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Abstract

Studies concerning the characteristics of phenomena/experiments over time, such as longitudinal studies or those
focused on the time until an event of interest occurs, are increasingly essential in various fields. There may be instances
where the investigation of the relationship between one or more longitudinal responses and an event of interest is
warranted, a task achievable through the joint model of longitudinal and survival data. However, these models may have
convergence problems and be computationally demanding, making their use unfeasible in many cases. In consideration
of these factors, the objective of this study is to conduct a Monte Carlo simulation study involving various censoring
percentages and correlation structures. The proposed cross-coverage probability will be employed as a diagnostic tool
to identify circumstances conducive to numerical convergence, aiming to obtain maximum likelihood estimates for
joint models applied to longitudinal and survival data. The results indicated similarity in terms of inference among the
models, accounting for the impact of both the correlation structure and the censoring percentage. It was determined
that the cross-coverage probability contributes to diagnosing the favorable behavior of the data, thereby facilitating the
implementation of joint modeling.
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Resumo

Estudos relacionados a caracteristicas de fenémenos/experimentos no tempo, como estudos longitudinais ou do tempo
até a ocorréncia de um evento de interesse, se fazem cada vez mais necessarios em diversas areas. Podem existir situacoes
em que se objetiva investigar a relacao entre uma ou mais respostas longitudinais e um evento de interesse, que pode ser
realizada com o auxilio da modelagem conjunta de dados longitudinais e de sobrevivéncia. Entretanto, esses modelos
podem apresentar problemas de convergéncia e serem computacionalmente exigentes, tornando inviavel a utilizagdo
dos mesmos em muitos casos. Tendo em vista esses fatores, o objetivo deste trabalho é realizar um estudo de simulagéo
de Monte Carlo envolvendo diversas percentagens de censura e estruturas de correlacao. A probabilidade de cobertura
cruzada proposta sera utilizada como ferramenta de diagnéstico para identificar circunstancias favoraveis a convergéncia
numérica, visando a obtencdo de estimativas de maxima verossimilhanca para modelos conjuntos aplicados a dados
longitudinais e de sobrevivéncia. Como resultados, verificou-se a existéncia similaridade em termos de inferéncia entre
os modelos, com efeito da estrutura de correlacdo e do percentual de censura. Constatou-se que a probabilidade de
cobertura cruzada contribui com um diagndstico sobre o bom comportamento dos dados, auxiliando para realiza¢do da
modelagem conjunta.

Palavras-Chave: Censura; dados longitudinais; modelos lineares de efeitos mistos; simulagéo; analise de sobrevivéncia
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1 Introduction

Many pieces of information are currently collected over
time, known as longitudinal data, obtained from the same
sample elements over an extended period. Longitudinal
data represent repeated observations of a random variable
of interest, collected at different time points for the same
individual or object (Hu and Szymczak, 2023).

In statistics, numerous methodologies are available for
analyzing such data. Among these techniques, mixed-
effects linear and survival models stand out, with the latter
being particularly useful when dealing with censored data
(incomplete observations of the response variable).

Mixed-effects linear models are defined as models that
include both fixed effects and random effects. They are
primarily used to describe the relationship between a
response variable and covariates in data grouped according
to one or more classification factors (Pinheiro and Bates,
2006).

These models enable the prediction of how individual
response trajectories change over time and the estimation
of parameters describing how the mean response changes
in the population of interest. They can accommodate
any degree of imbalance in the data, meaning that the
number of measurements does not need to be the same
for each individual or object. Additionally, random effects
account for the correlation between repeated measures in
a relatively efficient manner (Verbeke et al., 1997).

Survival models are designed for situations where
the goal is to evaluate the time until the occurrence
of one or more events of interest, often referred to as
failures. However, the exact time of occurrence of the
event of interest is not always known, or the event may
not be observed at all, leading to censoring in survival
models. Censored observations are partial or incomplete
observations of the response variable (Colosimo and Giolo,
2006).

Thus, survival models are distinguished by their
capacity to accommodate these incomplete (censored)
observations in analysis, thereby enabling robust
statistical conclusions by incorporating information about
the time until the occurrence of the event of interest for
the sampled elements.

There is also the possibility to investigate the
relationship between one or more longitudinal responses
and an event of interest. The statistical treatment of
responses repeated over a period of time and observed in
the same experimental unit can be applied in different
situations involving specific models. In view of the above
and given a longitudinal study considering n individuals,
the use of a joint model (Viviani et al., 2014) allows the
time until the occurrence of an event of interest to be
modeled, including covariates that vary over time. In this
case, Wu and Carroll (1988) suggest joint modeling using
survival analysis techniques with random effects models.

The relationship between the mixed linear models
with analysis of survival data such that random effects
act linearly on the survival time of the individual or
experimental unit is mentioned by Do Ha and Lee (2005).
Rizopoulos (2012) includes random effects in survival data,
allowing for the prediction of dynamic individual response
trajectories over the observed period.

A joint model that simultaneously contemplates the
longitudinal responses in the presence of censoring has
been proposed. Zhang et al. (2014) recommend applying
this in situations represented by survival models with
measurement errors, missing data with time-dependent
covariates and longitudinal models. However, in many
cases, the numerical complexity of fitting these models
can make them unfeasible since including random
effects becomes computationally demanding as their
dimensionality increases (Murray and Philipson, 2022).

Notably, the longitudinal process and the survival
process are associated with latent variables. In this
context, Rizopoulos and Lesaffre (2014) highlight that
models with latent variables are defined based on the
assumption of conditional independence. In practice,
these models are difficult to implement since the specified
integral with respect to the latent variable does not have a
form. Therefore, numerical integration is needed, making
these models very computationally demanding.

Another important issue is mentioned by Rizopoulos
(2010): considering the accelerated time to failure, the
specification of the joint model requires a complete
longitudinal history for calculating the survival function
and the risk function; in many applications, individuals
and/or units may exhibit highly nonlinear longitudinal
trajectories.

Given the previous description and considering the
convergence problems that may occur, the use of latent
variables and their implications in solving the integral
with required computational demand, preliminarily
evaluating the behavior of the data through individual
process modeling of survival and longitudinal is worth
investigating since similar parameter estimation results
may otherwise occur. Therefore, the performance of a joint
model can be better analyzed than that of other models.

This perspective justifies the contributions of this
study, which presents a methodology that obtains the
cross coverage probability. In the proposed methodology,
the estimates of the longitudinal model parameters
are computed based on the confidence interval of the
parameters of the survival model. Thus, the coverage
probabilities for the survival model are generated by
inverting the intervals.

The main contribution of this work is the introduction
and application of cross-coverage probability as a
diagnostic tool. This tool is employed to identify
circumstances conducive to numerical convergence in
obtaining maximum likelihood estimates for joint models
applied to longitudinal and survival data. This diagnostic
significantly aids in overcoming convergence issues
and the computational demands often associated with
these models, thereby enhancing applicability in studies
involving such data types and yielding more precise
results while leveraging the advantages these models
offer.

Notably, the coverage probabilities in both models were
not computed based on the parametric values. Rather, they
were computed considering sample estimates, intuitively
the bootstrap approach, in which the sample estimate
is considered a parametric value for interval confidence
levels estimated in the subsamples.

In view of the above, this study proposes using
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the measure of the probability of cross-coverage as a
diagnostic tool for connecting longitudinal and survival
models. This can help the researcher estimate a joint
model that involves both processes and minimize possible
numerical convergence problems.

2 Materials and methods

For a better compression of the construction of the panel of
data with repeated measures in the absence and presence
of censure, as well as the notation used in the subsequent
sections, the layout described in Table 1 is followed.

Table 1: Panel data layout with repeated
measures (m =1, --- , M), within each
group (g =1,---,G) censored (6).
Longitudinal Process

Survival Process

Y G X AW é
yu 1 X1 Wi on
Ya 1 X21 W21 021
Ym 1 Xm1 Wmi om
Yig g X1g Wig 519
y 2g g ng Wzg 529

Ymg g Xmg Wmg 6mg

The longitudinal process and simulated survival,
including the categorical covariates based on this structure
are described below in sections 2.1 — Monte Carlo
simulation of the multilevel model for the longitudinal
process; 2.2 — Monte Carlo simulation of the Weibull model
for the survival process; 2.3 — Definition of the simulation
scenarios and parametric values; and 2.4 — Adjustment
of the models for the survival and longitudinal processes
with inclusion of categorical covariates and estimation of
the probabilities of cross coverage.

2.1 Monte Carlo simulation of the multilevel
model for the longitudinal process

Y was assumed to be the dependent variable in the fit of the
multilevel model with the distribution Y; ~ Np (Hj g Za) ,

forj = 1,---,M - G, where g = 1,---,G such that the
dependence relationship with the regressor variable X was
maintained by the Eq. (1) (Silva and Cirillo, 2018) and

Hig = Bo (mj - 1) + B1Xjg, (1)

in which Xjg ~ U(0,1)andBo = p; = 0.5, fixed arbitrarily.

The autoregressive correlation structure of order 1,
AR(1), was considered for the definition of the covariance
matrix Xq, where a = 1. Its estimated correlations

were given as a function of the o parameters used in the
generalized estimation equations approach (Liang and
Zeger, 1986) (2)

CORR (Y(g), Y(gjep) = o', where t=1,.,T.  (2)

For > ,(a = 2), we proceeded by including the
interchangeable correlation structure, according to the
Eq. (3).

_ )y ifj=j
CORR (Y, Ygy) = {a’ ifj 27

The inclusion of the degree of correlation p in the
estimates of « in Eq. (2) and Eq. (3) was performed using
the method for obtaining the limiting estimates of the
covariance matrix proposed by Silva and Cirillo (2018).
This method was applied to the GEE 2 models according
to Eq. (4) and Eq. (5).

(3)

1 2

ao(1—ap)™ {t—(i;:f))} —t(t-1)2 =0, (4)

where —1/(t —1) < p < 1,and

_, Jt=a=p)a-p)
‘“O‘ZP{ (-1 7) } ©

where -1 <p<1.

The restriction presented in Eq. (4) is performed
assuming that the exchangeable correlation matrix is
true when considering it as a working correlation matrix;
analogously, applying the restriction presented in Eq. (5)
assumes the AR(1) structure to be true (Sutradhar and Das,
2000).

2.2 Monte Carlo simulation of the survival model

The survival process was simulated so that the percentage
of censorship was controlled in the generated sample. To
do so, the procedure used in Giarola et al. (2018) assumed
two auxiliary random variables, W; ~ Weibull(as, 51) and
Wy, ~ Weibull(az, 82). In this way Z = W, — W; was defined
with the condition that oy = a; = ac. Substituting this into
F7, we obtained in Eq. (6)

= (6)

Therefore,
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F; 1 7

Blac + Bgc

Thus, given that W, considered the censoring time
associated with the i-th observation and W; considered
the failure time, the definition of the censoring percentage
P was determined by Eq. (8)

Bi
P:%,Where g=1,---,G, (8)
Prg * Bag

gig = g (157) (9)

Following these specifications, the censoring
assignment was given by generating F ~ Weibull(ag, 8g),
where g = 1,---,G represents the time elapsed until
failure, and C ~ Weibull(ag, 85) represents the censoring
time. Therefore, W = min(F,C) and ¢ is the censorship
indicator, where § = 1if F < Cand ¢ = 0 otherwise.

2.3 Definition of simulation scenarios and
parametric values

With the variables simulated in both processes as
described in the previous sections, scenarios were used in
the Monte Carlo simulation under the factor combinations
described in Table 2.

The Monte Carlo simulation procedure is justified
for simulating samples, which computationally control
different scenarios (Table 2). These scenarios serve as
instruments for investigating the performance of the
joint model, generating empirical distributions of the
parameters. From these distributions, it becomes possible
to estimate coverage probabilities, providing a more
robust and detailed view of the model’s behavior under
various scenarios.

The values of the parameters of the Weibull model were
defined arbitrarily, « = 12 and 8 = 4. The correlation
between repeated measures in the longitudinal process
was determined to be p = 0.5.

2.4 Fit of the models for the survival and
longitudinal processes with inclusion of
categorical covariates and estimation of the
probabilities of cross-coverage

Given the longitudinal process, the multilevel model was
fitted with a random intercept (6o) and four categorical
covariates (¢, - - - , 6,) whose systematic components were
defined by the linear predictor Eq. (10).

ﬁkza‘Xk‘FE, (10)

Table 2: Scenarios considered for the
simulation of data with different
percentages of censorship (P), number

of groups (Ng) and number of
measurements (Nmed).

Scenario Q  Structure Ng

Nmed

1 15 AR(1) 20 30
2 15 AR(1) 20 60
3 15 AR(1) 20 100
4 15  Uniform 20 30
5 15  Uniform 20 60
6 15  Uniform 20 100
7 15 AR(1) 50 30
8 15 AR(1) 50 60
9 15 AR(1) 50 100
10 15  Uniform 50 30
1 15  Uniform 50 60
12 15  Uniform 50 100
13 50 AR(1) 20 30
14 50 AR(1) 20 60
15 50 AR(1) 20 100
16 50 Uniform 20 30
17 50 Uniform 20 60
18 50 Uniform 20 100
19 50 AR(1) 50 30
20 50 AR(1) 50 60
21 50 AR(1) 50 100
22 50 Uniform 50 30
23 50 Uniform 50 60
24 50 Uniform 50 100

in which ¢ = (6o, 61,62,63,6,), k = 1,--- ,M-Gand e ~
N(o,1).
For the survival process, the Weibull model was

considered.
B
S(t) = exp {— <é) } , (11)

where o = (al,az,a3,a4).

Once the estimates § and & were obtained, the
asymptotic confidence intervals were computed with
the nominal level v = 0.95 considering the averages of
the estimates of the parameters of the longitudinal and
survival models, adjusted in 1000 Monte Carlo realizations
Eq. (12).

IC (6;,~) = 6; +1.961/ Var(é;), (12)

IC (a1,7) = & = 1961/ Var(ay), (13)

inwhichi=1,... T = 4.
As a function of the intervals, the estimate of the
cross-coverage probability was denoted by CCP;, (éi) as

the frequency of the number of estimates 4; obtained
with the fit of the survival model, which is contained in
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the interval IC(6;, v). Similarly, C/C\Péi (&;) was estimated

through the frequency of estimates 6; obtained with the fit
of the multilevel model, which is contained in the interval
IC(c, )-

Following the recommendations of Bradley (1978) and
Algina et al. (2005) and maintaining the nominal 95%
confidence level, the confidence interval of this probability
is [0.925;0.975].

To obtain the results, a script was prepared in R
software, version 4.0.4, for each scenario (Table 2) (R Core
Team, 2022).

3 Results and discussion

Before discussing the simulated results, it should be noted
that the first parameter of the survival model «; can
be confused with the intercept (¢) of the longitudinal
model. For didactic purposes and better clarification, let us
assume the relative risk of the joint model, defined below:

h; (tIM;(8), w;) = ho exp {yTwi ¥ am,.(t)} . (14)
Specifying ho by the distribution Weibull (u, o) results
in the following expression.

[

h; (tIM;(t), wy) M—gt"_l exp {’yTW,- + ami(t)}

exp {7 10g(i}
= ot” Lexp {—a log(p) +~ ' w; + ami(t)} .
(15)

~Lexp {7Twi + ami(t)}

Therefore, the term —olog(u) is conflated with the
intercept effect of the linear predictor of the longitudinal
model.

Given this understanding, although no inferences
were made about relative risk, the results described in
Table 3 correspond to the estimates of the cross-coverage
probabilities. These are computed by the estimates of
the first parameter of the survival model 4; based on the
confidence interval for the intercept of the longitudinal
model.

Table 3: Probability of cross-coverage of

the parameter «; of the survival model in

relation to the intercept interval estimates
0o specified in the longitudinal model.

Structure  CCP, (éo>

Scenario P

1 AR1 0.9586
4 15%  Uniform 0.9513
9 AR1 0.9435
12 Uniform 0.9477
13 AR1 0.9660
16 50%  Uniform 0.9639
21 AR1 0.9568
2/ Uniform 0.9439

The results described in Table 3 demonstrate that
regardless of the correlation structure or whether the
censorship percentage is specified as 15% or 50%, the
estimates of the coverage probabilities approximately
relate to the nominal confidence level defined in 95%.

The other scenarios involve the results of the other
parameters of the Weibull and multilevel model in relation
to the estimates of the cross-coverage probabilities. The
extreme case, ie., fewer groups (Ng=20) and fewer
measurements (Nmed=30), follows the graphs illustrated
in Fig. 1.

The results described in Fig. 1 demonstrate that, in
general, the correlation structure to which the data are
correlated has an impact. In this context, the estimates of
the cross-coverage probabilities in both models showed
discrepancies in at least one of the parameters in under the
95% nominal confidence level, with greater discrepancies
when the percentage of censoring was high (50%).

This result did not occur under the uniform correlation
structure, as shown in Figure 1(b)-1(d); that is, in both
models, the longitudinal and survival processes were
connected. In comparison with the results obtained by
Villegas et al. (2013) and in relation to other survival
models, the effect of correlation and percentages of
censoring, different multiple failure approaches applying
the Cox proportional hazards model are considered in
different simulation scenarios.

Thus, assuming sample sizes fixed in n =
(50,100,200,400); percentages of censorship p =
0%, 15%, 30% and 50%; number of recurring events
K = (3, 6, 9,12); and the levels of correlation between the
adjacent recurrence times fixed in p = (0, 0.10, 0.45, 0.80),
and without specifying the correlation structure, the
authors concluded that the different approaches are
stable against censorship and share a bias as the values
increase For K recurrence levels, resulting in asymptotic
confidence intervals that are imprecise relative to the
specified nominal confidence level.

Fig. 2 illustrates the results of increasing the number
of groups (Ng=50) and number of measurements
(Nmeg=100). These results show that, given the
correlation structure AR(1) (Fig. 2(a)-(c)) and for low
censoring proportions, the estimates were reduced. This
primarily caused an estimate in one of the parameters to
be lower than the specification limit defined at 0.92 for
the nominal confidence level. Thus, it has a limited ability
to propose any recommendation regarding the existence
of some connection between the longitudinal process and
the survival process.

Under the uniform correlation, increasing the
number of measurements resulted in reduced coverage
probabilities in the presence of a high percentage of
censorship (50), creating an estimate that is incoherent at
the nominal confidence level in at least one of the model
parameters of survival.

Stajduhar and Dalbelo-Basi¢ (2010) adapted the
learning algorithms of Bayesian networks using a
censorship weighting procedure proposed by Zupan et al.
(2000), assuming nine different percentages of censoring
p = 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70% and
80% and comparing the estimates of the Cox regression
model. In this context, they concluded that the weighting
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Figure 1: Estimates of the probabilities of cross-coverage, fixing the AR(1) and uniform correlation structures and
censoring percentages of 0.15 and 0.50: (a) and (b), parameters of the longitudinal model in relation to the confidence
interval of the parameters of the (c) and (d) parameters of the survival model in relation to the confidence interval of the

parameters of the longitudinal model.

procedure should be used with Bayesian networks only
with intermediate data censorship (from 40% to 60%).
If data censorship is light (up to 30%), the original
algorithms should be used.

Lin et al. (2013) performed a simulation study
comparing the performance of several maximum
likelihood estimation (ML) methods, the log-probit
regression method and the nonparametric Kaplan—Meier
method (KM). Thus, samples were generated from
the following distributions: log-normal, gamma, a
mixture of two log-normals and log-normal with 30%
of observations at zero for different sample sizes. For
each distribution evaluated, the percentage of censored
observations was randomly generated from a uniform
distribution ranging from 20% to 80%.

With these specifications, the results showed that
the sample size had little impact on the accuracy of

the estimates; however, the percentage of censored
samples had the greatest impact, which is comparable
to the results obtained by Antweiler and Taylor
(2008) in the comparison of the maximum likelihood
estimation methods, regression statistics by order and
nonparameters for the analysis of left censored data; they
concluded that with high percentages of censored data,
the interval estimates were imprecise in relation to the
nominal confidence level.

4 Conclusions

The proposed procedure used to estimate cross-coverage
probabilities as a diagnostic tool for the connection of
the longitudinal and survival models, was adequate when
considering the Weibull model. Therefore, it can help
researchers estimate a joint model that involves both
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Figure 2: Estimates of the probabilities of cross-coverage, fixing the AR(1) and uniform correlation structures and
censoring percentages of 0.15 and 0.50: (a) and (b), parameters of the longitudinal model in relation to the confidence
interval of the parameters of the (c) and (d) parameters of the survival model in relation to the confidence interval of the

parameters of the longitudinal model.

processes and minimize possible numerical convergence
problems.

In the context of scenario 13, which includes smaller
numbers of groups and measurements involving the AR1
correlation structure, the estimates of the cross-coverage
probabilities in both models showed discrepancies in at
least one of the parameters when the percentage rate
of censorship was 50%, given a specified 95% nominal
confidence level. Thus, this rate of censorship presents
more harmful results than other rates. Under the same
context but with a uniform correlation structure, as in
scenarios 4 and 16, it is noted that a favorable condition
exists for numerical convergence in obtaining maximum
likelihood estimates for joint models of longitudinal and
survival data.

Given the AR(1) correlation structure, increasing the
number of groups and measurements and considering

low censoring proportions leads to an estimate below
the specification limit, which is defined as 0.92 for the
nominal confidence level. This finding limits the ability to
recommend the utilization of joint models for longitudinal
and survival data.

For both correlation structures, increasing the number
of measurements resulted in a reduction in the coverage
probabilities in the presence of a high percentage of
censorship, causing an estimate that was incoherent
at the nominal confidence level in at least one of the
parameters of the survival model. Thus, increasing
the percentage of censorship negatively impacted the
numerical convergence for obtaining maximum likelihood
estimates of joint models for longitudinal and survival
data.

The proposed methodology represents a significant
advancement by offering a way to identify circumstances
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conducive to numerical convergence, which is essential
for achieving results in joint modeling. The use
of Monte Carlo simulation involving various levels
of censoring and correlation structures provides a
robust and comprehensive analysis, allowing for the
evaluation of different scenarios and validation of the
proposed methodology. Ultimately, this approach helps
minimize computational challenges and convergence
issues associated with joint models, thereby expanding
their applicability across various fields.

In future studies, we aim to expand the methodology
by considering additional parametric models. This could
provide a broader view of scenarios where convergence
issues may arise and evaluate the effectiveness of cross-
coverage probability in these contexts. The findings of
this study may contribute to the future development
of computational tools incorporating the proposed
methodology, assisting researchers in facilitating the
estimation of joint models.
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