
Revista Brasileira de Computação Aplicada, Novembro, 2025

DOI: 10.5335/rbca.v17i3.16482
Vol. 17, No 3, pp. 84–99
Homepage: seer.upf.br/index.php/rbca/index

A R T I G O O R I G I N A L

Um processo para buscas não estruturadas em código fonte

A process for source code unstructured search

Rodrigo de Castro Gil 1, Eduardo Kessler Piveta ,1, Cristiano De Faveri2, Deise deBrum Saccol1, Lisandra Manzoni Fontoura1
1Universidade Federal de Santa Maria, 2AMF - Antonio Meneghetti Faculdade

rcgil@inf.ufsm.br; *piveta@inf.ufsm.br; cristiano.faveri@amf.edu.br; deise@inf.ufsm.br; lisandra@inf.ufsm.br
Recebido: 16/11/2024. Revisado: 14/11/2025. Aceito: 30/11/2025.

Resumo
A consulta em código fonte representa um importante recurso para auxiliar desenvolvedores na compreensão de progra-mas, bem como em atividades de refatoração, especialmente em grandes repositórios de código. Este trabalho apresentaum processo cujo objetivo é facilitar a recuperação de informação, utilizando técnicas de consultas não estruturadas emcódigo fonte. O processo apresenta arquivos classificados por ordem de importância com base nas características dalinguagem de programação e nas preferências definidas pelos desenvolvedores. Foram realizadas duas instanciações doprocesso, nas linguagens de programação Java e AspectJ, demonstrando a aplicação do processo e como ele pode facilitara identificação das informações recuperadas. O objetivo geral é permitir buscas mais precisas em programas escritos emdiferentes linguagens de programação.
Palavras-Chave: Busca não estruturada; Processos de Software; AHP
Abstract
Source-code querying is an important resource for assisting developers in program comprehension and refactoringtasks, particularly in large code repositories. This work presents a process designed to facilitate information retrieval byemploying techniques for unstructured queries over source code. The process ranks files according to their relevance,based on both the characteristics of the programming language and the preferences defined by developers. Twoinstantiations of the process were carried out—using the Java and AspectJ programming languages—demonstrating itsapplication and how it can support the identification of retrieved information. The overarching goal is to enable moreprecise searches in programs written in different programming languages.
Keywords: Unstructured search; Software Processes; AHP.

1 Introdução

A evolução de código é uma prática contínua no contextode desenvolvimento de software. Os motivos pelos quaisum sistema de software é alterado refletem diretamenteno tipo de manutenção realizada. A norma ISO/IEC 14764define a manutenção de software como sendo reativa oupró-ativa (ISO, 2022). De forma reativa, a manutençãodo código é realizada para corrigir defeitos evidenciadosem produção (manutenção corretiva) ou para adaptar um

sistema a um novo ambiente (manutenção adaptativa).Pró-ativamente, um desenvolvedor pode modificar códigojá em produção para corrigir defeitos conhecidos e latentesantes que se tornem falhas efetivas (manutenção preven-tiva). Por fim, problemas de desempenho e manutenibili-dade podem levar ao refinamento de código para torná-lomais legível e mais rápido (manutenção perfectiva).
À medida que os sistemas de software se tornam maio-res e mais complexos, manter a qualidade do código geradoé um desafio permanente. Antes de efetuar uma modifica-

http://dx.doi.org/10.5335/rbca.v17i3.16482
http://seer.upf.br/index.php/rbca/index
https://orcid.org/0000-0002-0092-4495

Gil et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.84–99 85

ção em um sistema, os desenvolvedores devem exploraro código fonte e identificar quais partes são relevantes ecandidatas à manutenção. Para ajudá-los a compreendero código e identificar possíveis oportunidades de refatora-ção, os desenvolvedores geralmente recorrem a recursosde busca de um ambiente integrado de desenvolvimento(IDE) e ferramentas de análise estática (Piveta, 2009; Ro-billard e Murphy, 2007; Hecht et al., 2006; Fokaefs et al.,2007).A busca de código é uma característica básica dos IDEsusados profissionalmente, tais como Eclipse, IntelliJ e VS-Code. Em geral, os recursos de busca possuem pesquisassimples por palavras e também recursos mais avançadosusando expressões regulares e construções da linguagem,tais como classes e métodos. Por outro lado, as ferramen-tas de análise estática são comumente usadas para buscaroportunidades de refatoração e também defeitos no códigoque podem resultar em falhas.Para auxiliar nesse processo, linguagens de consultaem código fonte (de Faveri, 2013) e mecanismos de busca(Basu, 2024; NerdyData, 2024; Krugle, 2024) têm sido pro-postos, algumas restritas a sistemas orientados a objetos,outras para linguagens de consulta para programas ori-entados a aspectos e também motores de busca não es-truturada em código fonte. Essas abordagens auxiliam osdesenvolvedores não apenas a encontrar oportunidadesde refatoração, mas também, em outras tarefas rotineirascomo localizar um trecho de código para reutilizá-lo ousimplesmente navegar pelo código de um sistema a fim deentender o seu funcionamento.Apesar de existirem maneiras para representar (Pivetaet al., 2009) e para buscar por oportunidades de refatora-ção por meio de percurso em ASTs (Abstract Syntax Trees)de programas usando ferramentas de análise estática, taisabordagens fornecem uma flexibilidade limitada e são de-pendentes de conhecimentos de baixo nível das linguagensde programação associadas.Dentro desse contexto, este artigo apresenta um pro-cesso que fornece suporte à busca de informações de formanão estruturada em código fonte. O processo busca for-necer elementos que possibilitem que a recuperação deinformação seja possível independente da linguagem oudo paradigma adotados no repositório no qual se desejaaplicar o processo, considerando a importância dos ele-mentos da linguagem.De forma a avaliar o processo proposto são apresen-tadas duas instanciações distintas do processo, para aslinguagens Java (orientada a objetos) e AspectJ (orientadaa aspectos). Tais linguagens foram selecionadas por se-rem representativas em seus paradigmas correspondentes.Java é uma das linguagens orientadas a objetos mais am-plamente usada atualmente. E AspectJ foi a primeira lin-guagem orientada a aspectos proposta, e continua sendo amais popular. Busca-se mostrar como o processo proporci-ona resultados mais precisos para as consultas realizadase fornece a classificação dos arquivos buscados de acordocom a linguagem e os parâmetros utilizados.O restante deste artigo está organizado da seguinteforma. A Seção 2 descreve alguns conceitos que auxiliamna definição do processo proposto. A Seção 3 descreve umprocesso para buscas não estruturadas, incluindo as ati-vidades, papéis, e artefatos associados. A Seção 4 mostra

as duas instanciações feitas para avaliar o processo (paraJava e para AspectJ). Por fim, a Seção 5 descreve algunstrabalhos relacionados e a Seção 6 elenca as principaisconclusões deste trabalho.
2 Referencial Teórico
Esta seção descreve um conjunto de conceitos e ferramen-tas necessários para o entendimento deste trabalho. Elaestá organizada da seguinte forma. A Seção 2.1 descreveconceitos relacionados à evolução de programas, refatora-ção e consulta em código fonte. A Seção 2.2 apresenta con-ceitos sobre o AHP, um método de decisão multi-critérios.
2.1 Evolução, Refatoração e Consulta em Código

Uma característica que se pode observar em sistemas desoftware é a necessidade de eles evoluírem. O processode manutenção ou evolução envolve de forma geral trêsatividades: compreensão da sistema atual, modificação dosistema atual e reavaliação do sistema modificado (Pres-sman e Maxim, 2021). Ao adaptar, melhorar e modificarum sistema, seu projeto pode se afastar de sua concep-ção original, diminuindo sua qualidade (Mens e Tourwé,2004).As mudanças representam características cruciais nodesenvolvimento de software (Godfrey e German, 2008).Várias métricas e leis da evolução de software podem serseguidas para obter melhores resultados no processo evo-lutivo, como mudança contínua, aumento da complexi-dade e auto-regulação, entre outras (Lehman et al., 1997).Apesar de extensa pesquisa e progresso significativo nestaárea, o desenvolvimento e a manutenção de sistemas desoftware continuam sendo processos demorados e dispen-diosos. Portanto, a redução do custo de desenvolvimento emanutenção de software permanece um tema de pesquisavital na engenharia de software (Pizka e Jurgens, 2007).Uma das técnicas que auxilia na manutenção de softwareé a refatoração.Refatoração pode ser definida como o processo de mo-dificar a estrutura interna de um sistema de software demaneira que não afete seu comportamento externo per-ceptível (Fowler, 1999). O procedimento de refatoraçãocomumente abrange a simplificação da lógica condicio-nal, aprimoramento da estrutura do código e eliminaçãode trechos duplicados (Kerievsky, 2004). Os resultadosgerados pelo sistema refatorado devem ser idênticos aosproduzidos antes da refatoração. Para identificar oportuni-dades de refatoração, é necessário examinar as estruturasdas aplicações. Dessa maneira, ferramentas que realizamconsultas em código fonte são instrumentais para essepropósito.A ausência de refatoração pode acarretar a progressivadeterioração do projeto de um programa. Ao longo dotempo, o código é sujeito a modificações, e conforme evoluide forma ad hoc, sua integridade pode ser comprometida,afastando-se da estrutura original delineada. A leiturado código torna-se progressivamente mais desafiadoraà medida que a estrutura se degrada. Refatorar, assim,assemelha-se a organizar o código, envolvendo a remo-ção de segmentos que não ocupam a posição adequada.

86 Gil et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.84–99

A perda de estrutura no código tem efeitos cumulativos,como destacado por Fowler (Fowler, 1999).A identificação de trechos de código passíveis de refato-ração consiste na busca por locais nos quais melhorias po-dem ser aplicadas, levando em consideração deficiências,inadequações ou incompletudes (Júnior et al., 2019). Dessamaneira, oportunidades de refatoração podem ser iden-tificadas, estabelecendo uma relação de associação entreuma deficiência ou limitação e um padrão de refatoraçãoespecífico (Piveta, 2009). Ferramentas automatizadas dedetecção de oportunidades de refatoração desempenhamum papel crucial nesse contexto.
2.2 AHP

AHP (Analytic Hierarchy Process) (Saaty, 1990) é um mé-todo multicritério amplamente utilizado e conhecido noapoio à tomada de decisão durante a resolução de confli-tos negociados, em problemas usando múltiplos critérios(Vargas e IPMA-B, 2010). O AHP fornece um meio de de-composição de um problema em uma hierarquia de sub-problemas que podem ser mais facilmente compreendidose avaliados. Para esse processo, o AHP possui os seguintespassos:
Passo 1: O problema é decomposto em uma hierarquiade critérios, subcritérios e alternativas. A Fig. 1 mostrauma estrutura hierárquica genérica. A raiz da hierarquia éa meta ou objetivo do problema a ser estudado e sintetizado,os nós folha são as alternativas a serem comparadas. Entreestes dois níveis estão diferentes critérios e sub-critérios.

Figura 1: Hierarquia genérica do AHP (Bhushan e Rai,2004)
Passo 2: Neste passo o especialista define as priorida-des para cada critério e alternativa. A importância de cadacritério em relação aos outros e de cada alternativa em re-lação às outras é apurada utilizando comparação em pares.A Tabela 1 (Saaty, 1990), é usada para expressar numerica-mente a importância relativa sobre critérios e alternativas.
Passo 3: As comparações par a par dos vários critériosgerados no passo anterior são organizadas em uma matrizquadrada. Os elementos da diagonal principal da matriztêm o valor 1. O critério da linha (i) é melhor que o da

Tabela 1: Escala gradativa de comparação quantitativa dasalternativas
Valor Importância Relativa1 Igual importância2 Ligeiramente mais importante3 Fracamente mais importante4 Fracamente a moderadamente mais importante5 Moderadamente mais importante6 Moderadamente a fortemente mais importante7 Fortemente mais importante8 Extremamente mais importante9 Absolutamente mais importante

coluna (j) se o valor do elemento (i, j) for maior que 1. Casocontrário o critério da coluna (j) é melhor que o da linha(i). Os dois são equivalentes se o valor do elemento (i,j) forigual a 1.
Passo 4: Neste passo é construído um vetor com os pe-sos relativos para todos os critérios da matriz do passoanterior. Esse vetor representa os pesos de cada critério.Esse vetor é obtido através da elevação ao quadrado da ma-triz de prioridade, obtida no passo anterior, e são somadosos valores de suas linhas, para que cada um desses valoresseja dividido pela soma do total das linhas. Esses valoressão calculados e normalizados.
Passo 5: A consistência da matriz de ordem n é avaliada.As comparações feitas por este método são subjetivas e oAHP tolera inconsistência através da quantidade de redun-dância na abordagem. Se este índice de consistência nãoconseguir chegar a um nível desejado, respostas para ascomparações devem ser re-examinadas. Essa relação deconsistência (CR) é dada pela razão:

CR = CI
RCI

Onde o índice de consistência, CI, é calculado como:

CI = (λmax − n)(n − 1)
onde λmax é o autovalor máximo da matriz de julgamento.Este CI pode ser comparado com o de uma matriz aleatória,RCI. Os detalhes do cálculo RCI são discutidos por Saaty(Saaty, 1990), o qual fornece os valores de RCI para seremusados no cálculo da CR. E esses valores são apresentadosna Tabela 2. Ele sugere ainda que o valor da CR deve serinferior a 0,1 ou seja, o processo é considerado aceitável sea CR for inferior a 10%.

Tabela 2: Valores referentes ao RCI
n < 3 3 4 5 6 7 8

RCI 0 0,58 0,9 1,12 1,24 1,32 1,41
n 9 10 11 12 13 14 15

RCI 1,45 1,49 1,51 1,48 1,56 1,57 1,59

Passo 6: A classificação de cada alternativa é multipli-

Gil et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.84–99 87

cada pelos pesos dos subcritérios e agregada para obterclassificações locais em relação a cada critério. As classifi-cações locais são então multiplicadas pelos pesos dos crité-rios e agregadas para obter as classificações globais. O AHPproduz então valores dos pesos para cada alternativa ba-seados no julgamento de importância de cada alternativaem relação às outras com respeito a um critério comum.

3 Um Processo para Buscas não Estruturadas
em Código Fonte

Buscando auxiliar os desenvolvedores nas buscas em có-digo fonte, este trabalho consiste na especificação de umprocesso para a busca de informação de forma não estru-turada, otimizando assim o tempo gasto com a análise dosresultados obtidos, e diminuindo a necessidade de refina-mento das consultas para melhorar os resultados.
O processo possibilita que um determinado provedorde ferramentas possa viabilizar a classificação de elemen-tos de uma ou mais linguagens de programação. E queessa classificação determine a ordem de retorno dos arqui-vos relevantes em consultas realizadas por desenvolvedo-res. Por exemplo, uma vez que um determinado provedortenha definido a importância relativa dos elementos deprogramação escritos em uma dada linguagem de progra-mação, um desenvolvedor qualquer pode efetuar buscasnão estruturadas em repositórios desta linguagem e obteros resultados ordenados de acordo com essa importância.
O processo proposto consiste em três etapas: Definição,

Reificação e Análise. O processo inicia na etapa de Defini-
ção, na qual são selecionados os elementos relevantes dalinguagem de programação. Esses elementos são priori-zados, e é definida e avaliada uma função de classificação.A segunda etapa é a Reificação. Nesta etapa, é criado ummodelo reificado para que as consultas sejam executadasnesse modelo. A terceira etapa, na qual o processo ter-mina, é a etapa de Análise. Nela são escritas as consultas,que são processadas e executadas e seus resultados sãoclassificados e analisados.

Como cada etapa do processo pode ser desempenhadaseparadamente optou-se, para um melhor entendimento,por detalhá-las em separado. Para que qualquer processoseja realizado, é preciso definir quem será responsável porexecutar as tarefas e por analisar os artefatos de entrada ea integralidade dos artefatos produzidos. Isso faz com queseja necessário definir os papéis que serão desempenhadosdurante o processo. Para este processo, foram definidosdois papéis: o Tool Provider, que é o responsável por darinício ao processo e decidir quais as ferramentas serãoutilizadas na sua efetivação, e o Analista, o qual realizaráas consultas.
A seguir são descritas as etapas do processo. A Seção 3.1descreve a etapa de Definição, suas atividades e artefatos,a Seção 3.2 mostra a etapa de Reificação, a qual gera ummetamodelo que pode ser manipulado. A Seção 3.3 detalhaas atividades da etapa de Análise, na qual as consultas sãoexecutadas e os resultados obtidos.

3.1 Etapa de Definição

O objetivo desta etapa é priorizar elementos (selecionadosa partir de uma determinada linguagem de programação),e definir uma função de classificação que terá a responsabi-lidade de classificar os arquivos retornados como relevan-tes nas consultas realizadas. Esta etapa possui as seguintesatividades: Selecionar conceitos, Priorizar elementos, Defi-
nir função de classificação e Avaliar função de classificação.A Fig. 2 mostra essas atividades. A seguir são detalhadasas atividades da etapa de Definição.
3.1.1 Selecionar conceitosO objetivo desta atividade é selecionar as estruturas dalinguagem de programação que devem ser consideradasimportantes para a busca. Esta atividade tem como entradaos artefatos Requisitos de busca e Linguagem alvo e gera oartefato Conceitos. A Fig. 3 mostra a atividade com os seusartefatos, os quais são detalhados a seguir:
• Requisitos de busca: lista quais os objetos que serãoobjetivos das buscas. Por exemplo, Deve ser possível

buscar por nomes de pacotes, ou, Deve ser possível buscar
por tipo de adendos.• Linguagem alvo: define em qual linguagem de progra-mação as consultas serão realizadas. Por exemplo, podeser utilizada uma linguagem OO como Java, ou umalinguagem estruturada como C, dentre outras.• Conceitos: define quais elementos de uma determi-nada linguagem de programação serão consideradosrelevantes. Um Conceito pode ser uma classe, um as-pecto, dentre outros. Estes elementos serão a referênciapara a extração dos metadados. Por exemplo, caso o pro-cesso seja empregado na linguagem de programaçãoJava e fosse necessário buscar por nomes de pacotes, oartefato Conceitos definiria os Pacotes Java, como umdesses elementos.

3.1.2 Priorizar elementosEsta atividade tem como objetivo fornecer os elementos deuma linguagem de programação priorizados. Para tal, elarecebe o artefato Conceitos, gerado na atividade anteriore juntamente com os artefatos Opiniões de especialistas e
Método de priorização, fornece esses elementos prioriza-dos de forma quantitativa, ou seja, com valores para quepossam ser utilizados na próxima atividade. Como artefatode saída, essa atividade produz o artefato Priorização. AFig. 4 mostra a atividade Priorizar elementos, e a seguir sãodetalhados os artefatos desta atividade:
• Opiniões de especialistas: descrevem a prioridade re-lativa entre itens definidos no artefato Conceitos. Porexemplo, se o processo for aplicado em uma linguagemorientada a objetos, as opiniões de especialistas podemdefinir que uma ocorrência do objeto da busca em umaclasse deve ter um valor maior que a mesma ocorrênciaem um método.• Método de priorização: Um Método de priorização pos-sibilita quantificar os itens dos Conceitos, a partir dasdefinições das Opiniões de especialistas. Este métodopode ser um método estatístico, um método de decisãomulticritério, como o AHP apresentado na Seção 2, ou

88 Gil et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.84–99

Figura 2: Etapa de Definição

Figura 3: Atividade Selecionar conceitos

Figura 4: Atividade Priorizar elementos

outro método que o Tool Provider achar conveniente.Esta atividade tem como saída a Priorização, que serviráde entrada para a próxima atividade.• Priorização: é uma lista a qual retrata as estruturas deuma determinada linguagem de programação, classi-ficadas em ordem de importância. Também é possívelque essa lista possua pesos para cada um de seus itens.Por exemplo, em uma linguagem OO essa lista pode-ria ser representada da seguinte forma (usando pesoshipotéticos):

Ordem Estrutura Peso1º Pacote 0,32º Classe 0,23º Método 0,1...

3.1.3 Definir função de classificação
O objetivo desta atividade é definir uma função para seraplicada em cada unidade de compilação que seja retor-nada como relevante durante a realização das consultas. AFig. 5 mostra a atividade Definir função de classificação querecebe a Priorização, gerada na atividade anterior, e temcomo saída uma Função de classificação, a qual é detalhadaa seguir:

Figura 5: Atividade Definir função de classificação

• Função de classificação: define a função que será apli-cada para classificar as unidades de compilação paraas consultas realizadas. Por exemplo, essa função po-deria ser representada pelo peso de uma determinadaestrutura de código, multiplicado pelo número de vezesque o objeto da consulta aparece nessa estrutura. Porexemplo, se considerássemos apenas a ocorrência deum termo em métodos, a representação da função po-deria ser: f(t) = (nEmMétodos(t) ∗ pesoMétodos), onde
n seria o número de ocorrências de (t) em métodos eo peso seria o valor dado à importância dos métodos,com base nas Opiniões de especialistas.

Gil et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.84–99 89

3.1.4 Avaliar função de classificaçãoEsta atividade tem como objetivo avaliar se a Função de
classificação contempla as necessidades definidas pelo
Tool Provider. Para essa avaliação, esta atividade neces-sita da realização da Reificação, e também, das atividadesda Análise.A Fig. 6 mostra a atividade Avaliar função de classifica-
ção, a qual recebe como artefatos de entrada: Função de
classificação, gerado na atividade anterior, os Programas de
teste e as Consultas de teste, e tem como artefato de saída a
Avaliação. Abaixo os artefatos Programas de teste, Consultas
de teste e Avaliação, são detalhados:

Figura 6: Atividade Avaliar função de classificação

• Programas de teste: São programas em um repositóriode código fonte, que serão utilizados para que sejamexecutadas as consultas para que possa ser analisada aclassificação dos seus resultados.• Consultas de teste: São consultas realizadas para quesejam analisados os resultados da busca e a classificaçãodesses resultados.• Avaliação: Este artefato define se a função de classifi-cação atende os critérios de importância definidos pelousuário na atividade Priorizar elementos. Esta avaliaçãopode ser feita usando métricas de medição de desempe-nho em recuperação de informação como a Precisão e aRevocação, ou pode ser feita de maneira empírica, ouseja, baseada no conhecimento do decisor.
3.2 Etapa de Reificação

A etapa de Reificação é responsável por transformar oselementos de código fonte em informações estruturais,ou seja, metamodelos que serão disponibilizados para autilização de várias formas. Esta etapa possui apenas umaatividade: Reificar programas. O motivo pelo qual optou-sepor deixar essa etapa separada, apesar de ter apenas umaatividade, foi que ela pode ter que ser desempenhada peri-odicamente para atualizar a base de dados consultada. Nocaso da base de dados ser pequena, esta etapa pode ser de-sempenhada toda a vez que novos arquivos de código fonteforem adicionados, alterados ou excluídos. Por outro lado,se o processo for aplicado em um repositório de tamanho

expressivo, esta etapa terá que ser realizada de maneiraperiódica, como é feito em alguns repositórios disponíveisna Web.

Figura 7: Etapa de Reificação
Esta atividade é a responsável por transformar os arqui-vos de código fonte em um metamodelo que será usadopara realizar as consultas. A Fig. 8 mostra a atividade quetem como entrada os Conceitos e as Unidades de compilação,e como saída o Modelo Reificado, os quais são detalhados aseguir:

Figura 8: Atividade de Reificar programas

• Unidades de compilação: São os arquivos que compõemo repositório onde o processo será aplicado. Este arte-fato pode representar um repositório pessoal, de umaempresa ou um repositório disponível na nuvem como:
Github, Google Code, BitBucket, entre outros.• Modelo Reificado: Representa as informações sobre aestrutura dos programas, disponíveis e prontas paraserem consultadas, ou seja, são os metadados dos pro-gramas em um metamodelo que será manipulado.

3.3 Etapa de Análise

O objetivo desta etapa é que a partir da necessidade deencontrar determinados termos de consulta, o Analista es-creva uma consulta, e sejam encontrados os arquivos quecontém esses termos, e esses arquivos sejam apresenta-dos para o Analista em ordem de relevância com base nasdefinições da etapa de Definição. Possivelmente a etapade Análise será a mais desempenhada do processo, poisas outras etapas só são realizadas para melhorar os resul-tados da Análise. A Fig. 9 apresenta o fluxo desta etapa,a qual possui as seguintes atividades: Escrever consulta,

90 Gil et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.84–99

Figura 9: Etapa de Análise
Processar consulta, Executar consulta, Classificar resultados,
Analisar resultados e Refinar consulta, que serão detalhadasnas próximas seções.
3.3.1 Escrever consultaNesta atividade, o Analista transcreve para uma consultaos termos que ele deseja encontrar. A Fig. 10 mostra a ati-vidade Escrever consulta a qual produz uma Consulta escrita,que é detalhada a seguir:

Figura 10: Atividade Escrever consulta

• Consulta escrita: Este artefato representa a consultafeita pelo Analista. Como qualquer consulta não estru-turada, essa consulta pode ser apenas uma sequênciade caracteres, ou pode ter algum refinamento, depen-dendo do motor de busca utilizado. No caso deste arte-fato possuir mais de um termo, a Função de classificaçãoserá aplicada nos n termos da consulta. A Consulta es-
crita servirá como um dos artefatos de entrada para apróxima atividade.

3.3.2 Processar consultaEsta atividade é responsável por submeter a Consulta es-
crita ao mesmo processamento ao qual foram submetidasas Unidades de compilação do repositório utilizado. Estaatividade sendo executada por um sistema automatizado,dispensaria o papel do Tool Provider. Como artefatos deentrada, esta atividade possui a Consulta escrita, gerada naatividade anterior, e o Modelo de processamento, e, comosaída, a Consulta processada. A Fig. 11 apresenta a atividade
Processar consulta. A seguir são detalhados os artefatos

desta atividade:

Figura 11: Atividade Processar consulta

• Modelo de processamento: O Modelo de processamentodepende do motor de busca utilizado para a realizaçãodas consultas, e necessariamente precisa seguir os mes-mos passos de processamento da atividade Reificar pro-
gramas realizada na etapa de Reificação.• Consulta processada: Este artefato representa os ter-mos da consulta processados com base no artefato Mo-
delo de processamento. Este processamento é feito deforma transparente ao Analista.

3.3.3 Executar consultaA atividade Executar consulta tem o objetivo de buscar no re-positório alvo os documentos que satisfazem os termos doartefato Consulta processada, para que esses arquivos pos-sam ser classificados na próxima atividade. Esta atividaderecebe o artefato Consulta processada, produzido na ativi-dade anterior mais o artefato Modelo Reificado gerado naetapa de Reificação e juntamente com o artefato Motor de
busca, produz o artefato Documentos retornados. A Fig. 12mostra esta atividade, e seus artefatos são detalhados aseguir:
• Motor de busca: Este artefato representa o motor de

Gil et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.84–99 91

Figura 12: Atividade Executar consulta

busca que será utilizado para executar as consultas, talcomo o Code Finder (de Faveri, 2013).• Documentos retornados: Caracteriza-se pelos arqui-vos que serão retornados como relevantes na execu-ção de uma determinada consulta. Este artefato servirácomo entrada para a próxima atividade. Por exemplo:
Arquivo1.java
Arquivo2.java
Arquivo3.java
...

3.3.4 Classificar resultadosO objetivo desta atividade é apresentar para o Analistaos documentos retornados como relevantes de uma ma-neira que seja possível afirmar que esses documentos estãoem ordem do mais relevante para o menos relevante. AFig. 13 exibe a atividade Classificar resultados juntamentecom seus artefatos de entrada Documentos retornados e
Função de classificação e também o seu artefato de saída
Resultados classificados, o qual é detalhado abaixo:

Figura 13: Atividade Classificar resultados

• Resultados classificados: Caracteriza-se por apresen-tar os Documentos retornados classificados conforme a
Função de classificação, ou seja, classificados com as pre-ferências do usuário. Por exemplo a lista apresentada

no artefato Documentos retornados, poderia ser alteradadesta forma:
Arquivo2.java
Arquivo3.java
Arquivo1.java
...

3.3.5 Analisar resultadosO Objetivo desta atividade é avaliar se os Resultados clas-
sificados atendem às necessidades do Analista. A Fig. 14mostra esta atividade juntamente com seus artefatos, oquais são detalhados a seguir:

Figura 14: Atividade Analisar resultados

• Método de avaliação: Descreve a maneira pela qual seráavaliado o resultado das consultas realizadas. Essa ava-liação pode ser utilizando algum método pré-definido,ou simplesmente através da visualização dos resulta-dos.• Resultados avaliados: Define se as necessidades da con-sulta foram atendidas ou se será necessário realizar aatividade de Refinar consulta, ou até mesmo reiniciar oprocesso novamente.
3.3.6 Refinar consultaA Fig. 15 mostra a atividade Refinar consulta a qual não éuma atividade obrigatória, ela apenas possibilita o refina-mento de uma determinada consulta, se houver necessi-dade, para melhorar o seu resultado. Esta atividade, apesarde ser muito comum em consultas não estruturadas, dimi-nui a necessidade de que o processo seja reiniciado desdeo início. Porém, a ideia deste processo é que não seja pre-ciso reescrever as consultas várias vezes. Esta atividadetem como artefato de entrada a Consulta escrita, e comosaída produz o artefato Consulta refinada, que é detalhadoabaixo:
• Consulta refinada: Representa a consulta produzida naatividade Escrever consulta, escrita de uma forma quepossa produzir um resultado melhor, caso possível.

92 Gil et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.84–99

Figura 15: Atividade Refinar consulta

4 Avaliação
De forma a avaliar o processo proposto, foram feitas duasinstanciações. A primeira para a linguagem Java e a se-gunda para a linguagem orientada a aspectos AspectJ. Paracada, são exemplificadas duas consultas e os resultadosdessas consultas, analisados. Para as instanciações do pro-cesso, foi utilizado o método de priorização multi-critérioAHP (Saaty, 1990), para reificar os arquivos foi usado o
framework AOPJungle (de Faveri, 2013) e como motor debusca foi adotado o Code Finder (de Faveri, 2013) e imple-mentado com base no Apache Lucene.
4.1 Instanciação para Java

Esta seção apresenta uma possível instanciação do pro-cesso para a linguagem de programação Java. A seguirsão detalhados os artefatos de entrada e saída para cadaatividade.Os artefatos da atividade Selecionar conceitos foram as-sim definidos:
• Linguagem alvo: Java.• Requisitos de busca: Deve ser possível buscar infor-mações acerca de: pacotes, classes, métodos, e outroselementos.• Conceitos: Pacote, Classe Principal1, demais Classes,Método Principal, demais Métodos e Outros elemen-tos2.

A seguir são detalhados os artefatos da atividade Priori-
zar elementos:
• Método de priorização: AHP.• Opiniões de especialistas: Foram consideradas as opi-niões dos desenvolvedores do processo. Para a aplicaçãodo método AHP, considerando o artefato Conceitos, es-sas opiniões ficaram assim representadas:

– Um Pacote Java é:
* Fracamente mais importante que uma Classe Prin-

1Algumas bibliotecas desconsideram o conceito de classe principal,para essa instanciação foi decidido manter esse conceito.2Aqui são considerados todos os elementos que não se enquadram nasclassificações anteriores.

cipal;* Moderadamente mais imp. que as demais Classes;* Fortemente mais imp. que o Método Principal;* Extremamente mais imp. que os demais Métodos;* Absolutamente mais imp. que os Outros Elementos.
– Uma Classe Principal é:
* Fracamente mais imp. que as demais Classes;* Moderadamente mais imp. que o Método Principal;* Fortemente mais imp. que os demais Métodos;* Extremamente mais imp. que os Outros Elementos.

– Uma Classe é:
* Fracamente mais imp. que o Método Principal;* Moderadamente mais imp. que os demais Métodos;* Moderadamente mais imp. que os Outros Elemen-tos.

– Um Método Principal é:
* Fracamente mais imp. que os demais Métodos;* Moderadamente mais imp. que os Outros Elemen-tos.

– Um Método é Fracamente mais imp. que os OutrosElementos.
• Priorização: Com as informações das Opiniões de espe-

cialistas e dos Conceitos foi possível utilizar o Método de
priorização AHP para priorizar os elementos.A Tabela 3 mostra as comparações entre pares, comseus valores quantitativos respeitando o que foi apre-sentado na Tabela 1, e mostra, em valores, as relaçõesentre as estruturas do código definidas nas Opiniões de
especialistas.Aplicando os passos do AHP para esta matriz de compa-rações par a par entre os elementos selecionados, obte-mos os pesos para cada elemento do programa.Portanto, os pesos para a 6-tupla Pesos =(Pacote, ClasseP, Classes, MétodoP,
Métodos, OutrosE), são respectivamente os valores de:
V′ = [0, 4634 0, 2593 0, 1409 0, 0708 0, 0405 0, 0248]Ou seja a relação de consistência, calculada conformedescrito na Seção 2.2 é de aproximadamente 2,85%,adequado segundo o AHP. Desta forma, o artefato Prio-
rização ficou assim definido:Ordem Estrutura Peso1º Pacote 0,46342º Classe Principal 0,25933º Demais Classes 0,14094º Método Principal 0,07085º Demais Métodos 0,04056º Outros Elementos 0,0248
O artefato de saída da atividade Definir função de classi-

ficação, é detalhado a seguir:
• Função de classificação: A Função de classificação foi de-finida levando em conta o número de vezes que o objetoda consulta foi encontrado em um determinado arquivo,multiplicado pelo peso relativo à estrutura de código naqual o objeto da consulta foi encontrado. Desta forma,a função ficou assim definida:

Gil et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.84–99 93

Tabela 3: Matriz de Prioridades
Localização Pacote Classe P. Classes Método P. Métodos Outros E.

Pacote 1 3 5 7 8 9
Classe P. 1/3 1 3 5 7 8
Classes 1/5 1/3 1 3 5 7

Método P. 1/7 1/5 1/3 1 3 5
Métodos 1/8 1/7 1/5 1/3 1 3
Corpo P. 1/9 1/8 1/7 1/5 1/3 1

f(uc,t) = toP(uc, t) ∗ wP + toCP(uc, t) ∗ wCP + toC(uc, t) ∗
wC+ toMP(uc, t)∗wMP + to(uc, t)∗wM+ toOE(uc, t)∗wOEOnde toP, toCP, toC, toMP, toM e toOE, são respectiva-mente: funções que calculam total de ocorrências dotermo (t) em uma unidade de compilação (uc) em umpacote, em uma classe principal, em outras classes, emum método principal, em outros métodos e em outroselementos. Da mesma forma, woP, woCP, woC, woMP,
woM e woOE, são respectivamente: peso de pacote, pesode classe principal, peso de outras classes, peso de mé-todo principal, peso de outros métodos e peso de outroselementos.De posse dos valores definidos no artefato Priorização,a Função de classificação para esta instanciação, podeser definida como:
f(uc,t) = toP(uc, t) ∗ 0, 4634 + toCP(uc, t) ∗ 0, 2593 +
toC(uc, t) ∗ 0, 1409 + toMP(uc, t) ∗ 0, 0708 + toM(uc, t) ∗0, 0405 + toOE(uc, t) ∗ 0, 0248.
A seguir são detalhados os artefatos da atividade Avaliar

função de classificação:
• Programas de teste: Foi utilizado um repositório comalguns projetos conhecidos para facilitar a avaliação dosresultados das consultas.• Consultas de teste: Foram realizadas duas consultas, aprimeira buscando a string cfc e a segunda buscando astring Metric.

4.1.1 Primeira ConsultaEsta consulta tem como a Consulta escrita a string cfg. Apósser processada e executada, esta consulta retornou qua-tro arquivos como relevantes. Esses arquivos compõem oartefato Documentos retornados, e são analisados a seguir:
• O arquivo HelloWord.java contém a string cfg no nomedo Pacote, na linha 1;

1 package cfg;23 import org.hibernate.Session;4 import org.hibernate.Transaction;56 public class HelloWorld {7 public static void main(String[] args) {8 Session s = HibernateUtil.getSessionFactory().9 openSession();10 Transaction tx = s.beginTransaction();11 s.save(new Metric("wom", "Weigthed Operations on Methods"));12 s.save(new Metric("dit", "Deep of Inheritance Tree"));13 s.save(new Metric("noc", "Number of Children"));14 s.save(new Metric("loc", "Lines of Code"));15 tx.commit();16 s.close();17 }18 }

• O arquivo DataBaseCreator.java contém duas ocorrên-

cias da string cfg sendo as duas no método principal,nas linha 5 e 6;
1 package teste.consultas;23 public class DatabaseCreator {4 public static void main(String[] args) {5 Configuration cfg = new AnnotationConfiguration().configure();6 SchemaExport schemaExport = new SchemaExport(cfg);7 schemaExport.create(false, true);8 }9 }

• O Arquivo Activator.java contém quatro ocorrências dastring cfg, a primeira em uma declaração de variável nalinha 5, a qual é considerada como outros elementos, eas outras três nos demais métodos nas linhas 11, 14 e18;
1 package br.ufsm.aopjungle;23 public class Activator extends AbstractUIcfg {4 public static final String id = "AOPJungle";5 private static Activator cfg;6 public Activator() {7 System.out.println ("Initializing Activator ...");8 }9 public void start(BundleContext context) throws Exception {10 super.start(context);11 cfg = this;12 }13 public void stop(BundleContext context) throws Exception {14 cfg = null;15 super.stop(context);16 }17 public static Activator getDefault() {18 return cfg;19 }20 }

• O arquivo WebService.java contém três ocorrências dastring cfg, todas sendo comentários e localizadas emoutros elementos, na linha 8.
1 package comTrabWebservice;23 public class WebService {4 public String teste(String algo) {5 return "o retorno" + algo;6 }7 }8 //cfg cfg cfg

Ao aplicar a função de classificação os valores obtidossão:
• f(WebService.java, “cfg”) = 3 ∗ 0, 0248 = 0, 0744• f(Activator.java, “cfg”) = 1∗0, 0248+3∗0, 0405 = 0, 1463• f(DatabaseCreator.java, “cfg”) = 2 ∗ 0, 0708 = 0, 1416• f(HelloWord.java, “cfg”) = 1 ∗ 0, 4634 = 0, 4634

A Tabela 4 mostra a classificação dos arquivos após aatividade Classificar resultados, representando o artefato
Resultados classificados.

94 Gil et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.84–99

Tabela 4: Ordem do Resultado da Consulta por “cfg”
Arquivo Val. Classificação Classificação

HelloWord.java 0,4634 1º
Activator.java 0,1463 2º

DatabaseCreator.java 0,1416 3º
WebService.java 0,0744 4º

4.1.2 Segunda ConsultaAté a etapa de Reificação, a segunda consulta realizadapossui os mesmos artefatos da primeira consulta. Ape-nas na etapa de Análise, na atividade Escrever consulta,o artefato Consulta escrita é representado pela string
Metric. Como resultado, foram retornados os arqui-vos: TokenProcessor.java, HelloWorld.java, Metric.java,
Teste.java e HibernateUtil.java.Assim como realizado na primeira consulta, foi aplicadaa função de classificação e feita a comparação entre osresultados.
• O arquivo TokenProcessor.java apresenta cinco ocorrên-cias da string Metric, todas elas em outros elementos,na linha 9;

1 package br.ufsm.ajsearch.inf;23 public interface TokenProcessor {4 public void setContext(boolean isContext);5 public boolean isContext();6 public String translate(Token token, TokenProcessor context);7 public String getModifierTag();8 }9 //Metric Metric Metric Metric Metric

• O arquivo HelloWord.java possui quatro ocorrências dastring Metric, todas no método principal, nas linha 11,12, 13 e 14;
1 package cfg;23 import org.hibernate.Session;4 import org.hibernate.Transaction;56 public class HelloWorld {7 public static void main(String[] args) {8 Session s = HibernateUtil.getSessionFactory().9 openSession();10 Transaction tx = s.beginTransaction();11 s.save(new Metric("wom", "Weigthed Operations on Methods"));12 s.save(new Metric("dit", "Deep of Inheritance Tree"));13 s.save(new Metric("noc", "Number of Children"));14 s.save(new Metric("loc", "Lines of Code"));15 tx.commit();16 s.close();17 }18 }

• No arquivo Metric.java foram encontradas quatro ocor-rências da string Metric, uma no nome da classe prin-cipal na linha 4, e três em métodos nas linhas 20, 22 e26;
1 package teste.consultas;23 @Entity4 public class Metric{5 @Id6 private String id;7 private String description;8 public String getId() {9 return id;10 }

11 public void setId(String id) {12 this.id = id;13 }14 public String getDescription() {15 return description;16 }17 public void setDescription(String description) {18 this.description = description;19 }20 public Metric() {21 }22 public Metric(String id) {23 this();24 setId(id);25 }26 public Metric(String id, String description) {27 this(id);28 setDescription(description);29 }30 }

• O arquivo Teste.java apresenta uma ocorrência da string
Metric no nome do pacote, na linha 1;

1 package Metric;23 public class Teste {4 public int soma(int a, int b){5 return a+b;6 }7 }

• O arquivo HibernateUtil.java apresenta uma ocorrênciada string Metric em outros elementos, na linha 11.
1 package teste.consultas;23 public class HibernateUtil {4 public static SessionFactory getSessionFactory() {5 return sessionFactory;6 }7 public static void shutdown() {8 getSessionFactory().close();9 }10 }11 //Metric

Aplicando a função de classificação, os valores obtidossão:
• f(TokenProcessor.java, “Metric”) = 5 ∗ 0, 0248 = 0, 1240• f(HelloWord.java, “Metric”) = 4 ∗ 0, 0708 = 0, 2832• f(Metric.java, “Metric”) = 1 ∗ 0, 2593 + 3 ∗ 0, 0405 =0, 3808• f(Teste.java, “Metric”) = 1 ∗ 0, 4634 = 0, 4634• f(HibernateUtil.java, “Metric”) = 1 ∗ 0, 0248 = 0, 0248

A Tabela 5 mostra a saída classificada, após ser realizadaa atividade Classificar resultados.

Tabela 5: Ordem do Resultado da Consulta por “Metric”Classificada
Arquivo Valor de Classificação Classificação

Teste.java 0,4634 1º
Metric.java 0,3808 2º

HelloWord.java 0,2832 3º
TokenProcessor.java 0,1240 4º

HibernateUtil.java 0,0248 5º

A comparação dos resultados das duas consultas utili-

Gil et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.84–99 95

zadas como exemplo mostra que o processo pode mudarconsideravelmente a ordem dos resultados, facilitando asbuscas
4.2 Instanciação para AspectJ

Apesar de o processo poder ser aplicado em repositórioscom arquivos de mais de uma linguagem de programa-ção, para uma avaliação mais clara, optou-se por realizarinstanciações diferentes para cada linguagem. Esta seçãoapresenta uma instanciação do processo para a linguagemAspectJ, a seguir são detalhados os artefatos para cada ati-vidade.Para a atividade Selecionar conceitos, os artefatos foramassim definidos:
• Linguagem alvo: AspectJ.• Requisitos de busca: Deve ser possível encontrar infor-mações acerca de: nome de pacotes, nome de aspectos,adendos, declarações intertipos, pontos de corte e de-clarações de herança/alerta/erro (declare parents/war-

ning/error).• Conceitos: Pacote, Aspecto, Adendo, Declaração Inter-tipo, Ponto de Corte, Expressão de Junção (Pointcut Ex-
pression) e Declaração de Herança/Alerta/Erro.

Os artefatos da atividade Priorizar elementos, são detalha-dos a seguir:
• Método de priorização: AHP.• Opiniões de especialistas: Foram consideradas as opi-niões dos próprios desenvolvedores do processo. Para aaplicação do método AHP, essas opiniões ficaram assimrepresentadas:

– Um Pacote AspectJ é:
* Ligeiramente mais importante que um aspecto;* Fracamente mais imp. que um adendo;* Moderadamente mais imp. que uma declaração in-tertipos (ITD)3;* Fortemente mais imp. que um ponto de corte/ex-pressão de junção.* Extremamente mais imp. que uma declaração dealerta/erro.

– Um Aspecto é:
* Ligeiramente mais imp. que um adendo;* Fracamente mais imp. que uma ITD;* Moderadamente mais imp. que um ponto de corte4.* Fortemente mais imp. que uma declaração de aler-ta/erro.

– Um Adendo é:
* Ligeiramente mais imp. que uma ITD;

3Toda a incidência de uma declaração de herança será considerada,para questões de classificação, com a mesma importância de umaocorrência de uma declaração intertipos.4Toda a ocorrência de uma expressão de junção, terá o mesmo valor deum ponto de corte. Tomou-se essa decisão porque uma expressão dejunção sempre é utilizada para capturar um ponto de corte

* Fracamente mais imp. que um ponto de corte/ex-pressão de junção .* Moderadamente mais imp. que uma declaração dealerta/erro.
– Uma Declaração Intertipo é:
* Ligeiramente mais imp. que um ponto de corte/ex-pressão de junção.* Fracamente mais imp. que uma declaração de aler-ta/erro.

– Um Ponto de Corte/Expressão de Junção é Ligeiramente
mais imp. que uma declaração de alerta/erro.

• Priorização: Após serem feitos os passos realizados naSeção 4.1 para a obtenção dos pesos para cada conceito,o artefato Priorização, ficou assim definido:Ordem Estrutura Peso1º Pacote 0,41072º Aspecto 0,25603º Adendo 0,15414º Declaração Intertipos 0,09025º Ponto de Corte 0,05446º Declaração de Erro/Alerta 0,0347Com uma relação de consistência (CR) de aproximada-mente 1,2%, adequada segundo o AHP.
Como artefato de saída esta atividade produz o artefato

Função de classificação, detalhado a seguir:
• Função de classificação: a função foi definida usandoos pesos obtidos com o método AHP:

f(p) = toP ∗wP + toAs ∗wAs + toAd ∗wAd + toDIT ∗wDIT +
toPC ∗ wPC + toDEW ∗ wDEW).onde toP, toAs, toAd, toDIT, toPC e toDEW, são respecti-vamente: total de ocorrências em pacote, em aspectos,em adendos, em declarações intertipos, em pontos decorte e em declarações de erro/alerta. Da mesma forma,
woP, woAs, woAd, woDIT, woPC e woDEW, são respecti-vamente: peso de pacotes, de aspectos, de adendos, dedeclarações intertipos, de pontos de corte e de declara-ções de erro/alerta.De posse dos valores definidos no artefato Priorização,a Função de classificação para esta instanciação, podeser definida como:
f(p) = toP ∗ 0, 4107 + toAs ∗ 0, 2560 + toAd ∗ 0, 1541 +
toDIT ∗ 0, 0902 + toPC ∗ 0, 0544 + toDEW ∗ 0, 0347.
A seguir são detalhados os artefatos da atividade Avaliar

função de classificação:
• Programas de teste: Foi utilizado um repositório comum conjunto de arquivos limitado, para que fosse pos-sível avaliar o processo.• Consultas de teste: Foram realizadas duas consultas aprimeira buscando pela string AspectTetris e a segundabuscando a string Menu.

4.2.1 Primeira ConsultaA seguir, mostramos os arquivos de resultado paraa primeira consulta realizada na linguagem AspectJ:
AOJBindingDataset.aj, AspectTest.aj, TestAspect.aj e
DesignCheck.aj. A string AspectTetris representa o ar-tefato Consulta escrita.

96 Gil et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.84–99

Os quatro arquivos que foram retornados como rele-vantes, compondo o artefato Documentos retornados, sãodetalhados a seguir:
• O arquivo AOJBindingDataset.aj possui três incidênciasda string AspectTetris, na linha 9, todas elas em co-mentários. Comentários não foram definidos como es-truturas relevantes, desta forma, o peso de classificaçãodeste arquivo é zero.

1 package br.ufsm.aopjungle.bindings;23 public privileged aspect AOJBindingDataset {4 pointcut callType(AOJTypeble type) : call (* List+.add(..)) &&
args(type) && within(AOJCompilationUnit);5 /**6 * First phase, only saves type on the typeTable. Second pass will

looking for AOJungle7 * Correspondence and fill the value8 * AspectTetris AspectTetris AspectTetris9 * @param type The visited type10 */11 after(AOJTypeble type) : callType(type) {12 getProject(type).getBindingMapping().put(type.getNode(), type);13 }14 private AOJProject getProject(AOJTypeble type) {15 AOJCompilationUnit cUnit = (AOJCompilationUnit)type.getOwner();16 AOJPackageDeclaration pack = (AOJPackageDeclaration)cUnit.
getOwner();17 AOJProject project = (AOJProject)pack.getOwner();18 return project;19 }20 }

• O arquivo AspectTest.aj, contém uma ocorrência dastring AspectTetris em uma declaração de herança, nalinha 4. Ficando assim o peso de classificação deste ar-quivo:
f(AspectTest.aj) = 1 ∗ 0, 0902 = 0, 0902.

1 package com.ajtetris.core;23 public aspect AspectTest {4 declare parents : ParentTest extends AspectTetris;5 }

• O arquivo TestAspect.aj, contém uma ocorrência da
string AspectTetris em um adendo, na linha 10. Ficandoassim o peso de classificação deste arquivo:
f(TestAspect.aj) = 1 ∗ 0, 1541) = 0, 1541.

1 /*2 * Copyright 2003 Gustav Evertsson All Rights Reserved.3 */4 package com.ajtetris.aspects;56 public aspect TestAspect {7 pointcut logPoint(String fileName) : call(* com.ajtetris.logic.
TetrisImages.loadImage(String)) && args(fileName);8 before(String fileName) : logPoint(fileName) {9 System.out.println(thisJoinPoint.getSignature() + ", " +

fileName + ", AspectTetris");10 }11 }

• O arquivo DesignCheck.aj,contém uma ocorrência dastring AspectTetris em uma declaração de alerta, nalinha 7. Sendo esta a classificação deste arquivo:
f(DesignCheck.aj) = 1 ∗ 0, 347 = 0, 0347.

1 package com.ajtetris.aspects.developemnt;23 public aspect DesignCheck {4 declare warning: call(com.ajtetris.gui.BlockPanel.new(..)) && !
within(Gui.*) && !within(Aspects..*): "Do not create
BlockPanel outside the Gui package!";5 declare warning: call(* com.ajtetris.core.AspectTetris.*(..)) && !
within(com.ajtetris.core.AspectTetris) && !within(Aspects

..*): "Do not call AspectTetris outside the class, use the
IEventListner interface!";6 }

A Tabela 6 mostra a ordem de visualização dos resulta-dos da consulta com a realização do processo.

Tabela 6: Ordem do Resultado da Consulta por“AspectTetris"Classificada
Arquivo Peso Classificação

TestAspect.aj 0,1541 1º
AspectTest.aj 0,0902 2º

DesignCheck.aj 0,0347 3º
AOJBindingDataset.aj 0 4º

4.2.2 Segunda ConsultaA seguir, é mostrado o resultado da segunda consulta re-alizada na linguagem AspectJ. O artefato Consulta escritaé a string Menu, e compõem o artefato Documentos re-
tornados, os seguintes arquivos: PolicyEnforcements.aj,
ExceptionHandler.aj, NextBlock.aj e Menu.aj.
• O arquivo PoliceEnforcements.aj possui duas ocorrên-cias da string Menu, todas em comentários, na linha4. Comentários não foram definidos como estruturasrelevantes, desta forma, o peso de classificação destearquivo é zero.

1 package br.ufsm.aopjungle.util;23 /* This review is here only to test4 * Menu Menu5 */6 import java.util.List;7 import br.ufsm.aopjungle.metamodel.commons.AOJCompilationUnit;8 import br.ufsm.aopjungle.metamodel.commons.AOJTypeble;910 public aspect PoliceEnforcements {11 pointcut setTypeNotWithinCompilationUnits() :12 call (* List+.add(AOJTypeble)) && !within(AOJCompilationUnit);13 declare error : setTypeNotWithinCompilationUnits() :14 "Use addType method of AOJCompilationUnit class instead";15 pointcut callType(AOJTypeble type) :16 call (* List+.add(..)) && args(type) && within(
AOJCompilationUnit);17 }

• O arquivo ExceptionHandler.aj, contém uma ocorrênciada string Menu dentro de um adendo, na linha 7. Fi-cando assim o peso de classificação deste arquivo:
f(ExceptionHandler.aj) = 1 ∗ 0, 1541 = 0, 1541.

1 package br.ufsm.aopjungle.exception;23 public aspect ExceptionHandler {4 declare soft : InvalidStackObjectException : execution (* *.*(
ASTNode));5 pointcut visitStackException() : execution (* br.ufsm.aopjungle.
AOJungleVisitor.*(..));6 before() : visitStackException() {7 System.out.println("Menu");8 }910 void around (ASTNode node) : execution (* *.visit(ASTNode)) &&
args (node) {11 try {12 proceed(node);

Gil et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.84–99 97

13 } catch (InvalidStackObjectException e) {14 AOJLogger.getLogger().info("Stack Object type is not the
expected", e);15 }16 }17 }

• O arquivo NextBlock.aj, duas incidências da string Menuem um adendo, nas linhas 28 e 29. Ficando assim o pesode classificação deste arquivo:
f(NextBlock.aj) = 2 ∗ 0, 1541 = 0, 3082.

1 package com.ajtetris.aspects.logic;23 import java.util.Random;4 import com.ajtetris.aspects.gui.*;5 import com.ajtetris.gui.*;6 import com.ajtetris.logic.*;78 public aspect NextBlock {9 pointcut guiInit() : execution(com.ajtetris.gui.TetrisGUI.new(..))
;10 pointcut getNextBlock() : call(* com.ajtetris.core.AspectTetris.
getRandomBlock());11 protected BlockPanel nextBlockPanel;12 protected int nextBlock;13 after() : guiInit() {14 Random rn = new Random();15 nextBlock = rn.nextInt(Blocks.NUMBEROFTYPES);16 nextBlockPanel = new BlockPanel(4, 4, "");17 if(GameInfo.infoPanel != null)18 GameInfo.infoPanel.add(nextBlockPanel);19 nextBlockPanel.setBlocks(Blocks.getBlock(nextBlock));20 }21 int[][] around() : getNextBlock() {22 int currentBlock = nextBlock;23 Random Menu = new Random();24 nextBlock = Menu.nextInt(Blocks.NUMBEROFTYPES);25 nextBlockPanel.setBlocks(Blocks.getBlock(nextBlock));26 return Blocks.getBlock(currentBlock);27 }28 }

• O arquivo Menu.aj, contém uma ocorrência da string
Menu no nome de um aspecto, na linha 9. Sendo esta aclassificação deste arquivo:
f(Menu.aj) = 1 ∗ 0, 2560 = 0, 2560.

1 package com.ajtetris.aspects.gui;23 import java.awt.*;4 import java.awt.event.*;5 import javax.swing.*;6 import com.ajtetris.gui.*;7 import com.ajtetris.eventinterface.*;89 public aspect Menu implements ActionListener {10 protected JMenuItem newGameMI;11 protected JMenuItem pauseMI;12 protected JMenuItem exitMI;13 protected IEventListner tetris;14 pointcut guiInit() : execution(com.ajtetris.gui.TetrisGUI.new(..))
;15 pointcut tetrisInit(IEventListner tetris) : execution(com.ajtetris
.core.AspectTetris.new(..)) && target(tetris);16 after() : guiInit() {17 // code omitted...18 }19 }

A Tabela 7 mostra o resultado após a aplicação do pro-cesso.
5 Trabalhos Relacionados
Consultas em código de programas constituem uma dastécnicas para as atividades de reengenharia de software(Kullbach e Winter, 1999). Seja na atividade de compre-ensão de código ou durante as atividades de refatoração,

Tabela 7: Resultado da Consulta por “Menu"
Arquivo Peso Classificação

NextBlock.aj 0,3082 1º
Menu.aj 0,2560 2º

ExceptionHandler.aj 0,1541 3º
PoliceEnforcements.aj 0 4º

as linguagens de consulta em código, como JTL (Java Tool
Language) (Cohen et al., 2006) e CodeQuest (Hajiyev et al.,2006), fornecem recursos para que desenvolvedores recu-perem informações, coletem métricas e naveguem pelasestruturas de um programa.Mecanismos de consulta em código fonte têm sido ex-tensivamente estudados, principalmente no contexto deorientação a objetos, para qual ferramentas como as apre-sentadas por Urma e Mycroft (2012, 2015), ou a apresen-tada por Bajracharya et al. (2014), assim como linguagenstêm sido propostas (Janzen e De Volder, 2003; McCormicke De Volder, 2004; Cohen et al., 2006; Hajiyev et al., 2006).Essas ferramentas e linguagens também são relevantes noestudo de busca em outros paradigmas, pois normalmenteas linguagens de novos paradigmas são extensões de lin-guagens existentes, como AspectJ, que é uma extensão deJava. Independentemente disso, existem linguagens pro-postas especificamente para um paradigma específico, talcomo o paradigma orientado a aspectos (de Faveri, 2013).Consultas não estruturadas, ou seja, sem um formato,regra ou sequência padronizados, dependem dos critériosde classificação dos algoritmos usados pelos motores debusca aos quais elas são submetidas. O usuário final nãopode mudar a maneira como um algoritmo classifica aspalavras ou os arquivos, mas ele pode interagir com o sis-tema formulando ou reformulando uma consulta (Croftet al., 2010). Essa interação é uma parte crucial para o pro-cesso de recuperação de informação, e pode determinar seo motor de busca está realizando um serviço eficaz.As abordagens de consulta baseadas em palavras-chaveexigem que os usuários descrevam suas necessidades, eem seguida, combinem essa consulta textual ao texto con-tido no código fonte. Assim, o sucesso da pesquisa geral-mente depende da capacidade dos usuários em selecionarpalavras que podem ter sido utilizadas, ou que sejam seme-lhantes às utilizadas no código (Stolee et al., 2016). Esseprocesso pode exigir que as consultas sejam remodeladasvárias vezes.Consultas não estruturadas tem sido exploradas em fer-ramentas que indexam código em diferentes níveis e dife-rentes linguagens a partir de repositórios contendo umagrande quantidade de arquivos. Diferentemente da abor-dagem proposta neste trabalho, a grande maioria das ferra-mentas de consulta não estruturada para código fonte nãoapresenta critérios de classificação que priorizem docu-mentos de maior relevância ao usuário, tais como (Nerdy-
Data, 2024), (Krugle, 2024) e (Basu, 2024).Em síntese, embora linguagens de consulta estruturada,como JTL e CodeQuest, ofereçam mecanismos expressivospara recuperação de informações e identificação de oportu-nidades de refatoração, elas exigem conhecimento prévio

98 Gil et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.84–99

de sintaxe específica e dependem da estrutura da lingua-gem alvo. Por outro lado, ferramentas de busca não estru-turada, como NerdyData, Krugle e OpenHub, permitemconsultas livres, mas não fornecem critérios de prioriza-ção sensíveis ao contexto do usuário ou às característicasda linguagem.Diferentemente dessas abordagens, o processo pro-posto combina a flexibilidade das consultas não estrutura-das com um mecanismo de classificação baseado na impor-tância relativa dos elementos da linguagem, permitindoordenar resultados conforme preferências definidas pelosdesenvolvedores e aumentando a precisão da recuperaçãode informação.
6 Conclusões
Este artigo apresentou um processo para consultas em có-digo fonte. O processo possibilita aos usuários a definiçãode quais fragmentos de código fonte serão consideradosimportantes no momento da realização das consultas. Estadefinição permite uma melhora na classificação dos re-sultados, ocasionando uma diminuição no tempo gastocom a análise desses resultados. Por utilizar técnicas deconsultas não estruturadas, este processo não impõe aosusuários a necessidade de aprender uma nova sintaxe paraobter resultados com uma maior exatidão nas consultasexecutadas. Para a validação do processo foram realizadasduas instanciações. A primeira na linguagem orientada aobjetos Java e a segunda na linguagem orientada a aspec-tos AspectJ, demonstrando a aplicabilidade do processo.Como trabalho futuro, estuda-se a aplicação de outros mé-todos de decisão multi-critério para a definição dos pesos,incluindo abordagens automatizadas de acordo com repo-sitórios de larga escala da linguagem alvo.
Referências
Bajracharya, S., Ossher, J. e Lopes, C. (2014). Sourcerer:An infrastructure for large-scale collection and analysisof open-source code, Science of Computer Programming

79: 241–259. https://doi.org/10.1016/j.scico.2012
.04.008.

Basu, S. (2024). Ohloh. Acessado em Novembro/2024,
http://code.openhub.net/.

Bhushan, N. e Rai, K. (2004). Strategic decision making:
applying the analytic hierarchy process, Springer Science& Business Media. https://doi.org/10.1007/b97668.

Cohen, T., Gil, J. e Maman, I. (2006). JTL: the Java toolslanguage, ACM SIGPLAN Notices 41(10): 89–108. https:
//dl.acm.org/doi/10.1145/1167515.1167481.

Croft, W. B., Metzler, D. e Strohman, T. (2010). Search en-
gines: Information retrieval in practice, Vol. 520, Addison-Wesley Reading. https://dl.acm.org/doi/book/10.555
5/1516224.

de Faveri, C. (2013). Uma linguagem específica de domíniopara busca em código orientado a aspectos, Mestrado /
UFSM . https://repositorio.ufsm.br/handle/1/5435.

Fokaefs, M., Tsantalis, N. e Chatzigeorgiou, A. (2007).Jdeodorant: Identification and removal of feature envybad smells, 2007 IEEE ICSM, IEEE, pp. 519–520. https:
//doi.org/10.1109/ICSM.2007.4362679.

Fowler, M. (1999). Refactoring: Improving the design of
existing code, Addison-Wesley, USA. https://dl.acm.o
rg/doi/book/10.5555/311424.

Godfrey, M. W. e German, D. M. (2008). The past, pre-sent, and future of software evolution, 2008 Frontiers
of Software Maintenance, IEEE, pp. 129–138. https:
//doi.org/10.1109/FOSM.2008.4659256.

Hajiyev, E., Verbaere, M. e De Moor, O. (2006). Codequest:Scalable source code queries with datalog, ECOOP 2006,
Nantes, France, July 3-7, 2006., Springer, pp. 2–27. https:
//dl.acm.org/doi/10.1007/11785477_2.

Hecht, M., Piveta, E., Pimenta, M. e Price, R. T. (2006).Aspect-oriented code generation, Anais do SBES’06, SBC,pp. 209–223.
ISO (2022). ISO/IEC/IEEE 14764:2022 - Software engine-ering — Software life cycle processes — Maintenance, Standard, International Organization for Standardiza-tion, Geneva, CH.
Janzen, D. e De Volder, K. (2003). Navigating and queryingcode without getting lost, Proc of AOSD’03, pp. 178–187.

https://dl.acm.org/doi/10.1145/643603.643622.
Júnior, J. E. T., Neto, H. E. V. T., Faveri, C. D., de Brum Saccol,D., Vizzotto, J. K. e Piveta, E. K. (2019). A refactoringcatalog for lambda expressions in Java, Int. J. Softw. Eng.

Knowl. Eng. 29(6): 791–818. https://doi.org/10.1142/
S021819401950027X.

Kerievsky, J. (2004). Refactoring to patterns, Pearson. http
s://dl.acm.org/doi/10.5555/993772.

Krugle (2024). Acessado em Novembro/2024, http://www.
krugle.com/.

Kullbach, B. e Winter, A. (1999). Querying as an enablingtechnology in software reengineering, Proc. of CSMR’99,IEEE, pp. 42–50. https://dl.acm.org/doi/10.5555/794
202.795241.

Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D. E.e Turski, W. M. (1997). Metrics and laws of softwareevolution-the nineties view, Proc of Metrics’97, IEEE,pp. 20–32. https://dl.acm.org/doi/10.5555/823454.
823901.

McCormick, E. e De Volder, K. (2004). JQuery: finding yourway through tangled code, Companion to OOPSLA’04,pp. 9–10. https://dl.acm.org/doi/abs/10.1145/10286
64.1028670.

Mens, T. e Tourwé, T. (2004). A survey of softwarerefactoring, IEEE Transactions on software engineering
30(2): 126–139. https://dl.acm.org/doi/10.1109/TSE
.2004.1265817.

NerdyData (2024). Acessado em Novembro/2024, http:
//nerdydata.com/.

https://doi.org/10.1016/j.scico.2012.04.008
https://doi.org/10.1016/j.scico.2012.04.008
http://code.openhub.net/
https://doi.org/10.1007/b97668
https://dl.acm.org/doi/10.1145/1167515.1167481
https://dl.acm.org/doi/10.1145/1167515.1167481
https://dl.acm.org/doi/book/10.5555/1516224
https://dl.acm.org/doi/book/10.5555/1516224
https://repositorio.ufsm.br/handle/1/5435
https://doi.org/10.1109/ICSM.2007.4362679
https://doi.org/10.1109/ICSM.2007.4362679
https://dl.acm.org/doi/book/10.5555/311424
https://dl.acm.org/doi/book/10.5555/311424
https://doi.org/10.1109/FOSM.2008.4659256
https://doi.org/10.1109/FOSM.2008.4659256
https://dl.acm.org/doi/10.1007/11785477_2
https://dl.acm.org/doi/10.1007/11785477_2
https://dl.acm.org/doi/10.1145/643603.643622
https://doi.org/10.1142/S021819401950027X
https://doi.org/10.1142/S021819401950027X
https://dl.acm.org/doi/10.5555/993772
https://dl.acm.org/doi/10.5555/993772
http://www.krugle.com/
http://www.krugle.com/
https://dl.acm.org/doi/10.5555/794202.795241
https://dl.acm.org/doi/10.5555/794202.795241
https://dl.acm.org/doi/10.5555/823454.823901
https://dl.acm.org/doi/10.5555/823454.823901
https://dl.acm.org/doi/abs/10.1145/1028664.1028670
https://dl.acm.org/doi/abs/10.1145/1028664.1028670
https://dl.acm.org/doi/10.1109/TSE.2004.1265817
https://dl.acm.org/doi/10.1109/TSE.2004.1265817
http://nerdydata.com/
http://nerdydata.com/

Gil et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.84–99 99

Piveta, E. K. (2009). Improving the search for refactoringopportunities on object-oriented and aspect-orientedsoftware (PhD Thesis/UFRGS). https://lume.ufrgs.b
r/handle/10183/15651.

Piveta, E., Pimenta, M., Araújo, J., Moreira, A., Guer-reiro, P. e Price, R. T. (2009). Representing refacto-ring opportunities, Proceedings of the 2009 ACM sym-
posium on Applied Computing, pp. 1867–1872. https:
//dlnext.acm.org/doi/abs/10.1145/1529282.1529701.

Pizka, M. e Jurgens, E. (2007). Automating languageevolution, IEEE/IFIP Symposium on Theoretical Aspects
of Software Engineering (TASE’07), IEEE, pp. 305–315.
https://dl.acm.org/doi/abs/10.1109/TASE.2007.13.

Pressman, R. S. e Maxim, B. R. (2021). Engenharia de soft-
ware. Uma abordagem profissional., McGraw Hill Brasil.

Robillard, M. P. e Murphy, G. C. (2007). Representing con-cerns in source code, ACM Transactions on Software En-
gineering and Methodology (TOSEM) 16(1): 3–es. https:
//dl.acm.org/doi/abs/10.1145/1189748.1189751.

Saaty, T. L. (1990). How to make a decision: the analytichierarchy process, European Journal of Operational Rese-
arch 48(1): 9–26. https://doi.org/10.1016/0377-221
7(90)90057-I.

Stolee, K. T., Elbaum, S. e Dwyer, M. B. (2016). Code searchwith input/output queries: Generalizing, ranking, andassessment, Journal of Systems and Software 116: 35–48.
https://doi.org/10.1016/j.jss.2015.04.081.

Urma, R.-G. e Mycroft, A. (2012). Programming languageevolution via source code query languages, Workshop on
Evaluation and Usability of Programming Languages and
Tools, PLATEAU ’12, ACM, New York, NY, USA, p. 35–38.
https://doi.org/10.1145/2414721.2414728.

Urma, R.-G. e Mycroft, A. (2015). Source-code querieswith graph databases—with application to program-ming language usage and evolution, Science of Computer
Programming 97: 127–134. https://doi.org/10.1016/j.
scico.2013.11.010.

Vargas, R. V. e IPMA-B, P. (2010). Using the Analytic Hie-rarchy Process (AHP) to select and prioritize projects in aportfolio, PMI Global Congress, Vol. 32, PA: PMI Washing-ton, DC, pp. 1–22.

https://lume.ufrgs.br/handle/10183/15651
https://lume.ufrgs.br/handle/10183/15651
https://dlnext.acm.org/doi/abs/10.1145/1529282.1529701
https://dlnext.acm.org/doi/abs/10.1145/1529282.1529701
https://dl.acm.org/doi/abs/10.1109/TASE.2007.13
https://dl.acm.org/doi/abs/10.1145/1189748.1189751
https://dl.acm.org/doi/abs/10.1145/1189748.1189751
https://doi.org/10.1016/0377-2217(90)90057-I
https://doi.org/10.1016/0377-2217(90)90057-I
https://doi.org/10.1016/j.jss.2015.04.081
https://doi.org/10.1145/2414721.2414728
https://doi.org/10.1016/j.scico.2013.11.010
https://doi.org/10.1016/j.scico.2013.11.010

	1 Introdução
	2 Referencial Teórico
	2.1 Evolução, Refatoração e Consulta em Código
	2.2 AHP

	3 Um Processo para Buscas não Estruturadas em Código Fonte
	3.1 Etapa de Definição
	3.1.1 Selecionar conceitos
	3.1.2 Priorizar elementos
	3.1.3 Definir função de classificação
	3.1.4 Avaliar função de classificação

	3.2 Etapa de Reificação
	3.3 Etapa de Análise
	3.3.1 Escrever consulta
	3.3.2 Processar consulta
	3.3.3 Executar consulta
	3.3.4 Classificar resultados
	3.3.5 Analisar resultados
	3.3.6 Refinar consulta

	4 Avaliação
	4.1 Instanciação para Java
	4.1.1 Primeira Consulta
	4.1.2 Segunda Consulta

	4.2 Instanciação para AspectJ
	4.2.1 Primeira Consulta
	4.2.2 Segunda Consulta

	5 Trabalhos Relacionados
	6 Conclusões

