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Abstract
Information hiding has been addressed in several studies. When the information is hidden in digital images, it can becarried out in three domains: spatial domain (original space of image pixels), frequency domain (or transformed domain,such as Discrete Cosine Transform domain) and compressed domain. In the last case, one can cite data embedding inimages compressed by vector quantization (VQ). This paper addresses the problem of codebook partition in the scenarioof invisible watermark embedding in digital images compressed by VQ. In this paper, two techniques are investigated forpartitioning purposes: the PSO (Particle Swarm Optimization) algorithm and the EFA (Enhanced Fireworks Algorithm)as alternatives to the Genetic Algorithm. The performance of the techniques is evaluated with regard to the algorithmsexecution time. Robustness of the watermark against a variety of attacks is assessed for codebooks partitioned with theaforementioned algorithms.
Keywords: Fireworks Algorithm; Information Hiding; Particle Swarm Optimization; Vector Quantization; Watermarking.
Resumo
A ocultação de informações tem sido abordada em vários estudos. Quando a informação é ocultada em imagens digitais,pode ser realizada em três domínios: domínio espacial (espaço original dos pixels da imagem), domínio da frequência(ou domínio transformado, como o domínio da Transformada Cosseno Discreta) e domínio da imagem comprimida.No último caso, pode-se citar a inserção de dados em imagens comprimidas por quantização vetorial (QV). Este artigoaborda o problema da partição do dicionário no cenário de inserção de marca d’água invisível em imagens digitaiscomprimidas por QV. Neste artigo, duas técnicas são investigadas para fins de partição: o algoritmo PSO (Particle SwarmOptimization) e o EFA (Enhanced Fireworks Algorithm) como alternativas ao Algoritmo Genético. O desempenho dastécnicas é avaliado com relação ao tempo de execução dos algoritmos. A robustez da marca d’água contra uma variedadede ataques é avaliada para dicionários particionados com os algoritmos mencionados.
Palavras-Chave: Algoritmo Fireworks; Ocultação de Informação; Otimização por Enxame de Partículas; QuantizaçãoVetorial; Marca D’água.

1 Introduction

With the growth of internet use, creation, replicationand transmission of digital content have become quitecommon, mainly due to the cheapening of devices, storagefacility and a greater availability of bandwidth Evsutin et al.

(2020). Thus, the development of solutions for copyrightprotection, identification of properties of digital media andsecure information transmission has become importantFei et al. (2022); Sanivarapu et al. (2022). Besides, datahiding techniques are intended to embed information inaudio, video or images, for example.

http://dx.doi.org/10.5335/rbca.v17i1.16442
http://seer.upf.br/index.php/rbca/index
https://orcid.org/0009-0005-3802-1952


34 Canêjo et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.1, pp.33–44

The watermark techniques Wang et al. (2022); Evsutinet al. (2020); Su et al. (2020) focus on the object usedto embed data, aiming, for instance, the detection ofviolation of integrity or to assure the copyright of theobject. With the vast amount of digital content nowadays,the need for the use of digital signal compressiontechniques is unquestionable. In this context, the signalcompression techniques aim to reduce the number of bitsto represent digital signals, for the purpose of efficienttransmission and/or storage.Vector Quantization (VQ) Gersho and Gray (2012)is a lossy signal compression technique which usesblocks of samples instead of individual samples and theperformance of VQ depends on the designed codebooks.The most widely known algorithm for codebook designis the Linde-Buzo-Gray (LBG) Linde et al. (1980). Otherexamples of codebook design algorithms are competitivelearning algorithms Bispo Jr et al. (2010), fuzzy algorithmsMata et al. (2016), swarm algorithms Severo et al. (2016);Fonseca et al. (2018); Severo et al. (2024), memeticalgorithms Azevedo et al. (2009) and deep learningtechniques Jiang et al. (2017).A watermark can be embedded in images compressedby VQ. The embedding is carried out in the indices of thecodevectos. The VQ-based watermark technique usedin this paper requires a division of the codebook in twogroups (partitioning step): one used to embed the bit 0 andthe other used to embed the bit 1. In this paper we evaluatethe use of algorithms Particle Swarm Optimization (PSO)Kennedy and Eberhart (1995) and Fireworks Algorithm(FA) Tan and Zhu (2010); Zheng et al. (2013) as alternativesto Genetic Algorithm (GA) Goldberg (1989) applied to theimage watermarking method introduced by Wang et al.(2007).In watermark literature, we can mention differentmethods that use techniques of artificial intelligence (IA)and particularly Deep Neural Network (DNN) to embed thewatermark in the spatial and frequency domains Amritand Singh (2022).For example, Issa (2018) used two artificial intelligencetechniques, Genetic Algorithm (GA) and Cuckoo Search(CS) Joshi et al. (2017), to optimize Scale Factors (SFs)selection in order to enhance the robustness of thewatermark. GA’s population consisted of a collection of SFsthat were measured under mixed rotation, resizing, andaverage filtering attacks. In the CS version, the originalimage was divided into four blocks, as it was consideredthat optimal SF values may vary by region.Unlike classic watermarking techniques based onspatial domain, Sy et al. (2020) present a digitalwatermarking scheme for images using a combinationof Discrete Wavelet Transform (DWT) and a ConvolutionalNeural Network (CNN). The process involves transformingthe host image into the DWT domain and then using itto train the CNN. The results indicate that the proposedscheme performs well against JPEG compression, averageand median filtering, “salt and pepper” noise, Gaussiannoise, speckle noise, brightness modification, scaling,cropping, rotation, and shear operations. The robustnessof the scheme against these attacks is a positive aspecthighlighted by the authors.In this paper, we evaluate the performance of PSO and

FA in the optimization problem of partitioning the VQcodebook for the purpose of inserting a watermark in animage compressed by vector quantization. Specifically,the aforementioned algorithms are compared with thegenetic algorithm used in the watermarking techniqueunder consideration. A comparison analysis is proposedin terms of the execution time of the algorithms and therobustness against a variety of attacks.The remainder of this paper is organized as follows.Section 2 presents the principles of Vector Quantization.Section 3 describes the watermark technique usingVQ. Section 4 details the Genetic Algorithm, ParticleSwarm Optimization and Fireworks Algorithm applied tocodebook partitioning for image watermarking. Section 5presents the methodology and results. Conclusions arepresented in Section 6.
2 Vector Quantization

Vector quantization is the mapping of a K-dimensionalvector x in a vector belonging to a finite subsetW Gershoand Gray (2012); Gray (1984); Camacho-Gonzalez et al.(2025), which is called a codebook. In other words, VQperforms a mapping Q : RK → W . The codebook
W = {wi; i = 1, 2, . . . ,N} is a finite subset of RK in whicheach vector is called codevector. The number of samples(components) of each vector is the dimension (K). Thecodebook size is the number of codevectors, denoted by N.Image VQ consists of mapping each block of pixels ofthe original image to the most similar codevector, theone that has the smallest distance to the original block.Fig. 1 illustrates an example of VQ applied to digital image.In this example, the dimension K of the block is equalto 16 (blocks of 4 × 4 pixels) with 8 codevectors in thecodebook (N = 8). It is possible to observe that VQ is alossy compression technique, i.e., the quantized image isdifferent from the original one. The performance of vectorquantization is related to codebook design.The quality of the reconstructed image can be measuredby metrics such as Structural Similarity Index Wang et al.(2004) and Peak Signal-to-Noise Ratio (PSNR), given by

PSNR = 10 log10 V2
pMSE , (1)

in which Vp represents the peak amplitude value of theinput image and MSE is the mean squared error betweenthe original and the compressed images.The Linde-Buzo-Gray (LBG) algorithm Linde et al.(1980) is a very popular technique for codebook design.Let n denote the number of iterations of LBG. Giventhe dimension K (that is, the number of components ofthe codevectors), the codebook size N, and a distortionthreshold δ, the LBG consists of the steps shown inAlgorithm 1.It is worth mentioning that the initial codebook can beobtained, for instance, from a random choice of vectorsfrom the training set. The LBG algorithm aims to reducethe distortion introduced when representing the trainingvectors by their most similar codevectors.
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Figure 1: Example of VQ in digital image.
Algorithm 1 LBG Algorithm

1: Initialization: begin with an initial codebook W0 ={w1,w2, . . . ,wN}, in which N is the number ofcodevectors, and a training set X = {xm;m =1, 2, . . . ,M}, j = 0 and D−1 = ∞ (a very large number),in which Dj is the distortion in the j-th iteration.
2: Partitioning: For Wj (codebook in j-th iteration),allocate each training vector into a region according tothe nearest neighbour rule;3: Codebook update: Calculate the new codevectors asthe centroids of regions, wi = 1

Ri
∑
xm∈Vi

xm, 1 ≤ i ≤ N,
where Ri represents the number of training vectorsallocated in the regionVi = {x | d(x,wi) < d(x,wa) ∀ a ̸=
i};

4: Convergence test: if Dj−1−Dj
Dj ≤ δ stop,Wi representing

the final codebook (codebook designed); Otherwise goto Step 2 and increase the iteration counter j.

3 Digital watermark based on vector
quantization

Watermarking is a technique that hides information (suchas a logo, a mark or a code identifier on a sequence of bits)in medias with the objective, for example, of copyright orto check the integrity of the digital content. Watermarkingcan be classified according to its robustness and visibility,as depicted in Fig. 2. There are three main requirementsunder the watermark: fidelity, robustness and payloadEvsutin et al. (2020).
The fidelity or transparency is the similarity betweenthe original object and the marked object. The watermark

Figure 2: Watermark classification.
should affect as little as possible the quality of themarked image. This applies to the invisible watermark.Robustness refers to the ability of a digital watermarkto remain detectable despite various attacks to thewatermarked image. For digital images, attacks involve,for instance, cropping, rotation and compression of thewatermarked image Roy et al. (2018). For purposes ofproof of authorship (copyrights), the watermark should berobust against manipulations. Payload means the numberof bits that can be hidden in the image. The larger the sizeof the object, the greater is its capacity to store bits in thedigital content.
3.1 Watermark based on codebook partition

The method of watermark based on VQ considered in thiswork was introduced in Wang et al. (2007). Precisely,the method consists in dividing the codebookW in twosub-codebooks, G0 and G1, using a key C, where C ={c1, c2, . . . , cN} | ci ∈ {0, 1}, 1 ≤ i ≤ N. The sub-codebooksG0 andG1 hide the bits 0 and 1, respectively. TheAlgorithm 2 shows the sequence of steps in the process ofinserting the watermark based on VQ.
Algorithm 2 Inserting the watermark
1. Split the codebookW in two sub-codebooks, G0 and G1,using the key C;
2. Divide the original image X = {x1, x2, ..., xT} in blocksof size K pixels, where T is the number of vectors (i.e.,number of blocks of K pixels);
3. To the input vector xi and the bit y of the watermarkto be inserted, y ∈ {0, 1}, obtain the codevector in thesub-codebook, G0 or G1, with the shortest distance tothe input vector. Precisely, if y = 0, then the search forthe codevector with the shortest distance is carried outin Go; if y = 1, that search is carried out in G1.
4. Obtain the marked vector x′i, which is the codevectorwith the shortest distance to xi;
5. Repeat steps 3-4 until all bits of the watermark areinserted;
6. Obtain the watermarked image X′ composed by alloutput vectors {x′1, x′2, ..., x′T}.

The steps to perform the extraction of hidden bits ofwatermark are described in Algorithm 3.The search for the nearest neighbor has high
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complexity. To minimize this complexity, PartialDistortion Search (PDS) Bei and Gray (1985) is used in thepresent work.
Algorithm 3 Extraction the watermark
1. Decompose the watermarked image X′ in non-overlapping blocks of size K pixels;
2. For each vector x′i, execute the nearest codeword searchto obtain a nearest codevector (wj) in the codebookW ;
3. The hidden watermark bit is the value that is containedin the corresponding position j of the key C;
4. Repeat steps 2-3 to extract every bit of the watermark.

4 Codebook partition with GA, PSO and EFA
4.1 Genetic Algorithm

The Genetic Algorithm Goldberg (1989); Katoch et al.(2021) is part of a class of algorithms based on Darwin’stheory, in which the organisms best adapted to theenvironment have a greater chance of survival than theless adapted. It is an optimization algorithm that usesthe concepts of evolutionary selection, mutation andrecombination (crossover) as a search technique.In the GA, the population of possible solutions,also called individuals, is composed of chromosomesrepresenting a gene sequence. Let us assume, for example,each candidate solution is composed of a binary sequenceand every element of this sequence values (0s and 1s) iscalled gene.After the initialization process, each chromosome isevaluated. This value of the evaluation is known as fitness.The fitness assigned represents the adaptability of theindividual on each generation of the population. Theindividuals with more adaptability have more chance togo to a new generation with the operator of selection.New individuals are generated by using the operator ofthe recombination. The diversity of the chromosomesemerges from the mutation operator Wazirali et al. (2019).Fig. 3 shows the steps of Genetic Algorithm.The recombination stage is the creation of a newchromosome through the recombination of parent’s genes,done according to a probability of crossing.The mutation occurs according to a probability ofmutation. In discrete problems, the mutation will berepresented by the change in the value of the gene, i.e.,if the value is 0, after the mutation it will change to thevalue 1, and if the value is 1, it will change to 0.The Algorithm 4 is the GA Goldberg (1989) in theprocess of partitioning the original codebook into two sub-codebooks.
4.2 Particle Swarm Optimization

The Particle Swarm Optimization Kennedy and Eberhart(1995); Gad (2022) is an intelligence swarm algorithm

Figure 3: GA procedure.
Algorithm 4 Genetic codebook partition (GCP)
1. Generate a number of user-keys as chromosomeswith dimensions (genes) of size C, with bits 0 and 1randomly;
2. Insert the watermark in the original image using thesub-codebooks G0 and G1 partitioned by the user-keyof the current chromosome;
3. Calculate the fitness value according to the givenfunction (PSNR value obtained from the imagereconstructed by the Step 2);
4. Select adapted individuals from a Selection Rate withthe best fitness scores;
5. Output the best chromosome selected and terminatethe training procedure if the considered iteration is met.Otherwise, keep executing the following steps;
6. Create new genes for next generation according to thepre-defined Crossover Rate;
7. Mutate the new chromosomes according to theMutation Rate;
8. Go to Step 2.
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inspired by the social behavior of a flock of birds that isbased on collective communication among individualssearching for the solution by means of a global and localorientation Engelbrecht (2006).
Performing an analogy, the flock of birds (swarm)corresponds to possible solutions of the problem, the areaoverflown by the birds corresponds to the search spacefor each bird (particle). Each particle has coordinates(position and velocity vector) that will guide the bird insearch of food, i.e. the best solution, influenced by thebest known position of bird (PBEST) and the best positionknown by the band (GBEST).
Letpi(t) be the current position of particle i in the searchspace and time t. The new position is the sum of thecurrent speed vi(t) with the current position, i.e.,

pi(t + 1) = pi(t) + vi(t). (2)
The algorithm optimization is driven by the velocityvector, defined by

vij(t + 1) = IW × vij(t)+ factor1 × r1j(t) × [PBEST − pij(t)] (3)
+ factor2 × r2j(t) × [GBEST − pij(t)],

in which vij(t) is the velocity of particle i in dimension
j, factor1 and factor2 are positive constants used to scalethe contribution of cognitive factor (PBEST) and socialfactor (GBEST), respectively. The terms r1j(t) and r2j(t)are random values between 0 and 1 obtained from auniform distribution. The term IW (Inertia Weight) Shiand Eberhart (1998) is a positive constant to balance localand global search of the particles.

The Algorithm 5 is the PSO in the process of partitioningthe original codebook into two sub-codebooks, i.e.,creating the key that will be used in the watermarktechnique.
Algorithm 5 Proposed PSO codebook partition (PSOCP)
1. Initialize N particles (keys). Each particle is initializedwith random values for its position and velocity vectors.
2. For each particle, insert the watermark in the originalimage using the sub-codebooks G0 and G1 partitionedby the user-key of the current particle, calculate thefitness (PSNR value obtained from the output imagedescribed in Algorithm 2) and evaluate the PBEST. Eachparticle is initialized with random values for its positionand velocity vectors.
3. Evaluate GBEST;
4. If the number of iterations is met, then stop. Otherwise,update the particles velocity and particles position withEq. (2);
5. Go to step 2.

4.3 Fireworks Algorithm

Fireworks Algorithm (FA) is a swarm intelligencealgorithm inspired by watching fireworks explosions Tanand Zhu (2010). When the fireworks are launched, a setof sparks fill the place around the explosion. Thus, theexplosion area limited by the amplitude can be seen as thesearch space and the sparks the possible solutions.In the FA, for each generated explosion, first, locations
Ln are chosen, where Fn fireworks will be launched.After the explosion, the sparks are scattered around theregion and their positions are obtained and evaluated.When termination criterion is met for the problem,the algorithm ends. Otherwise, new explosions of thefireworks are set off from positions of sparks, generatinga new sequence of the sparks.FA is based on two behaviors in fireworks: theamount of generated sparks and their position aroundthe explosion. The fireworks that have many sparksthat are well spread around the explosion are consideredgood fireworks, because they create beautiful designs.The fireworks that have few sparks and few spread areconsidered bad fireworks.From the point of view of a search algorithm, goodsparks detonate fireworks located in one promising region.Some sparks should be used to scan the region, but theyare not far from the explosion. The fireworks which areconsidered bad are far from the potential regions andwith large amplitude and fewer sparks compared to goodfireworks, where the goal is to use a small radius withmore sparks, as we can see in Fig. 4 where the best solutionis located at (X,Y) = (0, 0).

Figure 4: Example of good and bad fireworks.

Suppose FA is used to solve a minimization problemdescribed by
Minimize f(x) ∈ R, xmin ≤ x ≤ xmax, (4)
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in which the objective function is f(x), and the search spacelocations are denoted by x = x1, x2, . . . , xd and the limits ofthe search space are xmax and xmin. The number of sparksgenerated s for each of fireworks xi is given by

si = m× ymax − f(xi) + ϵ∑n
i=1(ymax − f(xi)) + ϵ

, (5)
in which m is a parameter for controlling the numberof sparks by the firework, ϵ is a constant used to avoiddivision by zero and ymax is the worst (highest in mini-mum problems) objective function value among thefireworks.For good fireworks, the number of sparks must behigh, but its amplitude should be small. The size of theamplitude is defined by

Ai = Â× f(xi) − ymin + ϵ∑n
i=1(f(xi) − ymin) + ϵ

, (6)
where Â is the maximum size that amplitude can assumeand ymin = min(f(xi))(i = 1, 2, . . . ,n) the best (smallest inminimization problems) value of the objective functionfound so far among the fireworks. After the explosion, thesparks are impacted and are scattered in the sky (searchspace). The direction z in which they move is random.This number is achieved as follows

z = round(d× Rand(0, 1)), (7)
where d is the dimensionality of the location x and
Rand(0, 1) is a value obtained from a uniform distributionin the interval [0,1]. The process to obtain the sparkposition is described by Algorithm 6.
Algorithm 6 Obtain the location of sparks
1. Start the positions of sparks: x̂ = xi;
2. Select Z dimensions in a random form of x̂;
3. Calculate the displacement of the impact: h = Ai ×
Rand(−1, 1);

4. For each dimension x̂jk preselected of x̂j do:
i. x̂jk = x̂jk + h;
ii. If x̂jk < xmink or x̂jk > xmaxk then map x̂jk to the potential
space x̂jk = xmink + |x̂jk|%(xmaxk − xmink ).

To maintain the diversity among sparks, mutant sparksare generated, or their displacements are calculated from aGaussian distribution (new position is equal to generateddisplacement number plus current position). The last stepof the algorithm is to choose the positions of the sparksthat will be used for the launch for new fireworks. Thebest position will always be part of the new populationand other n − 1 positions are chosen from a probability

that depends on its distance to other sparks. The mostcommon way to compute the distance between two sparksis given by
R(xi) = ∑

j∈k
d(xi, xj) = ∑

j∈k
||xi − xj||, (8)

in which k is the set of all positions. The probability ofchoice is given by

p(xi) = R(xi)∑
j∈k R(xj) . (9)

4.4 Enhanced Fireworks Algorithm

Enhanced Fireworks Algorithm (EFA) Zheng et al. (2013);Yue et al. (2020) uses five modifications to the classicalversion of the algorithm: new minimum amplitudecheck, new operator for generating explosion sparks, newmapping operator, new explosion operator of the mutantsparks and new selection operator.As described in the previous section, the fireworks withthe best fitness will have a high number of sparks and alow amplitude. If the amplitude of the explosion is closeto zero, this will cause some sparks to take almost thesame position, losing diversity in the swarm. To correctthis problem a minimum range checker based on thealgorithm’s progress is added (Eq. (10)). At the beginningof the search, the lower limit range ofAmin is high, but withthe increase in the number of iterations of the algorithm,the value of Amin is diminished. For each dimension K, theexplosion amplitude Aki is limited as follows:

Aki =
{
Akmin if A

k
i < Akmin

Aki , otherwise . (10)
In Algorithm 6, it is observed that the displacement ofthe sparks is the same for all positions. Thus, in order tobetter exploit the search space, a new sparks generationprocess is proposed to positions. The change consistsin using an offset ∆X, which is different for each shiftposition. Let X̂kl be the size of the sparks that sufferdisplacement. It is calculated as follows:

∆Xk = Ai × rand(−1, 1) (11)
X̂kl = ˆXkl + ∆Xk. (12)

In the classic version of the Fireworks algorithm, whena new spark location exceeds a range of values of the searchspace of a dimension k [Xkmin,Xkmax], this new spark ismapped to a new value. At several points, the exceededamount is not far from the established limit, and the newvalue generated causes the spark to take near feasiblespace Tan and Zhu (2010). To solve this problem, the sparkis mapped by
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X̄ki = Xkmin + rand× (Xkmax − Xkmin). (13)
To improve the location of these sparks (perform betterexploitation of the search space), the operator of mutantsparks is now calculated asXki = Xki +(XkB−Xki )×e, in which

XB is the current location of the best fireworks/sparksfound thus far and e is a value obtained from a normaldistribution with variance equal to 1 according to Zhenget al. (2013).The EFA selection operator is based on a strategyinvolving the distance between the solutions in sparselypopulated regions. This strategy has a large computationalcost, with great impact on the algorithm execution time.The EFA uses the Elitism-Random Selection selectionmethod, i.e., the new population of fireworks is comprisedby the best and worst solution found so far and n − 2random fireworks. As a result, the running time is muchlower.Algorithm 7 presents the EFA for partitioning of theoriginal codebook for key generation.
Algorithm 7 Proposed EFA codebook partition (EFACP)
1. Initialize the F fireworks as keys with L locationsrepresented by bits 0 and 1 with dimension K;
2. Calculate the amplitude, number of regular sparks (s)and generate the regular sparks of each firework;
3. Generate mutant sparks;
4. For each dimension (K), randomly select a firework andgenerate sparks;
5. Evaluate each spark created using the fitness function(PSNR value);
6. Select the best and worst spark and s - 2 sparksrandomly for new generation fireworks;
7. If the number of iterations is met, return the positionof the best spark found. Otherwise, go to step 2.

5 Methodology and results
The methodology of this paper consisted of using thetechnique introduced in Wang et al. (2007). In thepresent work, we investigate the use of the computationalintelligence algorithms PSO and EFA for the codebookpartitioning. Each algorithm (GCP, PSOCP and EFACP) wasexecuted 30 times and the algorithm LBG was used for thecodebook design. The settings of the Genetic Algorithmwere obtained from Wang et al. (2007) and are presentedin Table 1. The configuration settings of the LBG, PSO, andEnhanced Fireworks algorithms were chosen according totheir literature and are presented respectively in Table 2,Table 3 and Table 4.The simulations were performed using three images512×512 pixels with 256 gray levels (8 bpp) shown in Fig. 5.The quantized images Elaine, Peppers, and Man obtainedthe PSNR values of 31.49 dB, 31.27 dB and 26.49 dB without

Table 1: Genetic Algorithm original settings used by theauthors in Wang et al. (2007).
Population size 10Number of iterations 1000Selection rate 100%Crossover rate 50%Mutation Rate 0.1%Selection operator Roulette Wheel

the insertion of the watermark (that is, reconstructionby using the entire codebook), respectively. The imageRose with 128 × 128 pixels and 1 bit per pixel was used asthe watermark, shown in Fig. 6. As the key that makesthe codebook partition is a binary key (0s and 1s), thealgorithm PSO was used in its binary version and, in thesame way, the Fireworks Algorithm.
Table 2: Settings of codebook designed by the algorithmLBG.

Distortion error threshold 10−4
Codebook size 256Dimension K 16 (blocks 4 × 4)

Table 3: PSO settings.
Number of particles 10Number of iterations 1000
IW 1
factor1 2
factor2 2

Table 4: Enhanced Fireworks Algorithm settings.
Number of iterations 200Number of fireworks 5Number of regular sparks 25Number of mutant sparks 5Maximum value of generated sparks 0.8Minimum value of generated sparks 0.04Maximum amplitude 70

To assess the performance of the computationalintelligence algorithms tested, the PSNR of the images andthe Bit Correct Ratio (BCR) are used. The BCR is calculatedas
BCR(Y,Y’) =

(
1 −

LW∑
i=1 |yi−y′i |
LW

)
× 100%, (14)

in which Y is the original watermark, Y ′ is the extractedwatermark, LW is the size of the watermark, yi and y′iare the ith bits of Y and Y ′, respectively. A variety ofattacks was tested: JPEG compression with quality factorof 40%, 60% and 80%, the filters mean and median, 25%Cropping (third quadrant), Gaussian and Salt and Peppernoise with σ (the standard deviation of the Gaussiandistribution used to generate the noise) and density (the



40 Canêjo et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.1, pp.33–44

proportion of pixels in an image that are affected by the saltand pepper noise) of 0.001 and 0.005, respectively, Poissonand shifting one line downward. Thus, high values of BCRindicate high similarity between the original watermarkand the extracted watermark.

⠀愀⤀

⠀挀⤀

⠀戀⤀

Figure 5: Images used in the simulations. (a) Elaine, (b)Peppers and (d) Man.

Figure 6: The watermark.

The algorithms were implemented using the C#programming language with the VS Code in a computerwith AMD Ryzen 5600x, clock of 3.70 GHz, 32 GB of DD4RAM and the operating system Windows 10.
5.1 Quality of watermarked images

The following results are obtained from the algorithmsGCP, PSOCP, EFACP used for partitioning the originalcodebook into sub-codebooks. Table 5 shows the results ofbest PSNR and average PSNR of the watermarked imagesand Table 6, Table 7 and Table 8 present the BCR resultsobtained from the watermark extracted after the attacks.In Table 5, the highest PSNR value achieved by the PSO

Table 5: Best and average PSNR obtained in simulations.
IMAGE PSNR GA PSO EFA

Elaine Best 30.58 30.61 30.59Average 30.55 30.60 30.58
Man Best 25.58 25.60 25.59Average 25.55 25.59 25.57

Peppers Best 30.00 30.03 30.01Average 29.95 30.01 29.99

algorithm for image Peppers was 30.03 while the PSNR ofthe quantized image was 31.49 dB. The difference of 1.46dB is perceptually observed, as can be seen in Fig. 7.

Figure 7: (a) Quantized image and (b) Watermarkedimage.

As observed in Table 6 to Table 8, attacks such asPoisson and Gaussian noise tend to yield more pronouncedimpacts in the watermark. The sensitivity to changesvaries among images. When applying JPEG compressionwith a quality factor of 40% for GA, the Pepper imageresults in a BCR of 85.71%. In contrast, the Man and Elaineimages yields BCRs of 93.50% and 81.01%, respectively.
Table 6: BCR values of the watermark extracted fromMan after attacks.

BCR (%)
Attacks GA PSO EFA

JPEG, QF=40% 93.50 93.30 93.66JPEG, QF=60% 96.25 96.75 96.78JPEG, QF=80% 98.50 98.61 98.24Mean filtering 74.50 74.11 74.73Median filtering 88.39 88.24 88.52Cropping, 25% 80.26 94.74 80.26Shifting one line 72.73 72.38 73.68Gaussian noise (0.001) 56.36 56.23 56.42Gaussian noise (0.005) 56.24 55.98 55.71Poisson 76.50 76.01 76.50Salt and Pepper (0.001) 99.35 99.29 99.34Salt and Pepper Salt (0.005) 96.53 96.44 96.51
From Fig. 6, the original watermark Rose, we canidentify that the region affected by the Cropping attack25% consists of more black pixels than white pixels. Thus,
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the result of 94.74% for BCR, i.e. greater than other results(80.26%), is an expected result because the watermarkextracted has more black pixels in its third quadrant ascan be seen in Fig. 8.
Fig. 9 shows the result on the watermarks extractedfor some common attacks. For all the attacks presented inFig. 9 for image Peppers, the shifting one line downwardwas the one that most degraded the extracted watermark,with a corresponding value 70.36% of BCR. However, itis still possible to see the rose. The numerical resultsof Table 7 are in consonance with what one observes inFig. 9. Indeed, among the aforementioned attacks, thelowest BCR is associated with shifting one line downward.

Table 7: BCR values of the watermark extracted fromPeppers after attacks.
BCR (%)

Attacks GA PSO EFA
JPEG, QF=40% 85.71 86.68 87.17JPEG, QF=60% 94.73 94.95 94.42JPEG, QF=80% 98.08 98.37 98.42Mean filtering 81.15 81.57 81.37Median filtering 94.53 95.02 94.65Cropping, 25% 94.74 94.74 94.74Shifting one line 70.36 69.79 69.24Gaussian noise (0.001) 56.78 56.02 56.54Gaussian noise (0.005) 56.67 56.87 57.23Poisson 74.04 74.33 74.66Salt and Pepper (0.001) 99.36 99.23 99.22Salt and Pepper Salt (0.005) 96.63 96.42 96.55

Table 8: BCR values of the watermark extracted fromElaine after attacks.
BCR(%)

Attacks GA PSO EFA
JPEG, QF=40% 81.01 78.33 80.52JPEG, QF=60% 88.71 86.10 87.37JPEG, QF=80% 95.29 93.50 93.41Mean filtering 74.41 72.20 72.92Median filtering 81.97 79.55 79.31Cropping, 25% 94.74 94.74 94.74Shifting one line 61.05 59.14 61.04Gaussian noise (0.001) 54.69 55.19 54.27Gaussian noise (0.005) 54.51 55.35 54.65Poisson 69.96 70.23 69.33Salt and Pepper (0.001) 99.33 99.32 99.38Salt and Pepper Salt (0.005) 96.26 96.19 96.27

The lowest BCR value obtained among all imagestested is 54.27% (Table 8) for the Elaine image obtainedby EFA after Gaussian noise attack. Fig. 10 shows thewatermarked image before and after the attack as wellas the watermark extracted, which is very degraded.
We can also observe that the salt and pepper attack witha small density (0.001) leads to high BCR values, almost100%. However, it is important to note that the extractedwatermark still shows signs of being affected by the attackwith minor distortions. For higher density value (0.005),

Figure 8: Watermark extracted with BCR value (a)80.26%, (b) 94.74% and (c) the original watermark.

Figure 9: Watermark extracted from image Peppers for akey generated by the algorithm GA for the attacks (a)mean, (b) JPEG, QF = 40% and (c) shifting one linedownward.

the impact of the attack becomes more pronounced, asshown in Fig. 11.
5.2 Execution time of the algorithms GA, PSO and

EFA

The algorithms were limited to 5000 calls to the fitnessfunction and the Partial Distortion Search (PDS) Bei andGray (1985) technique was used in the Nearest NeighborSearch to all algorithms. A version of PSO without PDS,i.e, full search (PSO FS) was also evaluated. Table 9presents the lowest time (best) and average time (average)obtained.
The comparison of the algorithms in terms of PSNR(Table 10) and total running time (Table 9) revealed thatPSO achieved slightly higher PSNR values compared toGA and EFA. Additionally, PSO demonstrated superiorcomputational efficiency, as it requires running timesshorter than those of GA and EFA.
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⠀愀⤀ ⠀戀⤀

⠀挀⤀

Figure 10: (a) Watermarked Elaine image, (b) appliedGaussian noise with σ = 0.001 attack to the watermarkedimage of Elaine and (c) the watermark extracted afterattack.

⠀愀⤀ ⠀戀⤀

Figure 11: Watermark extracted from image Elaine forSalt and Pepper attack with σ (a) 0.001 and (b) 0.005.

Table 9: Total running time in seconds for the algorithmstested.
IMAGE TIME GA PSO PSO FS EFA

Elaine Best 266.58 253.79 307.41 339.02Average 268.93 255.63 308.22 346.75
Man Best 281.73 266.81 306.02 257.92Average 283.45 268.72 306.88 363.83

Peppers Best 235.08 224.31 306.47 300.73Average 237.97 226.03 307.20 307.08

Table 10: Results for PSNR values for Elaine image withthe number of calls to the fitness function fixed at 5000.
PSNR GA PSO EFA
Best 30.60 30.61 30.58Average 30.58 30.59 30.56

6 Conclusion

This paper presents the use of PSO and EFA algorithmsas alternatives to the Genetic Algorithm in the codebookpartition step in the watermarking technique describedin Wang et al. (2007). A robustness analysis of thewatermarking technique was carried out.The results demonstrated that PSO not only provided

comparable or superior image quality (in terms of PSNR)but also significantly reduced execution time, especiallydue to the use of the Partial Distortion Search (PDS)method. On the other hand, EFA did not yield substantialimprovements in either image quality or resistance toattacks, and presented a higher computational cost.The robustness of the watermarking was validatedagainst several attacks, including JPEG compression,filtering, cropping, noise addition, and geometrictransformation. Among the tested methods, PSOconsistently offered a favorable trade-off betweenrobustness and efficiency.These findings suggest that PSO is a promisingcandidate for watermark embedding in compressedimage domains. Future research could explore otheroptimization strategies or the integration of deeplearning to improve the robustness and adaptability ofwatermarking techniques.
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