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Abstract
Pests that attack crops are one of the leading causes of low production and economic losses. Identifying and diagnosingforecasts is one way to reduce losses and maintain quality in production. Defoliation of crops harms production andproduction quality. Using computational technologies such as Artificial Intelligence and Machine Learning has enabledthe identification of pests faster and earlier. In this paper, we propose a Deep Learning-based architecture aimed atidentifying and diagnosing insects by analyzing defoliation in crop images. Different Convolutional Neural Networkapproaches were considered to evaluate the proposed architecture. The training and testing of the models were performedusing images collected by drone in a natural environment. The approach that presented the best performance in ourscenario was the VGG16. The average accuracy in the validation phase was 0.95, while in the test set, we obtained 0.86.
Keywords: Soybean, Deep Learning, Pest, Defoliates, Agriculture
Resumo
As pragas que atacam as culturas são uma das principais causas de baixa produção e de perdas económicas. Identificar,diagnosticar as previsões são formas de reduzir as perdas e manter a qualidade da produção. A desfolha das culturasprejudica a produção e a qualidade da produtividade. O uso de tecnologias computacionais como Inteligência Artificiale Aprendizado de Máquina tem possibilitado a identificação de pragas de forma mais rápida e precoce. Neste artigo,propomos uma arquitetura baseada na aprendizagem profunda destinada a identificar e diagnosticar insetos atravésda análise da desfoliação em imagens de culturas. Foram consideradas diferentes abordagens de Redes NeuraisConvolucionais para avaliar a arquitetura proposta. O treinamento e o teste dos modelos foram realizados utilizandoimagens coletadas por drone em um ambiente natural. A abordagem que apresentou o melhor desempenho, em nossocenário, foi a VGG16. A acurácia média, na fase de validação, foi de 0,95, enquanto no conjunto de teste, obtivemos 0,86.
Palavras-Chave: Soja, Aprendizado Profundo, Praga, desfolha, Agricultura

1 Introduction

Pest infestation is one of the leading causes of crop damageand economic losses in the agricultural chain (Nanniet al., 2022). Rigid pest control is necessary to generateeconomic gains and increase production and food quality.Pest control must be continuous, allowing the detectionand early identification of pests, allowing immediate

actions to combat pests (de Castro Pereira et al., 2022a).
Soybean (Glycine max (L) Merrill) is part of the legumesbelonging to the Papilionaceae family, originating in Asia,China (Sedivy et al., 2017). From planting to harvesting,soybeans are subject to attacks by defoliating pests, insectsbeing one of the problems producers face. The forms ofpest identification are still, for the most part, carried outmanually or with static traps (Silva et al., 2019; Xin and
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Wang, 2020). Technological innovations have proven to bean alternative to pest control. Automated solutions usingArtificial Intelligence (AI) for automatic identificationhave significantly accelerated pest recognition (Nanniet al., 2022). The use of image capture equipment hascontributed to faster diagnoses. Drones equipped withcameras, flying over plants, capture images with richdetails, allowing crops to be monitored. Drones used incrops are considered important in control, detection, andmanagement decision-making (Tetila et al., 2020).Deep Learning (DL) techniques have obtained relevantresults for the identification, recognition, detection,and diagnosis of pests (Tassis et al., 2021). Thesetechniques have proven to be efficient in identifyingand diagnosing pests in images (Patel and Bhatt, 2021),acting in information control, decision-making, patternrecognition, and knowledge acquisition (Voutos et al.,2019). Zhao et al. (2022) cite DL as the primary techniqueunder study for pest recognition in pest images.CNN architectures have stood out in the classification,identification, counting, and estimation of pests and plantdata (Patel and Bhatt, 2021; Tetila et al., 2019, 2020; Tassiset al., 2021; Silva et al., 2019; Xin and Wang, 2020). Tetilaet al. (2019, 2020) investigated the use and performance inidentifying and counting soybean insects. In this context,Tetila et al. (2020) use transfer learning approaches andfine-tune a CNN to analyze images collected in real-timein the field to calculate the level of insect infestation ina crop. Tassis et al. (2021) proposed an architecture toface the existing complexity in natural images to detectand recognize lesions in coffee plants. Silva et al. (2019)proposed a model that estimates soybean defoliation usingnatural images. Xin and Wang (2020) designed a model toextract leaf traits from soybeans, while de Castro Pereiraet al. (2022a) proposed a DL-based approach to identifythe whitefly insect on soybean leaves.Although the topic is relevant, to the best of ourknowledge, studies have yet to focus on identifying insectsby analyzing defoliation using natural images. The mostcomparable studies related to defoliation propose solutionsto estimate defoliation percentages (Silva et al., 2019; Xinand Wang, 2020). Leaf defoliation is one of the manydamages caused by pests. In our approach, we propose aDL-based architecture that analyzes defoliation to identifywhich pests affect the crop.More specifically, our proposed architecture allows theevaluation of various CNN approaches to diagnose andidentify pests by defoliation using natural images collectedin crops. In this paper, we conduct a case study in whichthe proposed architecture aims to identify two types ofpests (caterpillar and diabrotic speciosa) by analyzingdefoliation. The DL models were trained using a naturalimage dataset Mignoni et al. (2022) and tested with naturalimages captured by drones in a crop.Defoliation to diagnose and identify the type of pestin natural images contributes to yet another recognitionmethod for the kind of insect. With defoliation foridentification and diagnosis, the pest control process canbe streamlined and minimize production and productquality losses, with the user’s decision-making for actionand control. Factors such as the environment and theeconomy can also benefit from using less agrochemicals

to control pests.The remainder of this paper is organized as follows.Section 2 presents background aspects and related work.Section 3 presents the proposed architecture, discussingdetails on each step of the image collection and analysis.Finally, Section 4 presents conclusions and directions forfuture research.
2 Background and Related Work
We conducted a literature search in diverse scientificlibraries, such as IEEE, ACM, Elsevier, and Science Direct,aiming at analyzing the state-of-the-art in the topic ofdefoliation analysis using natural images. Although, tothe best of our knowledge, related works do not addressthe diagnosis and identification of pests by defoliation inimages, some articles tackle related approaches. Theseresearches generally deal with image natural imagecollection, and DL approaches to estimate the degree ofdamage caused by pests in crops.DL is a subarea of ML that uses algorithms to processdata, imitating the functioning of the human brain andallowing computers to learn (Goodfellow et al., 2016).DL algorithms can automatically extract and detect datacharacteristics (Christin et al., 2019). DL works withcomputational models composed of several processinglayers and data abstraction levels (Tetila et al., 2020).Computational models that use DL are composed of severalprocessing layers that can learn data characteristicswith various levels of abstraction (Tetila et al., 2020;LeCun et al., 2015; Christin et al., 2019). DL is widelyused in agriculture to control and combat pests, soilmanagement, crop quality, productivity, and weatherforecasting (Alpaydin, 2020; YU et al., 2022). The variousDL techniques, such as CNN, enable its application incountless areas, actions, and innovative solutions (Li et al.,2021).The CNN architecture is a DL method with multilayerperception designed to work with images in imageclassification (He et al., 2016). It is presented as anexcellent tool for automatic classification/detection ofpests (Tassis et al., 2021). CNNs are composed of differenttypes of layers, such as convolution and pooling (Sharmaet al., 2021). Song et al. (2019) report CNNs as a typeof backpopulation neural network, where the extractionand mapping layers extract the characteristics of objects.The convolutional layer is the most important structureof a CNN, as it can extract effective features and reducethe complexity of images (Song et al., 2019). The use ofCNN architectures in identifying and diagnosing pests inimages has shown to be very promising Tetila et al. (2020).Tetila et al. (2019, 2020) investigated the use andperformance of DL in identifying and counting insectsin soybeans. The authors use transfer learning and fine-tuning techniques along with a data set composed of 5000256x256 px images collected in real time. Using thisdataset, Tetila et al. proposed a CNN-based computervision model that automatically identifies and counts thenumber of insects to calculate the level of infestationaffecting a given crop.Tassis et al. (2021) proposed an architecture to deal
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Table 1: An architectural proposal to identify insects using CNN through defoliation in images captured by drones in anatural environmenCharacteristicsAuthor Images defoliation Identify insects UAV CNNSilva et al. (2019) Synthetic images for trainingand actual ones for tests Estimates the level ofdefoliation No No Yes
Tetila et al. (2019) Natural preprocessed images No Identifies the insects No YesTetila et al. (2020) Natural preprocessed images No Identifies the insects Yes YesTassis et al. (2021) Natural preprocessed imagesto minimize the problemregarding the back of thephotos

Recognizes that there areinjuries in the leaves No No Yes

Albattah et al.(2022) IP102 images and droneimages Extracts characteristicsfrom the insect’s picture Identifies the insect Yes Yes

with the complexity of collecting and analyzing naturalimages. The authors integrated different CNNs to evaluatethe degree of lesions in coffee plants, using imagescaptured via smartphone in natural conditions. Theresults were obtained using UNet and PSPNet models,attaining accuracies of 94.25% and 93.54%, respectively.Although the authors obtained relevant results, thestudy’s limitations include identifying defoliation in animage, as a stain or groove can be confused with data,overlapping colors, and lesions on the same leaf.Silva et al. (2019) proposed a model based on CNN thatestimates soybean defoliation. The model was trainedusing a set of 256x256 px synthetic images. The modeltesting was conducted using natural images capturedusing cameras. The results allowed the authors to analyzethe defoliation percentage in a crop. However, the authorsdid not focus on identifying the type of pests that affect acrop.Albattah et al. (2022) proposed a DL model with anautomated framework to extract insect-related featuresfrom images. The authors’ approach was to train a CNNusing the IP102 database 1 and tested with images collectedin a natural environment using drones Mignoni et al.(2022).Related works present solutions to estimate defoliationusing DL to analyze natural images. The literaturealso presents solutions for quantifying crop infestation.However, to the best of our knowledge, these researchesare not focused on identifying pest types whileanalyzing defoliation. Considering this scenario,Table 1 summarizes the main characteristics of the relatedresearch. Considering the gaps not yet covered by theliterature, in this article, we propose an architecture totackle the lack of identification of insects by defoliationand analyze its performance in a case study involvingnatural images collected using UAVs. The case studyidentifies two pest classes: caterpillar and diabroticaspeciosa.
3 Proposed Architecture
The identification of defoliation pests is a complex processdue to the characteristics presented by the damage. More

1https://github.com/xpwu95/IP102

specifically, the bottom leaf can camouflage damage tothe leaves because the color is the same and does not havean embossed texture. These characteristics make damagevisualization more difficult. Another characteristic thatmakes it challenging to identify the insect is that the sameleaf can have more than one type of insect damage. Inorder to deal with these challenges, in this section, wepropose a CNN-based architecture capable of identifyingthe type of pest using natural images collected from crops.Fig. 1 illustrates the structure of the proposedarchitecture. The solution comprises three modules:(I) image capture, (II) image pre-processing, and (III)the CNN, which was trained using defoliation images ofsoybean leaves captured using UAVs in soybean fieldsin Lucas do Rio Verde, Mato Grosso, Brazil (Mignoniet al., 2022). Details on each module are presented in thefollowing subsections.
3.1 Image Capture

The first module of our architecture deals with howthe images are captured in the field. In the case studyanalyzed in this paper, the images were captured in naturalconditions using a UAV. Images were collected on differentdays to accommodate diverse weather conditions, varyingamong sunny, cloudy, mild wind, and clouds. The imageswere captured during the harvest period between October2020 and January 2021, from 7:00 a.m. to 9:00 a.m. and4:00 p.m. to 6:00 p.m.The time selected for image capturing considered theperiod of the day less affected by wind. The UAV cameradistance varied from 50cm to 2m in height. We capturedimages with a Mavic Air2 Drone 40mp camera. Figure 2shows sample images of a soybean crop captured with theUAV in variable weather conditions. These images are partof a dataset created using the images captured to conductthe case study presented in this article (Mignoni et al.,2022).
3.2 Image Pre-processing

The images pre-processing is carried out in thearchitecture’s second module. The datasets were balancedbefore pre-processing, as shown in Fig. 1. The imageswere loaded, and applied pre-processing techniques.The data was increased for the size of the dataset,
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Figure 1: Proposed Architecture
which was too small to train the model with CNN. CNNarchitectures use a large amount of data to be trained. Weused functions from the OpenCV library to augment thedataset. The resize function was used to resize the images,maintaining the proportion and solving the differentangles and scales of the image capture. The rotationtechnique was used to increase the number of images inthe dataset: original position, 90, 180, 270, -90, -180,-270 degrees.

The dataset augmentation process is shown in Table 2.Table 2 presents the amounts of images without and withaugmentation, divided by class and size. In the firstcolumn are the sizes of the training and validation datasetimages and the test images. Columns 2, 3, and 4 show thenumber of images without increase per class. Columns 5,6, and 7 contain the amounts of images per class that wereenlarged, and the last column contains the total number ofimages resulting from the application of the augmentationtechnique, that is, the values in columns 5, 6, and 7. Thus,the number of images in column 2, when receiving therotation technique, resulted in the number of images incolumn 5, and the process occurred successively in theother columns.
Fig. 3 illustrates three of the six rotations performedto increase the amount of data in the dataset. Image a) isin the original position, image b) has been resized, andimage c) is rotated to the left.

3.3 Dataset

The images used in the CNN model’s training, validation,and testing are from the Soybean images dataset publishedin 2021 (Mignoni et al., 2022). These images used inour study differ from other studies as they deal withdefoliation. They are natural images captured in a realenvironment, in real weather situations. The images are ofdefoliation caused by caterpillar and diabrotica speciossa,not contemplating other types of damage in this specificdataset.The images were annotated by three experts: twoagronomists with more than ten years of experienceand a farmer with more than 30 years of experience.These experts identified three classes of images. Figure4 represents these three classes: (a) refers to the classof healthy leaves; (b) refers to the class of leaves withdefoliation caused by caterpillars; and (c) illustrates leaveswith defoliation caused by diabrotica speciosa.The defoliation images may have damage caused byboth types of insects. In cases where both types of damageoccurred in the same image, the annotation was basedon the highest number of damages of the same insect.The annotated datasets have different amounts due tothe sharpness presented. Some images were manuallyexcluded because they were not clear. Table Table 2describes details of the dataset organization, including theamounts of images used for training and test purposes.
Table 2: Dataset characteristics

Image Size Caterpillar Diabrotica speciosa Healthy leaves Total amount of imagesCNN Model Training256 x 256 px 2317 2317 2317 6951512 x 512 px 2023 2023 2023 6069CNN Model Test256 x 256 px 252 252 252 756512 x 512 px 224 224 224 672
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Figure 2: Images of a soybean crop, captured with UAV in a natural environment

Figure 3: Represents some ways used to increase and standardize the set of images. Normal, resized, and rotated image

Figure 4: The three images represent the annotated classes of the dataset. The classes are: image a) healthy sheets;image b) leaves with defoliation caused by caterpillar; image c) leaves with defoliation caused by diabrotica speciosa
3.4 Training of CNNs Models

In the third module of the architecture, we implementedand trained a Deep Learning model using ConvolutionalNeural Networks (CNNs) to identify and classify soybeanleaf defoliation caused by pests. The objective wasto distinguish among three classes: healthy leaves,defoliation caused by caterpillars, and defoliation causedby Diabrotica speciosa. Given the complexity of workingwith natural images and the limited size of the dataset,we adopted a transfer learning strategy to enhanceperformance and mitigate data scarcity challenges.

The CNNs evaluated in this study were selectedbased on their established performance in imagerecognition tasks. Specifically, we employed VGG16 andVGG19 (Simonyan and Zisserman, 2015), ResNet50 (Heet al., 2016), DenseNet201 (Huang et al., 2018), andEfficientNetB7 (Tan, 2020), all of which are pre-trainedon the ImageNet dataset. These models were integratedinto our architecture with their convolutional layersfrozen to preserve previously learned features, while theclassification head was redefined and trained using ourlabeled dataset. This transfer learning approach leveragesthe general visual features learned by the base models
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and fine-tunes the final layers to adapt to the specificcharacteristics of defoliation patterns.Each model was extended with two fully connected(dense) layers with 1024 and 512 units, respectively,activated by the ReLU function. Dropout regularizationwith a dropout rate p = 0.5 was applied after each denselayer to reduce overfitting by randomly omitting halfof the layer’s units during training. Additionally, L2regularization was applied to the dense layers, with aregularization parameter λ = 0.001, penalizing largeweights to further control model complexity and preventoverfitting. The final classification layer comprised threeneurons with a Softmax activation function, defined as:

Softmax(zi) = ezi∑C
j=1 ezj

, for i = 1, ..., C (1)
where C = 3 corresponds to the number of classes. Thecategorical cross-entropy loss function was adopted totrain the models, expressed as:

L(y, ŷ) = −
C∑

i=1
yi log(ŷi) (2)

where yi is the true class label and ŷi is the predictedprobability for class i. This loss function is appropriatefor multi-class classification problems with mutuallyexclusive outputs.The models were trained for 200 epochs with a batchsize of 32, using the Adam optimization algorithm, whichcombines the advantages of Adaptive Gradient Algorithm(AdaGrad) and Root Mean Square Propagation (RMSProp).Adam adapts the learning rate for each parameter bycomputing adaptive estimates of lower-order moments.The default parameters were used: learning rate α = 0.001,
β1 = 0.9, β2 = 0.999, and ϵ = 10−8.To evaluate model performance, we computed standardclassification metrics: accuracy, precision, recall, F1-Score, and Area Under the ROC Curve (AUC). These metricsoffer complementary perspectives: accuracy measuresthe overall correctness, precision quantifies the ratio oftrue positives to all predicted positives, recall indicatesthe ratio of true positives to actual positives, the F1-Score balances precision and recall, and AUC assessesthe model’s discrimination ability across all classificationthresholds.All models were trained and evaluated on both 256×256and 512×512 image resolutions, using the balanced datasetdescribed in Section 3.3. The training workflow isvisually summarized in Fig. 5, which illustrates the inputdata, model training pipeline, and selection of the best-performing CNN architecture.
3.5 Five CNN training and test results

The models trained in the experiment were the VGG16,VGG19, ResNet50, DenseNet201, and EfficientNetB7 pre-trained with ImageNet. Figure 5 demonstrates the training

process of the CNNs, showing the one with the bestperformance. The VGG16 architecture presented the bestresults in validation and tests. The dataset was dividedinto 80% for training and 20% for validation. These valueswere chosen at random. In training, we used two sets ofRGB images of different sizes, 256 X 256 and 512 X 512.The 256 x 256 dataset is composed of 6951 images, andthe 512 x 512 dataset has 6069. Both datasets have threebalanced classes: healthy, caterpillar, and DS. Each 256 x256 dataset class has 2317 images, and the 512 x 512 datasetclasses have 2023 images each, shown in Table 2. The testimages have the same sizes as those used in training andvalidation, 256 x 256 and 512 x 512, and the amount of 756and 672, respectively. Also annotated these images withthe three classes and balanced, as shown in Table 2.The results of the validation of the CNNs are presentedin Table 3. The results show that the model that presentedthe best result in the validation was VGG16, in both imagesizes, considering the five metrics. Of the trained models,the one that presented the worst results was DenseNet201in both datasets. In the other models, the differences aresmall, demonstrating a balance in performance.Among the metrics used in training, AUC showed thebest results, followed by accuracy, as shown in Table 3.The accuracy achieved in the AUC metric reached 0.99in dataset 256 and 0.97 in dataset 512. The lowestperformance was demonstrated by the Recall metric inboth datasets. The values achieved in the metrics showthat between the two datasets, the best performance wasobtained by the 256 x 256 dataset, with 0.99 in the AUCmetric.Model training using CNNs demonstrated that the 256x 256 dataset performed better in identifying defoliationpests. This better performance also occurred in all metrics.VGG16 was the most viable in these experiments andindicated for these datasets.
3.6 CNN Performance VGG16

VGG16, for having presented the best results in validation,tests were carried out for identification and pests throughdefoliation with other images. The tests were performedwith two sizes, 256 x 256 and 512 x 512 balanced. TheVGG16 presented a performance in the tests of 0.90 and0.87, respectively, for the two tests, demonstrating that256 x 256 images obtained a better performance.Fig. 6 presents the test results by metrics of the VGG16model. The tests with two sizes of images, using theVGG16, obtained a success rate in the AUC metric of 0.87and 0.90, respectively, while the others presented indexesequivalent to each other in each size of image.The confusion matrix of the VGG16 model presentsthe positive and false positive results in identifying eachsample. The two confusion matrices in Fig. 7 show theresults of tests performed with both image sizes. Theconfusion matrix shows the highest number of hits wasfor the caterpillar, with 234 positive and 18 false in the 256x 256 images. In the 512 x 512 images, the highest numberof hits was for DS, with 219 positive and five false. Theconfusion matrices in Fig. 7 demonstrate that the 256 x256 images obtained the highest number of hits in thetotal set.



Mignoni et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.2, pp.11–20 17

Figure 5: Training of CNN architectures and selection of the best-performing one. The figure illustrates the use ofmultiple pre-trained models, the training process with the proposed classification head, and the selection based onvalidation metrics.

Figure 6: Results of model tests using VGG16

Figure 7: Confusion pattern model with VGG16
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Table 3: Validation results in the CNN trainingDataset 256 x 256CNN Accuracy AUC Precision Recall F1_scoreVGG16 0,95 0,99 0,95 0,95 0,95VGG19 0,92 0,98 0,93 0,92 0,92ResNet50 0,94 0,98 0,94 0,94 0,94EfficientNetB7 0,95 0,99 0,95 0,94 0,95DenseNet201 0,76 0,91 0,77 0,75 0,76Dataset 512 x 512CNN Accuracy AUC Precision Recall F1_scoreVGG16 0,90 0,97 0,91 0,90 0,90VGG19 0,89 0,97 0,89 0,88 0,89ResNet50 0,84 0,92 0,84 0,83 0,82EfficientNetB7 0,85 0,96 0,85 0,84 0,84DenseNet201 0,72 0,88 0,75 0,68 0,75

Figure 8: ROC Curve of the proposed model using VGG16
Fig. 8 presents the ROC curve of the VGG16 model withthe values achieved by the class in the tests. The curvewith the highest value is that of the 256 x 256 images inthe healthy class with 0.93. The ROC curve with the lowestvalue is from the 512 x 512 images in the healthy class with0.85. These values can also be verified in Fig. 7, togetherwith the confusion matrix of each dataset.Identifying pests through defoliation is an innovativestudy not found in other studies. The results are comparedwith other studies that identify pests through imagesof pests and with studies that estimate the percentageof damage due to defoliation to have a parameter of thevalues.The results achieved in our training and validationcompared with the authors’ studies in Table 4demonstrate that the differences between the results arenot great. Table 4 presents the relationship between theresults of other authors and our indices, showing that theresults are approximate. The results obtained in the tests,considering the complexity of identifying a pest by itsdamage, indicate that with these results, the person incharge can act in favor of pest control. The cited studiesreport the difficulty in extracting features from theimages and working with natural images due to nature’sweather. Considering the mentioned difficulties, the

results obtained from other authors, ours, demonstratepromising and viable.This study considered the difficulty of identifying a pestby defoliating plants. These difficulties are caused by thefact that the leaves after defoliation are the same coloras the healthy ones; damage from different pests causedby different insects can occur on the same leaf becausethe texture between the healthy and leafless parts is thesame; damage dimensions are similar. When analyzingthe results, the difficulties mentioned earlier were takeninto account. Considering these difficulties, the resultsare promising. Fig. 4 shows these reported difficulties,demonstrating some difficulty identifying the type of pestcausing the damage.
4 Conclusion and Future Works

This research proposed a DL architecture to identifydefoliation information in real images captured bydrones. The studies’ architecture, training, tests, results,and analyses are described, demonstrating the resultsobtained. The problem of identifying and diagnosingdefoliation rules is difficult due to the complex backgroundof the images. Based on CNN, the architecture proposal
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Table 4: Comparison of results obtained by other authors with oursAuthor Activity Value Converted valuesOur results Identify pests through defoliation 90 and 87 0,90 and 0,87Tassis et al. (2021) Estimativa de desfolha 73,90 and 94,25 0,73 and 0,94Tetila et al. (2020) Detection and classification ofpests 93,82 and 91,80 0,93 and 0,91
Xin and Wang (2020) Extraction of foliar characteristics 96,3 0,96de Castro Pereira et al. (2022b) Detection and classify whiteflies 87 0,87Wang et al. (2022) Pests Identification 78,6 0,78

All authors used CNN.
to identify information by defoliation through imagescaptured with drones demonstrated that it is possible andacceptable to identify directives in this way.The results of training, validation, and tests withboth datasets showed differences that do not changethe model’s accuracy. The model with VGG16 showedthe best validation result, with an average of 0.95 and0.91, respectively. Having presented the best results inthe validation, this model was chosen for the tests. Itpresented an average of 0.86 and 0.82, respectively, inthe tests. Considering the complexity of the backgroundof the images to visualize defoliation, the difficulty ofextracting characteristics from the images, the difficultyof identifying the type of pest due to defoliation damage,and the comparison with the results of other authors,these results prove to be promising and viable.The limitations presented by the proposed model arecharacterized by images collected in real environments,the background complexity of the images, the initialstages of plantations, and small datasets. Using other pre-processing techniques can minimize the events caused bybad weather in nature and other regions. Capturing morereal images solves the small dataset issue.For future work, it is suggested to expand the dataset. Use processing techniques that soften the effectsof nature and improve images in terms of backgroundcomplexity. Test the proposed model to identify othertypes of crop defoliation pests in addition to Caterpillarand DS. Test the model on defoliation of crops other thansoybean. Implement the attention mechanism and CNNin the proposal to identify insects by defoliation in realimages.
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