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Abstract

Pests that attack crops are one of the leading causes of low production and economic losses. Identifying and diagnosing
forecasts is one way to reduce losses and maintain quality in production. Defoliation of crops harms production and
production quality. Using computational technologies such as Artificial Intelligence and Machine Learning has enabled
the identification of pests faster and earlier. In this paper, we propose a Deep Learning-based architecture aimed at
identifying and diagnosing insects by analyzing defoliation in crop images. Different Convolutional Neural Network
approaches were considered to evaluate the proposed architecture. The training and testing of the models were performed
using images collected by drone in a natural environment. The approach that presented the best performance in our
scenario was the VGG16. The average accuracy in the validation phase was 0.95, while in the test set, we obtained 0.86.

Keywords: Soybean, Deep Learning, Pest, Defoliates, Agriculture

Resumo

As pragas que atacam as culturas sdo uma das principais causas de baixa producio e de perdas econémicas. Identificar,
diagnosticar as previsoes sao formas de reduzir as perdas e manter a qualidade da produgao. A desfolha das culturas
prejudica a producdo e a qualidade da produtividade. O uso de tecnologias computacionais como Inteligéncia Artificial
e Aprendizado de Maquina tem possibilitado a identificacdo de pragas de forma mais rapida e precoce. Neste artigo,
propomos uma arquitetura baseada na aprendizagem profunda destinada a identificar e diagnosticar insetos através
da andlise da desfoliagdo em imagens de culturas. Foram consideradas diferentes abordagens de Redes Neurais
Convolucionais para avaliar a arquitetura proposta. O treinamento e o teste dos modelos foram realizados utilizando
imagens coletadas por drone em um ambiente natural. A abordagem que apresentou o melhor desempenho, em nosso
cenario, foi a VGG16. A acuracia média, na fase de validagdo, foi de 0,95, enquanto no conjunto de teste, obtivemos 0,86.

Palavras-Chave: Soja, Aprendizado Profundo, Praga, desfolha, Agricultura

1 Introduction

Pest infestation is one of the leading causes of crop damage
and economic losses in the agricultural chain (Nanni
et al., 2022). Rigid pest control is necessary to generate
economic gains and increase production and food quality.
Pest control must be continuous, allowing the detection
and early identification of pests, allowing immediate

actions to combat pests (de Castro Pereira et al., 2022a).

Soybean (Glycine max (L) Merrill) is part of the legumes
belonging to the Papilionaceae family, originating in Asia,
China (Sedivy et al., 2017). From planting to harvesting,
soybeans are subject to attacks by defoliating pests, insects
being one of the problems producers face. The forms of
pest identification are still, for the most part, carried out
manually or with static traps (Silva et al., 2019; Xin and
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Wang, 2020). Technological innovations have proven to be
an alternative to pest control. Automated solutions using
Artificial Intelligence (AI) for automatic identification
have significantly accelerated pest recognition (Nanni
et al., 2022). The use of image capture equipment has
contributed to faster diagnoses. Drones equipped with
cameras, flying over plants, capture images with rich
details, allowing crops to be monitored. Drones used in
crops are considered important in control, detection, and
management decision-making (Tetila et al., 2020).

Deep Learning (DL) techniques have obtained relevant
results for the identification, recognition, detection,
and diagnosis of pests (Tassis et al., 2021). These
techniques have proven to be efficient in identifying
and diagnosing pests in images (Patel and Bhatt, 2021),
acting in information control, decision-making, pattern
recognition, and knowledge acquisition (Voutos et al.,
2019). Zhao et al. (2022) cite DL as the primary technique
under study for pest recognition in pest images.

CNN architectures have stood out in the classification,
identification, counting, and estimation of pests and plant
data (Patel and Bhatt, 2021; Tetila et al., 2019, 2020; Tassis
etal., 2021; Silva et al., 2019; Xin and Wang, 2020). Tetila
etal. (2019, 2020) investigated the use and performance in
identifying and counting soybean insects. In this context,
Tetila et al. (2020) use transfer learning approaches and
fine-tune a CNN to analyze images collected in real-time
in the field to calculate the level of insect infestation in
a crop. Tassis et al. (2021) proposed an architecture to
face the existing complexity in natural images to detect
and recognize lesions in coffee plants. Silva et al. (2019)
proposed a model that estimates soybean defoliation using
natural images. Xin and Wang (2020) designed a model to
extract leaf traits from soybeans, while de Castro Pereira
et al. (2022a) proposed a DL-based approach to identify
the whitefly insect on soybean leaves.

Although the topic is relevant, to the best of our
knowledge, studies have yet to focus on identifying insects
by analyzing defoliation using natural images. The most
comparable studies related to defoliation propose solutions
to estimate defoliation percentages (Silva et al., 2019; Xin
and Wang, 2020). Leaf defoliation is one of the many
damages caused by pests. In our approach, we propose a
DL-based architecture that analyzes defoliation to identify
which pests affect the crop.

More specifically, our proposed architecture allows the
evaluation of various CNN approaches to diagnose and
identify pests by defoliation using natural images collected
in crops. In this paper, we conduct a case study in which
the proposed architecture aims to identify two types of
pests (caterpillar and diabrotic speciosa) by analyzing
defoliation. The DL models were trained using a natural
image dataset Mignoni etal. (2022) and tested with natural
images captured by drones in a crop.

Defoliation to diagnose and identify the type of pest
in natural images contributes to yet another recognition
method for the kind of insect. With defoliation for
identification and diagnosis, the pest control process can
be streamlined and minimize production and product
quality losses, with the user’s decision-making for action
and control. Factors such as the environment and the
economy can also benefit from using less agrochemicals

to control pests.

The remainder of this paper is organized as follows.
Section 2 presents background aspects and related work.
Section 3 presents the proposed architecture, discussing
details on each step of the image collection and analysis.
Finally, Section 4 presents conclusions and directions for
future research.

2 Background and Related Work

We conducted a literature search in diverse scientific
libraries, such as IEEE, ACM, Elsevier, and Science Direct,
aiming at analyzing the state-of-the-art in the topic of
defoliation analysis using natural images. Although, to
the best of our knowledge, related works do not address
the diagnosis and identification of pests by defoliation in
images, some articles tackle related approaches. These
researches generally deal with image natural image
collection, and DL approaches to estimate the degree of
damage caused by pests in crops.

DL is a subarea of ML that uses algorithms to process
data, imitating the functioning of the human brain and
allowing computers to learn (Goodfellow et al., 2016).
DL algorithms can automatically extract and detect data
characteristics (Christin et al., 2019). DL works with
computational models composed of several processing
layers and data abstraction levels (Tetila et al., 2020).
Computational models that use DL are composed of several
processing layers that can learn data characteristics
with various levels of abstraction (Tetila et al., 2020;
LeCun et al., 2015; Christin et al., 2019). DL is widely
used in agriculture to control and combat pests, soil
management, crop quality, productivity, and weather
forecasting (Alpaydin, 2020; YU et al., 2022). The various
DL techniques, such as CNN, enable its application in
countless areas, actions, and innovative solutions (Li et al.,
2021).

The CNN architecture is a DL method with multilayer
perception designed to work with images in image
classification (He et al., 2016). It is presented as an
excellent tool for automatic classification/detection of
pests (Tassis et al., 2021). CNNs are composed of different
types of layers, such as convolution and pooling (Sharma
et al., 2021). Song et al. (2019) report CNNs as a type
of backpopulation neural network, where the extraction
and mapping layers extract the characteristics of objects.
The convolutional layer is the most important structure
of a CNN, as it can extract effective features and reduce
the complexity of images (Song et al., 2019). The use of
CNN architectures in identifying and diagnosing pests in
images has shown to be very promising Tetila et al. (2020).

Tetila et al. (2019, 2020) investigated the use and
performance of DL in identifying and counting insects
in soybeans. The authors use transfer learning and fine-
tuning techniques along with a data set composed of 5000
256x%256 px images collected in real time. Using this
dataset, Tetila et al. proposed a CNN-based computer
vision model that automatically identifies and counts the
number of insects to calculate the level of infestation
affecting a given crop.

Tassis et al. (2021) proposed an architecture to deal
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Table 1: An architectural proposal to identify insects using CNN through defoliation in images captured by drones in a
natural environmen

Characteristics

Author Images defoliation Identify insects UAV CNN
Silva et al. (2019) Synthetic images for training | Estimates the level of | No No Yes

and actual ones for tests defoliation
Tetila et al. (2019) Natural preprocessed images | No Identifies the insects | No Yes
Tetila et al. (2020) Natural preprocessed images | No Identifies the insects | Yes Yes
Tassis et al. (2021) Natural preprocessed images | Recognizes that there are | No No Yes

to minimize the problem | injuries in the leaves

regarding the back of the

photos
Albattah et al. | IP102 images and drone | Extracts characteristics | Identifies the insect Yes Yes
(2022) images from the insect’s picture

with the complexity of collecting and analyzing natural
images. The authors integrated different CNNs to evaluate
the degree of lesions in coffee plants, using images
captured via smartphone in natural conditions. The
results were obtained using UNet and PSPNet models,
attaining accuracies of 94.25% and 93.54%, respectively.
Although the authors obtained relevant results, the
study’s limitations include identifying defoliation in an
image, as a stain or groove can be confused with data,
overlapping colors, and lesions on the same leaf.

Silva et al. (2019) proposed a model based on CNN that
estimates soybean defoliation. The model was trained
using a set of 256x256 px synthetic images. The model
testing was conducted using natural images captured
using cameras. The results allowed the authors to analyze
the defoliation percentage in a crop. However, the authors
did not focus on identifying the type of pests that affect a
crop.

Albattah et al. (2022) proposed a DL model with an
automated framework to extract insect-related features
from images. The authors’ approach was to train a CNN
using the IP102 database ! and tested with images collected
in a natural environment using drones Mignoni et al.
(2022).

Related works present solutions to estimate defoliation
using DL to analyze natural images. The literature
also presents solutions for quantifying crop infestation.
However, to the best of our knowledge, these researches
are not focused on identifying pest types while
analyzing defoliation. Considering this scenario,
Table 1 summarizes the main characteristics of the related
research. Considering the gaps not yet covered by the
literature, in this article, we propose an architecture to
tackle the lack of identification of insects by defoliation
and analyze its performance in a case study involving
natural images collected using UAVs. The case study
identifies two pest classes: caterpillar and diabrotica
speciosa.

3 Proposed Architecture

The identification of defoliation pests is a complex process
due to the characteristics presented by the damage. More

Thttps://github.com/xpwu95/IP102

specifically, the bottom leaf can camouflage damage to
the leaves because the color is the same and does not have
an embossed texture. These characteristics make damage
visualization more difficult. Another characteristic that
makes it challenging to identify the insect is that the same
leaf can have more than one type of insect damage. In
order to deal with these challenges, in this section, we
propose a CNN-based architecture capable of identifying
the type of pest using natural images collected from crops.

Fig. 1 illustrates the structure of the proposed
architecture. The solution comprises three modules:
(I) image capture, (II) image pre-processing, and (III)
the CNN, which was trained using defoliation images of
soybean leaves captured using UAVs in soybean fields
in Lucas do Rio Verde, Mato Grosso, Brazil (Mignoni
etal., 2022). Details on each module are presented in the
following subsections.

3.1 Image Capture

The first module of our architecture deals with how
the images are captured in the field. In the case study
analyzed in this paper, the images were captured in natural
conditions using a UAV. Images were collected on different
days to accommodate diverse weather conditions, varying
among sunny, cloudy, mild wind, and clouds. The images
were captured during the harvest period between October
2020 and January 2021, from 7:00 a.m. to 9:00 a.m. and
4:00 p.m. to 6:00 p.m.

The time selected for image capturing considered the
period of the day less affected by wind. The UAV camera
distance varied from 50cm to 2m in height. We captured
images with a Mavic Air2 Drone 40mp camera. Figure 2
shows sample images of a soybean crop captured with the
UAV in variable weather conditions. These images are part
of a dataset created using the images captured to conduct
the case study presented in this article (Mignoni et al.,
2022).

3.2 Image Pre-processing

The images pre-processing is carried out in the
architecture’s second module. The datasets were balanced
before pre-processing, as shown in Fig. 1. The images
were loaded, and applied pre-processing techniques.
The data was increased for the size of the dataset,
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Figure 1: Proposed Architecture

which was too small to train the model with CNN. CNN
architectures use a large amount of data to be trained. We
used functions from the OpenCV library to augment the
dataset. The resize function was used to resize the images,
maintaining the proportion and solving the different
angles and scales of the image capture. The rotation
technique was used to increase the number of images in
the dataset: original position, 90, 180, 270, -90, -180,
-270 degrees.

The dataset augmentation process is shown in Table 2.
Table 2 presents the amounts of images without and with
augmentation, divided by class and size. In the first
column are the sizes of the training and validation dataset
images and the test images. Columns 2, 3, and 4 show the
number of images without increase per class. Columns 5,
6, and 7 contain the amounts of images per class that were
enlarged, and the last column contains the total number of
images resulting from the application of the augmentation
technique, that is, the values in columns 5, 6, and 7. Thus,
the number of images in column 2, when receiving the
rotation technique, resulted in the number of images in
column 5, and the process occurred successively in the
other columns.

Fig. 3 illustrates three of the six rotations performed
to increase the amount of data in the dataset. Image a) is
in the original position, image b) has been resized, and
image c) is rotated to the left.

3.3 Dataset

The images used in the CNN model’s training, validation,
and testing are from the Soybean images dataset published
in 2021 (Mignoni et al., 2022). These images used in
our study differ from other studies as they deal with
defoliation. They are natural images captured in a real
environment, in real weather situations. The images are of
defoliation caused by caterpillar and diabrotica speciossa,
not contemplating other types of damage in this specific
dataset.

The images were annotated by three experts: two
agronomists with more than ten years of experience
and a farmer with more than 30 years of experience.
These experts identified three classes of images. Figure
4 represents these three classes: (a) refers to the class
of healthy leaves; (b) refers to the class of leaves with
defoliation caused by caterpillars; and (c) illustrates leaves
with defoliation caused by diabrotica speciosa.

The defoliation images may have damage caused by
both types of insects. In cases where both types of damage
occurred in the same image, the annotation was based
on the highest number of damages of the same insect.
The annotated datasets have different amounts due to
the sharpness presented. Some images were manually
excluded because they were not clear. Table Table 2
describes details of the dataset organization, including the
amounts of images used for training and test purposes.

Table 2: Dataset characteristics

Image Size [ Caterpillar | Diabrotica speciosa | Healthyleaves | Total amount of images
CNN Model Training
256 X 256 pX 2317 2317 2317 6951
512 X 512 pX 2023 2023 2023 6069
CNN Model Test
256 X 256 px 252 252 252 756
512 X 512 pX 22/ 22/, 22/, 672
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Figure 4: The three images represent the annotated classes of the dataset. The classes are: image a) healthy sheets;
image b) leaves with defoliation caused by caterpillar; image c) leaves with defoliation caused by diabrotica speciosa

3.4 Training of CNNs Models

In the third module of the architecture, we implemented
and trained a Deep Learning model using Convolutional
Neural Networks (CNNs) to identify and classify soybean
leaf defoliation caused by pests. The objective was
to distinguish among three classes: healthy leaves,
defoliation caused by caterpillars, and defoliation caused
by Diabrotica speciosa. Given the complexity of working
with natural images and the limited size of the dataset,
we adopted a transfer learning strategy to enhance
performance and mitigate data scarcity challenges.

The CNNs evaluated in this study were selected
based on their established performance in image
recognition tasks. Specifically, we employed VGG16 and
VGG19 (Simonyan and Zisserman, 2015), ResNet50 (He
et al.,, 2016), DenseNet201 (Huang et al., 2018), and
EfficientNetB7 (Tan, 2020), all of which are pre-trained
on the ImageNet dataset. These models were integrated
into our architecture with their convolutional layers
frozen to preserve previously learned features, while the
classification head was redefined and trained using our
labeled dataset. This transfer learning approach leverages
the general visual features learned by the base models
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and fine-tunes the final layers to adapt to the specific
characteristics of defoliation patterns.

Each model was extended with two fully connected
(dense) layers with 1024 and 512 units, respectively,
activated by the ReLU function. Dropout regularization
with a dropout rate p = 0.5 was applied after each dense
layer to reduce overfitting by randomly omitting half
of the layer’s units during training. Additionally, L2
regularization was applied to the dense layers, with a
regularization parameter A = 0.001, penalizing large
weights to further control model complexity and prevent
overfitting. The final classification layer comprised three
neurons with a Softmax activation function, defined as:

Zi

cC _z’
j=1€"

Softmax(z;) = fori=1,..,C (1)

where C = 3 corresponds to the number of classes. The
categorical cross-entropy loss function was adopted to
train the models, expressed as:

C
LW,y == yilogy;) (2)

i=1

where y; is the true class label and y; is the predicted
probability for class i. This loss function is appropriate
for multi-class classification problems with mutually
exclusive outputs.

The models were trained for 200 epochs with a batch
size of 32, using the Adam optimization algorithm, which
combines the advantages of Adaptive Gradient Algorithm
(AdaGrad) and Root Mean Square Propagation (RMSProp).
Adam adapts the learning rate for each parameter by
computing adaptive estimates of lower-order moments.
The default parameters were used: learning rate o = 0.001,

B1=0.9, B> = 0.999,and ¢ = 10~ 8.

To evaluate model performance, we computed standard
classification metrics: accuracy, precision, recall, Fi-
Score, and Area Under the ROC Curve (AUC). These metrics
offer complementary perspectives: accuracy measures
the overall correctness, precision quantifies the ratio of
true positives to all predicted positives, recall indicates
the ratio of true positives to actual positives, the Fi1-
Score balances precision and recall, and AUC assesses
the model’s discrimination ability across all classification
thresholds.

All models were trained and evaluated on both 256 x256
and 512 x 512 image resolutions, using the balanced dataset
described in Section 3.3. The training workflow is
visually summarized in Fig. 5, which illustrates the input
data, model training pipeline, and selection of the best-
performing CNN architecture.

3.5 Five CNN training and test results

The models trained in the experiment were the VGG16,
VGG19, ResNet50, DenseNet201, and EfficientNetB7 pre-
trained with ImageNet. Figure 5 demonstrates the training

process of the CNNs, showing the one with the best
performance. The VGG16 architecture presented the best
results in validation and tests. The dataset was divided
into 80% for training and 20% for validation. These values
were chosen at random. In training, we used two sets of
RGB images of different sizes, 256 X 256 and 512 X 512.

The 256 x 256 dataset is composed of 6951 images, and
the 512 x 512 dataset has 6069. Both datasets have three
balanced classes: healthy, caterpillar, and DS. Each 256 x
256 dataset class has 2317 images, and the 512 x 512 dataset
classes have 2023 images each, shown in Table 2. The test
images have the same sizes as those used in training and
validation, 256 x 256 and 512 x 512, and the amount of 756
and 672, respectively. Also annotated these images with
the three classes and balanced, as shown in Table 2.

The results of the validation of the CNNs are presented
in Table 3. The results show that the model that presented
the best result in the validation was VGG16, in both image
sizes, considering the five metrics. Of the trained models,
the one that presented the worst results was DenseNet201
in both datasets. In the other models, the differences are
small, demonstrating a balance in performance.

Among the metrics used in training, AUC showed the
best results, followed by accuracy, as shown in Table 3.
The accuracy achieved in the AUC metric reached 0.99
in dataset 256 and 0.97 in dataset 512. The lowest
performance was demonstrated by the Recall metric in
both datasets. The values achieved in the metrics show
that between the two datasets, the best performance was
obtained by the 256 x 256 dataset, with 0.99 in the AUC
metric.

Model training using CNNs demonstrated that the 256
x 256 dataset performed better in identifying defoliation
pests. This better performance also occurred in all metrics.
VGG16 was the most viable in these experiments and
indicated for these datasets.

3.6 CNN Performance VGG16

VGG16, for having presented the best results in validation,
tests were carried out for identification and pests through
defoliation with other images. The tests were performed
with two sizes, 256 x 256 and 512 x 512 balanced. The
VGG16 presented a performance in the tests of 0.90 and
0.87, respectively, for the two tests, demonstrating that
256 x 256 images obtained a better performance.

Fig. 6 presents the test results by metrics of the VGG16
model. The tests with two sizes of images, using the
VGG16, obtained a success rate in the AUC metric of 0.87
and 0.90, respectively, while the others presented indexes
equivalent to each other in each size of image.

The confusion matrix of the VGG16 model presents
the positive and false positive results in identifying each
sample. The two confusion matrices in Fig. 7 show the
results of tests performed with both image sizes. The
confusion matrix shows the highest number of hits was
for the caterpillar, with 234 positive and 18 false in the 256
x 256 images. In the 512 x 512 images, the highest number
of hits was for DS, with 219 positive and five false. The
confusion matrices in Fig. 7 demonstrate that the 256 x
256 images obtained the highest number of hits in the
total set.
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validation metrics.
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Table 3: Validation results in the CNN training

Dataset 256 x 256
CNN Accuracy AUC Precision Recall F1_score
VGG16 0,95 0,99 0,95 0,95 0,95
VGG19 0,92 0,98 0,93 0,92 0,92
ResNet50 0,94 0,98 0,94 0,94 0,94
EfficientNetB7 0,95 0,99 0,95 0,94 0,95
DenseNet201 0,76 0,91 0,77 0,75 0,76

Dataset 512 x 512
CNN Accuracy AUC Precision Recall F1_score
VGG16 0,90 0,97 0,91 0,90 0,90
VGG19 0,89 0,97 0,89 0,88 0,89
ResNet50 0,84 0,92 0,84 0,83 0,82
EfficientNetB7 0,85 0,96 0,85 0,84 0,84
DenseNet201 0,72 0,88 0,75 0,68 0,75

Dataset 256 x 256
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Figure 8: ROC Curve of the proposed model using VGG16

Fig. 8 presents the ROC curve of the VGG16 model with
the values achieved by the class in the tests. The curve
with the highest value is that of the 256 x 256 images in
the healthy class with 0.93. The ROC curve with the lowest
value is from the 512 x 512 images in the healthy class with
0.85. These values can also be verified in Fig. 7, together
with the confusion matrix of each dataset.

Identifying pests through defoliation is an innovative
study not found in other studies. The results are compared
with other studies that identify pests through images
of pests and with studies that estimate the percentage
of damage due to defoliation to have a parameter of the
values.

The results achieved in our training and validation
compared with the authors’ studies in Table 4
demonstrate that the differences between the results are
not great. Table 4 presents the relationship between the
results of other authors and our indices, showing that the
results are approximate. The results obtained in the tests,
considering the complexity of identifying a pest by its
damage, indicate that with these results, the person in
charge can act in favor of pest control. The cited studies
report the difficulty in extracting features from the
images and working with natural images due to nature’s
weather. Considering the mentioned difficulties, the

results obtained from other authors, ours, demonstrate
promising and viable.

This study considered the difficulty of identifying a pest
by defoliating plants. These difficulties are caused by the
fact that the leaves after defoliation are the same color
as the healthy ones; damage from different pests caused
by different insects can occur on the same leaf because
the texture between the healthy and leafless parts is the
same; damage dimensions are similar. When analyzing
the results, the difficulties mentioned earlier were taken
into account. Considering these difficulties, the results
are promising. Fig. 4 shows these reported difficulties,
demonstrating some difficulty identifying the type of pest
causing the damage.

4 Conclusion and Future Works

This research proposed a DL architecture to identify
defoliation information in real images captured by
drones. The studies’ architecture, training, tests, results,
and analyses are described, demonstrating the results
obtained. The problem of identifying and diagnosing
defoliation rules is difficult due to the complex background
of the images. Based on CNN, the architecture proposal
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Table 4: Comparison of results obtained by other authors with ours

Author Activity Value Converted values
Our results Identify pests through defoliation | 90 and 87 0,90 and 0,87
Tassis et al. (2021) Estimativa de desfolha 73,90 and 94,25 | 0,73 and 0,94
Tetila et al. (2020) Detection and classification of | 93,82and 91,80 | 0,93and 0,91
pests

Xin and Wang (2020) Extraction of foliar characteristics | 96,3 0,96

de Castro Pereira et al. (2022b) | Detection and classify whiteflies 87 0,87

Wang et al. (2022) Pests Identification 78,6 0,78

All authors used CNN.

to identify information by defoliation through images
captured with drones demonstrated that it is possible and
acceptable to identify directives in this way.

The results of training, validation, and tests with
both datasets showed differences that do not change
the model’s accuracy. The model with VGG16 showed
the best validation result, with an average of 0.95 and
0.91, respectively. Having presented the best results in
the validation, this model was chosen for the tests. It
presented an average of 0.86 and 0.82, respectively, in
the tests. Considering the complexity of the background
of the images to visualize defoliation, the difficulty of
extracting characteristics from the images, the difficulty
of identifying the type of pest due to defoliation damage,
and the comparison with the results of other authors,
these results prove to be promising and viable.

The limitations presented by the proposed model are
characterized by images collected in real environments,
the background complexity of the images, the initial
stages of plantations, and small datasets. Using other pre-
processing techniques can minimize the events caused by
bad weather in nature and other regions. Capturing more
real images solves the small dataset issue.

For future work, it is suggested to expand the data
set. Use processing techniques that soften the effects
of nature and improve images in terms of background
complexity. Test the proposed model to identify other
types of crop defoliation pests in addition to Caterpillar
and DS. Test the model on defoliation of crops other than
soybean. Implement the attention mechanism and CNN
in the proposal to identify insects by defoliation in real
images.
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