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Abstract

Large Language Models (LLMs) for code generation represent a significant advancement in software development by
boosting productivity, simplifying repetitive tasks, enabling automated testing, and promoting best practices. This
paper presents a systematic literature review (SLR) of studies focused on LLMs applied to code generation. The review
enhances understanding of the capabilities and limitations of these models, outlining both their benefits and challenges.
The review protocol included a search on the Google Scholar database using relevant keywords related to LLMs and
code generation. A total of 112 articles were initially retrieved, from which 15 were selected based on relevance and
quality criteria. Of these, 8 were analyzed in depth to evaluate various approaches and outcomes, while the remaining 7
provided the theoretical foundation for the study. This work contributes to the growing body of knowledge in the field
and supports future research and applications of LLMs in software engineering.

Keywords: Fuzzing; Natural Language Processing; Al in Software Engineering; Automatic Code Synthesis; Transformer
Models.

Resumo

Modelos de Linguagem de Grande Escala (LLMs) aplicados a geracdo de c6digo representam um avango significativo
no desenvolvimento de software, ao aumentar a produtividade, simplificar tarefas repetitivas, possibilitar testes
automatizados e promover boas praticas. Este artigo apresenta uma revisdo sistematica da literatura (RSL) sobre
estudos focados no uso de LLMs para geracao de codigo. A revisao aprofunda a compreensao das capacidades e limitacoes
desses modelos, destacando seus beneficios e desafios. O protocolo de revisdo incluiu uma busca na base de dados
Google Scholar, utilizando palavras-chave relacionadas a LLMs e geragdo de cddigo. Foram inicialmente encontrados 112
artigos, dos quais 15 foram selecionados com base em critérios de relevancia e qualidade. Destes, 8 foram analisados
em profundidade para avaliar diferentes abordagens e resultados, enquanto os 7 restantes forneceram a base tedrica do
estudo. Este trabalho contribui para o avango do conhecimento na area e apoia futuras pesquisas e aplicacdes dos LLMs
na engenharia de software.

Palavras-Chave: Geragao de Cddigo; Processamento de Linguagem Natural; Inteligéncia Artificial na Engenharia de
Software; Sintese Automatica de Codigo; Modelos Transformer.

1 Introduction of Artificial Intelligence (AI) and Natural Language
Processing (NLP). These models, trained on vast amounts
of textual data, are capable of understanding, generating,
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ways. According to Brown et al. (2020), LLMs, such as
GPT-3, demonstrate an unprecedented ability to perform
a wide range of linguistic tasks, including translation,
summarization, and even source code generation, without
the need for task-specific training.

The underlying architecture of LLMs is typically based
on transformers, an approach introduced by Vaswani et al.
(2017). Transformers use attention mechanisms that allow
the models to effectively handle long-term dependencies
between words in a text, which is crucial for contextual
understanding. This architecture has revolutionized
the field of NLP, enabling models to scale to billions of
parameters, as discussed by Kaplan et al. (2020). This
scalability is one of the main factors that allow LLMs to
achieve unprecedented levels of performance on standard
NLP benchmarks.

The application of LLMs goes beyond natural language
processing. Models like GPT-3 have been explored in areas
such as source code generation, medical diagnosis, and
even creative content creation. According to Chen et al.
(2021), the ability of these models to generate code from
natural language descriptions opens new possibilities
for software development, potentially revolutionizing
software engineering practices.

However, despite significant advances, LLMs also
present challenges and limitations. One of the main
problems is the tendency of these models to generate
factually incorrect or biased information, as observed
by Bender et al. (2021). This raises important ethical
questions about the use and dissemination of AI-
generated information. Additionally, the need for
enormous computational resources to train these models
is a significant barrier for many organizations, limiting
the democratization of access to this technology.

LLMs represent a significant advancement in the field
of NLP and AI, with applications extending to various areas
beyond natural language. However, continuous research
is essential to address the ethical and technical challenges
associated with the use of these models. Future studies
should focus on improving accuracy, reducing bias, and
making the technology more accessible.

Source code generation through NLP is a promising
area that seeks to automate significant parts
of the software development process. By using
natural language descriptions, these techniques
can transform textual requirements into functional
code, speeding up development and reducing human
errors. Implementations of LLMs, exemplified by
GPT-3 and Codex, can interpret and generate code
in various programming languages from natural
language commands. Besides LLMs, techniques such as
Programming by Demonstration (PBD) and Programming
by Example (PBE) are also used, where user examples
and specifications guide the code generation. These
models have been used in a range of tasks, including
code generation, functionality explanation, interface
generation, test automation, etc.

This systematic review aims to enrich the field of study
by analyzing a range of scientific articles that represent the
state of the art on the topic. The intention is to synthesize
the findings and perspectives of various researchers to
answer previously outlined research questions. By using

the results and conclusions of these authors, the review
seeks to identify patterns, gaps in existing knowledge, and
opportunities for future investigations, thus contributing
to the advancement of knowledge in the area.

The remainder of this article is organized as follows:
Section 2 presents an introduction to Large Language
Models (LLMs), exploring their importance and
applications in the field of artificial intelligence and
natural language processing. Section 3 describes in detail
the Systematic Review Protocol, including the methods,
inclusion and exclusion criteria, and the data sources
used for article selection. Section 4 conducts a detailed
analysis of the selected works, offering a critical review of
the included studies, discussing the benefits, challenges,
and techniques employed by LLMs in code generation.
Section 5 synthesizes the main findings and conclusions
drawn from the analysis of the selected articles. Finally,
Section 6 presents the quantitative results of the analysis,
while Section 7 provides the final considerations of this
work, highlighting relevant contributions, practical
implications, and suggestions for future research in the
area.

2 Large Language Models (LLMs)

The creation of a Large Language Model (LLM) involves
several complex stages that rely on recent advances in
the field of artificial intelligence and natural language
processing. These models are built using deep neural
network architectures, especially transformers, which
were introduced by Vaswani et al. (2017). The process
can be divided into several phases, including data
collection, preprocessing, model architecture, training,
and evaluation.

2.1 Data Collection

The first step in creating an LLM is collecting a large
amount of textual data. These data are generally obtained
from various sources, including books, articles, websites,
and other forms of digital text. As mentioned by Brown
et al. (2020), the success of an LLM largely depends on
the diversity and quality of the data used. Therefore, it is
essential to ensure that the collected data are broad and
representative.

2.2 Model Architecture

The model architecture is another fundamental step. Most
modern LLMs use the transformer architecture, which
relies on attention mechanisms to handle the long-term
dependencies between words in a text. The transformer,
introduced by Vaswani et al. (2017), allows the model to
focus on different parts of the text with different weights,
which is crucial for contextual understanding and consists
of multiple layers of attention and feed-forward, where
each layer processes the input in parallel, in contrast to the
sequential approaches of previous models, such as LSTMs
and GRUs. This approach not only increases training
efficiency but also improves the model’s ability to capture
complex relationships within the data. The scalability
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of transformers is one of the main factors that allow
LLMs to achieve unprecedented performance levels on
standard NLP benchmarks, enabling applications beyond
NLP, including source code generation. According to
Kaplan et al. (2020), the scalability of transformers allows
the creation of models with billions of parameters, which
significantly increases their capacity for understanding
and generating text.

2.3 Model Training

Model training is probably the most resource-intensive
phase in terms of computational resources. It involves
feeding the model with large amounts of data and
adjusting its parameters to minimize prediction error.
This process can take weeks or even months and requires
the use of specialized hardware, such as GPUs and TPUs.
During training, techniques such as regularization and
optimization are applied to improve model performance
and avoid overfitting, as discussed by Radford et al. (2019).

2.4 Model Evaluation

Model evaluation is essential to ensure that it has learned
correctly and can generalize well to new data. This is done
using test datasets that were not used during training.
Metrics such as perplexity and accuracy are commonly
used to measure model performance, as explained by
Linzenetal. (2021). Additionally, it is important to conduct
qualitative evaluations to ensure that the model does not
generate factually incorrect or biased responses.

Creating an LLM is a multi-phase process that
requires a combination of high-quality data, advanced
preprocessing techniques, sophisticated model
architectures, significant computational resources,
and rigorous evaluation methods. These components
work together to produce models that can perform a wide
range of linguistic tasks with high accuracy.

3 Systematic Review Protocol

Source code generation using LLMs has emerged as a
promising area at the intersection of artificial intelligence
and software engineering. These models, trained with
vast corpora of data, have shown remarkable capabilities
in generating usable code in real-world scenarios but
also face significant challenges such as syntactic accuracy,
type system constraints, and the detection of complex
bugs in the generated code. This work aims to conduct
a Systematic Literature Review on the state of the art
regarding source code generation using LLMs, analyzing
methodologies, results, and major contributions of
selected studies in this area.

The methodology for this systematic review was
divided into several stages to allow a comprehensive
analysis of the selected articles.

3.1 Review Planning

This section is dedicated to describing the planning of the
systematic literature review, where research questions
that guided the investigation were defined, inclusion and
exclusion criteria were established to delimit the scope
of this study, as well as the data source, which is crucial
for information collection. Additionally, keywords and
synonyms that gave rise to the search string used were
presented to ensure a structured and replicable approach
to researching LLMs and their ability to automate and
optimize source code creation.

3.1.1 Research Questions

The research questions establish the expected outcomes
of the systematic analysis presented in this article. To
study the chosen articles and understand the adopted
methodologies, four specific research questions were
stipulated:

- Q1- What are the main benefits of LLMs in source code
generation?

- Q2- What are the main challenges and limitations of
LLM:s in source code generation?

- Q3- How can LLMs be optimized to improve code
generation?

- Q4- What are the main tools and techniques of LLMs
for code generation?

3.1.2 Search String

The goal of the search string in a systematic review is to
enable the search in scientific databases to obtain the most
relevant articles in the study area.

Keywords and Synonyms. From the research questions, it
was possible to extract the main keywords related to the
subject. To obtain better coverage of the articles, some
synonyms were also defined for each keyword.

- Code Generation: Fuzzer, Fuzzing;

- Compiler Testing: API Testing, Automated Testing,
Library Testing; and

- Large Language Model: Generative AI, LLM;

Search String. With the keywords and their synonyms
defined, it was possible to elaborate the following search
string, which can be used in different databases.

(Compile Testing OR API Testing OR Automated Testing
OR Library Testing) AND (Code Generation
OR Fuzzer OR Fuzzing) AND (Large Language Model
OR Generative AI OR LLM)

3.1.3 Inclusion and Exclusion Criteria

To enable the selection of studies, a set of inclusion and
exclusion criteria was established. These criteria are used
to filter articles, allowing the inclusion of only research
that strictly aligns with the objectives of the proposed
systematic review and excluding those that do not meet
predefined methodological or thematic standards.

Exclusion Criteria:
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SUMMARY AND
CONTENT ANALYSIS:

ARTICLE
SELECTION:

COMPARISON AND
SYNTHESIS:

COMPILATION OF
RESULTS:

Figure 1: Systematic Review Process Flowchart.

+ The study does not use LLMs in the context of code
generation.

+ The study does not fit the context of code generation.

+ The study does not provide empirical data.

+ The study is not a primary study.

+ The study is duplicated.

Inclusion Criteria:

+ Tools for source code generation.
- Techniques for source code generation.
- Use of LLMs for source code generation.

3.1.4 Data Sources

Google Scholar! was chosen as the data source due to
its broad coverage of academic publications, including
articles, theses, and technical reports. Its advanced search
tools allow precise results, and free access facilitates
the availability of information. The constant update of
content ensures access to the latest research from different
sources, making it ideal for a comprehensive and up-to-
date systematic review on LLMs and code generation.

3.2 Conducting the Review

Having completed the planning, the systematic review
process was initiated, as illustrated in Fig. 1. The flowchart
represents the sequential and interconnected steps that
were followed to conduct an analysis of the selected
articles.

The first step, Article Selection, involved searching the
Google Scholar database using the search string, resulting
in 112 articles. In the context of the proposed study, the
articles were categorized according to their relevance
and suitability to the topic of source code generation
using LLMs. From this initial classification, inclusion
and exclusion criteria were applied to select those most
appropriate for this research.

Table 1 summarizes the distribution of studies
according to the mentioned criteria, divided into
exclusion and inclusion:

Ihttps://scholar.google. com

Table 1: Criteria and Selected Studies

Criteria Studies
Exclusion

The study does not use LLMs in the context 36
The study does not fit the context 21
The study does not provide empirical data 23
The study is not a primary study 14
The study is duplicated 3
Inclusion

Tools for code generation 2
Techniques for code generation 4
Use of LLM for code generation 9
Total 12

As observed, a total of 36 studies were excluded for not
using LLMs in the desired context, while 21 studies did not
fit the specific context or practical application analyzed.
Additionally, 23 studies were discarded for not providing
empirical data, being primarily theoretical or conceptual.
Of the remaining articles, 14 were not primary studies,
meaning they did not present original data but rather
reviews, meta-analyses, or comments on other studies,
and 3 other studies were considered duplicates, meaning
publications that were repeated or essentially identical to
others already included in the analysis.

After applying the exclusion criteria, the inclusion
criteria were analyzed, where, of the selected articles, 2
studies described or analyzed specific tools developed for
code generation, while 4 studies focused on methods and
techniques for generating code randomly, possibly for
testing or experimentation. Finally, 9 studies explored
the application of LLMs in code generation.

Of the 15 selected articles, 8 were used for comparative
analysis, evaluating approaches and results. The
remaining 7 served as an introductory theoretical
framework, providing an overview of the essential
theories and concepts of the field.

In the second step, Summary and Content Analysis,
described in greater detail in Section 4, each selected
article was read and summarized. At this stage, the
objectives, methodology, results achieved, and strengths
of each study were highlighted. This detailed analysis
allowed for the extraction of key information that
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contributes to a deep understanding of the approaches
proposed in the articles. Section 5 synthesizes these
findings and conclusions, providing a consolidated
overview. Finally, in the Results Compilation step,
described in Section 6, the analysis results were compiled
into a table, allowing visualization of the results presented
by the different studies.

4 Analysis of Selected Works

The articles selected for this systematic review address
the research questions defined in the review protocol.
Each study was chosen based on its relevance and
contribution to understanding the impact of LLMs on
code generation. The main research questions involve
the benefits and challenges of LLMs in code generation,
as well as how these models can be optimized to improve
their effectiveness. The analysis of the selected works
highlights significant advances in the area and points to
future research directions.

4.1 Fuzz/All

The main highlight of Fuzz4All is its use of Large
Language Models (LLMs) to automatically generate and
modify test inputs, enabling fuzzing (random input
generation) in various programming languages with
different characteristics. It generates automatic prompts
for Al, creating diverse and realistic inputs autonomously,
which increases the efficiency and effectiveness of
tests. This method addresses significant limitations
of traditional fuzzers, which are generally language or
version-specific and have limited input diversity. The
study by Gao et al. (2023) presents this innovative
approach to fuzzing, an automated technique used to
identify flaws and vulnerabilities in software systems.

- Universal Fuzzing: Fuzz/All uses LLMs as engines for
generating and mutating inputs, enabling universal
fuzzing in multiple programming languages. Nine
Systems Under Test (SUT) using six different languages
(C, C++, Go, SMT2, Java, and Python) were evaluated.
In all cases, it outperformed language-specific fuzzers
in terms of code coverage.

- Autoprompting for Fuzzing: Autoprompting is a
technique that creates prompts for LLMs specifically
suited for fuzzing, distilling user inputs into effective
prompts. This automates the creation of diverse and
realistic inputs, increasing efficiency and effectiveness
in random code generation.

+ LLM-powered Fuzzing Loop: An LLM-powered
fuzzing loop is introduced that iteratively updates
prompts to create new fuzzing inputs, combining
previously generated inputs with natural language
instructions for mutations. The approach resulted in
the discovery of 98 bugs in widely used systems such
as GCC, Clang, Z3, CVC5, OpenJDK, and the quantum
computing platform Qiskit, with 64 bugs confirmed as
previously unknown.

4.1.1 Challenges of Traditional Fuzzers
Traditional fuzzers face three main challenges:

- Coupling with the target system and language: They
are designed for specific languages, making it difficult
to reuse in other languages or versions.

- Lack of support for evolution: They cannot keep up
with the evolution of systems and languages, losing
effectiveness in new versions.

- Limited generation capacity: Both generation-based
and mutation-based fuzzers struggle to cover the entire
input space of a language.

Extensive evaluation of Fuzz4All showed that it achieves
superior code coverage compared to language-specific
fuzzers, with an average improvement of 36.8%.
Additionally, it supports directed fuzzing for specific
features, proving highly effective for testing new features
or components of a system. Case studies showed that
Fuzz4All can generate complex inputs that previous
methods could not, revealing important bugs that were
confirmed and fixed by developers.

Fuzz4All represents a significant advancement in
fuzzing, combining the flexibility and power of LLMs
with innovative input generation and mutation techniques.
Its ability to apply fuzzing universally and evolve with
the tested systems makes it a valuable tool for detecting
vulnerabilities in a wide range of software, ensuring
greater security and reliability in software development.

4.2 VeriGen

This study, conducted by Thakur et al. (2023), involves
fine-tuning pre-existing LLMs on Verilog datasets
compiled from GitHub and Verilog textbooks. The goal
is to assess the functional correctness of the generated
code using a specially designed test set, presenting a set
of custom problems and testbenches. The study used
BigQuery to collect public Verilog repositories from GitHub,
resulting in a training corpus of approximately 50,000
files with a total size of 300 MB after filtering. Seventy
Verilog-based textbooks were downloaded from an online
library, and text was extracted using OCR. After cleaning,
the combined corpus of code and text totaled 400 MB. Five
pre-trained models were fine-tuned, ranging from 345M
to 16B parameters, including MegatronLM, CodeGen, and
commercial models like GPT-3.5-turbo. Fine-tuning
the models involved multiple GPUs due to high memory
demand. Fine-tuning was performed for a single epoch
using HPC clusters. The evaluation included two sets of
problems:

- Set I: 17 Verilog problems of varying complexity,
with testbenches developed to validate functional
correctness.

- Set II: 181 HDLBits problems, testing a wide range of
hardware design challenges and Verilog syntax.

4.2.1 Evidence

- Model Performance: The fine-tuned CodeGen-16B
model outperformed GPT-3.5-turbo, demonstrating
a 1.1% improvement in overall performance and a
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41% improvement in syntactically correct Verilog
code generation. Fine-tuned CodeGen-16B showed
competitive performance, especially on intermediate
and advanced complexity problems.

- Impact of Training Data: The study revealed
that incorporating content from Verilog textbooks
significantly improved the quality of the generated
code. The model trained on both GitHub code and
textbook content (CodeGen-2B-FT++) outperformed
other models in all problem difficulties and prompt
description levels.

+ Variation in Code Quality: The quality of the
generated code strongly depends on the prompt
details. Detailed prompts resulted in higher quality
code. The introduction of diverse data, such as
educational resources, led to an improvement in model
performance.

- Emerging LLM Performance: GPT-3.5-turbo and GPT-
£ showed notable performance, especially on advanced
problems, but faced challenges in specific tasks. The
efficiency and capability of generating functional code
of fine-tuned models like CodeGen-16B-FT were noted.

- Potential of Fine-Tuned LLMs in Hardware Design
Automation: The results demonstrate that smaller
models, fine-tuned for Verilog tasks, can compete
with larger commercial models in terms of efficiency
and output quality. Future improvements may involve
incorporating domain-specific data and exploring
hybrid approaches that combine the strengths of
different LLMs.

4.3 AlphaCode

This system uses transformer-based neural networks
to solve competitive programming problems, marking
a significant advancement in AI's ability to generate
functional code for complex problems. The study by Lietal.
(2022) discusses the creation and evaluation of AlphaCode,
a system developed by DeepMind for competitive code
generation.

Automatic generation of programs from high-level
descriptions is a challenging task in computer science.
Systems capable of generating functional code have
important practical applications, such as increasing
programmer productivity and facilitating programming
education. Traditionally, code generation has been limited
to specific domains or small code snippets. However,
AlphaCode represents a significant breakthrough by
competing in complex programming problems.

AlphaCode was trained on a vast dataset of human
code from GitHub, using an encoder-decoder transformer
model. The system generates millions of code samples
for each problem, filtering and clustering these samples
to submit up to 10 best solutions. This process
includes several enhancement techniques, such as multi-
query attention, masked language modeling, tempering,
conditioning, and demonstration learning.

To evaluate AlphaCode’s performance, researchers

used simulated competitions on the Codeforces platform.
AlphaCode achieved an average ranking within the top
54.3% of human participants, an unprecedented feat
for an AI system in programming competitions. This
performance corresponds to a beginner programmer with
a few months to one year of experience.

AlphaCode was able to solve 29.6% of the problems in
the CodeContests test set with up to 10 submissions per
problem. The system’s scalability was a key finding, where
increasing the number of generated samples led to a log-
linear increase in problem-solving rates. The evaluation
showed that the system could generate novel solutions for
previously unseen problems, demonstrating significant
understanding and reasoning in problem-solving.

4.3.1 Notable Features
- Scalability: The ability to generate a large number of
samples and filter the best solutions was essential to
AlphaCode’s success.

- Reasoning Capability: AlphaCode demonstrated
significant reasoning skills in solving complex
problems, without simply memorizing training.

- Practical Applicability: The techniques developed for
AlphaCode can be applied to improve programmer
productivity and democratize access to programming.

- Advancement in AI Research: The system represents
a significant advancement in the field of AI-
generated code, opening doors for future research and
applications.

AlphaCode exemplifies the potential of transformers
to solve complex problems through code generation.
The system’s success in competitive programming
competitions highlights its reasoning capabilities and
the importance of scalability and effective filtering of
generated samples. This work not only demonstrates
the state of the art in code generation but also sets a new
benchmark for future research in Al and programming.

AlphaCode is a powerful proof of concept for how Al
systems can be trained to solve complex programming
problems competitively. The breakthrough represented
by AlphaCode has significant implications for the future of
Al-assisted programming, both in terms of productivity
and accessibility.

4.4, CODET

Generating code solutions for a programming problem can
be enhanced with pre-trained language models like Codex,
which produce multiple diverse samples. A significant
challenge is selecting the most appropriate solution among
the generated samples. Solutions like this are important
as manually creating test cases to evaluate code quality
and correctness is costly and time-consuming. The study
by Nijkamp et al. (2022) presents CODET, an innovative
method that uses the same pre-trained language models
to automatically generate test cases, reducing human
effort and increasing test coverage. CODET executes the
code samples with the generated test cases and performs
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a dual execution agreement, considering the consistency
of results with the generated test cases and other code
samples.

- Test Case Generation: The pre-trained model is
used to generate a large number of test cases for each

programming problem from an elaborated prompt.

These test cases are then used to quickly verify the
correctness of any generated solution.

+ Dual Execution Agreement: Inspired by the RANSAC
algorithm to select the best code solution, each of them
is executed on each generated test case, forming groups
of solutions that pass the same test cases. These groups
are ranked based on the number of tests passed and the
functional consistency of the solutions.

Experiments were conducted on four benchmarks:
HumanEval, MBPP, APPS, and CodeContests, using
five different pre-trained models. The results show
that CODET can significantly improve performance in
selecting code solutions compared to previous methods.
For example, CODET increased the pass@1 metric
in HumanEval to 65.8%, representing an absolute
improvement of 18.8% over the code-davinci-002 model.

4.4.1 Notable Features
- Reduction of Human Effort: Automatic test case
generation significantly reduces the need for manual
creation of these cases.

- Performance Improvement: The dual execution
agreement approach demonstrated consistent and
significant improvements in selecting code solutions.

- Versatility: The method was tested and shown to be
effective in multiple benchmarks and with different
pre-trained language models.

CODET leverages the inherent power of pre-trained
language models to generate both code solutions and
test cases, facilitating the selection of the best solution
through an efficient and automated method. Future
challenges related to generating executable code and the
additional computational cost for generating test cases
will be explored to further improve CODET.

4.5 SynCode

Code generation by LLMs has shown remarkable
capabilities but faces significant challenges, especially
with syntactic errors. This problem is exacerbated in
smaller models and underrepresented programming
languages in training data. The presence of syntactic
errors in the generated code can hinder its practical
integration, causing functionality issues and debugging
challenges, as discussed by Ugare et al. (2024).

SynCode is a framework that uses a programming
language’s grammar to create an efficient lookup table,
called DFA mask store. This table is built based on the
language’s grammar terminals, allowing SynCode to keep
only syntactically valid tokens and reject invalid ones
during code generation.

- Offline Construction: The DFA mask store table is built
offline from the regular expressions representing the
language’s grammar terminals.

- Integration with LLMs: SynCode can be combined
with any existing LLM decoding algorithm, such as
greedy search, beam search, or sampling.

+ Error Reduction: In experiments with simplified
context-free grammars (CFGs) for Python and Go,
SynCode showed a significant reduction of 96.07% in
syntax errors when combined with state-of-the-art
LLMs.

- Incremental Parsing: SynCode uses an incremental
parser that processes the partial code generated
by the LLM, producing acceptance sequences and
remainders. A “remainder” refers to the remaining
code segment after partial parsing by the parser. When
SynCode processes partial code, it accepts as much as
possible of this code as syntactically correct, leaving
the unaccepted part as a “remainder”. These sequences
are then used to generate token masks, eliminating
syntactically invalid tokens. This allows SynCode to
gradually correct syntax errors as the code is generated,
ensuring higher accuracy and quality of the final code
produced.

- Evaluation: Experiments were conducted with LLMs
such as CodeGen, WizardCoder, and Llama, evaluated
on challenging datasets like HumanEval and MBXP.
The evaluation considered both LALR(1) and LR(1) as
base parsers, showing that LR(1) parsers are more
efficient in generating acceptance sequences.

- Framework for Syntactic Decoding: SynCode is
a general and efficient framework for generating
syntactically correct code.

- SynCode Tool: Implementation of SynCode that can be
integrated with any language defined by a CFG.

- Extensive Evaluation: Performance of SynCode
evaluated in code generation for Python and Go.

- Findings: SynCode demonstrated a significant
reduction in syntax and indentation errors:
Python: Reduction of syntax and indentation errors by
over 90% compared to standard generation.
Go: Reduction of syntax errors by over
90%, highlighting SynCode’s effectiveness in
underrepresented programming languages.

4.5.1 Notable Features

- Efficiency: Offline construction of the DFA mask store
table, allowing fast and efficient decoding.

- Generality: Applicable to any language defined by CFG.

+ Error Reduction: Substantial reduction in syntax
and indentation errors, improving the accuracy of
generated code.
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SynCode represents a significant advancement in LLM
code generation, providing an efficient way to ensure
syntactic correctness. This framework can be particularly
useful for underrepresented programming languages in
model training data, improving the quality of generated
code and facilitating its practical integration.

4.6 Tricky Bugs

Detecting bugs in software systems is a growing challenge
in software engineering, especially with the prevalence of
automatically generated code by generative Al The study
presented by Liu et al. (2024) addresses the problem of
identifying tricky bugs in programs that pass existing
tests but may still contain difficult-to-detect defects.

4.6.1 Relevant Contributions
i. Automated Input Diversity (AID):

Combination of LLMs and Differential Testing: AID
combines LLMs with differential testing to generate
test inputs that reveal failures and oracles for
plausibly correct programs.

Generation of Program Variants: AID generates
variants of the program under test to capture
different behaviors.

Filtering and Validation: Existing test cases are used
to filter program variants and ensure the generation
of accurate test oracles.

ii. Extensive Evaluation:

Datasets: Evaluation conducted on two large datasets
with tricky bugs: TrickyBugs and EvalPlus.

Better Performance: AID outperforms state-of-the-
art methods, such as Differential Prompting Plus
(DPP), in recall, precision, and F1-score.

4.6.2 Process and Result
The AID approach follows three main steps:

i. Generation of Program Variants: LLMs are used to
generate variants of the program based on the program’s
specifications. This involves creating different versions
of the program that theoretically should meet the same
specifications, allowing the testing of various possible
scenarios.
ii. Generation of Test Inputs: Test inputs are generated
from specific generators to ensure the diversity and
legality of the inputs. This ensures that the inputs used
inthe tests are varied enough to cover different use cases
while remaining within the acceptable limits defined by
the program’s specifications.

iii. Differential Testing: Differential tests are conducted
to identify inconsistencies in the outputs of the variants.
A majority voting principle is used to determine the
accuracy of the results, where the majority of similar
results are considered correct, helping to detect defects
in the program variants.

Preliminary studies indicated that the accuracy of test
cases generated directly by ChatGPT was low, around 6.3%.
Most errors (92.2%) were due to incorrect test oracles,

highlighting the need to combine LLMs with more robust
testing methods to improve accuracy.

Compared to conventional methods, the AID approach
demonstrated significant improvements, especially in
programs with complex bugs. AID achieved an F1-score
of 85.09% on some datasets, substantially outperforming
baseline tests.

Using diversity in differential tests, rather than
following the majority voting principle, proved effective in
detecting defects. This implies that variety in test inputs
can reveal more flaws than simple vote counting.

- Combination of Techniques: Integrating LLMs with
differential testing improves the accuracy of test oracle
generation, making the process more efficient.

- Comprehensive Evaluation: Using large datasets and
comparison with multiple baselines validate AID’s
effectiveness, demonstrating its robustness in various
scenarios.

- Comprehensive Evaluation: Using large datasets and
comparison with multiple baselines validate AID’s
effectiveness, demonstrating its robustness in various
scenarios.

- Superior Results: AID demonstrates significant
improvements in all evaluated performance metrics,
standing out as a more effective approach to detecting
complex bugs.

The article presents an innovative approach that
combines the natural language understanding power of
LLMs with the differential testing technique to enhance
bug detection in software. AID proved superior to existing
methods, offering a more robust and accurate solution for
identifying defects in plausibly correct programs.

4.7 CODE4STRUCT

The research presented by Wang et al. (2022) addresses
the CODE4STRUCT model, an innovative proposal for
event argument extraction (EAE) using code generation.
This model, developed by researchers at the University
of Illinois, Urbana-Champaign, explores the capability
of LLMs trained with a combination of text and code to
translate natural language into code structures.

The central goal of the study is to investigate how
translating semantic structures into code can improve
structured prediction tasks in NLP. Specifically, the study
focuses on event argument extraction, formulating EAE
as a code generation problem, which allows the use of
programming language features such as inheritance and
type annotations to introduce external knowledge or add
constraints.

The CODE4STRUCT approach involves converting event
type ontologies into Python class definitions. Using
sufficient contextual examples, EAE is treated as a code
generation problem, where the model is trained to
instantiate events based on provided sentences. This
methodology allows the model to use programming
language features to impose argument constraints and
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leverage event hierarchies.

- Comparison with Supervised Models: In the
referenced article, the CODE4ASTRUCT study
demonstrated that even using only 20 training
examples per event type, its performance is comparable
to supervised models trained with 4,202 instances.
This method outperformed the current state of the art
in few-shot learning datasets, achieving an absolute
gain of 29.5% in the F1-score metric. This approach
highlighted the efficiency and robustness of the model,
even under limited training conditions.

- Generalization and Data Efficiency: The model
demonstrated significant data efficiency, achieving
performance comparable to fully supervised methods
with far fewer annotated examples. Additionally, the
event hierarchy allows resource-less event types to
leverage training examples from related event types,
improving prediction for event types with no training
data.

- Advantages of Code Generation: Formulating EAE
as a code generation problem proved advantageous
over text-based prompt variants. Using features such
as type annotations and default argument values
naturally imposes argument constraints for output
structures.

- Performance in Different LLMs: Experiments with
different LLMs showed that the CODE4ASTRUCT model
is robust and maintains superior performance in
various configurations, especially when sufficient
contextual examples are provided.

4.7.1 Positive Aspects
i. Innovation in Methodology:

+ Using code generation for event argument extraction
is an innovative approach that leverages advances in
LLMs trained on code and text corpora.

ii. Data Efficiency:

- The model achieves superior results using a minimal
amount of training data, standing out for its
efficiency.

iii. Flexibility and Applicability:

- The ability to use event hierarchies and examples
from related event types significantly expands the
model’s applicability, especially in low-resource
scenarios.

The study demonstrates that the CODE4STRUCT approach
is effective for structured prediction tasks in NLP, offering
a promising alternative to traditional text-based methods.
With robust results and data efficiency, this methodology
has the potential to be applied in a variety of complex
structured prediction tasks in the future. The success of
CODE4STRUCT in outperforming supervised models with
less data highlights its relevance and potential impact in

the field of NLP.

4.8 Expectation vs. Experience

The study presented by Vaithilingam et al. (2022) explores
the usability of GitHub Copilot, a code generation tool that
uses LLMs. Conducted by Priyan Vaithilingam, Tianyi
Zhang, and Elena L. Glassman, the work investigates
how programmers interact with Copilot compared to
IntelliSense, the standard code completion tool in Visual
Studio Code.

The research involved a study with 24 participants,
including undergraduate, master’s, Ph.D. students, and a
software engineer. Participants completed programming
tasks in Python with and without the aid of Copilot.
The tasks varied in difficulty (easy, medium, and
difficult). Data collection included screen recordings,
audio recordings, and responses to pre and post-task
questionnaires.

The results showed that:

- Copilot users completed fewer tasks than IntelliSense
users.

- Although Copilot did not significantly reduce task
completion time, it was preferred by most participants
(19 out of 24).

- Participants found Copilot more useful
IntelliSense (6.16 vs. 4.45 on a scale of 1 to 7).

than

Copilot was seen as a good starting point for
programming tasks, especially useful for tasks that
users did not know how to start. However, participants
struggled to understand and modify the code generated
by Copilot, leading to a perception of loss of control and
concerns about code reliability.

Participants used Copilot as a substitute for internet
searches, although this led to overconfidence in the
generated code, resulting in less validation and more time
spent debugging incorrect code.

When encountering errors in the generated code,
participants generally tried to fix the code but often found
it difficult due to a lack of understanding. Some preferred
to rewrite the code completely rather than try to repair it.

Three main obstacles were identified:

i. Difficulty in understanding and evaluating the
correctness of the generated code.
ii. Underestimation of the effort needed to fix bugs.
iii. Ambiguity and sensitivity when using comments as
specifications for Copilot.

4.8.1 Critical Analysis

Participants preferred Copilot for daily tasks, despite not
significantly reducing task completion time. Suggestions
for improvements include:

- Providing multiple code suggestions for comparison.

- Integrating online searches to validate the generated
code.

- Providing explanations and comments in the generated
code to facilitate understanding and debugging.

The study reveals that while Copilot offers a useful starting
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point for programming tasks, understanding and fixing
the generated code remain significant challenges. Future
improvements should focus on support for validation, task
decomposition, and integration with online resources to
increase confidence and effectiveness of programmers
using LLM-based code generation tools.

5 Synthesis of Selected Works

This section presents a synthesis of the main findings,
methodologies, and conclusions drawn from the analysis
of each scientific article selected for this systematic review.

Gao et al. (2023) introduceed Fuzz/All, a method that
uses LLMs to generate and mutate inputs in fuzzing,
applicable to multiple programming languages. Evaluated
in nine systems under test, Fuzz4All outperformed
language-specific fuzzers in terms of code coverage. The
autoprompting technique and the iterative fuzzing loop
allowed the discovery of numerous bugs, highlighting the
method’s effectiveness.

Thakur et al. (2023) conducted a study with LLMs
fine-tuned on Verilog data, focusing on the functional
correctness of the generated code. The study used
public repositories from GitHub and textbooks. The
evaluation included problems of varying complexity and
demonstrated that models like CodeGen-16B, when fine-
tuned, can outperform commercial models like GPT-
3.5-turbo, especially in generating syntactically correct
Verilog code.

Lietal. (2022) discussed the development of AlphaCode,
a system that uses transformers to solve competitive
programming problems. Trained with a vast dataset
of human code from GitHub, AlphaCode demonstrated
the ability to compete in programming competitions,
achieving results comparable to human programmers.
The system stood out for its scalability and reasoning
skills, showing a significant advancement in code
generation.

Nijkamp et al. (2022) presented CODET, which uses
pre-trained LLMs to automatically generate test cases
and select code solutions. Inspired by the RANSAC
algorithm, the method showed significant improvements
in selecting code solutions, reducing human effort
and increasing test coverage. Evaluations in various
benchmarks demonstrated CODET’s effectiveness in
improving performance in solution selection.

Ugare et al. (2024) introduced SynCode, a framework
that uses programming language grammar to ensure
syntactic correctness during code generation. Evaluated
in Python and Go, SynCode showed a significant reduction
in syntax and indentation errors. The offline construction
of the DFA mask store table allows for fast and efficient
decoding, standing out as a general method applicable to
any language defined by context-free grammar.

Liu et al. (2024) addresses detecting tricky bugs in
plausibly correct programs through AID. Combining
LLMs and differential testing, AID generated program
variants and test inputs, demonstrating superiority
over traditional methods. The evaluation showed
significant improvements in recall, precision, and F1-
score, highlighting the approach’s effectiveness in

detecting complex bugs.

The study by Wang et al. (2022) presents the
CODE4STRUCT model, which uses LLMs trained
with text and code for event argument extraction
(EAE). The methodology involves converting event
type ontologies into Python class definitions, treating
EAE as a code generation problem. Key findings
indicate that CODE4STRUCT, even with few training
examples, outperforms traditional supervised models
and demonstrates data efficiency, using programming
features to impose constraints and improve event
prediction.

Vaithilingam et al. (2022) explores the usability of
GitHub Copilot compared to IntelliSense. The study
involved 24 participants performing programming tasks
in Python with and without Copilot. The results
indicated that Copilot was preferred by most participants,
despite not significantly reducing task completion time.
The main challenges include difficulty understanding
and evaluating the correctness of the generated code,
underestimating the effort needed to fix bugs.

The reviewed studies demonstrate the growing
versatility and impact of large language models (LLMs)
in code generation, testing, and debugging across
diverse programming contexts. From enhancing
fuzzing processes and detecting complex bugs to
generating syntactically correct domain-specific code
and competitive programming solutions, the findings
highlight LLMs’ capacity to improve coverage, accuracy,
and efficiency in software development tasks. Approaches
such as grammar-guided generation, fine-tuning on
specialized datasets, and iterative test-driven loops
usually outperform traditional or language-specific
methods, while also reducing human intervention.
However, usability studies reveal persistent challenges
in code comprehension and error assessment, indicating
that while LLMs are powerful accelerators, their effective
integration requires complementary human oversight
and robust evaluation mechanisms.

6 Results: Answers to Research Questions

Based on the detailed analysis of the selected articles, the
results were described according to the previously defined
research questions.

+ Q1- What are the main benefits of LLMs in source code
generation?

— LLMs increase efficiency and speed in software
development, simplify repetitive processes, and
promote the adoption of best practices. Models
like GPT-3 can understand and generate code
from natural language descriptions, automating
significant parts of the programming process.
This reduces human errors and facilitates the
maintenance of consistent and high-quality code.

+ Q2 - What are the main challen§es and limitations of
LLMs in source code generation

— LLMs face challenges such as generating incorrect
or biased information and the need for enormous
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computational resources for training. Additionally,
problems with syntactic accuracy, type system
constraints, and detecting complex bugs are
common. Studies highlight ethical and practical
issues that need to be addressed to improve the use
of these models.

+ Q3 - How can LLMs be optimized to improve source
code generation?

— Incorporating specialized content, such as textbooks
and high-quality code repositories, can improve the
accuracy and functionality of the generated code.
Techniques such as automatic test case generation,
seen in the CODET method, help validate and select
the best code solutions. Models like SynCode, which
use grammar to ensure syntactic correctness, are
also promising. Continuous research should focus
on improving data efficiency, generation accuracy,
and the ability to adapt to different programming
domains.

+ Q4 - What are the main tools and techniques of LLMs
for source code generation?

— The LLMs for source code generation mainly use the
transformer architecture. Among the most notable
tools are GitHub Copilot, which uses the Codex
model to suggest and complete code snippets as
developers type, and AlphaCode, which can solve
complex programming problems and compete
with human programmers. Innovative techniques
include CODET, which automatically generates
test cases and selects the best code solutions,
inspired by the RANSAC algorithm, and SynCode,
which ensures syntactic correctness during
code generation using programming language
grammar. Another significant tool is VeriGen,
fine-tuned specifically for Verilog code generation,
demonstrating high accuracy and functionality,
outperforming commercial models. These tools and
techniques, based on the transformer architecture,
represent significant advances in the efficiency and
functionality of software development, highlighting
the transformative potential of LLMs in the
programming field.

6.1 Quantitative Results

The Table 2 is a detailed table providing a comprehensive
analysis of eight studies on the application of Large
Language Models (LLMs) in code generation. Each row
represents a study, detailing the study name, authors,
objective, methodology, dataset used, and main results.

The Fuzz/ All study by Gao et al. (2023) uses LLMs for
input generation and mutation in fuzzing, applying the
method to multiple programming languages. Data were
collected from GitHub and Verilog textbooks, resulting in
a 36.8% improved code coverage and the discovery of 98
bugs.

The VeriGen study by Thakur et al. (2023) fine-tuned
LLMs with Verilog data from GitHub and textbooks,
improving overall performance by 1.1% and generating

correct code by 41%.

The AlphaCode study by Li et al. (2022) uses
transformers to solve competitive programming
problems, training with GitHub data. This study achieved
a top 54.3 ranking in Codeforces competitions, solving
29.6% of the problems.

The CODET study by Nijkamp et al. (2022)
automatically generates test cases and uses the RANSAC
algorithm to select code solutions, improving the pass@1
metric to 65.8%, an absolute increase of 18.8%.

The SynCode study by Ugare et al. (2024) ensures
syntactic correctness during code generation using
Python and Go grammars. This resulted in a 96.07%
reduction in syntax errors.

The Tricky Bugs study by Liu et al. (2024) combines
LLMs and differential testing to detect bugs, evaluating on
TrickyBugs and EvalPlus datasets, achieving an F1-score
of 85.09%.

The CODE4STRUCT study by Wang et al. (2022)
focuses on argument extraction from events using code
generation, converting event type ontologies into Python
class definitions, surpassing the state of the art by 29.5%
in F1-score with limited data.

Finally, Expectation vs. Experience by Vaithilingam
et al. (2022) investigates the usability of GitHub Copilot,
comparing it with Intellisense, revealing that although
Copilot was preferred by most participants, it did
not significantly reduce task completion time. This
study involved participants of varying experience levels
performing programming tasks in Python.

This detailed analysis highlights significant advances
in the use of LLMs for code generation, demonstrating
improvements in accuracy, efficiency, and error detection
capability, despite challenges such as fixing syntax errors
and the need for intensive computational resources.

7 Conclusion

This systematic review examined the application of
Large Language Models (LLMs) in code generation,
highlighting their potential, benefits, challenges, and
optimization methods. The analysis of eight selected
studies demonstrated significant advances in the
area, contributing to understanding how LLMs can
transform software development practices. By evaluating
different approaches and results, the review provides
a comprehensive overview of the current state of the
art and identifies opportunities for future research and
innovation.

The benefits of LLMs in code generation are evident
in their ability to increase efficiency, automate repetitive
tasks, and promote the adoption of best practices.
However, challenges such as syntactic accuracy, type
system constraints, and bug detection require continuous
research and development to improve the reliability and
functionality of the generated code.

Optimizing LLMs involves incorporating high-quality,
diverse data and developing innovative techniques such
as automatic test case generation and syntactic error
correction. Tools like Fuzz4All, VeriGen, AlphaCode,
CODET, SynCode, Tricky Bugs, CODE4STRUCT, and
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Table 2: Analysis of the eight studies on the application of Large Language Models (LLMs) in code generation.

Study Authors Objective Methodology Database and benchmarks Main Results
Use of LLMs for input generationand | Applying fuzzing in multiple GitHub, Verilog Improved code coverage
FuzzAll Gaoetal. (2023) mutation in fuzzing programming languages textbooks by 36.8%; discovered 98 bugs
. . . . . CodeGen-16B improved 1.1%
VeriGen Thakur et al. (2023) Fine-tuning LLMs on Cpllectmg Verilog dataand Gltl.{Ub’ in overall performance and 41%
Verilog data fine-tuning LLM models Verilog textbooks . N
in correct code generation
. .. . 3 Top 54.3% in Codeforces
AlphaCode Lietal. (2022) Using tran sformers to splve Training with GitHub human GitHub competitions; solved 29.6%
competitive programming problems | code dataset
of problems
Automatic generation of test . Various benchmarks: o
CODET Nijkamp et al. (2022) cases and selection of code ngeratmg test cases and HumanEval, MBPP, Improvec:l pass@1 to 65'% o,
. using RANSAC algorithm absolute increase of 18.8%
solutions APPS, CodeContests
Ensuring syntactic correctness Building DFA mask store GitHub, Python Reduction of syntax errors
SynCode Ugare etal. (2024) during code generation table and using grammar and Go datasets by 96.07%
. . . L . Improved recall, precision,
Tricky Bugs Liuetal. (2024) DeteCFlon of tricky bugs in Cf)mblnaFlon ofALLMs and TrickyBugs and Fi-score; F1-score
plausibly correct programs differential testing EvalPlus of 85.09%
. . . . 29.5% higher F1-score
CODE4STRUCT Wang etal. (2022) Event argument extraction Using Python class definitions | Event ontologies, compared to the state
using code generation for events contextual examples s 1io
of the art with limited data
. e Study with 24 participants . Preferred by 19 participants;
Expectation vs. Experience | Vaithilingam et al. (2022) E)‘(plormg the usability of performing tasks with Part1‘c1pants Of perceived as more useful
GitHub Copilot By ? varying experience levels .
and without Copilot than IntelliSense

GitHub Copilot demonstrate the transformative potential
of LLMs in software development, offering practical
solutions and new approaches to code generation.

Future research should focus on addressing the ethical
and technical challenges associated with LLMs, improving
their accessibility, and expanding their applications
in various programming domains. By advancing the
understanding and capabilities of LLMs, the field of
software engineering can continue to evolve, benefiting
from the innovative potential of these powerful models.
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