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Abstract

Understanding the decision-making processes behind Artificial Intelligence models became a crucial aspect of Al
This paper describes a study that compares the performance of models produced by both interpretable and black-box
algorithms and evaluates if it is possible to use black-box models to assist in interpretable models’ training. We verified
a significant difference in performance between the two types of models. However, the interpretable model was able to
mimic the behavior of the black-box models to a satisfactory degree. The promising initial results obtained from using
black-box models to aid in interpretable models’ training suggest the potential efficacy of this approach.

Keywords: Black Box Models; Explainable AI; Interpretable Models; Post-hoc Interpretability.

Resumo

Compreender os processos de tomada de decisdo por tras dos modelos de Inteligéncia Artificial tornou-se um aspecto
crucial da IA. Este artigo descreve um estudo que compara o desempenho de modelos produzidos por algoritmos
interpretaveis e de caixa-preta, avaliando se é possivel utilizar modelos de caixa-preta para auxiliar no treinamento
de modelos interpretaveis. Verificamos uma diferenga significativa de desempenho entre os dois tipos de modelos. No
entanto, o modelo interpretavel foi capaz de imitar o comportamento dos modelos de caixa-preta de maneira satisfatéria.
Os resultados iniciais promissores obtidos ao usar modelos de caixa-preta para auxiliar no treinamento de modelos
interpretaveis sugerem a potencial eficacia dessa abordagem.

Palavras-Chave: IA Explicavel; Interpretabilidade Post-hoc; Modelos Caixa-Preta; Modelos Interpretaveis.

1 Introduction of the discussion on the protection of personal data and
the right to explanation, an area of Artificial Intelligence

In recent decades, we have experienced a great advance  (Al) that is receiving considerable attention is Explainable

in the development of artificial intelligence. More and
more sophisticated models were developed and reached
the state-of-the-art in solving different problems. As the
complexity of these models increased, they also became
increasingly opaque, i.e., it is increasingly difficult (and
often even impossible) for a human being to understand
the reason or logic that led the algorithm to produce its
output.

With Artificial Intelligence increasingly present in
people’s daily lives in various areas and the advancement

Artificial Intelligence (XAI). This area has several subfields,
which share the objective of developing solutions to allow
the results of Al algorithms to be understood by human
beings (Miller, 2019; Mohseni et al., 2021). Among the
main existing approaches to this end are (i) the production
of inherently explainable models, (ii) the explanation of
opaque models or those considered black-boxes, and (iii)
the presentation of some examples to the user to enable
them to understand the context of a result, including
counterfactual examples.
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In the context of opaque algorithms, much is being
discussed about their real need, especially in problems
that require explanations. One of the main arguments
in this discussion is that it is impossible to effectively
explain these models (Lipton, 2018; Rudin and Radin,
2019), either based on simpler models or through the
identification of the importance of some input attributes
for the constructed model. The present work aims to
contribute to this discussion, starting with the following
research questions:

RQ1: How faithful an interpretable model can be to an
opaque counterpart?

RQ2: Is there a performance difference between models
produced by an interpretable algorithm and those
produced by algorithms considered black-boxes?

RQ3: Is it possible to construct better explainable
models based on the outputs produced by a black-box
algorithm?

These questions will be answered in the specific context
addressed in the present work in which a set of public
datasets was chosen for the execution of the tests, a
decision tree algorithm was adopted as an inherently
interpretable algorithm, configured to produce trees of
maximum height equal to three, and a set of Supervised
Learning algorithms of different natures was selected to
represent the black-box algorithms.

The rest of this article is organized as follows. Section 2
presents the main concepts used in this work, as well
as the most relevant related work. Section 3 describes
the materials and methods employed in the experiments.
The results are presented in Section 4, whereas Section 5
contains our conclusions and directions for future work.

2 Related Work

In recent years, the creation of different regulations
related to the protection of users’ personal
data and the right of explanation (such as
GDPR (Council of the European Union, 2018) in
Europe and LGPD (Brasil, 2018) in Brazil) has intensified
the discussion about the use and impact of Artificial
Intelligence algorithms in society. In particular, the right
to explanation raised questions about the feasibility and
legality of using some algorithms that affect people’s daily
lives.

In some areas, such as medicine, it has always been
questioned how computer-generated diagnoses could be
used. In the autonomous car development area (Nyholm
and Smids, 2016), this subject is also widely discussed,
including legal responsibility in the case of accidents
caused by design or implementation problems. In addition
to these specific cases, where human lives may be directly
at risk due to the action of Al algorithms, there are several
other activities that directly affect people’s lives. For
example, in the financial area, there are several companies
that use algorithms to assist in the process of granting or
not granting loans. There are also companies that use
AI models in their human resources sectors. Moreover,

different security and public services use different Al
models, including facial recognition algorithms, as a part
of their procedures (Angwin et al., 2022; Coelho and Burg,
2020; Francisco et al., 2020; Ramos, 2019).

In terms of machine learning models, two main
characteristics are often used to indicate how interpretable
amodel is: (i) the intrinsic nature of how “knowledge” is
represented in the model and (ii) the size of the model. For
example, in a linear regression, the coefficients related
to each attribute or feature are learned; in a decision
tree, the decision nodes are learned; whereas in a neural
network, the weights of the links are learned. The
meaning of a coefficient value in a linear regression or
a decision node in a decision tree is often considered
easier to understand than the weights in a Deep Neural
Network. On the other hand, the size of the model is also
important. Understanding the importance and meaning
of the coefficients in a linear regression that uses three
attributes is considered easier than in a regression that
uses one hundred of them, just as a decision tree of height
three is more “interpretable” than one of height 20.

Models whose interpretation is not simple are usually
considered opaque, even for those who understand the
logic behind the construction of these models. For
example, deep neural networks or models produced
from large language models are often considered opaque.
It is noteworthy that the opacity can be attributed
directly based on the type of algorithm that produced
the model or considering the attributes that were used.
For example, if the attributes used to build the model
were generated from a projection process (for example,
using principal component analysis), the resulting model,
even if produced by an algorithm considered inherently
interpretable, will be considered opaque, because the
features have no straightforward meaning for a human
being.

The black-box concept has been used for decades
in Software Engineering. Considering a system, a
component, or a function as a black-box means treating
this resource as if you don’t know (or don’t care about)
its internal behavior. In the context of XAl, it is usual to
observe the term black-box in two situations: to refer to
opaque algorithms or models (often black-box and opaque
are used interchangeably), and in the analysis of models,
ignoring their internal functioning, considering only the
outputs produced by the respective inputs (here, the term
has the same meaning as used in Software Engineering).
In the latter case, regardless of whether the model is
interpretable or not or whether access to the code or model
representing the model is available, it will be treated as a
black-box.

The present work uses the term black-box in this
second context. Regardless of the nature of the algorithm
that produced the model, it will be considered a black-box
if we do not have access to either the training data used
for its production or the internal details of its model.

Explainable Artificial Intelligence, in turn, corresponds
to an area that studies, in different ways, how Al can
produce results that can be interpreted by human beings.
Typically, this interpretation (or understanding) takes
place in three main ways, presented and detailed as
follows.
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Development of Inherently Explainable Models:
many of the first models used in Artificial Intelligence
systems were considered inherently interpretable, such
as models based on decision trees, linear regression, or
models that use association rules. Over the decades,
increasingly complex models have been developed, and
the understanding of the reason or logic that leads
these models to produce their outputs is increasingly
nebulous (Lee et al., 2020; Butt and Igbal, 2025). This
branch of XAl aims at developing new algorithms that are
inherently explainable or improving those that already
exist, either by modifying some of their characteristics or
refining the training process to produce better models.

Explanation of Opaque / Black-Box Models: due to
the fact that several black-box models have reached the
state-of-the-art for some specific families of problems,
many researchers consider relevant to try to explain
why these models produced their results. There are two
main approaches to explaining such models (Vieira and
Digiampietri, 2022). In the first one, an explainable model
is built to mimic the behavior of the black-box model.
To this end, during the explainable model’s training, the
output of the black-box model is used as the values of
the target variable. In the second approach, the black-
box model is explained on the basis of the estimated
importance of each of its input features (Ribeiro et al.,
2016). Typically, several outputs are produced by varying
the value of different features, and the impact on the target
attribute is analyzed considering these variations.

Presentation of Examples to the User: this branch of
XAl assumes that human understanding, and in particular
those who are not experts in Al, can benefit from the
presentation of a set of examples. The rationale is
that, given a set of classification examples (input data
and corresponding outputs), a person can gain a better
understanding of how the model works. In particular, this
branch works with counterfactual examples (Byrne, 2019),
i.e. examples where the output was different from the one
of some specific input example. This type of approach is
usually used not only to explain the rationale of a model
but also to guide the user on what can be done to obtain a
different output. For example, if a loan request was denied,
it is possible, from counterfactual examples “near” to the
user input data, to present what would be necessary for
the request to be accepted.

The present work deals with two of these XAI aspects.
Initially, this work evaluates the explanation of black-box
models through inherently explainable models (Research
Question 1). In this case, we use decision trees of height
three. This work is also related to the production and
use of inherently explainable models while investigating
whether it is possible to build explainable models based on
the results of black-box models (Research Question 3). The
analysis of the produced results aims to answer Research
Question 2, contributing to the discussion about the
effective need for opaque models in problems of different
natures.

Regarding evaluation, there are different ways of
assessing the outcome of an explanation (Aggarwal et al.,
2019; Hoffman et al., 2019; Papenmeier et al., 2022). One
of the most robust is to check with a large set of users
how adequate the explanations given about a model are.

However, due to the complexity and cost of questioning a
large number of users, there are also metrics that can be
obtained automatically to assess the simplicity of a model
and the quality of some explanation methods. Due to their
simplicity, two of the most commonly used metrics are
the model’s size, which verifies how simple (i.e. how easy
to understand) it is, and the fidelity of some models when
used to explain another.

As an instance of an interpretable model that is simple
to understand, in this work, we apply decision trees of
height three. The quality of this model, when explaining
its black-box counterpart, will be measured by its fidelity,
i.e. the coincidence rate between the predictions made
by the black-box and the interpretable models. Although
this measure may be considered equivalent to accuracy,
instead of comparing the output of the interpretable model
with the target variable of the test set, this comparison is
made with the output of the black-box model.

Finally, the area of Algorithmic Fairness, which
is closely related to XAI, has also seen significant
development in recent years. Although it lacks a precise
and commonplace definition, Algorithmic Fairness
typically refers to attempts to correct algorithmic bias in
automated decision-making processes (Aggarwal et al.,
2019; Mitchell et al., 2021).

In their work, Suresh and Guttag (Suresh and Guttag,
2021) identified potential sources of harm that can lead to
seven biases in machine learning algorithms: historical
bias, representation bias, measurement bias, aggregation
bias, learning bias, evaluation bias, and deployment bias.
While each of these biases has specific characteristics and
is produced in different ways (for example, if there has
historically been a prejudice in society that is eventually
reproduced by the algorithm or the algorithm is being
used incorrectly), XATI has tools to assist in the detection
and potential remediation of these biases.

Understanding an Al model, whether through an
interpretable model or various explanations of opaque
models, allows for an evaluation beyond traditional
performance metrics. When conducted by an expert
committed to minimizing biases, this process enables the
model to be revised or improved before implementation,
potentially making it fairer.

3 Materials and Methods

Eight public datasets commonly used for the construction
and validation of artificial intelligence models were
arbitrarily selected from the UCI* and Kaggle” repositories.
All datasets underwent a similar pre-processing step, in
which categorical data was converted to numeric data,
missing values were replaced by default values, and
problems with more than two classes were reduced to two
classes. There were datasets with four classes following
a gradation (for example, very bad, bad, good, and very
good), in which case the classes were mapped to two (bad
and good) in order to treat only binary problems in this

1UC Irvine Machine Learning Repository: https://archive.ics.uci.
edu
2Kaggle: https://wuw.kaggle.com/
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Table 1: Datasets description

Name Number of Lines | Percentage of elements in
the Majority Class
Breast Cancer 286 70.3%
Congressional Voting 435 61.4%
Diabetes 768 65.1%
German Credit 1,000 70.0%
Heart Failure 918 55.3%
Online News Popularity 39,644 50.7%
Online Shoppers Purchasing 12,330 84.5%
Student Performance 649 50.5%

work. Table 1 summarizes the characteristics of the data
sets used after this pre-processing step.

Although we are aware that it would be possible to
apply other more sophisticated pre-processing tasks, we
decided to keep this step as simple as possible, producing
adequate data for the next stages of the process, since this
was not part of the main objectives of this work and would
not help answer the research questions.

Seven algorithms were selected to create the models.
This selection was made so as to use models that are
constructed under different principles. Table 2 shows
the algorithms used and their parameters. Notably,
Decision Trees were used in two different contexts: as an
interpretable model with a height limited to three and as a
black-box model with default values for all its parameters,
except the maximum number of interactions for Logistic
Regression and Multilayer Perceptron, we increase this
number in order to guarantee the convergence of these
models. SVM also had two implementations, both used
as a black-box: one using a linear kernel and the other
using a polynomial kernel. In this work, we use the
implementations of these algorithms presented in the
Scikit-Learn Python library3.

Table 2: Algorithms and parameters

Algorithm Parameters Use in this work
Decision Tree max_depth = 3 Interpretable
Decision Tree (default) Black-Box
Random Forest (default) Black-Box
SVM (default) Black-Box
SVM kernel = ‘poly’ Black-Box
Logistic Regression max_iter = 5000 Black-Box
Multilayer Perceptron | max_iter = 5000 Black-Box
Gaussian Naive Bayes (default) Black-Box
KNN (default) Black-Box

After pre-processing, each dataset was randomly split
into three subsets, through stratified random sampling
from a uniform distribution. As a result, 40% of the data
built the first training set and other 40% the second, with
the remaining 20% of the data being regarded as a test
set, as illustrated in Fig. 1. This division is justified by the
need for different training sets for the black-box models
and for the interpretable models that intend to explain
those black-boxes. In particular, when a company uses a

3Scikit-Learn Version 1.3: https://scikit-learn.org/stable/

black-box system, it is common not to have access to the
training data of that system. This division of sets makes it
possible to simulate this situation.

40% 40% 20%

Figure 1: Data set stratified split strategy.

Training 1 Training 2

target

target

After splitting up the data, we took a four-stage
approach to this research, asillustrated in Fig. 2. It isworth
stressing, at this point, that this process was repeated for
each combination of black-box model and dataset. In the
first step (Fig. 2A), Training Set 1 is used to train both
the interpretable model (Interpretable Model 1) and the
black-box model. The purpose of Interpretable Model 1
is not to explain the black-box but instead to be used in
the comparative analysis of the models in order to answer
Research Question 2.

In the second stage (Fig. 2B), the trained black-
box model is applied to Training Set 2, making its
predictions for these data (prediction,). Next, at the
third stage (Fig. 2C), two additional interpretable models
(Interpretable Model 2 and 3) are trained in Training Set 2.
One of them has as its target variable the values from the
training set, while the other takes the output produced by
the black-box model (prediction,). Finally, at the fourth
step (Fig. 2D), all four models make their predictions in the
Test set. These predictions are, in turn, used to evaluate
the performance of the models.

In the present work, all models were evaluated using
accuracy and macro-F1 score. The explanatory capacity of
Interpretable Model 3, in relation to the black-box models,
was assessed through the fidelity measure in order to
answer Research Question 1. Research Question 3, in turn,
will be answered based on the evaluation of the outputs
of Interpretable Model 2 (prediction;,) when compared
to the values of the Test Set’s target variable. All the
materials used or developed in this project were made
publicly available”.

bnttps://drive.google.com/drive/folders/1gL70GYkWgOEjAbSiB4J8
hOBE8UT j9661r
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Figure 2: The four stages of this research.

Table 3: Accuracy for Interpretable Model 1 and each of the Black-Box Models

Interpretable
Maodel 1
0,707

Dataset
Breast Cancer
Congressional Voting
Diabetes

Decision | Random | SVM

Logistic
Regression

Multilayer | Gaussian
Perceptron | Maive Bayes

0,943
0,753

0,766

German Credit

Heart Failure

Online Mews Popularity
Online Shoppers Purchasing
Student Performance

4 Results and Discussion

We start our discussion by presenting the performance of
the models trained at Training Set 1 (Section 4.1). Next,
in Section 4.2, we analyze our results regarding fidelity.
Finally, in Section 4.3, we describe our findings related
to the improvement of the interpretable model training
based on the outputs of the black-box models.

4.1 Model Performance

The model accuracy achieved when training at Training
Set 1 can be seen in Table 3, with their corresponding F1-
scores being shown in Table 4. To ease visualization, in
these tables, cells with a more intense green background
correspond to higher values. The lowest values are
indicated by cells in more intense red.

It can be observed that for the selected models and
datasets, Random Forest was the model that delivered the
best accuracy in seven of the eight datasets (tying with the
other four models at the Congressional Voting dataset),
losing its position to SVM with a polynomial kernel only
in the Student Performance set, where it scored third
(around 4% worse than the SVM). In terms of accuracy, the

0,864

performance of the interpretable model was, on average?,
93.2% of the performance of the best model for each of the
datasets (ranging from 82.3% for the Student Performance
dataset to 100%, i.e. equal to the best result obtained for
the Congressional Voting dataset).

Considering the macro-F1 score, the model with the
best performance was again the Random Forest Algorithm,
obtaining the best result for six of the eight data sets. The
Gaussian Naive Bayes model reached the best F1 score for
the German Credit and Student Performance sets, tying,
in the latter case, with the SVM with a polynomial kernel.

On average, the F1 score of the interpretable model
corresponded to 90.5% of the values obtained by the best-
performing models (ranging from 82.7% for the Student
Performance set to 100% for the Congressional Voting set).
Based on these results, it can be said that the interpretable
model used in this work performed worse (on average)
than the best model for each of the datasets. As such,
RQ2 was answered confirming there is a difference in
performance between them.

5All averages in this work correspond to the arithmetic mean.
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Table 4: F1 score results from Interpretable Model 1 and each of the Black-Box Models

Interpretable | Decision | Random | SVM

SVM Logistic Multilayer | Gaussian

Regression | Perceptron [ Maive Bayes
0.640

Dataset Model 1
Breast Cancer 0,610
Congressional Voting 0,950
Diabetes
German Credit
Heart Failure

Online Mews Popularity
Online Shoppers Purchasing
Student Performance

Dataset
Breast Cancer
Congressional Voting
Diabetes
German Credit
Heart Failure

{polynomial)

SWM Logistic

Regression

Multilayer Gaussian
Perceptron | Maive Bayes

0,879

Online News Popularity

Student Performance

4.2 Fidelity of the interpretable model

In this section, we evaluate the ability of Interpretable
Model 3 to mimic the results produced by the black-box
models, calculated through the fidelity measure. Table 5
presents the fidelity of the results of Interpretable Model
3 concerning the results of the black-boxes models.

As it turns out, the overall average fidelity was 88.9%.
When considering each black-box model, it is observed
that, on average, the highest fidelity of Interpretable
Model 3 occurred with SVM using a linear kernel (94.6%).
On the other hand, the worst average performance was
77.1%, for the Decision Tree with no height limit. This last
result is rather interesting as it indicates that a smaller
tree (height three) could not mimic well the results of a
tree that had no height limit.

Here, it is worth noting that the decision tree model
treated as a black-box had, on average, achieved the worst
value for the F1 score and one of the worst accuracy results,
both values lower than the results of the Interpretable
Model 3 (see Section 4.1). This indicates that the model
was unable to create rules that generalized the learned
knowledge. Not limiting the tree height may have resulted
in an overly specific model, i.e., overfitting, which the
interpretable model could not replicate.

Inaddition to the average fidelity (88.9%), as well as the
lowest and highest average per model (respectively 77.1%
and 94.6%), we considered it appropriate to compare
these values with the equivalent values produced by
Interpretable Model 1. It is important to remember that
Interpretable Model 1 was not built to mimic the black-
box models, but rather to solve the same problem that
the black-box models were solving. On average, the
intersection of the results of the interpretable model with
the black-box models (which is equivalent to fidelity)

was 79.2%, ranging from 70.5% for the model based on
Decision Trees to 86.4% for the SVM with a linear kernel.

Thus, on average, Interpretable Model 3 managed to
satisfactorily mimic the black-box models, significantly
better than the corresponding model, which had not
been trained to this end (Interpretable Model 1), thereby
answering RQ1. It is noteworthy that, as presented in
the related literature (e.g. Rudin and Radin (2019)), even
high values of fidelity may not signify that the same
logic “learned” by the black-box model was also “learned”
by the interpretable model, and this is one of the main
limitations of this specific type of models’ explanation.

4.3 Improvements to the interpretable model

As explained in Section 3, the interpretable models
were built using the output of the black-box models
(what was called Interpretable Model 3). The fidelity
of these models was presented in the previous section.
In addition to fidelity, this work hypothesized that
interpretable models built from the output of black-box
models could outperform interpretable models trained
using the target variable of the training set. This
hypothesis was based on the fact that black-box models
correspond to simplifications of the world and, therefore,
it might be easier for the interpretable model to learn from
this simplification instead of directly learning from the
original data.

To carry out this analysis, the performance of
Interpretable Models 2 and 3 were compared (both were
built based on Training Set 2). In this case, while Model 2
took its target variable from the training set, Interpretable
Model 3 used the output of each black-box model as the
target. Table 6 and Table 7 present the results for accuracy
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Table 6: Accuracy comparison of Interpretable Models 2 and 3

Interpretable |Decision| Random | SWVM SVM Logistic Multilayer Gaussian

Dataset Model 2 (linear) | (polynomial) | Regression | Perceptron | Naive Bayes | KNN
Breast Cancer 0,707 0,690 h 0,690 0,672
Congressional Voting 0,943 0,954 0,954 0,954
Diabetes 0,727 0,747 0,753 0,753
German Credit 0,685 0,700 0,710
Heart Failure 0,859
Online News Popularity
Online Shoppers Purchasing
Student Performance

Interpretable
Model 2
0,470

Dataset
Breast Cancer
Congressional Voting

Gaussian
Maive Bayes
0,600

Logistic
Regression

Diabetes

German Credit

Heart Failure

Online News Popularity
Online Shoppers Purchasing
Student Performance

and F1 score. In these tables, the first column indicates
the dataset, the second shows the results of Interpretable
Model 2, and the remaining columns contain the results
for Interpretable Model 3, according to the output of each
black-box model.

As shown in Table 6, Interpretable Model 2 obtained
only three of the best accuracy results, showing that
models trained with the output of the black-box models
presented better results for five of the data sets. The
interpretable model built using the output of the Random
Forest model stands out, being superior (although
sometimes slightly) to Interpretable Model 2 in five of
the eight datasets.

Regarding F1 score, Interpretable Model 2 achieved
the best performance only in two datasets (Online
News Popularity and Online Shoppers Purchasing). The
interpretable models built using the output of the Logistic
Regression Model performed equal to or better than
Interpretable Model 2 on five of the eight datasets. The
same occurred with the models that used the output of the
model based on Decision Trees as input with no height
limit.

These results help to provide an initial answer to RQ3,
indicating that training interpretable models based on the
values of the target variable of the training set does not
always deliver the best performances when compared to
models trained using the output of other black-box models.
Additional investigations are necessary, however, as well
as the calculation of different statistical measures. Our
results nevertheless indicate that this is an interesting
venue for investigation.

5 Conclusion

Machine learning has revolutionized how knowledge can
be discovered from data. Since the emergence of Artificial
Intelligence, different models have been created, allowing
not only automated problem-solving but also a better
understanding of the data.

Although the desire to understand the processes that
involve the decisions made by models created by Al is not
something new and is fundamental in some areas, such
as health for example, some of the newer techniques have
an inherent complexity that makes it virtually impossible
to fully understand the process that leads to each of their
outputs. Thus, the development of strategies to try to
explain the decisions made by black-box algorithms has
become fundamental.

In this work, we compared the performance of models
produced by an interpretable algorithm to models taken as
black-boxes produced by algorithms of different kinds. In
addition to comparing performance between algorithms,
fidelity (the ability of the interpretable model to mimic
part of the behavior of black-box models) was also
measured. Finally, it was verified whether it is possible to
use black-box models to assist in the interpretable models
training.

All in all, the expected difference in performance
between the black-box models and the interpretable
model was verified, which, for many problems, serves as a
justification for the use of black-box models. A satisfactory
ability of the interpretable model to mimic the behavior
of the black-box model was also observed. Fidelity, on
average, was higher than the accuracy of the interpretable
model solving the problem at hand.

As limitations of the present work, we emphasize
that the results and conclusions are solely based on
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the materials and methods of use, i.e., eight datasets,
an algorithm used to build the interpretable models,
and eight models treated as black-boxes built by seven
different algorithms. As directions for future work, we
intend to expand the study, including a larger set of
datasets, different interpretable algorithms, and more
black-box algorithms.
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