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Abstract
Understanding the decision-making processes behind Artificial Intelligence models became a crucial aspect of AI.This paper describes a study that compares the performance of models produced by both interpretable and black-boxalgorithms and evaluates if it is possible to use black-box models to assist in interpretable models’ training. We verifieda significant difference in performance between the two types of models. However, the interpretable model was able tomimic the behavior of the black-box models to a satisfactory degree. The promising initial results obtained from usingblack-box models to aid in interpretable models’ training suggest the potential efficacy of this approach.
Keywords: Black Box Models; Explainable AI; Interpretable Models; Post-hoc Interpretability.
Resumo
Compreender os processos de tomada de decisão por trás dos modelos de Inteligência Artificial tornou-se um aspectocrucial da IA. Este artigo descreve um estudo que compara o desempenho de modelos produzidos por algoritmosinterpretáveis e de caixa-preta, avaliando se é possível utilizar modelos de caixa-preta para auxiliar no treinamentode modelos interpretáveis. Verificamos uma diferença significativa de desempenho entre os dois tipos de modelos. Noentanto, o modelo interpretável foi capaz de imitar o comportamento dos modelos de caixa-preta de maneira satisfatória.Os resultados iniciais promissores obtidos ao usar modelos de caixa-preta para auxiliar no treinamento de modelosinterpretáveis sugerem a potencial eficácia dessa abordagem.
Palavras-Chave: IA Explicável; Interpretabilidade Post-hoc; Modelos Caixa-Preta; Modelos Interpretáveis.

1 Introduction

In recent decades, we have experienced a great advancein the development of artificial intelligence. More andmore sophisticated models were developed and reachedthe state-of-the-art in solving different problems. As thecomplexity of these models increased, they also becameincreasingly opaque, i.e., it is increasingly difficult (andoften even impossible) for a human being to understandthe reason or logic that led the algorithm to produce itsoutput.
With Artificial Intelligence increasingly present inpeople’s daily lives in various areas and the advancement

of the discussion on the protection of personal data andthe right to explanation, an area of Artificial Intelligence(AI) that is receiving considerable attention is ExplainableArtificial Intelligence (XAI). This area has several subfields,which share the objective of developing solutions to allowthe results of AI algorithms to be understood by humanbeings (Miller, 2019; Mohseni et al., 2021). Among themain existing approaches to this end are (i) the productionof inherently explainable models, (ii) the explanation ofopaque models or those considered black-boxes, and (iii)the presentation of some examples to the user to enablethem to understand the context of a result, includingcounterfactual examples.
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In the context of opaque algorithms, much is beingdiscussed about their real need, especially in problemsthat require explanations. One of the main argumentsin this discussion is that it is impossible to effectivelyexplain these models (Lipton, 2018; Rudin and Radin,2019), either based on simpler models or through theidentification of the importance of some input attributesfor the constructed model. The present work aims tocontribute to this discussion, starting with the followingresearch questions:
RQ1: How faithful an interpretable model can be to anopaque counterpart?
RQ2: Is there a performance difference between modelsproduced by an interpretable algorithm and thoseproduced by algorithms considered black-boxes?
RQ3: Is it possible to construct better explainablemodels based on the outputs produced by a black-boxalgorithm?
These questions will be answered in the specific contextaddressed in the present work in which a set of publicdatasets was chosen for the execution of the tests, adecision tree algorithm was adopted as an inherentlyinterpretable algorithm, configured to produce trees ofmaximum height equal to three, and a set of SupervisedLearning algorithms of different natures was selected torepresent the black-box algorithms.The rest of this article is organized as follows. Section 2presents the main concepts used in this work, as wellas the most relevant related work. Section 3 describesthe materials and methods employed in the experiments.The results are presented in Section 4, whereas Section 5contains our conclusions and directions for future work.

2 Related Work
In recent years, the creation of different regulationsrelated to the protection of users’ personaldata and the right of explanation (such asGDPR (Council of the European Union, 2018) inEurope and LGPD (Brasil, 2018) in Brazil) has intensifiedthe discussion about the use and impact of ArtificialIntelligence algorithms in society. In particular, the rightto explanation raised questions about the feasibility andlegality of using some algorithms that affect people’s dailylives.In some areas, such as medicine, it has always beenquestioned how computer-generated diagnoses could beused. In the autonomous car development area (Nyholmand Smids, 2016), this subject is also widely discussed,including legal responsibility in the case of accidentscaused by design or implementation problems. In additionto these specific cases, where human lives may be directlyat risk due to the action of AI algorithms, there are severalother activities that directly affect people’s lives. Forexample, in the financial area, there are several companiesthat use algorithms to assist in the process of granting ornot granting loans. There are also companies that useAI models in their human resources sectors. Moreover,

different security and public services use different AImodels, including facial recognition algorithms, as a partof their procedures (Angwin et al., 2022; Coelho and Burg,2020; Francisco et al., 2020; Ramos, 2019).In terms of machine learning models, two maincharacteristics are often used to indicate how interpretablea model is: (i) the intrinsic nature of how “knowledge” isrepresented in the model and (ii) the size of the model. Forexample, in a linear regression, the coefficients relatedto each attribute or feature are learned; in a decisiontree, the decision nodes are learned; whereas in a neuralnetwork, the weights of the links are learned. Themeaning of a coefficient value in a linear regression ora decision node in a decision tree is often consideredeasier to understand than the weights in a Deep NeuralNetwork. On the other hand, the size of the model is alsoimportant. Understanding the importance and meaningof the coefficients in a linear regression that uses threeattributes is considered easier than in a regression thatuses one hundred of them, just as a decision tree of heightthree is more “interpretable” than one of height 20.Models whose interpretation is not simple are usuallyconsidered opaque, even for those who understand thelogic behind the construction of these models. Forexample, deep neural networks or models producedfrom large language models are often considered opaque.It is noteworthy that the opacity can be attributeddirectly based on the type of algorithm that producedthe model or considering the attributes that were used.For example, if the attributes used to build the modelwere generated from a projection process (for example,using principal component analysis), the resulting model,even if produced by an algorithm considered inherentlyinterpretable, will be considered opaque, because thefeatures have no straightforward meaning for a humanbeing.The black-box concept has been used for decadesin Software Engineering. Considering a system, acomponent, or a function as a black-box means treatingthis resource as if you don’t know (or don’t care about)its internal behavior. In the context of XAI, it is usual toobserve the term black-box in two situations: to refer toopaque algorithms or models (often black-box and opaqueare used interchangeably), and in the analysis of models,ignoring their internal functioning, considering only theoutputs produced by the respective inputs (here, the termhas the same meaning as used in Software Engineering).In the latter case, regardless of whether the model isinterpretable or not or whether access to the code or modelrepresenting the model is available, it will be treated as ablack-box.The present work uses the term black-box in thissecond context. Regardless of the nature of the algorithmthat produced the model, it will be considered a black-boxif we do not have access to either the training data usedfor its production or the internal details of its model.Explainable Artificial Intelligence, in turn, correspondsto an area that studies, in different ways, how AI canproduce results that can be interpreted by human beings.Typically, this interpretation (or understanding) takesplace in three main ways, presented and detailed asfollows.
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Development of Inherently Explainable Models:many of the first models used in Artificial Intelligencesystems were considered inherently interpretable, suchas models based on decision trees, linear regression, ormodels that use association rules. Over the decades,increasingly complex models have been developed, andthe understanding of the reason or logic that leadsthese models to produce their outputs is increasinglynebulous (Lee et al., 2020; Butt and Iqbal, 2025). Thisbranch of XAI aims at developing new algorithms that areinherently explainable or improving those that alreadyexist, either by modifying some of their characteristics orrefining the training process to produce better models.
Explanation of Opaque / Black-Box Models: due tothe fact that several black-box models have reached thestate-of-the-art for some specific families of problems,many researchers consider relevant to try to explainwhy these models produced their results. There are twomain approaches to explaining such models (Vieira andDigiampietri, 2022). In the first one, an explainable modelis built to mimic the behavior of the black-box model.To this end, during the explainable model’s training, theoutput of the black-box model is used as the values ofthe target variable. In the second approach, the black-box model is explained on the basis of the estimatedimportance of each of its input features (Ribeiro et al.,2016). Typically, several outputs are produced by varyingthe value of different features, and the impact on the targetattribute is analyzed considering these variations.
Presentation of Examples to the User: this branch ofXAI assumes that human understanding, and in particularthose who are not experts in AI, can benefit from thepresentation of a set of examples. The rationale isthat, given a set of classification examples (input dataand corresponding outputs), a person can gain a betterunderstanding of how the model works. In particular, thisbranch works with counterfactual examples (Byrne, 2019),

i.e. examples where the output was different from the oneof some specific input example. This type of approach isusually used not only to explain the rationale of a modelbut also to guide the user on what can be done to obtain adifferent output. For example, if a loan request was denied,it is possible, from counterfactual examples “near” to theuser input data, to present what would be necessary forthe request to be accepted.The present work deals with two of these XAI aspects.Initially, this work evaluates the explanation of black-boxmodels through inherently explainable models (ResearchQuestion 1). In this case, we use decision trees of heightthree. This work is also related to the production anduse of inherently explainable models while investigatingwhether it is possible to build explainable models based onthe results of black-box models (Research Question 3). Theanalysis of the produced results aims to answer ResearchQuestion 2, contributing to the discussion about theeffective need for opaque models in problems of differentnatures.Regarding evaluation, there are different ways ofassessing the outcome of an explanation (Aggarwal et al.,2019; Hoffman et al., 2019; Papenmeier et al., 2022). Oneof the most robust is to check with a large set of usershow adequate the explanations given about a model are.

However, due to the complexity and cost of questioning alarge number of users, there are also metrics that can beobtained automatically to assess the simplicity of a modeland the quality of some explanation methods. Due to theirsimplicity, two of the most commonly used metrics arethe model’s size, which verifies how simple (i.e. how easyto understand) it is, and the fidelity of some models whenused to explain another.As an instance of an interpretable model that is simpleto understand, in this work, we apply decision trees ofheight three. The quality of this model, when explainingits black-box counterpart, will be measured by its fidelity,
i.e. the coincidence rate between the predictions madeby the black-box and the interpretable models. Althoughthis measure may be considered equivalent to accuracy,instead of comparing the output of the interpretable modelwith the target variable of the test set, this comparison ismade with the output of the black-box model.Finally, the area of Algorithmic Fairness, whichis closely related to XAI, has also seen significantdevelopment in recent years. Although it lacks a preciseand commonplace definition, Algorithmic Fairnesstypically refers to attempts to correct algorithmic bias inautomated decision-making processes (Aggarwal et al.,2019; Mitchell et al., 2021).In their work, Suresh and Guttag (Suresh and Guttag,2021) identified potential sources of harm that can lead toseven biases in machine learning algorithms: historicalbias, representation bias, measurement bias, aggregationbias, learning bias, evaluation bias, and deployment bias.While each of these biases has specific characteristics andis produced in different ways (for example, if there hashistorically been a prejudice in society that is eventuallyreproduced by the algorithm or the algorithm is beingused incorrectly), XAI has tools to assist in the detectionand potential remediation of these biases.Understanding an AI model, whether through aninterpretable model or various explanations of opaquemodels, allows for an evaluation beyond traditionalperformance metrics. When conducted by an expertcommitted to minimizing biases, this process enables themodel to be revised or improved before implementation,potentially making it fairer.
3 Materials and Methods
Eight public datasets commonly used for the constructionand validation of artificial intelligence models werearbitrarily selected from the UCI1 and Kaggle2 repositories.All datasets underwent a similar pre-processing step, inwhich categorical data was converted to numeric data,missing values were replaced by default values, andproblems with more than two classes were reduced to twoclasses. There were datasets with four classes followinga gradation (for example, very bad, bad, good, and verygood), in which case the classes were mapped to two (badand good) in order to treat only binary problems in this

1UC Irvine Machine Learning Repository: https://archive.ics.uci.
edu2Kaggle: https://www.kaggle.com/
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Table 1: Datasets descriptionName Number of Lines Percentage of elements inthe Majority ClassBreast Cancer 286 70.3%Congressional Voting 435 61.4%Diabetes 768 65.1%German Credit 1,000 70.0%Heart Failure 918 55.3%Online News Popularity 39,644 50.7%Online Shoppers Purchasing 12,330 84.5%Student Performance 649 50.5%

work. Table 1 summarizes the characteristics of the datasets used after this pre-processing step.Although we are aware that it would be possible toapply other more sophisticated pre-processing tasks, wedecided to keep this step as simple as possible, producingadequate data for the next stages of the process, since thiswas not part of the main objectives of this work and wouldnot help answer the research questions.Seven algorithms were selected to create the models.This selection was made so as to use models that areconstructed under different principles. Table 2 showsthe algorithms used and their parameters. Notably,Decision Trees were used in two different contexts: as aninterpretable model with a height limited to three and as ablack-box model with default values for all its parameters,except the maximum number of interactions for LogisticRegression and Multilayer Perceptron, we increase thisnumber in order to guarantee the convergence of thesemodels. SVM also had two implementations, both usedas a black-box: one using a linear kernel and the otherusing a polynomial kernel. In this work, we use theimplementations of these algorithms presented in theScikit-Learn Python library3.
Table 2: Algorithms and parametersAlgorithm Parameters Use in this workDecision Tree max_depth = 3 InterpretableDecision Tree (default) Black-BoxRandom Forest (default) Black-BoxSVM (default) Black-BoxSVM kernel = ‘poly′ Black-BoxLogistic Regression max_iter = 5000 Black-BoxMultilayer Perceptron max_iter = 5000 Black-BoxGaussian Naive Bayes (default) Black-BoxKNN (default) Black-Box

After pre-processing, each dataset was randomly splitinto three subsets, through stratified random samplingfrom a uniform distribution. As a result, 40% of the databuilt the first training set and other 40% the second, withthe remaining 20% of the data being regarded as a testset, as illustrated in Fig. 1. This division is justified by theneed for different training sets for the black-box modelsand for the interpretable models that intend to explainthose black-boxes. In particular, when a company uses a
3Scikit-Learn Version 1.3: https://scikit-learn.org/stable/

black-box system, it is common not to have access to thetraining data of that system. This division of sets makes itpossible to simulate this situation.

Figure 1: Data set stratified split strategy.
After splitting up the data, we took a four-stageapproach to this research, as illustrated in Fig. 2. It is worthstressing, at this point, that this process was repeated foreach combination of black-box model and dataset. In thefirst step (Fig. 2A), Training Set 1 is used to train boththe interpretable model (Interpretable Model 1) and theblack-box model. The purpose of Interpretable Model 1is not to explain the black-box but instead to be used inthe comparative analysis of the models in order to answerResearch Question 2.In the second stage (Fig. 2B), the trained black-box model is applied to Training Set 2, making itspredictions for these data (prediction2). Next, at thethird stage (Fig. 2C), two additional interpretable models(Interpretable Model 2 and 3) are trained in Training Set 2.One of them has as its target variable the values from thetraining set, while the other takes the output produced bythe black-box model (prediction2). Finally, at the fourthstep (Fig. 2D), all four models make their predictions in theTest set. These predictions are, in turn, used to evaluatethe performance of the models.In the present work, all models were evaluated usingaccuracy and macro-F1 score. The explanatory capacity ofInterpretable Model 3, in relation to the black-box models,was assessed through the fidelity measure in order toanswer Research Question 1. Research Question 3, in turn,will be answered based on the evaluation of the outputsof Interpretable Model 2 (predictionI2) when comparedto the values of the Test Set’s target variable. All thematerials used or developed in this project were madepublicly available4.

4https://drive.google.com/drive/folders/1gL7OGYkWg0EjAbSiB4J8
hOBE8UTj966r

https://scikit-learn.org/stable/
https://drive.google.com/drive/folders/1gL7OGYkWg0EjAbSiB4J8hOBE8UTj966r
https://drive.google.com/drive/folders/1gL7OGYkWg0EjAbSiB4J8hOBE8UTj966r
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Figure 2: The four stages of this research.
Table 3: Accuracy for Interpretable Model 1 and each of the Black-Box Models

4 Results and Discussion
We start our discussion by presenting the performance ofthe models trained at Training Set 1 (Section 4.1). Next,in Section 4.2, we analyze our results regarding fidelity.Finally, in Section 4.3, we describe our findings relatedto the improvement of the interpretable model trainingbased on the outputs of the black-box models.
4.1 Model Performance

The model accuracy achieved when training at TrainingSet 1 can be seen in Table 3, with their corresponding F1-scores being shown in Table 4. To ease visualization, inthese tables, cells with a more intense green backgroundcorrespond to higher values. The lowest values areindicated by cells in more intense red.It can be observed that for the selected models anddatasets, Random Forest was the model that delivered thebest accuracy in seven of the eight datasets (tying with theother four models at the Congressional Voting dataset),losing its position to SVM with a polynomial kernel onlyin the Student Performance set, where it scored third(around 4% worse than the SVM). In terms of accuracy, the

performance of the interpretable model was, on average5,93.2% of the performance of the best model for each of thedatasets (ranging from 82.3% for the Student Performancedataset to 100%, i.e. equal to the best result obtained forthe Congressional Voting dataset).Considering the macro-F1 score, the model with thebest performance was again the Random Forest Algorithm,obtaining the best result for six of the eight data sets. TheGaussian Naive Bayes model reached the best F1 score forthe German Credit and Student Performance sets, tying,in the latter case, with the SVM with a polynomial kernel.On average, the F1 score of the interpretable modelcorresponded to 90.5% of the values obtained by the best-performing models (ranging from 82.7% for the StudentPerformance set to 100% for the Congressional Voting set).Based on these results, it can be said that the interpretablemodel used in this work performed worse (on average)than the best model for each of the datasets. As such,RQ2 was answered confirming there is a difference inperformance between them.

5All averages in this work correspond to the arithmetic mean.
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Table 4: F1 score results from Interpretable Model 1 and each of the Black-Box Models

Table 5: Fidelity results of Interpretable Model 3

4.2 Fidelity of the interpretable model

In this section, we evaluate the ability of InterpretableModel 3 to mimic the results produced by the black-boxmodels, calculated through the fidelity measure. Table 5presents the fidelity of the results of Interpretable Model3 concerning the results of the black-boxes models.As it turns out, the overall average fidelity was 88.9%.When considering each black-box model, it is observedthat, on average, the highest fidelity of InterpretableModel 3 occurred with SVM using a linear kernel (94.6%).On the other hand, the worst average performance was77.1%, for the Decision Tree with no height limit. This lastresult is rather interesting as it indicates that a smallertree (height three) could not mimic well the results of atree that had no height limit.Here, it is worth noting that the decision tree modeltreated as a black-box had, on average, achieved the worstvalue for the F1 score and one of the worst accuracy results,both values lower than the results of the InterpretableModel 3 (see Section 4.1). This indicates that the modelwas unable to create rules that generalized the learnedknowledge. Not limiting the tree height may have resultedin an overly specific model, i.e., overfitting, which theinterpretable model could not replicate.In addition to the average fidelity (88.9%), as well as thelowest and highest average per model (respectively 77.1%and 94.6%), we considered it appropriate to comparethese values with the equivalent values produced byInterpretable Model 1. It is important to remember thatInterpretable Model 1 was not built to mimic the black-box models, but rather to solve the same problem thatthe black-box models were solving. On average, theintersection of the results of the interpretable model withthe black-box models (which is equivalent to fidelity)

was 79.2%, ranging from 70.5% for the model based onDecision Trees to 86.4% for the SVM with a linear kernel.Thus, on average, Interpretable Model 3 managed tosatisfactorily mimic the black-box models, significantlybetter than the corresponding model, which had notbeen trained to this end (Interpretable Model 1), therebyanswering RQ1. It is noteworthy that, as presented inthe related literature (e.g. Rudin and Radin (2019)), evenhigh values of fidelity may not signify that the samelogic “learned” by the black-box model was also “learned”by the interpretable model, and this is one of the mainlimitations of this specific type of models’ explanation.
4.3 Improvements to the interpretable model

As explained in Section 3, the interpretable modelswere built using the output of the black-box models(what was called Interpretable Model 3). The fidelityof these models was presented in the previous section.In addition to fidelity, this work hypothesized thatinterpretable models built from the output of black-boxmodels could outperform interpretable models trainedusing the target variable of the training set. Thishypothesis was based on the fact that black-box modelscorrespond to simplifications of the world and, therefore,it might be easier for the interpretable model to learn fromthis simplification instead of directly learning from theoriginal data.To carry out this analysis, the performance ofInterpretable Models 2 and 3 were compared (both werebuilt based on Training Set 2). In this case, while Model 2took its target variable from the training set, InterpretableModel 3 used the output of each black-box model as thetarget. Table 6 and Table 7 present the results for accuracy
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Table 6: Accuracy comparison of Interpretable Models 2 and 3

Table 7: F1 score comparison of Interpretable Models 2 and 3

and F1 score. In these tables, the first column indicatesthe dataset, the second shows the results of InterpretableModel 2, and the remaining columns contain the resultsfor Interpretable Model 3, according to the output of eachblack-box model.
As shown in Table 6, Interpretable Model 2 obtainedonly three of the best accuracy results, showing thatmodels trained with the output of the black-box modelspresented better results for five of the data sets. Theinterpretable model built using the output of the RandomForest model stands out, being superior (althoughsometimes slightly) to Interpretable Model 2 in five ofthe eight datasets.
Regarding F1 score, Interpretable Model 2 achievedthe best performance only in two datasets (OnlineNews Popularity and Online Shoppers Purchasing). Theinterpretable models built using the output of the LogisticRegression Model performed equal to or better thanInterpretable Model 2 on five of the eight datasets. Thesame occurred with the models that used the output of themodel based on Decision Trees as input with no heightlimit.
These results help to provide an initial answer to RQ3,indicating that training interpretable models based on thevalues of the target variable of the training set does notalways deliver the best performances when compared tomodels trained using the output of other black-box models.Additional investigations are necessary, however, as wellas the calculation of different statistical measures. Ourresults nevertheless indicate that this is an interestingvenue for investigation.

5 Conclusion
Machine learning has revolutionized how knowledge canbe discovered from data. Since the emergence of ArtificialIntelligence, different models have been created, allowingnot only automated problem-solving but also a betterunderstanding of the data.Although the desire to understand the processes thatinvolve the decisions made by models created by AI is notsomething new and is fundamental in some areas, suchas health for example, some of the newer techniques havean inherent complexity that makes it virtually impossibleto fully understand the process that leads to each of theiroutputs. Thus, the development of strategies to try toexplain the decisions made by black-box algorithms hasbecome fundamental.In this work, we compared the performance of modelsproduced by an interpretable algorithm to models taken asblack-boxes produced by algorithms of different kinds. Inaddition to comparing performance between algorithms,fidelity (the ability of the interpretable model to mimicpart of the behavior of black-box models) was alsomeasured. Finally, it was verified whether it is possible touse black-box models to assist in the interpretable modelstraining.All in all, the expected difference in performancebetween the black-box models and the interpretablemodel was verified, which, for many problems, serves as ajustification for the use of black-box models. A satisfactoryability of the interpretable model to mimic the behaviorof the black-box model was also observed. Fidelity, onaverage, was higher than the accuracy of the interpretablemodel solving the problem at hand.As limitations of the present work, we emphasizethat the results and conclusions are solely based on
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the materials and methods of use, i.e., eight datasets,an algorithm used to build the interpretable models,and eight models treated as black-boxes built by sevendifferent algorithms. As directions for future work, weintend to expand the study, including a larger set ofdatasets, different interpretable algorithms, and moreblack-box algorithms.
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