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Abstract
In numerical optimization, solutions to optimization problems are developed using methods or techniques that generateapproximate results for complex problems, such as metaheuristics. When these techniques generate results, it is essentialto verify whether these values meet the optimization problem requirements, for example, values of the variables withinthe minimum and maximum range and the satisfaction of the problem constraints. Doing it by hand can be very difficult,especially considering optimization problems have different characteristics. This paper presents the development of aweb application called CNOPsolution Tester, which allows researchers and end-users to validate the values of decisionvariables based on their ranges and constraints. The application was designed based on diagrams created with theUnified Modeling Language and developed in JavaScript. We tested the web application with multiple users and 24benchmark optimization problems to evaluate its usability, measuring the number of clicks needed to solve each problem.We also validated the functionality using 20% of the problems. The results demonstrate that the CNOPsolution Testeris an efficient tool and easy to use by any end-user, as shown by the response time and the number of clicks used onthe application. We applied the Pearson correlation to identify the relationship between the number of clicks, problemvariables, and constraints.
Keywords: Metaheuristics; Optimization Problems; Pearson Correlation; Tester.
Resumo
Na otimização numérica, as soluções para problemas de otimização são desenvolvidas usando métodos ou técnicas quegeram resultados aproximados para problemas complexos, como as meta-heurísticas. Quando essas técnicas geramresultados, é essencial verificar se esses valores atendem aos requisitos do problema de otimização, por exemplo, valoresdas variáveis dentro do intervalo mínimo e máximo e a satisfação das restrições do problema. Fazer isso manualmentepode ser muito difícil, especialmente considerando que os problemas de otimização têm características diferentes. Estetrabalho apresenta o desenvolvimento de uma aplicação web chamada CNOPsolution Tester, que permite a pesquisadorese usuários finais validar os valores das variáveis de decisão com base nos seus intervalos e restrições. A aplicação foiprojetada com base em diagramas criados com a Linguagem de Modelagem Unificada e desenvolvida em JavaScript.Testamos a aplicação web com múltiplos usuários e 24 problemas de otimização de referência para avaliar sua usabilidade,medindo o número de cliques necessários para resolver cada problema. Também validamos a funcionalidade usando20% dos problemas. Os resultados demonstram que o CNOPsolution Tester é uma ferramenta eficiente e fácil de usarpara qualquer usuário final, conforme demonstrado pelo tempo de resposta e pelo número de cliques utilizados naaplicação. Aplicamos a correlação de Pearson para identificar a relação entre o número de cliques, variáveis do problemae restrições.
Palavras-Chave: Meta-heurística; Problemas de otimização; Correlação de Pearson; Testador.
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1 Introduction
In the real world, different disciplines face complexproblems that need to be optimized using some technique,model, paradigm, or tool to minimize or maximize aquality measure or objective function representing theproblem to be solved. Any chosen approach is based on thevalues that the problems decision variables take, whichmust comply with certain linear/non-linear constraintsand even limits on their values (Kumar et al., 2020). Acomplex problem can be modeled as a general problem ofmathematical programming (Sarker and Newton, 2007)and can be represented as:

minimize (or maximize): f (⃗x)
subject to

gi(⃗x) ≤ 0, i = 1, 2, ...,m
hj(⃗x) = 0, j = 1, 2, ..., p

where:
Lk ≤ xi ≤ Uk, k = 1, 2, ...,D

where, f denotes the objective function, x⃗ is the n-dimensional solution vector x⃗ = [x1, x2, x3, ..., xn]T, which
x⃗ ∈ Rn. D is the number of design variables, m is thenumber of inequality constraints, and p is the numberof equality constraints. If we denote F as the feasibleregion (where all the solutions that satisfy the problemare found) and S as the entire search space, then itshould be clear that F ⊆ S (Hernández-Ocaña et al.,2016), as shown in Fig. 1. This mathematical modelis called Constrained Numerical Optimization Problems(CNOP)(Mezura-Montes and Coello, 2011).
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Figure 1: Feasible region F and search space S.
Searching for feasible solutions to CNOPs using classicalalgorithms becomes difficult, as most optimization

problems are classified as NP-hard that cannot be solvedin a polynomial time region, especially when they arehighly constrained (Garey et al., 1976). An alternativefor generating a single or a set of solutions that facilitatedecision-making for the end user is to consider bio-inspired metaheuristics. These are based on populationgroups and designed to improve the search proceduresfor optimal solutions in reasonable times, implementingtwo search schemes: exploration (diversification ofthe population) and exploitation (intensification of thepopulation) (Abdel-Basset et al., 2018).Metaheuristics are classified according to the type ofnatural phenomenon they are based on. Among the twomost popular classifications are:
• Evolutionary Algorithms (EAs) that emulate the processof natural evolution and the survival of the fittest ofspecies (Eiben and Smith, 2003) and can be dividedinto four categories:

– Evolutionary strategies (Rechenberg, 1989)
– Evolutionary programming (Fogel, 2006)
– Differential evolution (Storn and Price, 1997)
– Genetic programming (Koza, 1992)

• Swarm Intelligence Algorithms (SIAs) that replicate thecollaborative behavior of certain simple and intelligentspecies (Engelbrecht, 2005). Some examples of SIAsare:
– Particle Swarm Optimization (PSO) (Kennedy andEberhart, 1995)
– Artificial Bee Colony Optimization (ABC) (Karabogaand Basturk, 2007)
– Bacteria Foraging Optimization Algorithm (BFOA)(Passino, 2002)
– Ant Colony Optimization (ACO) (Dorigo et al., 1996)
Researchers have implemented differentmetaheuristics in various studies, providing detailedresults for each decision variable and the solution to theproblem. For example, in the research by Kumar et al.(2020), the authors suggest implementating variousmetaheuristics and constraint handling approachesand validate their proposals on a set of 57 real-worldconstrained optimization problems. Another relevantstudy is Barbosa et al. (2010), where the authors focus onthe implementation of various evolutionary algorithms.The researchers present the test results using the functionset of the CEC 2006 competition. The work mentionedin Brest et al. (2017) introduces a novel metaheuristicalgorithm, experimenting with it on a set of problemsassociated with the reference functions of the CEC 2017.When initiating research that involves applying novelmethods, metaheuristics, or performance metrics to solveCNOPs, it becomes necessary to seek related works thataddress similar or identical problems the new researchwill tackle. This process is essential for validating theresults or comparing the values generated by the methodin execution. However, this search and validation ofresults entail a significant delay in the research time,as, for validation, common tools such as spreadsheetsor programming languages are used to independently
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evaluate the problem with the values generated by thetechnique used.Also, values of interest in the literature must be verifiedin some cases, but the lack of an intuitive tool to performthese checks can cause additional delays. Not having atool that allows for efficient evaluation of the feasibilityof values about the constraints and limits of the variablesalso contributes to the complexity and slowness of theresearch process.A proposed solution is designing and developing of aweb application hosted on GitHub Pages1. This applicationwill serve as a solution tester for CNOP values. Diagramswere created based on the Unified Modeling Language(UML) to identify the system needs, and the developmentwas carried out in the JavaScript programming language.The web application CNOPsolution Tester includes aset of CNOPs used in the study of García-López et al.(2023). Additionally, the CNOPsolution Tester allows theend-user to input an undefined problem within this setthrough a user-friendly graphical interface. As a result,the application displays the objective function value, thevalue of each constraint, and the feasibility of the decisionvariable values based on their minimum and maximumranges.
2 Design and development
UML diagrams were first designed to develop theCNOPsolution Tester. This facilitates development byallowing the identification of system needs. Fig. 2presents the use case diagram that defines the end user’snavigation.
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Figure 2: Use case diagram for CNOPsolution Tester.
Prior to developing the web application, a flowchartwas designed to show the process between all partsof the CNOPsolution Tester. This diagram visualizesthe sequence of steps necessary to evaluate a CNOPand verify the results, including the decision variablesand constraints. Fig. 3 presents the flowchart of theCNOPsolution Tester.

1Static website hosting service: https://pages.github.com/
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Figure 3: Flowchart of CNOPsolution Tester.

We implemented Algorithm 1 for CNOPsolution Tester,which represents the sequence of steps followed toevaluate a CNOP and verify the results of the enteredsolution vector x⃗. The algorithm begins with the selectionof a preloaded benchmark CNOP or the definition of a newproblem. If the user chooses a preloaded problem, thesystem allows viewing the problem information, such asthe objective function f (⃗x), the constraints gi(⃗x) or hj(⃗x),and the variable limits Lk ≤ xi ≤ Uk. For a new problem,

https://pages.github.com/
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Figure 4: Architecture of CNOPsolution Tester.
the end-user must enter this information and enter thenumber of dimensions n of the problem.

Once the problem information is loaded or entered, nfields are enabled for the user to enter the values of thedecision variables (solution vector x⃗). Finally, the valueof the objective function is calculated, the constraints areevaluated, and it is verified that the values of the decisionvariables comply with the specified limits Lk ≤ xi ≤ Uk.
Algorithm 1 General process of CNOPsolution Tester

1: Start2: Choose: preloaded problem or new problem3: if the option is preloaded problem then4: Load f (⃗x), gi(⃗x) or hj(⃗x) and Lk ≤ xi ≤ Uk from theselected problem5: else6: Request the n-dimensional number of the problem7: Request f (⃗x), gi(⃗x) or hj(⃗x) and Lk ≤ xi ≤ Uk fromthe new problem8: end if9: Enable n fields to enter the values of the decisionvariables x⃗10: Calculate and display the value f (⃗x), gi(⃗x) or hj(⃗x)11: Verify and display the variable limits Lk ≤ xi ≤ Uk12: End

In software development, the architecture of a systemis a fundamental component for defining the structureand behavior of the system, in addition to the componentsthat make it up. Fig. 4 shows the high-level structure ofCNOPsolution Tester, including the back-end and front-

end elements.
3 Description and operation of CNOPsolution

Tester
For the development of the CNOPsolution Tester webapplication, we used the high-level, interpreted, object-oriented, and cross-platform programming languageJavaScript for the application’s interactivity, being oneof the most used and versatile client-side programminglanguages (Jansen, 2024). JavaScript has a wide ecosystemof numerous libraries and frameworks. For the front end,we used the HTML markup language for the structure ofthe web application and the CSS style language for thepresentation, using the DashMin template2.To evaluate the CNOPs, we incorporated a mathematicalexpression evaluator to reduce the complexity of theimplementation when evaluating the objective functionand constraints, in this case, mathjs (de Jong andMansfield, 2018), a JavaScript framework that allowsperforming mathematical operations at runtime from textstrings. We used other frameworks for the developmentthat facilitate the system’s usability. These are Bootstrap3
for designing the user interface, SweetAlert4 fordisplaying alert messages, and jQuery5 for manipulating

2DashMin – Free Bootstrap 5 Admin Dashboard Template. Availableat: https://themewagon.com/themes/3https://getbootstrap.com: Bootstrap is a popular front-endframework for designing responsive and mobile-first websites.4https://sweetalert2.github.io/: SweetAlert is a JavaScript libraryfor displaying beautiful and customizable alert messages in webapplications.5https://jquery.com: jQuery is a fast, small, and feature-rich

https://themewagon.com/themes/
https://getbootstrap.com
https://sweetalert2.github.io/
https://jquery.com
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Figure 5: Modules of the CNOPsolution Tester web application.
the Document Object Model (DOM).After completing the coding of the CNOPsolution Tester,the resulting web application is visualized in Fig. 5, wherethe User Interface (UI) of the web application is presented.The UI consists of several key elements:
• In Panel 1, by selecting the "Define" option, two fieldsallow the user to configure the definition of a new CNOP.These fields request the number of variables and thenumber of constraints. After entering this information,the fields are automatically generated according to theprovided values.• In Panel 2, selecting "Benchmark" allows the user todisplay only a selection component. This componentallows one to choose among the optimization problemsincluded in the CNOPsolution Tester.• In Panel 3, the decision variable ranges are displayedor must be inserted, depending on the user’s choice(either to create a new problem or select one included).• Panel 4 allows the user to enter the objective function

JavaScript library for simplifying HTML DOM tree traversal andmanipulation, event handling, and animation.

and the value of the best-known solution.• In Panel 5, the CNOP constraints are configured,including equality or inequality constraints.• The decision variable values are entered in Panel 6.These values will be evaluated in the objective functionand constraints and verified to ensure compliance withthe established minimums and maximums.• Panels 7 and 8 present results, including the value ofthe objective function, the value of the constraints, thefeasibility of each constraint, and the feasibility of thedecision variable values based on their ranges.
Also, the CNOPsolution Tester contains the helpcomponent that accompanies and guides the end userthrough each section that must be entered for successfuluse.CNOPsolution Tester is available on GitHub, a versioncontrol platform that facilitates open access to source code.The repository is publicly accessible at https://github.c

om/garcialopez/CNOPsolution-tester. Additionally, theapplication is hosted on GitHub Pages6, a service designed
6Free web hosting service: https://pages.github.com/

https://github.com/garcialopez/CNOPsolution-tester
https://github.com/garcialopez/CNOPsolution-tester
https://pages.github.com/
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for static websites. To view and use the software, visit
https://garcialopez.github.io/CNOPsolution-tester.
4 Experiments and Discussion
Evaluating the response capacity to user requests isnecessary to deploy the CNOPsolution tester. It isimportant to measure the response time to evaluate itsperformance for the end-user. Therefore, tests wereconducted using the Loaderio website7, an online serviceused for load testing web applications. Loaderio allowssimulating multiple users accessing the web applicationat the same time.For these tests, we configured the connection of 250clients over 1 minute. At the end of the test, the resultspresented in Table 1 were obtained.

Table 1: Performance test results with the Loader tool.
Response times Bandwidth Redirects
Mean: 4 ms Sent: 3.89 MB Valid: 15,000
Minimum: 4 ms Received: 180.67 MB Invalid: 0
Maximum: 86 ms – –

Results of the load test for 250 simultaneous connections on theCNOPsolution tester.
The results from Table 1 indicate that the webapplication correctly managed the load of 250 clients for1 minute. The response times were fast, with an averageof 4 milliseconds, showing a high response capacity. Inaddition, all redirects were valid, which allows us tounderstand the application’s traffic management.Measuring clicks in software is important tounderstand user interaction with the UI. In CNOPsolutionTester, when end-users choose to evaluate a preloadedCNOP, we identified the following formula that describesthe total number of clicks: n + 6, where the first 4 clickscorrespond to the selection of a CNOP, n represents thenumber of entered variables, and the last 2 clicks arefor evaluation and result display. To perform a clicksimulation in the application, the first three preloadedproblems have been used, the results are presented inTable Table 2.

Table 2: Number of click results onCNOPSolution Tester.
Problem n n + 6
Tension compression spring 3 9Pressure Vessel 4 10Design of a reinforced concrete beam 2 8

Fig. 6 shows the number of clicks on the preloadedCNOPs. For the Tension compression spring problem, 9clicks were required to evaluate it, while for the PressureVessel problem, 10 clicks were needed. In contrast, for theDesign of a reinforced concrete beam problem, 8 clicks
7Load testing service: https://loader.io

were needed.

Figure 6: Number of clicks on the preloaded CNOPs.
The number of clicks is represented by the sum of thenumber of variables plus 6.

Table 3: Number of clicks in customproblems by the user.
Problem n m p 3n + 4m + 4p + 7
g01 13 9 0 82g02 20 2 0 75g03 10 0 1 41g04 5 6 0 46g05 4 2 3 39g06 2 2 0 21g07 10 8 0 69g08 2 2 0 21g09 7 4 0 44g10 8 6 0 55g11 2 0 1 17g12 3 1 0 20g13 5 0 3 34g14 10 0 3 49g15 3 0 2 24g16 5 38 0 174g17 6 0 4 41g18 9 13 0 86g19 15 5 0 72g20 24 6 12 151g21 7 1 5 52g22 22 1 19 153g23 9 2 4 58g24 2 2 0 21

When the user selects to enter a custom problem, moreclicks are required to configure the input. We identifiedthe formula for the total number of clicks as 3n+4m+4p+7where n is the number of variables, m is the numberof inequality constraints, p is the number of equalityconstraints and 7 additional clicks correspond to the initialsetup: defining how many variables and constraints therewill be, entering the best known value, and clicking thebuttons to perform the calculation, view the results, andexport the visualization to PDF. To calculate the number of

https://garcialopez.github.io/CNOPsolution-tester
https://loader.io
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clicks needed to evaluate problems entered by the user, wehave used the problems from the Benchmark publishedin (Liang et al., 2006).The results are presented in Table Table 3 and shows thenumber of clicks needed to evaluate the problems enteredby the user. For example, for problem g01, evaluatingthe problem required 82 clicks, while for problem g02,75 clicks were needed. On the other hand, for problem g03,41 clicks were needed. The mean number of clicks for theproblems entered by the user was 62 clicks, with a meanof 9 variables, 5 inequality constraints, and 2 equalityconstraints. Figure Fig. 7 shows the number of clicks inthe problems entered by the user.

Figure 7: Number Number of clicks in custom CNOPs bythe user.
A click is represented by the sum of the numberof variables, inequality constraints, equalityconstraints, plus 7 additional configuration.

In Fig. 7, the blue line identifies the mean number ofclicks for the problems custom by the user. However, wecannot conclude that the number of clicks is proportionalto the number of variables, inequality constraints, andequality constraints. For this reason, we have calculatedthe Pearson correlation coefficient (r) (Pearson and Galton,1895) to measure the relationship between the number ofclicks and the number of variables, inequality constraints,and equality constraints. The formula to calculate thePearson correlation coefficient is presented in Eq. (1).

r = ∑n
i=1(xi − x̄)(yi − ȳ)√(∑n

i=1(xi − x̄)2)(∑n
i=1(yi − ȳ)2) (1)

where xi and yi are the variables, x̄ and ȳ are the meansof the variables, and n is the number of observations. Thismeans the Pearson correlation coefficient measures thelinear relationship with values between -1 and 1. A valueof 1 indicates a positive correlation, a value of -1 indicatesa negative correlation, and 0 indicates no correlation. Byapplying Eq. (1) to the data in Table 3, the results presentedin Table 4 are obtained.The correlation matrix in Table 4 shows the correlationcoefficients between all combinations of pairs of thevariables n, m, p, and clicks. The correlation between
n and clicks is 0.692163, indicating a moderate positivecorrelation. The correlation between m and clicks is

Table 4: Pearson Correlation Matrix.
– n m p clicks
n 1.000000 0.007476 0.605063 0.692163m 0.007476 1.000000 -0.186574 0.652895p 0.605063 -0.186574 1.000000 0.541070clicks 0.692163 0.652895 0.541070 1.000000

0.652895, indicating a moderate positive correlation. Thisdemonstrates that as m increases, so does clicks. Thecorrelation between p and clicks is 0.541070, indicatinga weaker positive correlation. This suggests that although
p and clicks are correlated, the relationship is not as strongas with n orm. Fig. 8 shows the heat map of the Pearsoncorrelation matrix to visualize the relationship betweenthe variables and identify the relationship of the numberof clicks with the variables n,m, and p.

Figure 8: Heat map of the Pearson correlation matrixbetween all combinations of pairs of the variables n,m, p,and clicks.
When using software, the end-user expects theapplication to be easy to use or initially provided with auser guide. In CNOPsolution Tester, we have implementeda user guide for the end-user. The guide was implementedwith Shepherd8, a JavaScript framework that allows thecreation of step-by-step guides for users. The user guideis activated when the user presses the Help button on theuser interface. Figure Fig. 9 shows how the user guide.Another critical aspect is correctly validating thedecision variable values based on their ranges andconstraints. For this, we choose a sample of 20% of theproblems from the Benchmark published in (Liang et al.,2006). From the previously explored problems of CEC2006, we have selected the problems g04, g05, g06, andg13 because they are problems with values close to themean of variables previously explored in the click measure.The authors who designed the mentioned problems alsoprovided the decision variables’ values and the objectivefunction’s results.

8Shepherd.js – JavaScript library for guiding users through your app.Available at: https://shepherdjs.dev/

https://shepherdjs.dev/
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Figure 9: User guide in CNOPsolution Tester.
Pressing the Help button activates the user guide.

Following, we present the comparison and validationof the results provided by the authors and the valuesgenerated by the CNOPsolution Tester.
• Problem g04: The g04 problem is an optimizationproblem with 5 decision variables, 6 inequalityconstraints, and 0 equality constraints. The decisionvariable values provided by the authors are: x =[78, 33, 29.99525602568159, 45, 36.77581290578820].The objective function provided by the authorsis -30665.5386717834 and the value generated byCNOPsolution Tester is −30665.538671783317. Duringvalidation, it is demonstrated that the decision variablevalues provided by the authors and the objectivefunction are feasible, meet the problem constraints,and comply with the decision variable limits (seeFig. 10).

Figure 10: Validation of problem g04 in CNOPsolutionTester.
• Problem g05: The g05 problem is an optimizationproblem with 4 decision variables, 2 inequalityconstraints, and 3 equality constraints. The decisionvariable values provided by the authors are: x =[679.945148297, 1026.066976000, 0.1188763690944,
−0.396233485215]. The objective function providedby the authors is 5126.4967140071, and the

value generated by the CNOPsolution Tester is5126.4967140071. The decision variable valuesprovided by the authors indicate that the objectivefunction is feasible and meets the constraints andlimits of the decision variables (see Fig. 11).

Figure 11: Validation of problem g05 in CNOPsolutionTester.
• Problem g06: The g06 problem is an optimizationproblem with 2 decision variables, 2 inequalityconstraints, and 0 equality constraints. The decisionvariable values provided by the authors are: x =[14.09500000000000064, 0.8429607892154795668].The objective function provided by the authors is-6961.8138755802, and the value generated by theCNOPsolution Tester is −6961.813875580138. Thedecision variable values provided by the authorsindicate that the objective function is feasible andmeets the constraints and limits of the decisionvariables (see Fig. 12).

Figure 12: Validation of problem g06 in CNOPsolutionTester.
• Problem g13: The g13 problem is an optimizationproblem with 9 decision variables and 13inequality constraints. The decision variablevalues provided by the authors are: x =[−0.6577761924279,−0.153418773482, 0.323413871675,
−0.94625761165,−0.6577761943767,−0.7532134346326,0.3234138741235,−0.3464629479623, 0.599794662852].The objective function provided by the authors is -0.8660254038 and the value generated by CNOPsolution
Tester is −0.8660254037844387. The decision variablevalues provided by the authors indicate that theobjective function is feasible and meets the constraintsand limits of the decision variables (see Fig. 13).
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Figure 13: Validation of problem g13 in CNOPsolutionTester.
Based on what has been presented in this section, theCNOPsolution Tester is an efficient tool for validatingthe values of decision variables in terms of their rangesand constraints. For all tests performed with valuesexisting in the literature, the results generated by theCNOPsolution Tester match the values provided by theauthors. Additionally, the web application can manage theload of multiple users and provides a usage guide for theend-user.

5 Conclusion

In this work, we have presented CNOPsolution Tester, aweb application that allows researchers and end-usersto validate the values of decision variables based ontheir minimums, maximums, and constraints. Wehave designed and developed the web application tofacilitate the validation of CNOP results and reduce resultvalidation time. We have preloaded a set of CNOPs into theCNOPSolution Tester as if the end-user entered customproblems. We also host the web application on GitHubPages for easy access, and multiple users have tested it toevaluate its performance. Additionally, we implemented auser guide for the end user, and it has been validated withproblems from the literature.We also highlight that, unlike previous works such asKumar et al. (2020) and Brest et al. (2017), which focus onthe development and benchmarking of metaheuristics,CNOPsolution Tester provides a dedicated tool forvalidating solution vectors against variable bounds andconstraints. While some researchers may use general-purpose tools like spreadsheets (e.g., MS Excel) or customscripts to manually verify constraints, such approachesare time-consuming and prone to error. CNOPsolutionTester addresses this gap by offering a user-friendly,web-based interface specifically designed for validatingconstrained optimization results efficiently.The results demonstrate that the CNOPsolution Testeris an efficient tool for validating the values of decisionvariables based on their minimums, maximums, andconstraints. It has been tested and evaluated with250 end-users. Additionally, Pearson’s correlation wasimplemented to identify the relationship of the number of

clicks with the problem’s variables and constraints.
6 Future work
In future work, the web application is planned tobe expanded to include more optimization problemsand add functionalities for evaluating multi-objectiveoptimization problems.
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