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Abstract
Background: The deployment of 5G infrastructure is one of the vectors for new application scenarios since it enablesenhanced data bandwidth, low latency, and comprehensive signal coverage. This communication system supportsvarious vertical applications such as smart health, smart cities, smart grids, and transportation systems. However, theseapplications bring new challenges to 5G networks due to specific requirements for such scenarios. Furthermore, assoftware-based technologies, including network slicing, software-defined networks, network function virtualization,and multi-access edge computing, are a fundamental part of the 5G architecture, the network can expose theseapplications to new security and privacy concerns. Results: This study summarizes existing literature on 5G verticalapplications security. We highlight vulnerabilities, threats, attacks, and solutions for 5G vertical applications. Weconducted a systematic literature mapping to discuss security and privacy challenges regarding the 5G verticalapplications. We reviewed 389 papers from 2,349 produced by searching with a curated search query and discussedvulnerabilities, threats, attacks, and solutions for 5G vertical applications. Conclusions: Smart cities, Industry 4.0, smarttransportation, public services, smart grids, and smart health are vertical applications with relevant security concerns.We observed the need for more research since the 5G and vertical applications continuously evolve.
Keywords: Vertical Applications; 5G; Security; Privacy
Resumo
Background: A implantação da infraestrutura 5G é um dos vetores para novos cenários de aplicação, pois permite maiorlargura de banda de dados, baixa latência e cobertura de sinal abrangente. Este sistema de comunicação suporta váriasaplicações verticais, como saúde inteligente, cidades inteligentes, redes inteligentes e sistemas de transporte. No entanto,essas aplicações trazem novos desafios para as redes 5G devido a requisitos específicos para esses cenários. Além disso,como tecnologias baseadas em software, incluindo fateamento de rede, redes definidas por software, virtualização defunções de rede e computação de borda de acesso múltiplo, são parte fundamental da arquitetura 5G, a rede pode exporessas aplicações a novas preocupações de segurança e privacidade. Resultados: Este estudo resume a literatura existentesobre a segurança das aplicações verticais do 5G. São destacadas vulnerabilidades, ameaças, ataques e soluções para asaplicações verticais do 5G. Foi realizado um mapeamento sistemático da literatura para discutir os desafios de segurançae privacidade em relação às aplicações verticais do 5G. Foram revisados 389 artigos de um total de 2.349, identificadospor meio de uma busca, e foram discutidas vulnerabilidades, ameaças, ataques e soluções para as aplicações verticais em5G. Conclusões: Cidades inteligentes, Indústria 4.0, transporte inteligente, serviços públicos, redes inteligentes e saúdeinteligente são aplicações verticais com preocupações relevantes de segurança. Foi observada a necessidade de maispesquisas, uma vez que 5G e as aplicações verticais evoluem continuamente.
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1 Introduction
The fifth-generation (5G) mobile communication systemsimprovements in signal coverage (Khan et al., 2020) andits pillars, namely enhanced Mobile Broadband (eMBB),Ultra-Reliable and Low-Latency Communications(URLLC), and Massive Machine-Type Communications(mMTC), enable various vertical applications such assmart health, cities, grids, and transportation. However,these applications can potentially open vulnerabilitiesfor 5G networks due to the necessity of interconnectionbetween objects with the Internet, worldwide connection,and weak cyber-protected hardware and software.For instance, the massive communication of Internetof Things (IoT) devices results in vulnerabilities in5G-enabled verticals. The coexistence of 5G and legacynetworks and interaction with other technologies (e.g.,WI-FI) can result in relevant threats (Angelogianni et al.,2020).Security and privacy are critical in communicationssystems, especially in software-defined systems like the5G networks. Network Slicing (NS) (Gonzalez et al.,2020), Software Defined Networks (SDN) (Hussein et al.,2017), Network Function Virtualization (NFV) (Siddiquiet al., 2016), and Multi-Access Edge Computing (MEC)(Ksentini and Frangoudis, 2020) are key technologiesin 5G. Therefore, considering both the native cyber-security of 5G networks and those of vertical applications,academia, industry, and government agencies needa comprehensive overview of technologies regardingsecurity and privacy in 5G networks and the existingthreat in current vertical applications.Observing the literature, revisions (discussed inSection 2) need more comprehensive discussions focusingon the security and privacy of 5G vertical applications.Instead, they usually discussed challenges regardingspecific verticals such as Industrial IoT (IIoT), e.g., thestudies of Varga et al. (2020) and Jiang et al. (2021).However, 5G-enabled vertical applications bring newsecurity and privacy challenges that can compromiseservice consumers and providers. Therefore, in this paper,we complement other previously published knowledgesyntheses.We reviewed the literature regarding the securityand privacy of 5G-enabled vertical applications, suchas smart cities, Industry 4.0, and smart transportation.The guidelines presented by Kitchenham et al. (2009)supported our Systematic Literature Review (SLM). Inaddition, we searched for research papers based on widelyused databases: IEEE Xplore and ACM Digital Library. Themain contributions of this revision include the following:(1) the analysis of general vulnerabilities, threats, attacks,and solutions for security and privacy in 5G networksand (2) the analysis of specific vulnerabilities, threats,attacks, and solutions for security and privacy in 5Gvertical applications.
2 Related Work
Many 5G reviews focus on specific technologies such asMEC, Blockchain, IoT, NS, industrial verticals, ArtificialIntelligence (AI) techniques, privacy, security, free space

optical communication, Low Power Wide Area Networks(LPWAN) technologies, and attacks such as DistributedDenial of Service (DDoS) attack detection, NFV, and SDN.Therefore, our review did not find reviews related to astudy focusing on the security and privacy of 5G networksand usage by different vertical applications.
For instance, Pham et al. (2020) focused on the MECtechnology. The authors presented an overview of MECtechnology and potential use cases and applications.Besides, Spinelli and Mancuso (2021) studied MECas a technology that enables industrial verticals.Thus, standardization has a fundamental role for MEC,considering MEC architecture, MEC and NFV managementand orchestration, and 5G-MEC. The authors also presenta discussion of flexible provisioning. Ranaweera et al.(2021a) analyzed the security and privacy aspects of theMEC system. The authors discuss the security aspectsof MEC, such as confidentiality, integrity, availability,authentication, and authorization. Ranaweera et al.(2021b) also presented 5G use cases deployed based onMEC security vulnerabilities.
Nguyen, Pathirana, Ding and Seneviratne (2020)analyzed the opportunities of using blockchain in 5Gservices. Wazid et al. (2021) provided details on thenetwork and threat models required for the IoT-enabledcommunication environment. In addition, they discussfuture research challenges related to protocol security,efficient security protocol design, security protocolscalability, recorded data privacy, device heterogeneity,and blockchain-based protocol design.
Varga et al. (2020) identified challenges and solutionsrelated to 5G-enabled IIoT. In addition, the authorshighlight 5G support for IIoT applications that use robotics,such as Industry 4.0, physical-cybernetic systems, tactileInternet, and the diverse use of 5G technologies forindustrial purposes.
Wijethilaka and Liyanage (2021) presented ananalysis of the use of NS in IoT implementation. Thetechnique divides the physical network into multiplelogical networks to provide specific capabilities andcharacteristics for a particular use case. They showed thatNS plays a relevant role in IoT implementation, improvingscalability, dynamics, security, privacy, quality of service,end-to-end orchestration, and resource prioritization andallocation. Bochie et al. (2021) provided an overview ofDeep Learning (DL), explaining the approach’s benefits inIoT and sensor, mobile, industrial, and vehicular networks.They propose a workflow based on observations of DLapplications and analyze the literature on solutions basedon DL at an application-oriented level. However, thereneeds to be a more in-depth discussion of 5G.
Although we only highlighted the previous studies,readers can also consider other published research (e.g.,Tang et al. (2022); Tanveer et al. (2022); Sullivan et al.(2021)). However, the existing reviews usually discusschallenges regarding specific verticals or technologiessuch as IIoT. Therefore, this article reviews the literatureaddressing many 5G vertical applications.
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3 Research Methodology
In this study, we defined the following main researchquestion: what is the state-of-the-art regarding security in
5G networks and vertical applications? Based on the mainresearch question, we defined five Secondary ResearchQuestion (SRQ): What are the main threats considering
different vertical applications in 5G networks? (SRQ1); What
are the main challenges and possible solutions for security in
5G networks? (SRQ2) What are the main existing/considered
security requirements for 5G networks? (SRQ3) What is the
impact of using legacy networks (e.g., 3G and 4G) along with
5G networks in terms of security? (SRQ4); and What threats
and solutions exist when using 5G along with other networks
(e.g., Wi-Fi)? (SRQ5).Besides, we included the following keywords: 5G,5G core, 5G NR, 5G New Radio, 5G architecture, thefifth generation of mobile networks, security, securitymodel, security scheme, security policy, privacy, network,solution, and threat. Based on the keywords, we searchedfor studies on IEEE Xplore and ACM Digital Library usingthe search string: (((5G OR "5G core" OR "5G New Radio"
OR "5G NR" OR "5G architecture" OR "5G scheme" OR "fifth
generation of mobile network") AND (security OR "security
model" OR "security scheme" OR "security policy" OR privacy)
AND (network AND (solution OR threat OR approach)))).Table 1 presents the inclusion and exclusion criteriafor the study selection process. We did not excludesecondary research papers because some present solutionsproposals, such as security frameworks (Ramezan et al.,2018). Besides, secondary research papers can provideinformation on vulnerabilities, threats, and attacks. Theselection procedure started with the document’s titles andabstracts and applying inclusion and exclusion criteria(Step 1). When necessary, the researchers also analyzedthe conclusions to increase confidence in the selection.During the selection process, two researchers evaluatedeach study. We defined two selection teams (Team 1and Team 2), comprising two researchers for each group.Subsequently, two research supervisors reviewed theselection process based on Cohan’s Kappa statistics results.We used Cohan’s Kappa statistics to enhance the studyselection process of our revision (Pérez et al., 2020). Weused the strength of agreement using Cohen’s Kappa (k)classification to interpret the results (Landis and Koch,1977).In the second selection step (Step 2), the researcherscarefully analyzed the studies resulting from the firstselection to verify if extracting data based on the dataextraction form was possible, accepting the studies thatallow extraction.Each researcher answered a form to extract data. Oneevaluator worked as an extractor, and another as an extractreviewer. We used Google Forms for data collection andrecording.
4 Overview of Search and Data Extraction
We identified 2,349 articles published in internationalconferences, journals, and magazines. We managed theidentified articles using the EndNote web applicationduring this examination. The preliminary selection

process resulted in 734 accepted and 1,615 rejected papers(Fig. 1). The full paper reading from the accepted papersenabled us to conduct the second filtering step, resultingin 389 final papers. Thus, we extracted data from these389 to answer the research questions and analyzed theirquality according to the protocol presented in Section 3.

Figure 1: Study selection process and data extraction.
To increase confidence in the filtering steps, we appliedCohen’s Kappa statistics for each team of researchers.Using the IBM SPSS tool, we performed a descriptivestatistical analysis calculating the Cohen’s Kappa measurebased on a cross-reference table. Assimilation of theinclusion and exclusion criteria implies reducing theKappa index. Table 2 summarizes the Cohen’s Kappavalues for Teams 1 and 2.The Kappa index variation indicates an improvementor a reduction in Team 1’s or Team 2’s understanding ofthe inclusion and exclusion criteria, respectively. We alsoused these results to support the consolidation of the peer-review decisions, providing special attention to the lowestKappa evaluation results.

5 Security and Privacy Concerns
This article focuses on security and privacy concernsregarding 5G and vertical applications (SRQ1 andSRQ2). Thus, this section discusses threats and relatedvulnerabilities and attacks.
5.1 Landscape of General Threats

Discussing general threats is relevant because they affectall vertical applications. We highlight 41 general threatsfor 5G networks, regardless of vertical applications (Duttaand Hammad, 2020). An adversary can maliciously (1)use legitimate orchestrator access to manipulate theconfiguration and run a compromised network function,(2) take advantage of malicious insiders attacks, (3)perform unauthorized access (e.g., to confidential data(Isaksson and Norrman, 2020) and to RFID tags (Rahimiet al., 2018)), (4) tampering, (5) perform resourceexhaustion, (6) turn services unavailable, (7) analyze or
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Table 1: Inclusion criteria and exclusion criteria.
Inclusion Criteria Exclusion CriteriaThe full document is available. Posters.Articles published from 2010 to 2022. Short papers.Articles published in journals. Books.Articles published in magazines. Book chapters.Articles published in conferences. Duplicated papers.It presents solutions, threats, and architectures. The study does not focus on security/privacy.

Table 2: Summary of Cohen’s Kappa values for Teams 1 and 2.
Team Papers Kappa (k) Agreement Level Asymptotic Standard Error T Significance
Team 1 1,174 0.601 Moderate 0.023 20,813 < 0.001Team 1 (First 300 Papers) 300 0.393 Fair 0.051 6,987 < 0.001Team 1 (Next 874 Papers) 874 0.671 Substantial 0.025 19,989 < 0.001Team 2 1,175 0.361 Fair 0.033 12,668 < 0.001Team 2 (First 300 Papers) 300 0.434 Moderate 0.062 7,667 < 0.001Team 2 (Next 875 Papers) 875 0.330 Fair 0.040 10,015 < 0.001

modify traffic, (8) perform data leakage (e.g., capturingvaluable personal information (Bordel et al., 2021)), (9)perform attacks for resource shortages, (10) extractusers private information using a shared service in anunauthorized manner, (11) compromise security controls,(12) use north and south boundary interfaces to attack theSDN controller, (13) interference for resource exhaustion,(14) change network elements configuration using themanagement interface, (15) eavesdrop (e.g., using massiveMultiple-Input Multiple-Output (MIMO) (Chen et al.,2016)) messages to legitimize users, (16) compromiseisolation, (17) transmit false Primary SynchronizationSignal (PSS) and Secondary Synchronization Signal (SSS),(18) attack IoT devices, (19) block, sniffing, and spoofingthe Physical Broadcast Channel (PBCH), (20) block thePhysical Downlink Control Channel (PDCCH), (21) blockuplink or downlink signal, (22) spoof the Physical RandomAccess Channel (PRACH), (23) unauthorized access tohome subscriber server to steal user parameters, (24)use software to compromise encryption algorithms (25)application layer attacks using northbound interfaces,(26) reprogram or attack controller functions, (27) forgedor spoofed traffic streams, (28) communication channelsattacks, (29) classic IP-based attacks, (30) compromisethe advanced encryption standard, (31) use applicationinstance to intercept traffic flows or perform black holes,(31) intercept a key, (32) identify a subscriber’s identity,(33) track a subscriber’s location (Omone et al., 2021), (34)get the International Mobile Subscriber Identity (IMSI)to register with a Base Station (BS), (35) calculate validsession keys to reproduce the same message, (36) takeadvantage of a fake identity or fake/unauthorized MECgateway, (37) attack open edge APIs, (38) disable IoT devicepower saving abilities, (39) spoof DNS servers and IPaddresses to spread viruses, (40) attack the weakest linkof heterogeneous networks, and (41) perform EconomicalDenial of Sustainability (EDoS) (Vidal et al., 2018).
Adversaries can also take advantage of the flexibilityof orchestration, internal agents, authentication failure,physical downlink control channel, confidentialityfailures in the communication channel, sensor networksvulnerabilities, cloud radio access networks vulnerabilities(Jeyakumar and Rajabhushanam, 2019), C-RAN

vulnerabilities (Tian et al., 2017), EAP-TLS vulnerabilities(Zhang et al., 2020), Subscriber Identity Module (SIM)vulnerabilities (Zhao, Ding, Guo, Tan and Lu, 2021),machine learning models vulnerabilities (Suomalainenet al., 2020), software-defined mobile networksvulnerabilities, named data networks vulnerabilities(Bertino and Nabeel, 2018), MEC vulnerabilities, UEvulnerabilities (Amgoune and Mazri, 2018), D2Dcommunication vulnerabilities (Abd-Elrahman et al.,2015), System Information Block (SIB) and RRC messageparameters in 5G NR, edge security flaw, key sent overan insecure channel, security flaw in NS (Martini et al.,2020), credential theft, devices without robust securitymechanisms, 5G-AKA vulnerabilities (Basin et al., 2018),and security flaws in NFV and SDN (Ahmad et al., 2021).Operating Systems (OS) using insecure protocols provideexcessive privileges, IoT devices may have differentprotocols, lack processing robustness, and fail to controlsensitive data privacy. Also, open networks and thePSS/SSS design permit detection at a low signal-to-noiseratio. In addition, the network can be vulnerable whenthe division of resources for the slices is done by a systemcommon to all the resulting resources. The handoverauthentication mechanism of 5G networks is also arelevant attack surface (Gupta et al., 2018).
The attackers can use an application on the user’sdevice to change the contents of a token, steal confidentialinformation, and send malicious packets to the 5G core.Other examples of attacks include Man-In-The-Middle(MITM), stolen verifier, replay, pilot contamination (e.g.,non-orthogonal multiple access in 5G mm-Wave massiveMIMO networks (Wang et al., 2020)) (Osorio et al.,2020), pollution attack (e.g., in cooperative MEC caching(Yang et al., 2018)), stolen smart card (enabling offlinepassword guessing (Shin and Kwon, 2018)), jamming(e.g., pulsed based jamming attack (Schinianakis et al.,2019)), signaling storm (Ahmad et al., 2017), byzantine,sinkhole, IMSI catchers (Chlosta et al., 2021), greyhole,wormhole, back holes, hello flooding, SQL, ack flooding,forgery, side channel, REST API parameters exploration,API flood, protocol fuzzing, physical device capture,malware (e.g., ransomware (Luntovskyy and Shubyn,2020)), pulsed interference, compression ratio info-
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leak made easy, SDN controller personification, PBCHinterference, SIB message spoofing, service theft, massivereplay, redirection, botnet (Raj et al., 2019), exhaustivesearch, spectrum scanning, internet control messageprotocol packages, statistical, SYN flooding, ping of death,backdoor, UDP flooding, slice-initiated, IP spoofing, bugexploitation, TCP reset, differential (e.g., differential faultattack), cyberphysical, selective forwarding, and hostresource starvation.It is also possible to transmit multiple false PSS to thetarget 5G NR frame (at higher power), impersonate a BSduring the RRC handshake, and conduct masqueradingattacks (e.g., focusing on the mobility managemententity (Moreira et al., 2018)). Besides, identifiers (e.g.,MAC addresses) can be cloned or spoofed, data fromthe IoT deployment to the 5G BS (or 5G BS to the IoTdeployment) can be captured, and node memory extractedto fraudulently use the private key (Bordel et al., 2021).Attackers can exploit the direct communication inhigh-density device scenarios, lacking a central controller,resulting in actions such as inserting an infected deviceinto the network. Compromised devices enable DDoSattacks (e.g., Distributed Reflection Denial of Service(DRDoS) attacks with User Datagram Protocols (UDPs)(Huang et al., 2019)) and overwhelm the network (Hakiriand Dezfouli, 2021). Attackers can also explore theexistence of abandoned and "zombie" cellular IoT devices(Soós and Varga, 2019).Immersive technologies like Augmented Reality(AR) and Virtual Reality (VR) are also attack surfaces.For instance, the attacker can access and manipulateunauthorized video streams of AR applications. Inaddition, AR and VR applications can also be subjectto tampering, side-channel attacks, malicious codeinjections, and hardware Trojans (Ranaweera et al.,2021b).Other relevant attacks for 5G networks are downgradeattacks. For instance, a logjam attack allows anattacker to downgrade vulnerable transport layersecurity connections to 512-bit export-level encryption(Schinianakis, 2017). A downgrade attack can also force aUE to use a legacy network, vulnerable to many threatsaddressed by the newest generation (Angelogianni et al.,2020; Ghosh et al., 2019; Sheoran et al., 2019; Peltonenet al., 2021).
5.2 Vertical Applications

This section focuses on security and privacy concernsregarding 5G and the vertical applications: smart cities,Industry 4.0, smart transportation, public services, smartgrids, smart health, and smart agriculture. However, theexisting threats can also affect other vertical applicationssuch as education and retail (Nowak et al., 2021).
5.2.1 Smart CitiesWe can consider a city as smart when it comprises a setof embedded devices (sensors and actuators) controlledby a central point. Smart city applications rely onsensors distributed through different things (e.g., a bus)to improve efficiency and management quality. Wehighlight 16 smart city threats based on our revision.

This application vertical is highly dependent on IoT (e.g.,Internet of Drones (IoD) (Abdel-Malek et al., 2021))and underlying wireless access technologies, such asSoftware Defined Radio (SDR) and Cognitive Radio(CR), for intelligent information gathering in dynamicheterogeneous environments (Akhunzada et al., 2020).An adversary can maliciously (1) use spectrum bands in anunauthorized manner, (2) saturate the cognitive controlchannel, (3) compromise IoT devices directly or through aremote connection, (4) affect spectrum detection/sensing,(5) affect spectrum sharing abilities, (6) interrupt the CRmechanism, (7) masquerade a primary user and CR node,(8) use SDR failures in the context of the physical layerto perform improper actions, (9) extract configurationdata of SDR in the context of the physical layer, (10)disruption of CR engine, (11) insert malicious programsin systems that run SDR codes, (12) transmit messagesbetween drones by claiming to be a UE network relay,(13) use a malicious drone to sniff out communicationbetween legitimate drones and transmit a repeated ordelayed signatures to verify itself to the network leader,(14) disrupt the drones operation to prevent services (e.g.,delivery of products), (15) use low-cost SDR tools togenerate false signals with false navigation data and trickthe GPS of drones to calculate false positions, and (16)insert an unauthorized waveform in SDR configuration.Therefore, they can explore the network and physicallayers, vulnerabilities of the SDR and MAC, OS that enablesbackdoor accounts and patches with open ports andservices, and the fact that SDR devices and componentsare easily programmable and accessible in an openenvironment. The attacker can benefit from the hiddennode problem; change cognitive messages and CR node;conduct real-time (physical layer-related) OS softwarealteration/destruction, and other general attacks. Theremote access for access and control of smart home devicescan also enable attacks in 5G-IoT networks (Shin et al.,2019).
5.2.2 Industry 4.0The fourth industrial revolution relies on cyber-physicalsystems, IoT, and cloud computing to improve efficiencyand productivity. We highlight 11 threats for Industry4.0 based on our revision. This vertical application ishighly dependent on IoT (Astrakhantsev et al., 2021;Corici et al., 2020, 2019; Nasir et al., 2019; Dey et al.,2018; Ali and Ware, 2021; Abdel-Basset et al., 2022).Thus, we discuss IIoT and cyber-physical systems aspart of Industry 4.0. An adversary can maliciously (1)improperly upgrade and reset industrial equipment, (2)turn industrial equipment unavailable, (3) real-timeattacks on cyber-physical industrial systems environmentthat disrupt/damage physical infrastructure or degradeperformance by injecting false data by malicious users,(4) unauthorized update of legacy subsystems in theplant, (5) take advantage of compromised hardwarecertificates or inactive malicious code to perform attacks,(6) install undesired software on industrial devices,(7) make an undesired device connection to a factorynetwork, (8) perform unauthorized access to factoryresources (e.g., network and data storage/retrieval), (9)perform unauthorized access to factory resources while
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transferring between security domains that run its corenetwork, (10) compromise the communication frequencyor spectrum usage of different nearby transmitter-receiver pairs in the production environment, and (11)perform unauthorized commands on plant actuators.Adversaries can explore the low security of industrialprotocols, real-time operation, use of legacy subsystems,use of insecure channels for communication betweensmart devices and users, supply chain security breaches,lack of confidentiality protection, lack of access control,allowance of remote access to devices, and lack of controlin software installations. For instance, attackers canmodify device behaviors and move devices in a factorywithout permission.
5.2.3 Smart TransportationThis vertical strongly relates to smart city applications.Smart transportation can include, for example, smart carsand intelligent railway systems. We highlight 20 threats tosmart transportation based on our revision. This verticalapplication relates to concepts such as the Internet ofVehicles and it is highly dependent on vehicular networks(Eltahlawy and Azer, 2021; Hussein et al., 2017; Falchettiet al., 2015; Lai et al., 2020; Saglam and Bahtiyar, 2019;Moulahi et al., 2021; Ayoub and Mazri, 2018; Lu et al., 2020;Aljeri and Boukerche, 2020; Huang et al., 2020; Hasan andHasan, 2021). An adversary can maliciously (1) transmitmeaningless or false information to manipulate othervehicles, (2) perform global positioning system spoofingattacks to deceive innocent vehicles, (3) perform DoSattacks on Internet of Vehicles, (4) impair the availabilityof vehicular networks services, (5) take advantage ofmalicious and compromised vehicles to publish falseinformation to cause system damage, (6) forge the identityand claim to be an authentic and valid vehicle usingthe identifier on the network (node impersonation), (7)use malicious vehicles to add delay time slots to thetransmitted message without any changes (neighborvehicles receive time-sensitive messages when they areno longer needed), (8) monitor and analyze networktraffic and steal confidential vehicle information (e.g.,vehicle location and identity - the road side unit is anattack surface), (9) behave as a road side unit, (10)interfere with transmission by preventing communicationbetween vehicles in a given transmission and receptionrange, (11) track vehicles, (12) monitor and captureroute and destination address, (13) manipulate routeand destination, (14) track (transmit) reported accidentvideos by eavesdropping on wireless communications(attacking small cells or hacking into the cloud), (15)transmit fake traffic accident videos to mislead authorities,(16) send valid dummy reports, (17) use cars withmalware to eavesdrop other cars’ identity authenticationinformation and cause traffic disruption/property losses,(18) inject repeatedly messages to authorized controlactuators in vehicles, (19) access the engine control unitto compromise safety-critical systems of vehicles, and(20) take advantage of a malicious vehicle that can remainbetween two unsuspecting vehicles, receive the messagefrom the transmitting ones (e.g., identifier or privatesecurity keys), change its contents, and forward the wrongmessage to the receiver.

For instance, adversaries can explore the vulnerabilitiesof authentication and encryption algorithms (e.g.,incorrect choice of algorithms that use short keys), lackof a mechanism to guarantee confidentiality, and thatapplications rely on cooperation between neighbors(exchanging location details between vehicles). Forinstance, the attackers can flood the network with trafficto arbitrary vehicles to deplete resources or disrupt thecontroller’s network view, affecting the forwardingprocess in the data plane or denying the controller itsservices.The vulnerabilities discussed above can also be validfor the vertical applications presented in the followingsections. For example, public services, smart grids, smarthealth, and smart agriculture relate to smart cities andsmart transportation. Besides, these verticals usually relyon IoT.
5.2.4 Public ServicesThis vertical also strongly relates to smart cities, as acity requires services such as public safety and tacticalapplications. They relate to concepts such as the IoD.We highlight seven threats for public services basedon our revision (Suomalainen et al., 2021; Elmasry andCorwin, 2021). An adversary can maliciously (1) accessuser equipment or devices in a tactical bubble, (2) leakoperational information on the capabilities of publicsafety actors (e.g., number of operatives or drones in thefield, device data, and location), (3) disrupt public safetyservices, (4) eavesdrop and block (jamming) tacticalactivities, (5) compromise and take control of drones (e.g.,using embedded weapons), (6) use malicious drones toattack MEC nodes and steal tactical information, and (7)report false GPS data to violate no-flying zone regulationand/or cause collision hazards.
5.2.5 Smart GridsThis vertical also strongly relates to smart cities, astechnological electric network advances relate to smartgrids. For instance, Smart Energy Meters (SEM) can beplaced in community residences to measure the energyconsumption for billing purposes. We highlight fivethreats for smart grids based on our revision (Ranaweeraet al., 2021b; Xuesong et al., 2021). An adversary canmaliciously (1) eavesdrop on home SEM, (2) modify homeSEM, (3) interrupt home SEM, (4) unbalance the powerload to provide misleading information to edge entities,and (5) connect to the closest data plane gateway toconduct physical attacks on the power grid. Besides,in the context of SEM, once the attacker interceptsenergy consumption data (i.e., eavesdroping on homeSEM), He/She can infer people’s behavior in a communityresidency aiming to conduct robbery.
5.2.6 Smart HealthSmart health is a relevant vertical to improve the patients’diagnosis, monitoring, and treatment. Therefore,applications handle very sensitive and private clinicalinformation. This vertical also strongly relates to smartcities. Smart health applications reuse the smart cityinfrastructure to deliver healthcare more effectively incitizens’ daily lives. We highlight six threats for smart
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health based on our revision (Le and Hsu, 2021; Nowaket al., 2021; Fatima et al., 2020). An adversary canmaliciously (1) leak sensitive data to cause financial lossesto healthcare facilities, (2) leak sensitive data to exposethe privacy of patients, (3) disrupt healthcare services(e.g., remote surgeries), (4) compromise the availabilityof data to compromise the treatment of patients, (5) moveof valuable items in a healthcare facility, and (6) tamperwith clinical data to compromise the treatment of patients.
5.2.7 Smart AgricultureAdvances in farming aim to optimize activities suchas plantation process management. We highlight fourthreats to smart agriculture based on our revision (Nowaket al., 2021). An adversary can maliciously (1) tamper withfarm sensors for damages, (2) access agricultural systems(e.g., decision support system and drones), (3) falsifydata to disrupt the functioning of agricultural systems(e.g., crop or livestock), and (4) disrupt the availabilityof positioning/weather data. Drone threats like those ofsmart cities and public services also impact this vertical.
6 Solutions and Recommendations
We identified research focusing on solutions such aslightweight encryption schemes (SRQ2 and SRQ3). Anexample focused on image encryption based on quantumwalks for data transfer using IoT and wireless networking(El-Latif et al., 2020). Many studies also offer solutionsto improve authentication/authorization for 5G networks(Ali et al., 2020), and B5G (Al Mousa et al., 2020). Otherspresent solutions for lightweight security (Schmittneret al., 2017), SDN/NFV-based core NS (Ma et al., 2020), andcomputation of security metrics (Zhao, Oshman, Zhang,Moghaddam, Chander and Pourzandi, 2021).Specific solutions focus, for instance, on cross-layerauthentication for ultra-dense 5G networks (Moreira et al.,2018) and identity and access control for micro-servicesfor 5G NFV platforms (Guija and Siddiqui, 2018). Studiesalso use SIM for security Beyond 5G (B5G) (Al Mousaet al., 2020), in addition to security solutions for 5G tactileInternet (e.g., adaptive wormhole (Zenger et al., 2016)).Other proposed solutions address the Physical LayerSecurity (PLS) for wireless networks (Nasir et al., 2019).Anomaly/threat detection is another focus of many of theproposed solutions (Ali and Ware, 2021). Studies alsoaddressed the applicability of forensic solutions to 5G(Nieto, 2018), privacy (Khan et al., 2019), and some othersfocus on the security of legacy networks (only mentioningpossible future 5G applications) (Sheoran et al., 2019).Some studies also propose or analyze strategiesto prevent eavesdropping (Bhuyan et al., 2021), DoS(Barik et al., 2020), EDoS (Vidal et al., 2018), scanningattacks (Cabaj et al., 2018), IMSI catchers (van denBroek et al., 2015), spoofing attacks (Chopra et al.,2018), resource depletion attacks (e.g., botnet attacks(Gokul and Sankaran, 2021)) jamming (Jagannath et al.,2020), localization attack (Roth et al., 2021), pilotcontamination (Wang et al., 2020), pollution attacks(Adat et al., 2019), false data injection (Moudoudet al., 2021), DDoS (Mamolar et al., 2019), and DRDoS

(Huang et al., 2019). Some proposed solutions focuson resource management considering service quality,including security (Astrakhantsev et al., 2021).Other proposed solutions address the secure handover(e.g., for heterogeneous IoT networks (Torroglosa-Garciaet al., 2020)), which enables devices to trustfully joindomains (e.g., using authentication frameworks (Coriciet al., 2019), and protocols (Sharma et al., 2018)). Somestudies are concerned with the proposal of architectures(Han et al., 2017), controlling the access/use of NS (Martiniet al., 2020), ensuring isolation of NS (Gonzalez et al.,2020), ensuring intra-slice security (Bordel et al., 2018),and ensuring security in D2D communications (Wang andYan, 2015).Some of the identified solutions focus on the securityand privacy of 5G in vertical applications such as smarttransportation (Hussein et al., 2017), Industry 4.0 (Al-Turjman and Alturjman, 2018), smart cities (Akhunzadaet al., 2020), public services (Schmittner et al., 2017),smart grids (Xuesong et al., 2021), and smart health(Ghassemian et al., 2020).Fig. Fig. 2 presents the focus of the 389 reviewed papers.Most studies (i.e., 323) do not focus on a specific verticalapplication. Besides, 280 of the reviewed papers proposeda specific solution. Some only discussed or mentionedexisting solutions (e.g., review papers). Of the 389 papers,364 focused on 5G, 16 focused on B5G, and 9 focused on4G (only stating the possibility of adaptations for 5G).

Figure 2: Main focus of the 389 reviewed papers.
Other general solutions address the security of SDMN(Liyanage et al., 2015), security policies (Zhao, Zhang,Yu, Zhang, Qiu and Xu, 2021), security schemes (modelsor protocols) (Ksentini and Frangoudis, 2020), securityarchitectures (or frameworks) (Vijay and Umadevi, 2019),security platforms (or systems) (Ortiz et al., 2020),algorithms (or methods) (Tang and Zhou, 2021), AI-basedsecurity (Thantharate et al., 2020), blockchain-basedsecurity (Feng et al., 2021), and testbeds (Gabrielson et al.,2021). We also observed studies addressing solutions toMEC security (Ali et al., 2020) and others focusing onprivacy (Liyanage et al., 2018).5G network security can also rely on biologicallyinspired intelligent algorithms such as colonieshoneybees, ant colony optimization, physarumautonomic optimization, artificial immune system,swarm intelligence algorithm, and neural networks(Saleem et al., 2020).Other general recommendations include hiding the
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user identities during service authentication, assuringrobust access point/BS identity (Bouras et al., 2017),detecting malicious signaling (Soldani, 2019), securingvirtual infrastructure and NS (Panwar and Sharma,2020), securing authentication chip (Xingzhong et al.,2019), preserving privacy (Nguyen, Tran, Loven, Partala,Kechadi and Pirttikangas, 2020), providing intrusiondetection system (Shah and Pramod Bendale, 2019),providing PLS (Singh et al., 2018), and providingservice-oriented authentication protocols (Ni et al.,2018). Fig. 3 relates the papers and purpose (e.g.,mitigate DDoS attacks). For instance, if an articleaddressed eavesdropping and jamming (as the solutionof Nieto et al. (Nieto et al., 2017)), it appears in boththreat categories. The following threats are addressedin one paper: EDoS, zombie devices, impersonation,hijacking, redirection, fingerprinting, sniffing, scanning,botnets, device capabilities, forgery, proximity-basedattacks, malware, pilot contamination, resource depletion,adaptive wormholes, quantum, and MITM. Fig. 4 detailsthe focus of the 306 papers addressing other topics,including position papers, experiments, syntheses ofknowledge, threat models, and general security solutions.

Figure 3: Reviewed papers and purposes.
Fig. 5 presents a bubble chart that illustrates the studiesby omitting papers that do not present novel proposedsolutions, resulting in 280 studies. Thus, the size of thebubble relates to the number of solutions. We groupedthe solutions considering management, detection, andmitigation categories. For instance, we omitted somesurveys, systematic literature reviews (or mappings),threat models, attack proposals, and experimentationof existing solutions. The proposed solutions included38 frameworks, 98 approaches (also called mechanismsor systems), 44 schemes, 20 protocols, 32 models (or

algorithms), 4 testbeds, 18 methodologies (or methods),22 architectures, 1 metric, and 1 security protection policy.Security metrics and protection policies relate to themanagement category.Most proposed solutions did not focus on specificthreats (i.e., 165 for mitigation, 27 for detection, and 11for management). Of the solutions addressing specificthreats, 21 concentrate on mitigating eavesdropping,followed by DDoS (5 mitigation and 4 detection solutions),spoofing (7 detection solutions), jamming (2 mitigationand 2 detection solutions), tracking (3 mitigationsolutions), DoS (4 mitigations and 1 detection solutions),IMSI Catchers (3 mitigation solutions), DRDoS (2mitigation solutions), flooding (2 detection solutions),and pollution (3 mitigation solutions). The remainingthreats are related to only one solution.
7 Discussion and Future Research Directions

We extracted data from 389 studies after the SLM selectionprocess. Only two papers presented proposals for securitymetrics and security protection policies. Besides, fewpapers presented proposals for solutions to addressspecific threats such as pilot contamination and injectionattacks. For instance, our revision did not identifymitigation solutions for pilot contamination and injectionattacks. The reviewed papers also need to include specificsolutions for smart agriculture. Although we identifiedsolutions focusing on other vertical applications, thenumber was low (e.g., one solution for smart grids(Xuesong et al., 2021)).Analyzing the distribution of papers by publicationvenues is also relevant to presenting journals, magazines,and conferences with the highest number of publicationsin the field. The journal IEEE Access published thehighest number of papers (i.e., 45), followed by IEEENetwork. In addition to recent special issues on the topicof 5G, the rapid review/publication process of IEEE Accessmay explain the number of publications. The remainingjournals/magazines published less than ten papers. Thus,the review included 139 papers published in journals ormagazines (i.e., 35,73%).The review included 203 papers published in IEEEconferences (i.e., 52,19%). Additionally, the reviewincluded 47 papers published in ACM conferences (i.e.,12,08%). For IEEE conferences, the IEEE 5G World Forumpublished the highest number of papers (i.e., 10), followedby the IEEE Global Communications Conference (i.e., 8)and IEEE Globecom Workshops (i.e., 8). However, thenumber of publications is not expressive when consideringthe total of reviewed IEEE conference papers. Thedistribution of papers by the remaining IEEE conferencesis similar. For ACM conferences, the InternationalConference on Availability, Reliability, and Securitypublished the highest number of papers (i.e., 13), followedby the ACM Conference on Security and Privacy in Wirelessand Mobile Networks (i.e., 9). The remaining ACMconferences published less than four papers. The focus ofsuch conferences on security and privacy may explain thisdistribution of papers by ACM publication venues.Researchers from 64 countries authored the papers.
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Figure 4: Focus of the 306 papers addressing other topics (first bar of Figure Fig. 3).

Figure 5: Bubble chart presenting the 280 identified solutions and purposes.
The countries with the highest number of authors ofpapers were China (85 papers), the USA (72 papers),the United Kingdom (46 papers), Germany (34 papers),Canada (32 papers), Finland (31 papers), India (31 papers),and Spain (24 papers). Authors from Latin Americancountries published a few papers: Brazil (7 papers),Ecuador (2 papers), and Chile (1 paper). Analyzing thedistribution of publications on 5G security and privacyper country is relevant to identifying potentially lessconcerned regions in researching such a topic. Thefrequency of research publication is only one of manypossible indicators of concern. During our SLM, wenoticed that less concerned countries could be morevulnerable (e.g., allowing devices with fewer securityprotections) to security and privacy threats. It is usual forgovernments around the current widely connected worldto keep track of potential foreign security threats usingindicators of concern.

However, our SLM only partially shows the full picturebecause we cannot cover all existing publication venues,only indicating potentially less concerned regions. Wecover two relevant paper publication databases: IEEE

Xplore and ACM Digital Library. Future research cancomplement our SLM using other publication databaseslike Springer, Elsevier, and Wiley online libraries.
Based on our revision, the downgrade attacks areother relevant threats to empathize (SRQ4). For instance,if an adversary forces the downgrade from 5G toprevious networks, the user becomes vulnerable tounsolved threats. Threats include, but are not limitedto eavesdropping and gathering (i.e., eavesdrop onthe communication and collect information about theuser’s equipment, equipment capabilities, or signature);redirection, discard and creation (i.e., redirect, drop, orcreate authentication calls/messages/vectors); redirection,discard, and Injection (i.e., redirect, drop or inject callsor messages); traffic flow interception and redirection(i.e., compromising confidentiality); location recovery (i.e.,retrieve the subscriber’s location); inference mapping (i.e.,perform the mapping between information); disabling orseparation of UE (disable or separate it from the network);eavesdropping with access or listening (i.e., eavesdropon the communication and later access a message orlisten to a call); eavesdropping with key access (i.e.,
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eavesdrop on the communication and access the keysor "break" the encryption scheme); DoS and quality ofservice degradation (i.e., impersonating a legitimate user);and representation of UE or BS (i.e., impersonate, collecttransmission information from neighboring cells, andpersonify authentic network elements).It is also relevant to discuss and be aware of possiblethreats (e.g., quantum attacks (Cho and Sergeev, 2021))for B5G (El-Latif et al., 2020). For instance, adversariescan maliciously take advantage of the high capabilitiesof quantum computing, which can be misused and,consequently, improperly access private data, for example,using insecure data transfer on IoT platforms.In addition, they can exploit the fact that the currentinformation security mechanisms do not consider thehigh computational capabilities of quantum devices.Therefore, attackers can conduct attacks from quantumdevices. Furthermore, due to key size limitations,restricted by traditional physical SIM storage, the networkbecomes vulnerable to unauthorized access, replayattacks, spoofing attacks, and MITM attacks (Al Mousaet al., 2020). However, we need to identify publicationswith deep discussions on threats and solutions when 5Gnetworks are used with other networks (e.g., Wi-Fi). Thiswork can be a relevant future research direction (SRQ5).
8 Conclusions
We performed an SLM considering cyber-security aspectsof vertical applications enabled for 5G networks. Asa result, we identified relevant vulnerabilities, threats,attacks, solutions, and recommendations for the securityand privacy of 5G vertical applications. Results showthe variety of vulnerabilities for each vertical applicationand the existence of proposed solutions. Our resultscan support academia, industry, and governments inprioritizing and addressing security and privacy concerns.However, from the SLM findings, the literature requiresmore investigations to evaluate the threats and practicalviability of many solutions identified for 5G and verticalapplications.
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