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Abstract
Large Language Models (LLMs) for code generation represent a significant advancement in software development byboosting productivity, simplifying repetitive tasks, enabling automated testing, and promoting best practices. Thispaper presents a systematic literature review (SLR) of studies focused on LLMs applied to code generation. The reviewenhances understanding of the capabilities and limitations of these models, outlining both their benefits and challenges.The review protocol included a search on the Google Scholar database using relevant keywords related to LLMs andcode generation. A total of 112 articles were initially retrieved, from which 15 were selected based on relevance andquality criteria. Of these, 8 were analyzed in depth to evaluate various approaches and outcomes, while the remaining 7provided the theoretical foundation for the study. This work contributes to the growing body of knowledge in the fieldand supports future research and applications of LLMs in software engineering.
Keywords: Fuzzing; Natural Language Processing; AI in Software Engineering; Automatic Code Synthesis; TransformerModels.
Resumo
Modelos de Linguagem de Grande Escala (LLMs) aplicados à geração de código representam um avanço significativono desenvolvimento de software, ao aumentar a produtividade, simplificar tarefas repetitivas, possibilitar testesautomatizados e promover boas práticas. Este artigo apresenta uma revisão sistemática da literatura (RSL) sobreestudos focados no uso de LLMs para geração de código. A revisão aprofunda a compreensão das capacidades e limitaçõesdesses modelos, destacando seus benefícios e desafios. O protocolo de revisão incluiu uma busca na base de dadosGoogle Scholar, utilizando palavras-chave relacionadas a LLMs e geração de código. Foram inicialmente encontrados 112artigos, dos quais 15 foram selecionados com base em critérios de relevância e qualidade. Destes, 8 foram analisadosem profundidade para avaliar diferentes abordagens e resultados, enquanto os 7 restantes forneceram a base teórica doestudo. Este trabalho contribui para o avanço do conhecimento na área e apoia futuras pesquisas e aplicações dos LLMsna engenharia de software.
Palavras-Chave: Geração de Código; Processamento de Linguagem Natural; Inteligência Artificial na Engenharia deSoftware; Síntese Automática de Código; Modelos Transformer.

1 Introduction

Large Language Models (LLMs) have emerged as oneof the most revolutionary technologies in the field

of Artificial Intelligence (AI) and Natural LanguageProcessing (NLP). These models, trained on vast amountsof textual data, are capable of understanding, generating,and manipulating human language in highly sophisticated
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ways. According to Brown et al. (2020), LLMs, such asGPT-3, demonstrate an unprecedented ability to performa wide range of linguistic tasks, including translation,summarization, and even source code generation, withoutthe need for task-specific training.The underlying architecture of LLMs is typically basedon transformers, an approach introduced by Vaswani et al.(2017). Transformers use attention mechanisms that allowthe models to effectively handle long-term dependenciesbetween words in a text, which is crucial for contextualunderstanding. This architecture has revolutionizedthe field of NLP, enabling models to scale to billions ofparameters, as discussed by Kaplan et al. (2020). Thisscalability is one of the main factors that allow LLMs toachieve unprecedented levels of performance on standardNLP benchmarks.The application of LLMs goes beyond natural languageprocessing. Models like GPT-3 have been explored in areassuch as source code generation, medical diagnosis, andeven creative content creation. According to Chen et al.(2021), the ability of these models to generate code fromnatural language descriptions opens new possibilitiesfor software development, potentially revolutionizingsoftware engineering practices.However, despite significant advances, LLMs alsopresent challenges and limitations. One of the mainproblems is the tendency of these models to generatefactually incorrect or biased information, as observedby Bender et al. (2021). This raises important ethicalquestions about the use and dissemination of AI-generated information. Additionally, the need forenormous computational resources to train these modelsis a significant barrier for many organizations, limitingthe democratization of access to this technology.LLMs represent a significant advancement in the fieldof NLP and AI, with applications extending to various areasbeyond natural language. However, continuous researchis essential to address the ethical and technical challengesassociated with the use of these models. Future studiesshould focus on improving accuracy, reducing bias, andmaking the technology more accessible.Source code generation through NLP is a promisingarea that seeks to automate significant partsof the software development process. By usingnatural language descriptions, these techniquescan transform textual requirements into functionalcode, speeding up development and reducing humanerrors. Implementations of LLMs, exemplified byGPT-3 and Codex, can interpret and generate codein various programming languages from naturallanguage commands. Besides LLMs, techniques such asProgramming by Demonstration (PBD) and Programmingby Example (PBE) are also used, where user examplesand specifications guide the code generation. Thesemodels have been used in a range of tasks, includingcode generation, functionality explanation, interfacegeneration, test automation, etc.This systematic review aims to enrich the field of studyby analyzing a range of scientific articles that represent thestate of the art on the topic. The intention is to synthesizethe findings and perspectives of various researchers toanswer previously outlined research questions. By using

the results and conclusions of these authors, the reviewseeks to identify patterns, gaps in existing knowledge, andopportunities for future investigations, thus contributingto the advancement of knowledge in the area.The remainder of this article is organized as follows:Section 2 presents an introduction to Large LanguageModels (LLMs), exploring their importance andapplications in the field of artificial intelligence andnatural language processing. Section 3 describes in detailthe Systematic Review Protocol, including the methods,inclusion and exclusion criteria, and the data sourcesused for article selection. Section 4 conducts a detailedanalysis of the selected works, offering a critical review ofthe included studies, discussing the benefits, challenges,and techniques employed by LLMs in code generation.Section 5 synthesizes the main findings and conclusionsdrawn from the analysis of the selected articles. Finally,Section 6 presents the quantitative results of the analysis,while Section 7 provides the final considerations of thiswork, highlighting relevant contributions, practicalimplications, and suggestions for future research in thearea.
2 Large Language Models (LLMs)
The creation of a Large Language Model (LLM) involvesseveral complex stages that rely on recent advances inthe field of artificial intelligence and natural languageprocessing. These models are built using deep neuralnetwork architectures, especially transformers, whichwere introduced by Vaswani et al. (2017). The processcan be divided into several phases, including datacollection, preprocessing, model architecture, training,and evaluation.
2.1 Data Collection

The first step in creating an LLM is collecting a largeamount of textual data. These data are generally obtainedfrom various sources, including books, articles, websites,and other forms of digital text. As mentioned by Brownet al. (2020), the success of an LLM largely depends onthe diversity and quality of the data used. Therefore, it isessential to ensure that the collected data are broad andrepresentative.
2.2 Model Architecture

The model architecture is another fundamental step. Mostmodern LLMs use the transformer architecture, whichrelies on attention mechanisms to handle the long-termdependencies between words in a text. The transformer,introduced by Vaswani et al. (2017), allows the model tofocus on different parts of the text with different weights,which is crucial for contextual understanding and consistsof multiple layers of attention and feed-forward, whereeach layer processes the input in parallel, in contrast to thesequential approaches of previous models, such as LSTMsand GRUs. This approach not only increases trainingefficiency but also improves the model’s ability to capturecomplex relationships within the data. The scalability
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of transformers is one of the main factors that allowLLMs to achieve unprecedented performance levels onstandard NLP benchmarks, enabling applications beyondNLP, including source code generation. According toKaplan et al. (2020), the scalability of transformers allowsthe creation of models with billions of parameters, whichsignificantly increases their capacity for understandingand generating text.
2.3 Model Training

Model training is probably the most resource-intensivephase in terms of computational resources. It involvesfeeding the model with large amounts of data andadjusting its parameters to minimize prediction error.This process can take weeks or even months and requiresthe use of specialized hardware, such as GPUs and TPUs.During training, techniques such as regularization andoptimization are applied to improve model performanceand avoid overfitting, as discussed by Radford et al. (2019).
2.4 Model Evaluation

Model evaluation is essential to ensure that it has learnedcorrectly and can generalize well to new data. This is doneusing test datasets that were not used during training.Metrics such as perplexity and accuracy are commonlyused to measure model performance, as explained byLinzen et al. (2021). Additionally, it is important to conductqualitative evaluations to ensure that the model does notgenerate factually incorrect or biased responses.
Creating an LLM is a multi-phase process thatrequires a combination of high-quality data, advancedpreprocessing techniques, sophisticated modelarchitectures, significant computational resources,and rigorous evaluation methods. These componentswork together to produce models that can perform a widerange of linguistic tasks with high accuracy.

3 Systematic Review Protocol

Source code generation using LLMs has emerged as apromising area at the intersection of artificial intelligenceand software engineering. These models, trained withvast corpora of data, have shown remarkable capabilitiesin generating usable code in real-world scenarios butalso face significant challenges such as syntactic accuracy,type system constraints, and the detection of complexbugs in the generated code. This work aims to conducta Systematic Literature Review on the state of the artregarding source code generation using LLMs, analyzingmethodologies, results, and major contributions ofselected studies in this area.
The methodology for this systematic review wasdivided into several stages to allow a comprehensiveanalysis of the selected articles.

3.1 Review Planning

This section is dedicated to describing the planning of thesystematic literature review, where research questionsthat guided the investigation were defined, inclusion andexclusion criteria were established to delimit the scopeof this study, as well as the data source, which is crucialfor information collection. Additionally, keywords andsynonyms that gave rise to the search string used werepresented to ensure a structured and replicable approachto researching LLMs and their ability to automate andoptimize source code creation.
3.1.1 Research QuestionsThe research questions establish the expected outcomesof the systematic analysis presented in this article. Tostudy the chosen articles and understand the adoptedmethodologies, four specific research questions werestipulated:
• Q1- What are the main benefits of LLMs in source code

generation?• Q2- What are the main challenges and limitations of
LLMs in source code generation?• Q3- How can LLMs be optimized to improve code
generation?• Q4- What are the main tools and techniques of LLMs
for code generation?

3.1.2 Search StringThe goal of the search string in a systematic review is toenable the search in scientific databases to obtain the mostrelevant articles in the study area.
Keywords and Synonyms. From the research questions, itwas possible to extract the main keywords related to thesubject. To obtain better coverage of the articles, somesynonyms were also defined for each keyword.
• Code Generation: Fuzzer, Fuzzing;• Compiler Testing: API Testing, Automated Testing,Library Testing; and• Large Language Model: Generative AI, LLM;

Search String. With the keywords and their synonymsdefined, it was possible to elaborate the following searchstring, which can be used in different databases.
(Compile Testing OR API Testing OR Automated Testing

OR Library Testing) AND (Code Generation
OR Fuzzer OR Fuzzing) AND (Large Language Model

OR Generative AI OR LLM)

3.1.3 Inclusion and Exclusion CriteriaTo enable the selection of studies, a set of inclusion andexclusion criteria was established. These criteria are usedto filter articles, allowing the inclusion of only researchthat strictly aligns with the objectives of the proposedsystematic review and excluding those that do not meetpredefined methodological or thematic standards.
Exclusion Criteria:
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Figure 1: Systematic Review Process Flowchart.
• The study does not use LLMs in the context of codegeneration.• The study does not fit the context of code generation.• The study does not provide empirical data.• The study is not a primary study.• The study is duplicated.

Inclusion Criteria:

• Tools for source code generation.• Techniques for source code generation.• Use of LLMs for source code generation.
3.1.4 Data SourcesGoogle Scholar1 was chosen as the data source due toits broad coverage of academic publications, includingarticles, theses, and technical reports. Its advanced searchtools allow precise results, and free access facilitatesthe availability of information. The constant update ofcontent ensures access to the latest research from differentsources, making it ideal for a comprehensive and up-to-date systematic review on LLMs and code generation.
3.2 Conducting the Review

Having completed the planning, the systematic reviewprocess was initiated, as illustrated in Fig. 1. The flowchartrepresents the sequential and interconnected steps thatwere followed to conduct an analysis of the selectedarticles.The first step, Article Selection, involved searching theGoogle Scholar database using the search string, resultingin 112 articles. In the context of the proposed study, thearticles were categorized according to their relevanceand suitability to the topic of source code generationusing LLMs. From this initial classification, inclusionand exclusion criteria were applied to select those mostappropriate for this research.Table 1 summarizes the distribution of studiesaccording to the mentioned criteria, divided intoexclusion and inclusion:
1https://scholar.google.com

Table 1: Criteria and Selected Studies
Criteria Studies
Exclusion
The study does not use LLMs in the context 36
The study does not fit the context 21
The study does not provide empirical data 23
The study is not a primary study 14
The study is duplicated 3
Inclusion
Tools for code generation 2
Techniques for code generation 4
Use of LLM for code generation 9
Total 112

As observed, a total of 36 studies were excluded for notusing LLMs in the desired context, while 21 studies did notfit the specific context or practical application analyzed.Additionally, 23 studies were discarded for not providingempirical data, being primarily theoretical or conceptual.Of the remaining articles, 14 were not primary studies,meaning they did not present original data but ratherreviews, meta-analyses, or comments on other studies,and 3 other studies were considered duplicates, meaningpublications that were repeated or essentially identical toothers already included in the analysis.After applying the exclusion criteria, the inclusioncriteria were analyzed, where, of the selected articles, 2studies described or analyzed specific tools developed forcode generation, while 4 studies focused on methods andtechniques for generating code randomly, possibly fortesting or experimentation. Finally, 9 studies exploredthe application of LLMs in code generation.Of the 15 selected articles, 8 were used for comparativeanalysis, evaluating approaches and results. Theremaining 7 served as an introductory theoreticalframework, providing an overview of the essentialtheories and concepts of the field.In the second step, Summary and Content Analysis,described in greater detail in Section 4, each selectedarticle was read and summarized. At this stage, theobjectives, methodology, results achieved, and strengthsof each study were highlighted. This detailed analysisallowed for the extraction of key information that
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contributes to a deep understanding of the approachesproposed in the articles. Section 5 synthesizes thesefindings and conclusions, providing a consolidatedoverview. Finally, in the Results Compilation step,described in Section 6, the analysis results were compiledinto a table, allowing visualization of the results presentedby the different studies.
4 Analysis of Selected Works
The articles selected for this systematic review addressthe research questions defined in the review protocol.Each study was chosen based on its relevance andcontribution to understanding the impact of LLMs oncode generation. The main research questions involvethe benefits and challenges of LLMs in code generation,as well as how these models can be optimized to improvetheir effectiveness. The analysis of the selected workshighlights significant advances in the area and points tofuture research directions.
4.1 Fuzz4All

The main highlight of Fuzz4All is its use of LargeLanguage Models (LLMs) to automatically generate andmodify test inputs, enabling fuzzing (random inputgeneration) in various programming languages withdifferent characteristics. It generates automatic promptsfor AI, creating diverse and realistic inputs autonomously,which increases the efficiency and effectiveness oftests. This method addresses significant limitationsof traditional fuzzers, which are generally language orversion-specific and have limited input diversity. Thestudy by Gao et al. (2023) presents this innovativeapproach to fuzzing, an automated technique used toidentify flaws and vulnerabilities in software systems.
• Universal Fuzzing: Fuzz4All uses LLMs as engines forgenerating and mutating inputs, enabling universalfuzzing in multiple programming languages. NineSystems Under Test (SUT) using six different languages(C, C++, Go, SMT2, Java, and Python) were evaluated.In all cases, it outperformed language-specific fuzzersin terms of code coverage.
• Autoprompting for Fuzzing: Autoprompting is atechnique that creates prompts for LLMs specificallysuited for fuzzing, distilling user inputs into effectiveprompts. This automates the creation of diverse andrealistic inputs, increasing efficiency and effectivenessin random code generation.
• LLM-powered Fuzzing Loop: An LLM-poweredfuzzing loop is introduced that iteratively updatesprompts to create new fuzzing inputs, combiningpreviously generated inputs with natural languageinstructions for mutations. The approach resulted inthe discovery of 98 bugs in widely used systems suchas GCC, Clang, Z3, CVC5, OpenJDK, and the quantumcomputing platform Qiskit, with 64 bugs confirmed aspreviously unknown.

4.1.1 Challenges of Traditional FuzzersTraditional fuzzers face three main challenges:
• Coupling with the target system and language: Theyare designed for specific languages, making it difficultto reuse in other languages or versions.• Lack of support for evolution: They cannot keep upwith the evolution of systems and languages, losingeffectiveness in new versions.• Limited generation capacity: Both generation-basedand mutation-based fuzzers struggle to cover the entireinput space of a language.

Extensive evaluation of Fuzz4All showed that it achievessuperior code coverage compared to language-specificfuzzers, with an average improvement of 36.8%.Additionally, it supports directed fuzzing for specificfeatures, proving highly effective for testing new featuresor components of a system. Case studies showed thatFuzz4All can generate complex inputs that previousmethods could not, revealing important bugs that wereconfirmed and fixed by developers.Fuzz4All represents a significant advancement infuzzing, combining the flexibility and power of LLMswith innovative input generation and mutation techniques.Its ability to apply fuzzing universally and evolve withthe tested systems makes it a valuable tool for detectingvulnerabilities in a wide range of software, ensuringgreater security and reliability in software development.
4.2 VeriGen

This study, conducted by Thakur et al. (2023), involvesfine-tuning pre-existing LLMs on Verilog datasetscompiled from GitHub and Verilog textbooks. The goalis to assess the functional correctness of the generatedcode using a specially designed test set, presenting a setof custom problems and testbenches. The study usedBigQuery to collect public Verilog repositories from GitHub,resulting in a training corpus of approximately 50,000files with a total size of 300 MB after filtering. SeventyVerilog-based textbooks were downloaded from an onlinelibrary, and text was extracted using OCR. After cleaning,the combined corpus of code and text totaled 400 MB. Fivepre-trained models were fine-tuned, ranging from 345Mto 16B parameters, including MegatronLM, CodeGen, andcommercial models like GPT-3.5-turbo. Fine-tuningthe models involved multiple GPUs due to high memorydemand. Fine-tuning was performed for a single epochusing HPC clusters. The evaluation included two sets ofproblems:
• Set I: 17 Verilog problems of varying complexity,with testbenches developed to validate functionalcorrectness.• Set II: 181 HDLBits problems, testing a wide range ofhardware design challenges and Verilog syntax.
4.2.1 Evidence• Model Performance: The fine-tuned CodeGen-16Bmodel outperformed GPT-3.5-turbo, demonstratinga 1.1% improvement in overall performance and a
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41% improvement in syntactically correct Verilogcode generation. Fine-tuned CodeGen-16B showedcompetitive performance, especially on intermediateand advanced complexity problems.
• Impact of Training Data: The study revealedthat incorporating content from Verilog textbookssignificantly improved the quality of the generatedcode. The model trained on both GitHub code andtextbook content (CodeGen-2B-FT++) outperformedother models in all problem difficulties and promptdescription levels.
• Variation in Code Quality: The quality of thegenerated code strongly depends on the promptdetails. Detailed prompts resulted in higher qualitycode. The introduction of diverse data, such aseducational resources, led to an improvement in modelperformance.
• Emerging LLM Performance: GPT-3.5-turbo and GPT-4 showed notable performance, especially on advancedproblems, but faced challenges in specific tasks. Theefficiency and capability of generating functional codeof fine-tuned models like CodeGen-16B-FT were noted.
• Potential of Fine-Tuned LLMs in Hardware Design

Automation: The results demonstrate that smallermodels, fine-tuned for Verilog tasks, can competewith larger commercial models in terms of efficiencyand output quality. Future improvements may involveincorporating domain-specific data and exploringhybrid approaches that combine the strengths ofdifferent LLMs.
4.3 AlphaCode

This system uses transformer-based neural networksto solve competitive programming problems, markinga significant advancement in AI’s ability to generatefunctional code for complex problems. The study by Li et al.(2022) discusses the creation and evaluation of AlphaCode,a system developed by DeepMind for competitive codegeneration.Automatic generation of programs from high-leveldescriptions is a challenging task in computer science.Systems capable of generating functional code haveimportant practical applications, such as increasingprogrammer productivity and facilitating programmingeducation. Traditionally, code generation has been limitedto specific domains or small code snippets. However,AlphaCode represents a significant breakthrough bycompeting in complex programming problems.AlphaCode was trained on a vast dataset of humancode from GitHub, using an encoder-decoder transformermodel. The system generates millions of code samplesfor each problem, filtering and clustering these samplesto submit up to 10 best solutions. This processincludes several enhancement techniques, such as multi-query attention, masked language modeling, tempering,conditioning, and demonstration learning.To evaluate AlphaCode’s performance, researchers

used simulated competitions on the Codeforces platform.AlphaCode achieved an average ranking within the top54.3% of human participants, an unprecedented featfor an AI system in programming competitions. Thisperformance corresponds to a beginner programmer witha few months to one year of experience.AlphaCode was able to solve 29.6% of the problems inthe CodeContests test set with up to 10 submissions perproblem. The system’s scalability was a key finding, whereincreasing the number of generated samples led to a log-linear increase in problem-solving rates. The evaluationshowed that the system could generate novel solutions forpreviously unseen problems, demonstrating significantunderstanding and reasoning in problem-solving.
4.3.1 Notable Features• Scalability: The ability to generate a large number ofsamples and filter the best solutions was essential toAlphaCode’s success.
• Reasoning Capability: AlphaCode demonstratedsignificant reasoning skills in solving complexproblems, without simply memorizing training.
• Practical Applicability: The techniques developed forAlphaCode can be applied to improve programmerproductivity and democratize access to programming.
• Advancement in AI Research: The system representsa significant advancement in the field of AI-generated code, opening doors for future research andapplications.

AlphaCode exemplifies the potential of transformersto solve complex problems through code generation.The system’s success in competitive programmingcompetitions highlights its reasoning capabilities andthe importance of scalability and effective filtering ofgenerated samples. This work not only demonstratesthe state of the art in code generation but also sets a newbenchmark for future research in AI and programming.AlphaCode is a powerful proof of concept for how AIsystems can be trained to solve complex programmingproblems competitively. The breakthrough representedby AlphaCode has significant implications for the future ofAI-assisted programming, both in terms of productivityand accessibility.
4.4 CODET

Generating code solutions for a programming problem canbe enhanced with pre-trained language models like Codex,which produce multiple diverse samples. A significantchallenge is selecting the most appropriate solution amongthe generated samples. Solutions like this are importantas manually creating test cases to evaluate code qualityand correctness is costly and time-consuming. The studyby Nijkamp et al. (2022) presents CODET, an innovativemethod that uses the same pre-trained language modelsto automatically generate test cases, reducing humaneffort and increasing test coverage. CODET executes thecode samples with the generated test cases and performs
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a dual execution agreement, considering the consistencyof results with the generated test cases and other codesamples.
• Test Case Generation: The pre-trained model isused to generate a large number of test cases for eachprogramming problem from an elaborated prompt.These test cases are then used to quickly verify thecorrectness of any generated solution.
• Dual Execution Agreement: Inspired by the RANSACalgorithm to select the best code solution, each of themis executed on each generated test case, forming groupsof solutions that pass the same test cases. These groupsare ranked based on the number of tests passed and thefunctional consistency of the solutions.

Experiments were conducted on four benchmarks:HumanEval, MBPP, APPS, and CodeContests, usingfive different pre-trained models. The results showthat CODET can significantly improve performance inselecting code solutions compared to previous methods.For example, CODET increased the pass@1 metricin HumanEval to 65.8%, representing an absoluteimprovement of 18.8% over the code-davinci-002 model.
4.4.1 Notable Features• Reduction of Human Effort: Automatic test casegeneration significantly reduces the need for manualcreation of these cases.
• Performance Improvement: The dual executionagreement approach demonstrated consistent andsignificant improvements in selecting code solutions.
• Versatility: The method was tested and shown to beeffective in multiple benchmarks and with differentpre-trained language models.

CODET leverages the inherent power of pre-trainedlanguage models to generate both code solutions andtest cases, facilitating the selection of the best solutionthrough an efficient and automated method. Futurechallenges related to generating executable code and theadditional computational cost for generating test caseswill be explored to further improve CODET.
4.5 SynCode

Code generation by LLMs has shown remarkablecapabilities but faces significant challenges, especiallywith syntactic errors. This problem is exacerbated insmaller models and underrepresented programminglanguages in training data. The presence of syntacticerrors in the generated code can hinder its practicalintegration, causing functionality issues and debuggingchallenges, as discussed by Ugare et al. (2024).SynCode is a framework that uses a programminglanguage’s grammar to create an efficient lookup table,called DFA mask store. This table is built based on thelanguage’s grammar terminals, allowing SynCode to keeponly syntactically valid tokens and reject invalid onesduring code generation.

• Offline Construction: The DFA mask store table is builtoffline from the regular expressions representing thelanguage’s grammar terminals.
• Integration with LLMs: SynCode can be combinedwith any existing LLM decoding algorithm, such asgreedy search, beam search, or sampling.
• Error Reduction: In experiments with simplifiedcontext-free grammars (CFGs) for Python and Go,SynCode showed a significant reduction of 96.07% insyntax errors when combined with state-of-the-artLLMs.
• Incremental Parsing: SynCode uses an incrementalparser that processes the partial code generatedby the LLM, producing acceptance sequences andremainders. A “remainder” refers to the remainingcode segment after partial parsing by the parser. WhenSynCode processes partial code, it accepts as much aspossible of this code as syntactically correct, leavingthe unaccepted part as a “remainder”. These sequencesare then used to generate token masks, eliminatingsyntactically invalid tokens. This allows SynCode togradually correct syntax errors as the code is generated,ensuring higher accuracy and quality of the final codeproduced.
• Evaluation: Experiments were conducted with LLMssuch as CodeGen, WizardCoder, and Llama, evaluatedon challenging datasets like HumanEval and MBXP.The evaluation considered both LALR(1) and LR(1) asbase parsers, showing that LR(1) parsers are moreefficient in generating acceptance sequences.
• Framework for Syntactic Decoding: SynCode isa general and efficient framework for generatingsyntactically correct code.
• SynCode Tool: Implementation of SynCode that can beintegrated with any language defined by a CFG.
• Extensive Evaluation: Performance of SynCodeevaluated in code generation for Python and Go.
• Findings: SynCode demonstrated a significantreduction in syntax and indentation errors:

Python: Reduction of syntax and indentation errors byover 90% compared to standard generation.
Go: Reduction of syntax errors by over90%, highlighting SynCode’s effectiveness inunderrepresented programming languages.

4.5.1 Notable Features

• Efficiency: Offline construction of the DFA mask storetable, allowing fast and efficient decoding.• Generality: Applicable to any language defined by CFG.• Error Reduction: Substantial reduction in syntaxand indentation errors, improving the accuracy ofgenerated code.
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SynCode represents a significant advancement in LLMcode generation, providing an efficient way to ensuresyntactic correctness. This framework can be particularlyuseful for underrepresented programming languages inmodel training data, improving the quality of generatedcode and facilitating its practical integration.
4.6 Tricky Bugs

Detecting bugs in software systems is a growing challengein software engineering, especially with the prevalence ofautomatically generated code by generative AI. The studypresented by Liu et al. (2024) addresses the problem ofidentifying tricky bugs in programs that pass existingtests but may still contain difficult-to-detect defects.
4.6.1 Relevant Contributionsi. Automated Input Diversity (AID):
• Combination of LLMs and Differential Testing: AIDcombines LLMs with differential testing to generatetest inputs that reveal failures and oracles forplausibly correct programs.• Generation of Program Variants: AID generatesvariants of the program under test to capturedifferent behaviors.• Filtering and Validation: Existing test cases are usedto filter program variants and ensure the generationof accurate test oracles.

ii. Extensive Evaluation:
• Datasets: Evaluation conducted on two large datasetswith tricky bugs: TrickyBugs and EvalPlus.• Better Performance: AID outperforms state-of-the-art methods, such as Differential Prompting Plus(DPP), in recall, precision, and F1-score.

4.6.2 Process andResultThe AID approach follows three main steps:
i. Generation of Program Variants: LLMs are used togenerate variants of the program based on the program’sspecifications. This involves creating different versionsof the program that theoretically should meet the samespecifications, allowing the testing of various possiblescenarios.ii. Generation of Test Inputs: Test inputs are generatedfrom specific generators to ensure the diversity andlegality of the inputs. This ensures that the inputs usedin the tests are varied enough to cover different use caseswhile remaining within the acceptable limits defined bythe program’s specifications.iii. Differential Testing: Differential tests are conductedto identify inconsistencies in the outputs of the variants.A majority voting principle is used to determine theaccuracy of the results, where the majority of similarresults are considered correct, helping to detect defectsin the program variants.
Preliminary studies indicated that the accuracy of testcases generated directly by ChatGPT was low, around 6.3%.Most errors (92.2%) were due to incorrect test oracles,

highlighting the need to combine LLMs with more robusttesting methods to improve accuracy.Compared to conventional methods, the AID approachdemonstrated significant improvements, especially inprograms with complex bugs. AID achieved an F1-scoreof 85.09% on some datasets, substantially outperformingbaseline tests.Using diversity in differential tests, rather thanfollowing the majority voting principle, proved effective indetecting defects. This implies that variety in test inputscan reveal more flaws than simple vote counting.
• Combination of Techniques: Integrating LLMs withdifferential testing improves the accuracy of test oraclegeneration, making the process more efficient.
• Comprehensive Evaluation: Using large datasets andcomparison with multiple baselines validate AID’seffectiveness, demonstrating its robustness in variousscenarios.
• Comprehensive Evaluation: Using large datasets andcomparison with multiple baselines validate AID’seffectiveness, demonstrating its robustness in variousscenarios.
• Superior Results: AID demonstrates significantimprovements in all evaluated performance metrics,standing out as a more effective approach to detectingcomplex bugs.

The article presents an innovative approach thatcombines the natural language understanding power ofLLMs with the differential testing technique to enhancebug detection in software. AID proved superior to existingmethods, offering a more robust and accurate solution foridentifying defects in plausibly correct programs.
4.7 CODE4STRUCT

The research presented by Wang et al. (2022) addressesthe CODE4STRUCT model, an innovative proposal forevent argument extraction (EAE) using code generation.This model, developed by researchers at the Universityof Illinois, Urbana-Champaign, explores the capabilityof LLMs trained with a combination of text and code totranslate natural language into code structures.The central goal of the study is to investigate howtranslating semantic structures into code can improvestructured prediction tasks in NLP. Specifically, the studyfocuses on event argument extraction, formulating EAEas a code generation problem, which allows the use ofprogramming language features such as inheritance andtype annotations to introduce external knowledge or addconstraints.The CODE4STRUCT approach involves converting eventtype ontologies into Python class definitions. Usingsufficient contextual examples, EAE is treated as a codegeneration problem, where the model is trained toinstantiate events based on provided sentences. Thismethodology allows the model to use programminglanguage features to impose argument constraints and
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leverage event hierarchies.
• Comparison with Supervised Models: In thereferenced article, the CODE4STRUCT studydemonstrated that even using only 20 trainingexamples per event type, its performance is comparableto supervised models trained with 4,202 instances.This method outperformed the current state of the artin few-shot learning datasets, achieving an absolutegain of 29.5% in the F1-score metric. This approachhighlighted the efficiency and robustness of the model,even under limited training conditions.
• Generalization and Data Efficiency: The modeldemonstrated significant data efficiency, achievingperformance comparable to fully supervised methodswith far fewer annotated examples. Additionally, theevent hierarchy allows resource-less event types toleverage training examples from related event types,improving prediction for event types with no trainingdata.
• Advantages of Code Generation: Formulating EAEas a code generation problem proved advantageousover text-based prompt variants. Using features suchas type annotations and default argument valuesnaturally imposes argument constraints for outputstructures.
• Performance in Different LLMs: Experiments withdifferent LLMs showed that the CODE4STRUCT modelis robust and maintains superior performance invarious configurations, especially when sufficientcontextual examples are provided.
4.7.1 Positive Aspectsi. Innovation in Methodology:
• Using code generation for event argument extractionis an innovative approach that leverages advances inLLMs trained on code and text corpora.

ii. Data Efficiency:
• The model achieves superior results using a minimalamount of training data, standing out for itsefficiency.

iii. Flexibility and Applicability:
• The ability to use event hierarchies and examplesfrom related event types significantly expands themodel’s applicability, especially in low-resourcescenarios.

The study demonstrates that the CODE4STRUCT approachis effective for structured prediction tasks in NLP, offeringa promising alternative to traditional text-based methods.With robust results and data efficiency, this methodologyhas the potential to be applied in a variety of complexstructured prediction tasks in the future. The success ofCODE4STRUCT in outperforming supervised models withless data highlights its relevance and potential impact in

the field of NLP.
4.8 Expectation vs. Experience

The study presented by Vaithilingam et al. (2022) exploresthe usability of GitHub Copilot, a code generation tool thatuses LLMs. Conducted by Priyan Vaithilingam, TianyiZhang, and Elena L. Glassman, the work investigateshow programmers interact with Copilot compared toIntelliSense, the standard code completion tool in VisualStudio Code.The research involved a study with 24 participants,including undergraduate, master’s, Ph.D. students, and asoftware engineer. Participants completed programmingtasks in Python with and without the aid of Copilot.The tasks varied in difficulty (easy, medium, anddifficult). Data collection included screen recordings,audio recordings, and responses to pre and post-taskquestionnaires.The results showed that:
• Copilot users completed fewer tasks than IntelliSenseusers.• Although Copilot did not significantly reduce taskcompletion time, it was preferred by most participants(19 out of 24).• Participants found Copilot more useful thanIntelliSense (6.16 vs. 4.45 on a scale of 1 to 7).

Copilot was seen as a good starting point forprogramming tasks, especially useful for tasks thatusers did not know how to start. However, participantsstruggled to understand and modify the code generatedby Copilot, leading to a perception of loss of control andconcerns about code reliability.Participants used Copilot as a substitute for internetsearches, although this led to overconfidence in thegenerated code, resulting in less validation and more timespent debugging incorrect code.When encountering errors in the generated code,participants generally tried to fix the code but often foundit difficult due to a lack of understanding. Some preferredto rewrite the code completely rather than try to repair it.Three main obstacles were identified:
i. Difficulty in understanding and evaluating thecorrectness of the generated code.ii. Underestimation of the effort needed to fix bugs.iii. Ambiguity and sensitivity when using comments asspecifications for Copilot.

4.8.1 Critical AnalysisParticipants preferred Copilot for daily tasks, despite notsignificantly reducing task completion time. Suggestionsfor improvements include:
• Providing multiple code suggestions for comparison.• Integrating online searches to validate the generatedcode.• Providing explanations and comments in the generatedcode to facilitate understanding and debugging.

The study reveals that while Copilot offers a useful starting
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point for programming tasks, understanding and fixingthe generated code remain significant challenges. Futureimprovements should focus on support for validation, taskdecomposition, and integration with online resources toincrease confidence and effectiveness of programmersusing LLM-based code generation tools.
5 Synthesis of Selected Works
This section presents a synthesis of the main findings,methodologies, and conclusions drawn from the analysisof each scientific article selected for this systematic review.Gao et al. (2023) introduceed Fuzz4All, a method thatuses LLMs to generate and mutate inputs in fuzzing,applicable to multiple programming languages. Evaluatedin nine systems under test, Fuzz4All outperformedlanguage-specific fuzzers in terms of code coverage. Theautoprompting technique and the iterative fuzzing loopallowed the discovery of numerous bugs, highlighting themethod’s effectiveness.Thakur et al. (2023) conducted a study with LLMsfine-tuned on Verilog data, focusing on the functionalcorrectness of the generated code. The study usedpublic repositories from GitHub and textbooks. Theevaluation included problems of varying complexity anddemonstrated that models like CodeGen-16B, when fine-tuned, can outperform commercial models like GPT-3.5-turbo, especially in generating syntactically correctVerilog code.Li et al. (2022) discussed the development of AlphaCode,a system that uses transformers to solve competitiveprogramming problems. Trained with a vast datasetof human code from GitHub, AlphaCode demonstratedthe ability to compete in programming competitions,achieving results comparable to human programmers.The system stood out for its scalability and reasoningskills, showing a significant advancement in codegeneration.Nijkamp et al. (2022) presented CODET, which usespre-trained LLMs to automatically generate test casesand select code solutions. Inspired by the RANSACalgorithm, the method showed significant improvementsin selecting code solutions, reducing human effortand increasing test coverage. Evaluations in variousbenchmarks demonstrated CODET’s effectiveness inimproving performance in solution selection.Ugare et al. (2024) introduced SynCode, a frameworkthat uses programming language grammar to ensuresyntactic correctness during code generation. Evaluatedin Python and Go, SynCode showed a significant reductionin syntax and indentation errors. The offline constructionof the DFA mask store table allows for fast and efficientdecoding, standing out as a general method applicable toany language defined by context-free grammar.Liu et al. (2024) addresses detecting tricky bugs inplausibly correct programs through AID. CombiningLLMs and differential testing, AID generated programvariants and test inputs, demonstrating superiorityover traditional methods. The evaluation showedsignificant improvements in recall, precision, and F1-score, highlighting the approach’s effectiveness in

detecting complex bugs.The study by Wang et al. (2022) presents theCODE4STRUCT model, which uses LLMs trainedwith text and code for event argument extraction(EAE). The methodology involves converting eventtype ontologies into Python class definitions, treatingEAE as a code generation problem. Key findingsindicate that CODE4STRUCT, even with few trainingexamples, outperforms traditional supervised modelsand demonstrates data efficiency, using programmingfeatures to impose constraints and improve eventprediction.Vaithilingam et al. (2022) explores the usability ofGitHub Copilot compared to IntelliSense. The studyinvolved 24 participants performing programming tasksin Python with and without Copilot. The resultsindicated that Copilot was preferred by most participants,despite not significantly reducing task completion time.The main challenges include difficulty understandingand evaluating the correctness of the generated code,underestimating the effort needed to fix bugs.The reviewed studies demonstrate the growingversatility and impact of large language models (LLMs)in code generation, testing, and debugging acrossdiverse programming contexts. From enhancingfuzzing processes and detecting complex bugs togenerating syntactically correct domain-specific codeand competitive programming solutions, the findingshighlight LLMs’ capacity to improve coverage, accuracy,and efficiency in software development tasks. Approachessuch as grammar-guided generation, fine-tuning onspecialized datasets, and iterative test-driven loopsusually outperform traditional or language-specificmethods, while also reducing human intervention.However, usability studies reveal persistent challengesin code comprehension and error assessment, indicatingthat while LLMs are powerful accelerators, their effectiveintegration requires complementary human oversightand robust evaluation mechanisms.
6 Results: Answers to Research Questions
Based on the detailed analysis of the selected articles, theresults were described according to the previously definedresearch questions.
• Q1- What are the main benefits of LLMs in source codegeneration?

– LLMs increase efficiency and speed in softwaredevelopment, simplify repetitive processes, andpromote the adoption of best practices. Modelslike GPT-3 can understand and generate codefrom natural language descriptions, automatingsignificant parts of the programming process.This reduces human errors and facilitates themaintenance of consistent and high-quality code.
• Q2 - What are the main challenges and limitations ofLLMs in source code generation?

– LLMs face challenges such as generating incorrector biased information and the need for enormous
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computational resources for training. Additionally,problems with syntactic accuracy, type systemconstraints, and detecting complex bugs arecommon. Studies highlight ethical and practicalissues that need to be addressed to improve the useof these models.
• Q3 - How can LLMs be optimized to improve sourcecode generation?

– Incorporating specialized content, such as textbooksand high-quality code repositories, can improve theaccuracy and functionality of the generated code.Techniques such as automatic test case generation,seen in the CODET method, help validate and selectthe best code solutions. Models like SynCode, whichuse grammar to ensure syntactic correctness, arealso promising. Continuous research should focuson improving data efficiency, generation accuracy,and the ability to adapt to different programmingdomains.
• Q4 - What are the main tools and techniques of LLMsfor source code generation?

– The LLMs for source code generation mainly use thetransformer architecture. Among the most notabletools are GitHub Copilot, which uses the Codexmodel to suggest and complete code snippets asdevelopers type, and AlphaCode, which can solvecomplex programming problems and competewith human programmers. Innovative techniquesinclude CODET, which automatically generatestest cases and selects the best code solutions,inspired by the RANSAC algorithm, and SynCode,which ensures syntactic correctness duringcode generation using programming languagegrammar. Another significant tool is VeriGen,fine-tuned specifically for Verilog code generation,demonstrating high accuracy and functionality,outperforming commercial models. These tools andtechniques, based on the transformer architecture,represent significant advances in the efficiency andfunctionality of software development, highlightingthe transformative potential of LLMs in theprogramming field.
6.1 Quantitative Results

The Table 2 is a detailed table providing a comprehensiveanalysis of eight studies on the application of LargeLanguage Models (LLMs) in code generation. Each rowrepresents a study, detailing the study name, authors,objective, methodology, dataset used, and main results.The Fuzz4All study by Gao et al. (2023) uses LLMs forinput generation and mutation in fuzzing, applying themethod to multiple programming languages. Data werecollected from GitHub and Verilog textbooks, resulting ina 36.8% improved code coverage and the discovery of 98bugs.The VeriGen study by Thakur et al. (2023) fine-tunedLLMs with Verilog data from GitHub and textbooks,improving overall performance by 1.1% and generating

correct code by 41%.The AlphaCode study by Li et al. (2022) usestransformers to solve competitive programmingproblems, training with GitHub data. This study achieveda top 54.3 ranking in Codeforces competitions, solving29.6% of the problems.The CODET study by Nijkamp et al. (2022)automatically generates test cases and uses the RANSACalgorithm to select code solutions, improving the pass@1metric to 65.8%, an absolute increase of 18.8%.The SynCode study by Ugare et al. (2024) ensuressyntactic correctness during code generation usingPython and Go grammars. This resulted in a 96.07%reduction in syntax errors.The Tricky Bugs study by Liu et al. (2024) combinesLLMs and differential testing to detect bugs, evaluating onTrickyBugs and EvalPlus datasets, achieving an F1-scoreof 85.09%.The CODE4STRUCT study by Wang et al. (2022)focuses on argument extraction from events using codegeneration, converting event type ontologies into Pythonclass definitions, surpassing the state of the art by 29.5%in F1-score with limited data.Finally, Expectation vs. Experience by Vaithilingamet al. (2022) investigates the usability of GitHub Copilot,comparing it with Intellisense, revealing that althoughCopilot was preferred by most participants, it didnot significantly reduce task completion time. Thisstudy involved participants of varying experience levelsperforming programming tasks in Python.This detailed analysis highlights significant advancesin the use of LLMs for code generation, demonstratingimprovements in accuracy, efficiency, and error detectioncapability, despite challenges such as fixing syntax errorsand the need for intensive computational resources.
7 Conclusion
This systematic review examined the application ofLarge Language Models (LLMs) in code generation,highlighting their potential, benefits, challenges, andoptimization methods. The analysis of eight selectedstudies demonstrated significant advances in thearea, contributing to understanding how LLMs cantransform software development practices. By evaluatingdifferent approaches and results, the review providesa comprehensive overview of the current state of theart and identifies opportunities for future research andinnovation.The benefits of LLMs in code generation are evidentin their ability to increase efficiency, automate repetitivetasks, and promote the adoption of best practices.However, challenges such as syntactic accuracy, typesystem constraints, and bug detection require continuousresearch and development to improve the reliability andfunctionality of the generated code.Optimizing LLMs involves incorporating high-quality,diverse data and developing innovative techniques suchas automatic test case generation and syntactic errorcorrection. Tools like Fuzz4All, VeriGen, AlphaCode,CODET, SynCode, Tricky Bugs, CODE4STRUCT, and
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Table 2: Analysis of the eight studies on the application of Large Language Models (LLMs) in code generation.
Study Authors Objective Methodology Database and benchmarks Main Results

Fuzz4All Gao et al. (2023) Use of LLMs for input generation andmutation in fuzzing Applying fuzzing in multipleprogramming languages GitHub, Verilogtextbooks Improved code coverageby 36.8%; discovered 98 bugs
VeriGen Thakur et al. (2023) Fine-tuning LLMs onVerilog data Collecting Verilog data andfine-tuning LLM models GitHub,Verilog textbooks

CodeGen-16B improved 1.1%in overall performance and 41%in correct code generation
AlphaCode Li et al. (2022) Using transformers to solvecompetitive programming problems Training with GitHub humancode dataset GitHub Top 54.3% in Codeforcescompetitions; solved 29.6%of problems
CODET Nijkamp et al. (2022) Automatic generation of testcases and selection of codesolutions

Generating test cases andusing RANSAC algorithm
Various benchmarks:HumanEval, MBPP,APPS, CodeContests

Improved pass@1 to 65.8%,absolute increase of 18.8%
SynCode Ugare et al. (2024) Ensuring syntactic correctnessduring code generation Building DFA mask storetable and using grammar GitHub, Pythonand Go datasets Reduction of syntax errorsby 96.07%
Tricky Bugs Liu et al. (2024) Detection of tricky bugs inplausibly correct programs Combination of LLMs anddifferential testing TrickyBugsEvalPlus

Improved recall, precision,and F1-score; F1-scoreof 85.09%
CODE4STRUCT Wang et al. (2022) Event argument extractionusing code generation Using Python class definitionsfor events Event ontologies,contextual examples

29.5% higher F1-scorecompared to the stateof the art with limited data
Expectation vs. Experience Vaithilingam et al. (2022) Exploring the usability ofGitHub Copilot

Study with 24 participantsperforming tasks withand without Copilot
Participants ofvarying experience levels

Preferred by 19 participants;perceived as more usefulthan IntelliSense

GitHub Copilot demonstrate the transformative potentialof LLMs in software development, offering practicalsolutions and new approaches to code generation.Future research should focus on addressing the ethicaland technical challenges associated with LLMs, improvingtheir accessibility, and expanding their applicationsin various programming domains. By advancing theunderstanding and capabilities of LLMs, the field ofsoftware engineering can continue to evolve, benefitingfrom the innovative potential of these powerful models.
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