that involves both processes and minimize possiblenumerical convergence problems.
2 Materials and methods
For a better compression of the construction of the panel ofdata with repeated measures in the absence and presenceof censure, as well as the notation used in the subsequentsections, the layout described in Table 1 is followed.

Table 1: Panel data layout with repeatedmeasures (m = 1, · · · , M), within eachgroup (g = 1, · · · , G) censored (δ).
Longitudinal Process Survival Process

Y G X W δ

y11 1 x11 w11 δ11
y21 1 x21 w21 δ21... ... ... ... ...
ym1 1 xm1 wm1 δm1... ... ... ... ...
y1g g x1g w1g δ1g
y2g g x2g w2g δ2g... ... ... ... ...
ymg g xmg wmg δmg

The longitudinal process and simulated survival,including the categorical covariates based on this structureare described below in sections 2.1 – Monte Carlosimulation of the multilevel model for the longitudinalprocess; 2.2 – Monte Carlo simulation of the Weibull modelfor the survival process; 2.3 – Definition of the simulationscenarios and parametric values; and 2.4 – Adjustmentof the models for the survival and longitudinal processeswith inclusion of categorical covariates and estimation ofthe probabilities of cross coverage.
2.1 Monte Carlo simulation of the multilevel

model for the longitudinal process

Y was assumed to be the dependent variable in the fit of the
multilevel model with the distribution Yj ∼ Np

(
µjg,Σa

),
for j = 1, · · · , M · G, where g = 1, · · · , G such that thedependence relationship with the regressor variable X wasmaintained by the Eq. (1) (Silva and Cirillo, 2018) and

µjg = β0
(

mj – 1) + β1Xjg, (1)
in which Xjg ∼ U(0, 1)andβ0 = β1 = 0.5, fixed arbitrarily.The autoregressive correlation structure of order 1,AR(1), was considered for the definition of the covariancematrix Σa, where a = 1. Its estimated correlations

were given as a function of the α parameters used in thegeneralized estimation equations approach (Liang andZeger, 1986) (2)
CORR

(
Y(g,j), Y(g,j+t)

) = αt, where t = 1, · · · , T. (2)
For ∑2(a = 2), we proceeded by including theinterchangeable correlation structure, according to theEq. (3).

CORR
(

Ygj, Ygj′
) =

{1, if j = j′
α, if j ̸= j′ . (3)

The inclusion of the degree of correlation ρ in theestimates of α in Eq. (2) and Eq. (3) was performed usingthe method for obtaining the limiting estimates of thecovariance matrix proposed by Silva and Cirillo (2018).This method was applied to the GEE 2 models accordingto Eq. (4) and Eq. (5).

α0(1 – α0)–1
{

t – (1 – αt0)1 – α0
}

– t(t – 1)ρ2 = 0, (4)
where –1/(t – 1) ≤ ρ ≤ 1, and

α0 = 2ρ
{

t – (1 – ρt)/(1 – ρ)
t(t – 1)(1 – ρ)

}
, (5)

where –1 ≤ ρ ≤ 1.The restriction presented in Eq. (4) is performedassuming that the exchangeable correlation matrix istrue when considering it as a working correlation matrix;analogously, applying the restriction presented in Eq. (5)assumes the AR(1) structure to be true (Sutradhar and Das,2000).
2.2 Monte Carlo simulation of the survival model

The survival process was simulated so that the percentageof censorship was controlled in the generated sample. Todo so, the procedure used in Giarola et al. (2018) assumedtwo auxiliary random variables, W1 ∼ Weibull(α1,β1) and
W2 ∼ Weibull(α2,β2). In this way Z = W2 – W1 was definedwith the condition that α1 = α2 = αc. Substituting this into
FZ, we obtained in Eq. (6)

F(z) = ∫ ∞

0 wαc–11 – exp{–(w1
β1

)αc – (w2
β2

)αc}
dw1

= 1
αc

( 1
β
αc1 + 1

β
αc2

) . (6)

Therefore,
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Fz = βαc1
βαc1 + βαc2 . (7)

Thus, given that W2 considered the censoring timeassociated with the i-th observation and W1 consideredthe failure time, the definition of the censoring percentage
P was determined by Eq. (8)

P = βαc1g
βαc1g + βαc2g

, where g = 1, · · · , G, (8)

β∗2g = β1g

( 1 – P
P

) 1
αc . (9)

Following these specifications, the censoringassignment was given by generating F ∼ Weibull(αg,βg),where g = 1, · · · , G represents the time elapsed untilfailure, and C ∼ Weibull(αg,β∗
g ) represents the censoringtime. Therefore, W = min(F, C) and δ is the censorshipindicator, where δ = 1 if F < C and δ = 0 otherwise.

2.3 Definition of simulation scenarios and
parametric values

With the variables simulated in both processes asdescribed in the previous sections, scenarios were used inthe Monte Carlo simulation under the factor combinationsdescribed in Table 2.The Monte Carlo simulation procedure is justifiedfor simulating samples, which computationally controldifferent scenarios (Table 2). These scenarios serve asinstruments for investigating the performance of thejoint model, generating empirical distributions of theparameters. From these distributions, it becomes possibleto estimate coverage probabilities, providing a morerobust and detailed view of the model’s behavior undervarious scenarios.The values of the parameters of the Weibull model weredefined arbitrarily, α = 12 and β = 4. The correlationbetween repeated measures in the longitudinal processwas determined to be ρ = 0.5.
2.4 Fit of the models for the survival and

longitudinal processes with inclusion of
categorical covariates and estimation of the
probabilities of cross-coverage

Given the longitudinal process, the multilevel model wasfitted with a random intercept (θ0) and four categoricalcovariates (θ1, · · · , θ4) whose systematic components weredefined by the linear predictor Eq. (10).
ηk = θθθ · Xk + ε, (10)

Table 2: Scenarios considered for thesimulation of data with differentpercentages of censorship (P), numberof groups (Ng) and number ofmeasurements (Nmed).
Scenario Q Structure Ng Nmed

1 15 AR(1) 20 302 15 AR(1) 20 603 15 AR(1) 20 1004 15 Uniform 20 305 15 Uniform 20 606 15 Uniform 20 1007 15 AR(1) 50 308 15 AR(1) 50 609 15 AR(1) 50 10010 15 Uniform 50 3011 15 Uniform 50 6012 15 Uniform 50 10013 50 AR(1) 20 3014 50 AR(1) 20 6015 50 AR(1) 20 10016 50 Uniform 20 3017 50 Uniform 20 6018 50 Uniform 20 10019 50 AR(1) 50 3020 50 AR(1) 50 6021 50 AR(1) 50 10022 50 Uniform 50 3023 50 Uniform 50 6024 50 Uniform 50 100

in which θ = (θ0, θ1, θ2, θ3, θ4), k = 1, · · · , M · G and ε ∼
N(0, 1).For the survival process, the Weibull model wasconsidered.

S(t) = exp
{

–( t
α

)β
}

, (11)
where α = (

α1,α2,α3,α4).Once the estimates θ̂ and α̂ were obtained, theasymptotic confidence intervals were computed withthe nominal level γ = 0.95 considering the averages ofthe estimates of the parameters of the longitudinal andsurvival models, adjusted in 1000 Monte Carlo realizationsEq. (12).

IC (θi, γ) = θ̂i ± 1.96√V̂ar(θ̂i), (12)

IC (αi, γ) = α̂i ± 1.96√V̂ar(α̂i), (13)
in which i = 1, · · · , TR = 4.As a function of the intervals, the estimate of thecross-coverage probability was denoted by ĈCPα̂i

(
θ̂i
) as

the frequency of the number of estimates α̂i obtainedwith the fit of the survival model, which is contained in
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the interval IC(θi, γ). Similarly, ĈCP
θ̂i

(α̂i) was estimated
through the frequency of estimates θ̂i obtained with the fitof the multilevel model, which is contained in the interval
IC(αi, γ).Following the recommendations of Bradley (1978) andAlgina et al. (2005) and maintaining the nominal 95%confidence level, the confidence interval of this probabilityis [0.925; 0.975].To obtain the results, a script was prepared in Rsoftware, version 4.0.4, for each scenario (Table 2) (R CoreTeam, 2022).
3 Results and discussion
Before discussing the simulated results, it should be notedthat the first parameter of the survival model α1 canbe confused with the intercept (θ) of the longitudinalmodel. For didactic purposes and better clarification, let usassume the relative risk of the joint model, defined below:

hi
(

t|Mi(t), wi
) = h0 exp{

γ⊤wi + ami(t)} . (14)
Specifying h0 by the distribution Weibull (µ,σ) resultsin the following expression.

hi
(

t|Mi(t), wi
) = σ

µσ
tσ–1 exp{

γ⊤wi + ami(t)}
= σexp{

σ log(µ)} tσ–1 exp{
γ⊤wi + ami(t)}

= σtσ–1 exp{–σ log(µ) + γ⊤wi + ami(t)} .
(15)

Therefore, the term –σ log(µ) is conflated with theintercept effect of the linear predictor of the longitudinalmodel.Given this understanding, although no inferenceswere made about relative risk, the results described inTable 3 correspond to the estimates of the cross-coverageprobabilities. These are computed by the estimates ofthe first parameter of the survival model α̂i based on theconfidence interval for the intercept of the longitudinalmodel.
Table 3: Probability of cross-coverage ofthe parameter α1 of the survival model inrelation to the intercept interval estimates
θ0 specified in the longitudinal model.
Scenario P Structure ĈCPα̂1

(
θ̂0

)
1 AR1 0.95864 15% Uniform 0.95139 AR1 0.943512 Uniform 0.9477

13 AR1 0.966016 50% Uniform 0.963921 AR1 0.956824 Uniform 0.9439

The results described in Table 3 demonstrate thatregardless of the correlation structure or whether thecensorship percentage is specified as 15% or 50%, theestimates of the coverage probabilities approximatelyrelate to the nominal confidence level defined in 95%.The other scenarios involve the results of the otherparameters of the Weibull and multilevel model in relationto the estimates of the cross-coverage probabilities. Theextreme case, i.e., fewer groups (Ng=20) and fewermeasurements (Nmed=30), follows the graphs illustratedin Fig. 1.The results described in Fig. 1 demonstrate that, ingeneral, the correlation structure to which the data arecorrelated has an impact. In this context, the estimates ofthe cross-coverage probabilities in both models showeddiscrepancies in at least one of the parameters in under the95% nominal confidence level, with greater discrepancieswhen the percentage of censoring was high (50%).This result did not occur under the uniform correlationstructure, as shown in Figure 1(b)-1(d); that is, in bothmodels, the longitudinal and survival processes wereconnected. In comparison with the results obtained byVillegas et al. (2013) and in relation to other survivalmodels, the effect of correlation and percentages ofcensoring, different multiple failure approaches applyingthe Cox proportional hazards model are considered indifferent simulation scenarios.Thus, assuming sample sizes fixed in n =(50,100,200,400); percentages of censorship p =0%, 15%, 30% and 50%; number of recurring events
K = (3, 6, 9, 12); and the levels of correlation between theadjacent recurrence times fixed in ρ = (0, 0.10, 0.45, 0.80),and without specifying the correlation structure, theauthors concluded that the different approaches arestable against censorship and share a bias as the valuesincrease For K recurrence levels, resulting in asymptoticconfidence intervals that are imprecise relative to thespecified nominal confidence level.Fig. 2 illustrates the results of increasing the numberof groups (Ng=50) and number of measurements(Nmeg=100). These results show that, given thecorrelation structure AR(1) (Fig. 2(a)-(c)) and for lowcensoring proportions, the estimates were reduced. Thisprimarily caused an estimate in one of the parameters tobe lower than the specification limit defined at 0.92 forthe nominal confidence level. Thus, it has a limited abilityto propose any recommendation regarding the existenceof some connection between the longitudinal process andthe survival process.Under the uniform correlation, increasing thenumber of measurements resulted in reduced coverageprobabilities in the presence of a high percentage ofcensorship (50), creating an estimate that is incoherent atthe nominal confidence level in at least one of the modelparameters of survival.Štajduhar and Dalbelo-Bašić (2010) adapted thelearning algorithms of Bayesian networks using acensorship weighting procedure proposed by Zupan et al.(2000), assuming nine different percentages of censoringp = 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70% and80% and comparing the estimates of the Cox regressionmodel. In this context, they concluded that the weighting
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(a) (b)

(c) (d)

Figure 1: Estimates of the probabilities of cross-coverage, fixing the AR(1) and uniform correlation structures andcensoring percentages of 0.15 and 0.50: (a) and (b), parameters of the longitudinal model in relation to the confidenceinterval of the parameters of the (c) and (d) parameters of the survival model in relation to the confidence interval of theparameters of the longitudinal model.
procedure should be used with Bayesian networks onlywith intermediate data censorship (from 40% to 60%).If data censorship is light (up to 30%), the originalalgorithms should be used.

Lin et al. (2013) performed a simulation studycomparing the performance of several maximumlikelihood estimation (ML) methods, the log-probitregression method and the nonparametric Kaplan–Meiermethod (KM). Thus, samples were generated fromthe following distributions: log-normal, gamma, amixture of two log-normals and log-normal with 30%of observations at zero for different sample sizes. Foreach distribution evaluated, the percentage of censoredobservations was randomly generated from a uniformdistribution ranging from 20% to 80%.
With these specifications, the results showed thatthe sample size had little impact on the accuracy of

the estimates; however, the percentage of censoredsamples had the greatest impact, which is comparableto the results obtained by Antweiler and Taylor(2008) in the comparison of the maximum likelihoodestimation methods, regression statistics by order andnonparameters for the analysis of left censored data; theyconcluded that with high percentages of censored data,the interval estimates were imprecise in relation to thenominal confidence level.
4 Conclusions
The proposed procedure used to estimate cross-coverageprobabilities as a diagnostic tool for the connection ofthe longitudinal and survival models, was adequate whenconsidering the Weibull model. Therefore, it can helpresearchers estimate a joint model that involves both
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(a) (b)

(c) (d)

Figure 2: Estimates of the probabilities of cross-coverage, fixing the AR(1) and uniform correlation structures andcensoring percentages of 0.15 and 0.50: (a) and (b), parameters of the longitudinal model in relation to the confidenceinterval of the parameters of the (c) and (d) parameters of the survival model in relation to the confidence interval of theparameters of the longitudinal model.
processes and minimize possible numerical convergenceproblems.

In the context of scenario 13, which includes smallernumbers of groups and measurements involving the AR1correlation structure, the estimates of the cross-coverageprobabilities in both models showed discrepancies in atleast one of the parameters when the percentage rateof censorship was 50%, given a specified 95% nominalconfidence level. Thus, this rate of censorship presentsmore harmful results than other rates. Under the samecontext but with a uniform correlation structure, as inscenarios 4 and 16, it is noted that a favorable conditionexists for numerical convergence in obtaining maximumlikelihood estimates for joint models of longitudinal andsurvival data.
Given the AR(1) correlation structure, increasing thenumber of groups and measurements and considering

low censoring proportions leads to an estimate belowthe specification limit, which is defined as 0.92 for thenominal confidence level. This finding limits the ability torecommend the utilization of joint models for longitudinaland survival data.
For both correlation structures, increasing the numberof measurements resulted in a reduction in the coverageprobabilities in the presence of a high percentage ofcensorship, causing an estimate that was incoherentat the nominal confidence level in at least one of theparameters of the survival model. Thus, increasingthe percentage of censorship negatively impacted thenumerical convergence for obtaining maximum likelihoodestimates of joint models for longitudinal and survivaldata.
The proposed methodology represents a significantadvancement by offering a way to identify circumstances
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conducive to numerical convergence, which is essentialfor achieving results in joint modeling. The useof Monte Carlo simulation involving various levelsof censoring and correlation structures provides arobust and comprehensive analysis, allowing for theevaluation of different scenarios and validation of theproposed methodology. Ultimately, this approach helpsminimize computational challenges and convergenceissues associated with joint models, thereby expandingtheir applicability across various fields.In future studies, we aim to expand the methodologyby considering additional parametric models. This couldprovide a broader view of scenarios where convergenceissues may arise and evaluate the effectiveness of cross-coverage probability in these contexts. The findings ofthis study may contribute to the future developmentof computational tools incorporating the proposedmethodology, assisting researchers in facilitating theestimation of joint models.
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