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Abstract

In numerical optimization, solutions to optimization problems are developed using methods or techniques that generate
approximate results for complex problems, such as metaheuristics. When these techniques generate results, it is essential
to verify whether these values meet the optimization problem requirements, for example, values of the variables within
the minimum and maximum range and the satisfaction of the problem constraints. Doing it by hand can be very difficult,
especially considering optimization problems have different characteristics. This paper presents the development of a
web application called CNOPsolution Tester, which allows researchers and end-users to validate the values of decision
variables based on their ranges and constraints. The application was designed based on diagrams created with the
Unified Modeling Language and developed in JavaScript. We tested the web application with multiple users and 24
benchmark optimization problems to evaluate its usability, measuring the number of clicks needed to solve each problem.
We also validated the functionality using 20% of the problems. The results demonstrate that the CNOPsolution Tester
is an efficient tool and easy to use by any end-user, as shown by the response time and the number of clicks used on
the application. We applied the Pearson correlation to identify the relationship between the number of clicks, problem
variables, and constraints.

Keywords: Metaheuristics; Optimization Problems; Pearson Correlation; Tester.

Resumo

Na otimizacdo numeérica, as solucdes para problemas de otimizacdo sdo desenvolvidas usando métodos ou técnicas que
geram resultados aproximados para problemas complexos, como as meta-heuristicas. Quando essas técnicas geram
resultados, é essencial verificar se esses valores atendem aos requisitos do problema de otimizagao, por exemplo, valores
das variaveis dentro do intervalo minimo e maximo e a satisfacdo das restri¢des do problema. Fazer isso manualmente
pode ser muito dificil, especialmente considerando que os problemas de otimizacdo tém caracteristicas diferentes. Este
trabalho apresenta o desenvolvimento de uma aplica¢do web chamada CNOPsolution Tester, que permite a pesquisadores
e usuarios finais validar os valores das variaveis de decisdo com base nos seus intervalos e restri¢oes. A aplicagao foi
projetada com base em diagramas criados com a Linguagem de Modelagem Unificada e desenvolvida em JavaScript.
Testamos a aplica¢do web com multiplos usudrios e 24 problemas de otimizagado de referéncia para avaliar sua usabilidade,
medindo o nimero de cliques necessarios para resolver cada problema. Também validamos a funcionalidade usando
20% dos problemas. Os resultados demonstram que o CNOPsolution Tester é uma ferramenta eficiente e facil de usar
para qualquer usuario final, conforme demonstrado pelo tempo de resposta e pelo nimero de cliques utilizados na
aplicagao. Aplicamos a correlacdo de Pearson para identificar a relagdo entre o nimero de cliques, variaveis do problema
e restricoes.

Palavras-Chave: Meta-heuristica; Problemas de otimizagao; Correlagdo de Pearson; Testador.
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1 Introduction

In the real world, different disciplines face complex
problems that need to be optimized using some technique,
model, paradigm, or tool to minimize or maximize a
quality measure or objective function representing the
problem to be solved. Any chosen approach is based on the
values that the problems decision variables take, which
must comply with certain linear/non-linear constraints
and even limits on their values (Kumar et al., 2020). A
complex problem can be modeled as a general problem of
mathematical programming (Sarker and Newton, 2007)
and can be represented as:

minimize (or maximize): f(X)

subject to
gi(X) <o, i=12,.,m
hj(X) =0, J=1,2,..,p
where:
L, <x <U, k=1,2,..,D

where, f denotes the objective function, X is the n-

dimensional solution vector X = [x1, X3, X3, ..., Xn]T, which
X € R™ D is the number of design variables, m is the
number of inequality constraints, and p is the number
of equality constraints. If we denote F as the feasible
region (where all the solutions that satisfy the problem
are found) and S as the entire search space, then it
should be clear that F C S (Hernandez-Ocafia et al.,
2016), as shown in Fig. 1. This mathematical model
is called Constrained Numerical Optimization Problems
(CNOP)(Mezura-Montes and Coello, 2011).
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Figure 1: Feasible region F and search space S.

Searching for feasible solutions to CNOPs using classical
algorithms becomes difficult, as most optimization

problems are classified as NP-hard that cannot be solved
in a polynomial time region, especially when they are
highly constrained (Garey et al., 1976). An alternative
for generating a single or a set of solutions that facilitate
decision-making for the end user is to consider bio-
inspired metaheuristics. These are based on population
groups and designed to improve the search procedures
for optimal solutions in reasonable times, implementing
two search schemes: exploration (diversification of
the population) and exploitation (intensification of the
population) (Abdel-Basset et al., 2018).

Metaheuristics are classified according to the type of
natural phenomenon they are based on. Among the two
most popular classifications are:

- Evolutionary Algorithms (EAs) that emulate the process
of natural evolution and the survival of the fittest of
species (Eiben and Smith, 2003) and can be divided
into four categories:

Evolutionary strategies (Rechenberg, 1989)
Evolutionary programming (Fogel, 2006)
Differential evolution (Storn and Price, 1997)
— Genetic programming (Koza, 1992)

- Swarm Intelligence Algorithms (SIAs) that replicate the
collaborative behavior of certain simple and intelligent
species (Engelbrecht, 2005). Some examples of SIAs
are:

— Particle Swarm Optimization (PSO) (Kennedy and
Eberhart, 1995)

— Artificial Bee Colony Optimization (ABC) (Karaboga
and Basturk, 2007)

— Bacteria Foraging Optimization Algorithm (BFOA)
(Passino, 2002)

— Ant Colony Optimization (ACO) (Dorigo et al., 1996)

Researchers have implemented different
metaheuristics in various studies, providing detailed
results for each decision variable and the solution to the
problem. For example, in the research by Kumar et al.
(2020), the authors suggest implementating various
metaheuristics and constraint handling approaches
and validate their proposals on a set of 57 real-world
constrained optimization problems. Another relevant
study is Barbosa et al. (2010), where the authors focus on
the implementation of various evolutionary algorithms.
The researchers present the test results using the function
set of the CEC 2006 competition. The work mentioned
in Brest et al. (2017) introduces a novel metaheuristic
algorithm, experimenting with it on a set of problems
associated with the reference functions of the CEC 2017.

When initiating research that involves applying novel
methods, metaheuristics, or performance metrics to solve
CNOPs, it becomes necessary to seek related works that
address similar or identical problems the new research
will tackle. This process is essential for validating the
results or comparing the values generated by the method
in execution. However, this search and validation of
results entail a significant delay in the research time,
as, for validation, common tools such as spreadsheets
or programming languages are used to independently
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evaluate the problem with the values generated by the
technique used.

Also, values of interest in the literature must be verified
in some cases, but the lack of an intuitive tool to perform
these checks can cause additional delays. Not having a
tool that allows for efficient evaluation of the feasibility
of values about the constraints and limits of the variables
also contributes to the complexity and slowness of the
research process.

A proposed solution is designing and developing of a
web application hosted on GitHub Pages’. This application
will serve as a solution tester for CNOP values. Diagrams
were created based on the Unified Modeling Language
(UML) to identify the system needs, and the development
was carried out in the JavaScript programming language.

The web application CNOPsolution Tester includes a
set of CNOPs used in the study of Garcia-Ldpez et al.
(2023). Additionally, the CNOPsolution Tester allows the
end-user to input an undefined problem within this set
through a user-friendly graphical interface. As a result,
the application displays the objective function value, the
value of each constraint, and the feasibility of the decision
variable values based on their minimum and maximum
ranges.

2 Design and development

UML diagrams were first designed to develop the
CNOPsolution Tester. This facilitates development by
allowing the identification of system needs. Fig. 2
presents the use case diagram that defines the end user’s

navigation.
Define new
CNOP Enter CNOP data
Select a Enter variable
preloaded CNOP, values

Figure 2: Use case diagram for CNOPsolution Tester.

Evaluate and
display results

User

Prior to developing the web application, a flowchart
was designed to show the process between all parts
of the CNOPsolution Tester. This diagram visualizes
the sequence of steps necessary to evaluate a CNOP
and verify the results, including the decision variables
and constraints. Fig. 3 presents the flowchart of the
CNOPsolution Tester.

1Static website hosting service: https://pages.github.com/
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Figure 3: Flowchart of CNOPsolution Tester.

We implemented Algorithm 1 for CNOPsolution Tester,
which represents the sequence of steps followed to
evaluate a CNOP and verify the results of the entered
solution vector X. The algorithm begins with the selection
of a preloaded benchmark CNOP or the definition of a new
problem. If the user chooses a preloaded problem, the
system allows viewing the problem information, such as
the objective function f(X), the constraints g;(X) or hj(i),
and the variable limits L, < x; < Uy. For a new problem,
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Figure 4: Architecture of CNOPsolution Tester.

the end-user must enter this information and enter the
number of dimensions n of the problem.

Once the problem information is loaded or entered, n
fields are enabled for the user to enter the values of the
decision variables (solution vector X). Finally, the value
of the objective function is calculated, the constraints are
evaluated, and it is verified that the values of the decision
variables comply with the specified limits L, < x; < Uj.

Algorithm 1 General process of CNOPsolution Tester

Start
: Choose: preloaded problem or new problem
: if the option is preloaded problem then
Load f(X), g;(X) or hj(i(') and L;, < x; < U, from the
selected problem
: else
Request the n-dimensional number of the problem
7 Request f(X), g;(X) or hj()?) and L, < x; < Uy, from
the new problem
8: end if
9: Enable n fields to enter the values of the decision
variables X
10: Calculate and display the value f(x), g;(X) or hj(i)
11: Verify and display the variable limits L, < x; < U,
12: End

HWN R

AR

In software development, the architecture of a system
is a fundamental component for defining the structure
and behavior of the system, in addition to the components
that make it up. Fig. 4 shows the high-level structure of
CNOPsolution Tester, including the back-end and front-

end elements.

3 Description and operation of CNOPsolution
Tester

For the development of the CNOPsolution Tester web
application, we used the high-level, interpreted, object-
oriented, and cross-platform programming language
JavaScript for the application’s interactivity, being one
of the most used and versatile client-side programming
languages (Jansen, 2024). JavaScript has a wide ecosystem
of numerous libraries and frameworks. For the front end,
we used the HTML markup language for the structure of
the web application and the CSS style language for the
presentation, using the DashMin template?.

To evaluate the CNOPs, we incorporated a mathematical
expression evaluator to reduce the complexity of the
implementation when evaluating the objective function
and constraints, in this case, mathjs (de Jong and
Mansfield, 2018), a JavaScript framework that allows
performing mathematical operations at runtime from text
strings. We used other frameworks for the development
that facilitate the system’s usability. These are Bootstrap?
for designing the user interface, SweetAlert* for
displaying alert messages, and jQuery® for manipulating

2DashMin — Free Bootstrap 5 Admin Dashboard Template. Available
at: https://themewagon.com/themes/

3https://getbootstrap.com: Bootstrap is a popular front-end
framework for designing responsive and mobile-first websites.

bnttps://sweetalert2.github.io/: SweetAlert is a JavaScript library
for displaying beautiful and customizable alert messages in web
applications.

Shttps://jquery.com: jQuery is a fast, small, and feature-rich
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Figure 5: Modules of the CNOPsolution Tester web application.

the Document Object Model (DOM).

After completing the coding of the CNOPsolution Tester,
the resulting web application is visualized in Fig. 5, where
the User Interface (UI) of the web application is presented.
The Ul consists of several key elements:

- In Panel 1, by selecting the ""Define" option, two fields
allow the user to configure the definition of a new CNOP.
These fields request the number of variables and the
number of constraints. After entering this information,
the fields are automatically generated according to the
provided values.

- In Panel 2, selecting "Benchmark" allows the user to
display only a selection component. This component
allows one to choose among the optimization problems
included in the CNOPsolution Tester.

+ In Panel 3, the decision variable ranges are displayed
or must be inserted, depending on the user’s choice
(either to create a new problem or select one included).

- Panel 4 allows the user to enter the objective function

JavaScript library for simplifying HTML DOM tree traversal and
manipulation, event handling, and animation.

and the value of the best-known solution.

- In Panel 5, the CNOP constraints are configured,
including equality or inequality constraints.

- The decision variable values are entered in Panel 6.
These values will be evaluated in the objective function
and constraints and verified to ensure compliance with
the established minimums and maximums.

- Panels 7 and 8 present results, including the value of
the objective function, the value of the constraints, the
feasibility of each constraint, and the feasibility of the
decision variable values based on their ranges.

Also, the CNOPsolution Tester contains the help
component that accompanies and guides the end user
through each section that must be entered for successful
use.

CNOPsolution Tester is available on GitHub, a version
control platform that facilitates open access to source code.
The repository is publicly accessible at https://github.c
om/garcialopez/CNOPsolution-tester. Additionally, the

application is hosted on GitHub Pages®, a service designed

6Free web hosting service: https://pages.github.con/
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for static websites. To view and use the software, visit
https://garcialopez.github.io/CNOPsolution-tester.

4 Experiments and Discussion

Evaluating the response capacity to user requests is
necessary to deploy the CNOPsolution tester. It is
important to measure the response time to evaluate its
performance for the end-user. Therefore, tests were
conducted using the Loaderio website?, an online service
used for load testing web applications. Loaderio allows
simulating multiple users accessing the web application
at the same time.

For these tests, we configured the connection of 250
clients over 1 minute. At the end of the test, the results
presented in Table 1 were obtained.

Table 1: Performance test results with the Loader tool.

Response times Bandwidth Redirects
Mean: 4 ms Sent: 3.89 MB Valid: 15,000
Minimum: 4 ms Received: 180.67 MB Invalid: 0

Maximum: 86 ms — -

Results of the load test for 250 simultaneous connections on the
CNOPsolution tester.

The results from Table 1 indicate that the web
application correctly managed the load of 250 clients for
1 minute. The response times were fast, with an average
of 4 milliseconds, showing a high response capacity. In
addition, all redirects were valid, which allows us to
understand the application’s traffic management.

Measuring clicks in software is important to
understand user interaction with the UL In CNOPsolution
Tester, when end-users choose to evaluate a preloaded
CNOP, we identified the following formula that describes
the total number of clicks: n + 6, where the first 4 clicks
correspond to the selection of a CNOP, n represents the
number of entered variables, and the last 2 clicks are
for evaluation and result display. To perform a click
simulation in the application, the first three preloaded
problems have been used, the results are presented in
Table Table 2.

Table 2: Number of click results on

CNOPSolution Tester.
Problem n n+6
Tension compression spring 3 9
Pressure Vessel 4 10
Design of a reinforced concrete beam 2 8

Fig. 6 shows the number of clicks on the preloaded
CNOPs. For the Tension compression spring problem, 9
clicks were required to evaluate it, while for the Pressure
Vessel problem, 10 clicks were needed. In contrast, for the
Design of a reinforced concrete beam problem, 8 clicks

7Load testing service: https://loader.io

were needed.

Click results on CNOPsolution Tester

101 . n
n+6

Clicks

~

Pressure Vessel
Problem

Tension compression spring Design of a reinforced concrete beam

Figure 6: Number of clicks on the preloaded CNOPs.

The number of clicks is represented by the sum of the
number of variables plus 6.

Table 3: Number of clicks in custom

problems by the user.
Problem n m p 3n+im+4p+7
go1 3 9 0 82
g02 20 2 0 75
g03 0 o0 1 Al
g04 5 6 0 46
805 L 2 3 39
g06 2 2 0 21
go7 10 8 o 69
go8 2 2 0 21
809 7 4 O A
g10 8 6 o0 55
gi 2 0 1 17
g12 3 1 o0 20
g13 5 0 3 34
gl4 10 o 3 49
g15 3 0 2 24
g16 5 38 0 174
g17 6 0 4 Al
218 9 13 o0 86
819 15 5 0 72
220 24, 6 12 151
g21 7 1 5 52
g22 22 1 19 153
823 9 2 4 58
224 2 2 0 21

When the user selects to enter a custom problem, more
clicks are required to configure the input. We identified
the formula for the total number of clicks as 3n+4m+4p+7
where n is the number of variables, m is the number
of inequality constraints, p is the number of equality
constraints and 7 additional clicks correspond to the initial
setup: defining how many variables and constraints there
will be, entering the best known value, and clicking the
buttons to perform the calculation, view the results, and
export the visualization to PDF. To calculate the number of
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clicks needed to evaluate problems entered by the user, we
have used the problems from the Benchmark published
in (Liang et al., 2006).

The results are presented in Table Table 3 and shows the
number of clicks needed to evaluate the problems entered
by the user. For example, for problem goi, evaluating
the problem required 82 clicks, while for problem go2,
75 clicks were needed. On the other hand, for problem go3,
41 clicks were needed. The mean number of clicks for the
problems entered by the user was 62 clicks, with a mean
of 9 variables, 5 inequality constraints, and 2 equality
constraints. Figure Fig. 7 shows the number of clicks in
the problems entered by the user.

Results of the experiments

a,_
o f—

3

8_

g =

| —

=

=

| —
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|
* —
[ —

2 B

o
—
=

—

Problems

Figure 7: Number Number of clicks in custom CNOPs by
the user.
A click is represented by the sum of the number

of variables, inequality constraints, equality
constraints, plus 7 additional configuration.

In Fig. 7, the blue line identifies the mean number of
clicks for the problems custom by the user. However, we
cannot conclude that the number of clicks is proportional
to the number of variables, inequality constraints, and
equality constraints. For this reason, we have calculated
the Pearson correlation coefficient (r) (Pearson and Galton,
1895) to measure the relationship between the number of
clicks and the number of variables, inequality constraints,
and equality constraints. The formula to calculate the
Pearson correlation coefficient is presented in Eq. (1).

. S =0 - ) 1)
VS~ 02 (S, 01 - 9)2)

where x; and y; are the variables, X and y are the means
of the variables, and n is the number of observations. This
means the Pearson correlation coefficient measures the
linear relationship with values between -1 and 1. A value
of 1 indicates a positive correlation, a value of -1 indicates
a negative correlation, and o indicates no correlation. By
applying Eq. (1) to the data in Table 3, the results presented
in Table 4 are obtained.

The correlation matrix in Table 4 shows the correlation
coefficients between all combinations of pairs of the
variables n, m, p, and clicks. The correlation between
n and clicks is 0.692163, indicating a moderate positive
correlation. The correlation between m and clicks is

109
Table 4: Pearson Correlation Matrix.
- n m p clicks
n 1.000000 0.007476  0.605063  0.692163
m 0.007476  1.000000 -0.186574 0.652895
P 0.605063 -0.186574 1.000000  0.541070
clicks 0.692163 0.652895 0.541070  1.000000

0.652895, indicating a moderate positive correlation. This
demonstrates that as m increases, so does clicks. The
correlation between p and clicks is 0.541070, indicating
a weaker positive correlation. This suggests that although
p and clicks are correlated, the relationship is not as strong
as with n or m. Fig. 8 shows the heat map of the Pearson
correlation matrix to visualize the relationship between
the variables and identify the relationship of the number
of clicks with the variables n, m, and p.

Heat map of the Pearson correlation matrix

00075, 081 069

00075, 1 .19 085

Figure 8: Heat map of the Pearson correlation matrix
between all combinations of pairs of the variables n, m, p,
and clicks.

When using software, the end-user expects the
application to be easy to use or initially provided with a
user guide. In CNOPsolution Tester, we have implemented
auser guide for the end-user. The guide was implemented

with Shepherd?, a JavaScript framework that allows the
creation of step-by-step guides for users. The user guide
is activated when the user presses the Help button on the
user interface. Figure Fig. 9 shows how the user guide.

Another critical aspect is correctly validating the
decision variable values based on their ranges and
constraints. For this, we choose a sample of 20% of the
problems from the Benchmark published in (Liang et al.,
2006). From the previously explored problems of CEC
2006, we have selected the problems go4, go5, g06, and
g13 because they are problems with values close to the
mean of variables previously explored in the click measure.
The authors who designed the mentioned problems also
provided the decision variables’ values and the objective
function’s results.

8Shepherd.js — JavaScript library for guiding users through your app.
Available at: https://shepherdjs.dev/
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Figure 9: User guide in CNOPsolution Tester.
Pressing the Help button activates the user guide.

Following, we present the comparison and validation
of the results provided by the authors and the values
generated by the CNOPsolution Tester.

- Problem go4: The go4 problem is an optimization
problem with 5 decision variables, 6 inequality
constraints, and 0 equality constraints. The decision
variable values provided by the authors are: x =
(78,33, 29.99525602568159, 45, 36.77581290578820].
The objective function provided by the authors
is -30665.5386717834 and the value generated by
CNOPsolution Tester is —30665.538671783317. During
validation, it is demonstrated that the decision variable
values provided by the authors and the objective
function are feasible, meet the problem constraints,
and comply with the decision variable limits (see
Fig. 10).

Objective function result Best Known Value

= -30665.5386717834 & Print
-30665.538671783317

Constraints Variable Ranges
#  Value Feasible #  Range Value Feasible

10 Y
9 O ves x1 [78-102] 78 © Ves

g2 92 O ves
x2 [33-45) 33 Yes

g3 -11.159499691073137 O ves : ! °

g4 -8.840500308926863 ©ves X3 [27-45]  29.9952560256816 ©ves

g5  -4.9999999999999964 O ves x4 [27-45] 45 ©ves

6 -3.552713678800501e-15 Y
9 € O ves X5 [27-45]  36.77581290578821 ©ves

Figure 10: Validation of problem go4 in CNOPsolution
Tester.

- Problem go5: The gos problem is an optimization
problem with 4 decision variables, 2 inequality
constraints, and 3 equality constraints. The decision
variable values provided by the authors are: x =
[679.945148297,1026.066976000, 0.1188763690944,
—0.396233485215]. The objective function provided
by the authors is 5126.4967140071, and the

value generated by the CNOPsolution Tester is
5126.4967140071. The decision variable values
provided by the authors indicate that the objective
function is feasible and meets the constraints and
limits of the decision variables (see Fig. 11).

Best Known Value
5126.4967140071 & Print

Objective function result
f(x) = 5126.4967140071

Constraints Variable Ranges

#  Value Feasible # Range Value Feasible

1 -0.03489014569041138 Yes

B Ove x1  [0-1200] 679.9451482970287 ©Vves
g2 -1.0651098543095887 QVYes

0-1200] 1026.066976000047 QVYes
g3 -2.5102058561106422e-14 Q@ ves

(
g4 -2.5102058561106422e-14 ©ves x3 [0.55-0.55] 0.11887636909441043 @ Yes
g5 -2.5102058561106422e-14 ©ves x4 [0.55-0.55] -0.39623348521517826 @ Yes

Figure 11: Validation of problem go5 in CNOPsolution
Tester.

- Problem go6: The go6 problem is an optimization

problem with 2 decision variables, 2 inequality
constraints, and 0 equality constraints. The decision
variable values provided by the authors are: x =
[14.09500000000000064, 0.8429607892154795668].
The objective function provided by the authors is
-6961.8138755802, and the value generated by the
CNOPsolution Tester is —6961.813875580138. The
decision variable values provided by the authors
indicate that the objective function is feasible and
meets the constraints and limits of the decision
variables (see Fig. 12).

Objective function result
f(x) = -6961.813875580138

Best Known Value
-6961.8138755802 & Print

Constraints Variable Ranges

# Value Feasible #  Range Value Feasible
g1 0 O Yes
g2 0 O VYes

x1 [13-100]  14.095 © Ves

x2  [0-100] 0.8429607892154796 © Yes

Figure 12: Validation of problem go6 in CNOPsolution
Tester.

- Problem g13: The g13 problem is an optimization

problem with 9 decision variables and 13
inequality constraints. The decision variable
values provided by the authors are: x =
[-0.6577761924279, —0.153418773482, 0.323413871675
—0.94625761165, —0.6577761943767, —0.7532134346326,
0.3234138741235, —0.3464629479623, 0.599794662852].
The objective function provided by the authors is -
0.8660254038 and the value generated by CNOPsolution
Tester is —0.8660254037844387. The decision variable
values provided by the authors indicate that the
objective function is feasible and meets the constraints
and limits of the decision variables (see Fig. 13).



Garcia-Lopezet. al |

Revista Brasileira de Computagdo Aplicada (2025), v.17, n.2, pp.103—112 111

Best Known Value
-0.8660254038 & Print

Objective function result
PO 0 ooc0z54037041387
Variable Ranges

Feasible #  Range Value Feasible
¥ [10-10]

x2  [10-10]

©ves x3 [10-10]
Oves x4 [10-10]
X5 10-10]

-10-10]

©ves X7 [10-10]
Oves x8  [10-10]

X9 [0-20] 0.5997946628521754 Oves

Figure 13: Validation of problem g13 in CNOPsolution
Tester.

Based on what has been presented in this section, the
CNOPsolution Tester is an efficient tool for validating
the values of decision variables in terms of their ranges
and constraints. For all tests performed with values
existing in the literature, the results generated by the
CNOPsolution Tester match the values provided by the
authors. Additionally, the web application can manage the
load of multiple users and provides a usage guide for the
end-user.

5 Conclusion

In this work, we have presented CNOPsolution Tester, a
web application that allows researchers and end-users
to validate the values of decision variables based on
their minimums, maximums, and constraints. We
have designed and developed the web application to
facilitate the validation of CNOP results and reduce result
validation time. We have preloaded a set of CNOPs into the
CNOPSolution Tester as if the end-user entered custom
problems. We also host the web application on GitHub
Pages for easy access, and multiple users have tested it to
evaluate its performance. Additionally, we implemented a
user guide for the end user, and it has been validated with
problems from the literature.

We also highlight that, unlike previous works such as
Kumar et al. (2020) and Brest et al. (2017), which focus on
the development and benchmarking of metaheuristics,
CNOPsolution Tester provides a dedicated tool for
validating solution vectors against variable bounds and
constraints. While some researchers may use general-
purpose tools like spreadsheets (e.g., MS Excel) or custom
scripts to manually verify constraints, such approaches
are time-consuming and prone to error. CNOPsolution
Tester addresses this gap by offering a user-friendly,
web-based interface specifically designed for validating
constrained optimization results efficiently.

The results demonstrate that the CNOPsolution Tester
is an efficient tool for validating the values of decision
variables based on their minimums, maximums, and
constraints. It has been tested and evaluated with
250 end-users. Additionally, Pearson’s correlation was
implemented to identify the relationship of the number of

clicks with the problem’s variables and constraints.

6 Future work

In future work, the web application is planned to
be expanded to include more optimization problems
and add functionalities for evaluating multi-objective
optimization problems.
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