Revista Brasileira de Computacao Aplicada, Novembro, 2025

b
UPF |EDITORA

UNIVERSIDADE
E PASS0 FUNDO

DOI: 10.5335/rbca.v17i3.16482
Vol. 17, N2 3, pp. 84—99
Homepage: seer.upf.br/index.php/rbca/index

RBCA

ISSN 2176-6649

ARTIGO ORIGINAL

Um processo para buscas nao estruturadas em codigo fonte

A process for source code unstructured search

Rodrigo de Castro Gil 1, Eduardo Kessler Piveta *+1, Cristiano De Faveri?, Deise de
Brum Saccol!, Lisandra Manzoni Fontoural!

!Universidade Federal de Santa Maria, 2AMF - Antonio Meneghetti Faculdade
regil@inf.ufsm.br; *piveta@inf.ufsm.br; cristiano.faveri@amf.edu.br; deise@inf.ufsm.br; lisandra@inf.ufsm.br

Recebido: 16/11/2024. Revisado: 14/11/2025. Aceito: 30/11/2025.

Resumo

A consulta em cédigo fonte representa um importante recurso para auxiliar desenvolvedores na compreensdo de progra-
mas, bem como em atividades de refatoracdo, especialmente em grandes repositérios de codigo. Este trabalho apresenta
um processo cujo objetivo é facilitar a recuperacgdo de informagao, utilizando técnicas de consultas ndo estruturadas em
codigo fonte. O processo apresenta arquivos classificados por ordem de importancia com base nas caracteristicas da
linguagem de programac3o e nas preferéncias definidas pelos desenvolvedores. Foram realizadas duas instancia¢des do
processo, nas linguagens de programacdo Java e Aspect], demonstrando a aplicacdo do processo e como ele pode facilitar
a identificacdo das informacGes recuperadas. O objetivo geral é permitir buscas mais precisas em programas escritos em
diferentes linguagens de programacao.

Palavras-Chave: Busca ndo estruturada; Processos de Software; AHP

Abstract

Source-code querying is an important resource for assisting developers in program comprehension and refactoring
tasks, particularly in large code repositories. This work presents a process designed to facilitate information retrieval by
employing techniques for unstructured queries over source code. The process ranks files according to their relevance,
based on both the characteristics of the programming language and the preferences defined by developers. Two
instantiations of the process were carried out—using the Java and Aspect] programming languages—demonstrating its
application and how it can support the identification of retrieved information. The overarching goal is to enable more
precise searches in programs written in different programming languages.

Keywords: Unstructured search; Software Processes; AHP.

1 Introdugao

A evolugao de codigo é uma pratica continua no contexto
de desenvolvimento de software. Os motivos pelos quais
um sistema de software é alterado refletem diretamente
no tipo de manutencao realizada. A norma ISO/IEC 14764
define a manutencao de software como sendo reativa ou
pré-ativa (ISO, 2022). De forma reativa, a manutengdo
do codigo é realizada para corrigir defeitos evidenciados
em producdo (manutengao corretiva) ou para adaptar um

sisterma a um novo ambiente (manutenc¢ado adaptativa).
Pr6-ativamente, um desenvolvedor pode modificar codigo
ja em producao para corrigir defeitos conhecidos e latentes
antes que se tornem falhas efetivas (manutencao preven-
tiva). Por fim, problemas de desempenho e manutenibili-
dade podem levar ao refinamento de c6digo para torna-lo
mais legivel e mais rapido (manutencio perfectiva).

A medida que os sistemas de software se tornam maio-
res e mais complexos, manter a qualidade do c6digo gerado
é um desafio permanente. Antes de efetuar uma modifica-

http://dx.doi.org/10.5335/rbca.v17i3.16482
http://seer.upf.br/index.php/rbca/index
https://orcid.org/0000-0002-0092-4495

Giletal. |

Revista Brasileira de Computagdo Aplicada (2025), v.17, n.3, pp.84—99 85

¢do em um sistema, os desenvolvedores devem explorar
o codigo fonte e identificar quais partes sdo relevantes e
candidatas a manutencdo. Para ajuda-los a compreender
o cddigo e identificar possiveis oportunidades de refatora-
¢ao, os desenvolvedores geralmente recorrem a recursos
de busca de um ambiente integrado de desenvolvimento
(IDE) e ferramentas de analise estatica (Piveta, 2009; Ro-
billard e Murphy, 2007; Hecht et al., 2006; Fokaefs et al.,
2007).

Abusca de c6digo é uma caracteristica basica dos IDEs
usados profissionalmente, tais como Eclipse, IntelliJ e VS-
Code. Em geral, os recursos de busca possuem pesquisas
simples por palavras e também recursos mais avancados
usando expressoes regulares e construcoes da linguagem,
tais como classes e métodos. Por outro lado, as ferramen-
tas de analise estatica sdo comumente usadas para buscar
oportunidades de refatoracdo e também defeitos no codigo
que podem resultar em falhas.

Para auxiliar nesse processo, linguagens de consulta
em cddigo fonte (de Faveri, 2013) e mecanismos de busca
(Basu, 2024; NerdyData, 2024; Krugle, 2024) tém sido pro-
postos, algumas restritas a sistemas orientados a objetos,
outras para linguagens de consulta para programas ori-
entados a aspectos e também motores de busca ndo es-
truturada em cédigo fonte. Essas abordagens auxiliam os
desenvolvedores ndo apenas a encontrar oportunidades
de refatoracdo, mas também, em outras tarefas rotineiras
como localizar um trecho de c6digo para reutiliza-lo ou
simplesmente navegar pelo codigo de um sistema a fim de
entender o seu funcionamento.

Apesar de existirem maneiras para representar (Piveta
et al., 2009) e para buscar por oportunidades de refatora-
¢ao por meio de percurso em ASTSs (Abstract Syntax Trees)
de programas usando ferramentas de andlise estatica, tais
abordagens fornecem uma flexibilidade limitada e sao de-
pendentes de conhecimentos de baixo nivel das linguagens
de programacao associadas.

Dentro desse contexto, este artigo apresenta um pro-
cesso que fornece suporte a busca de informagoes de forma
ndo estruturada em cédigo fonte. O processo busca for-
necer elementos que possibilitem que a recuperagao de
informacdo seja possivel independente da linguagem ou
do paradigma adotados no repositério no qual se deseja
aplicar o processo, considerando a importancia dos ele-
mentos da linguagem.

De forma a avaliar o processo proposto sdo apresen-
tadas duas instanciacdes distintas do processo, para as
linguagens Java (orientada a objetos) e Aspect] (orientada
a aspectos). Tais linguagens foram selecionadas por se-
rem representativas em seus paradigmas correspondentes.
Java é uma das linguagens orientadas a objetos mais am-
plamente usada atualmente. E Aspect] foi a primeira lin-
guagem orientada a aspectos proposta, e continua sendo a
mais popular. Busca-se mostrar como 0 processo proporci-
ona resultados mais precisos para as consultas realizadas
e fornece a classificagao dos arquivos buscados de acordo
com a linguagem e os parametros utilizados.

O restante deste artigo esta organizado da seguinte
forma. A Secdo 2 descreve alguns conceitos que auxiliam
na definicdo do processo proposto. A Se¢ao 3 descreve um
processo para buscas nao estruturadas, incluindo as ati-
vidades, papéis, e artefatos associados. A Se¢do 4 mostra

as duas instanciac0es feitas para avaliar o processo (para
Java e para Aspect]). Por fim, a Secdo 5 descreve alguns
trabalhos relacionados e a Secdo 6 elenca as principais
conclusoes deste trabalho.

2 Referencial Tedrico

Esta se¢ao descreve um conjunto de conceitos e ferramen-
tas necessarios para o entendimento deste trabalho. Ela
esta organizada da seguinte forma. A Se¢do 2.1 descreve
conceitos relacionados a evolugdo de programas, refatora-
¢do e consulta em codigo fonte. A Secdo 2.2 apresenta con-
ceitos sobre o AHP, um método de decisdo multi-critérios.

2.1 Evolugao, Refatoragdo e Consulta em Codigo

Uma caracteristica que se pode observar em sistemas de
software é a necessidade de eles evoluirem. O processo
de manutencdo ou evolucdo envolve de forma geral trés
atividades: compreensdo da sistema atual, modificacdo do
sistema atual e reavaliagao do sistema modificado (Pres-
sman e Maxim, 2021). Ao adaptar, melhorar e modificar
um sistema, seu projeto pode se afastar de sua concep-
¢do original, diminuindo sua qualidade (Mens e Tourweé,
2004).

As mudangas representam caracteristicas cruciais no
desenvolvimento de software (Godfrey e German, 2008).
Varias métricas e leis da evolugdo de software podem ser
seguidas para obter melhores resultados no processo evo-
lutivo, como mudangca continua, aumento da complexi-
dade e auto-regulacao, entre outras (Lehman et al., 1997).
Apesar de extensa pesquisa e progresso significativo nesta
area, o desenvolvimento e a manutenc¢do de sistemas de
software continuam sendo processos demorados e dispen-
diosos. Portanto, a redugao do custo de desenvolvimento e
manutencao de software permanece um tema de pesquisa
vital na engenharia de software (Pizka e Jurgens, 2007).
Uma das técnicas que auxilia na manutencdo de software
é a refatoracdo.

Refatoragao pode ser definida como o processo de mo-
dificar a estrutura interna de um sistema de software de
maneira que ndo afete seu comportamento externo per-
ceptivel (Fowler, 1999). O procedimento de refatoragao
comumente abrange a simplificacdo da légica condicio-
nal, aprimoramento da estrutura do cddigo e eliminagdo
de trechos duplicados (Kerievsky, 2004). Os resultados
gerados pelo sisterna refatorado devem ser idénticos aos
produzidos antes da refatoracdo. Para identificar oportuni-
dades de refatoracdo, é necessario examinar as estruturas
das aplicacOes. Dessa maneira, ferramentas que realizam
consultas em cédigo fonte sdo instrumentais para esse
proposito.

A auséncia de refatoragdo pode acarretar a progressiva
deterioracao do projeto de um programa. Ao longo do
tempo, o c6digo é sujeito a modificagdes, e conforme evolui
de forma ad hoc, sua integridade pode ser comprometida,
afastando-se da estrutura original delineada. A leitura
do cédigo torna-se progressivamente mais desafiadora
a medida que a estrutura se degrada. Refatorar, assim,
assemelha-se a organizar o c6digo, envolvendo a remo-
¢do de segmentos que nao ocupam a posicao adequada.

86 Giletal. |

Revista Brasileira de Computagdo Aplicada (2025), v.17, n.3, pp.84—99

A perda de estrutura no coédigo tem efeitos cumulativos,
como destacado por Fowler (Fowler, 1999).

A identificacio de trechos de codigo passiveis de refato-
ragao consiste na busca por locais nos quais melhorias po-
dem ser aplicadas, levando em consideracao deficiéncias,
inadequacdes ou incompletudes (Junior et al., 2019). Dessa
maneira, oportunidades de refatoragao podem ser iden-
tificadas, estabelecendo uma relacdo de associacdo entre
uma deficiéncia ou limitacdo e um padrao de refatoracdo
especifico (Piveta, 2009). Ferramentas automatizadas de
deteccao de oportunidades de refatora¢dao desempenham
um papel crucial nesse contexto.

2.2 AHP

AHP (Analytic Hierarchy Process) (Saaty, 1990) é um mé-
todo multicritério amplamente utilizado e conhecido no
apoio a tomada de decisdo durante a resolucado de confli-
tos negociados, em problemas usando multiplos critérios
(Vargas e IPMA-B, 2010). O AHP fornece um meio de de-
composicdo de um problema em uma hierarquia de sub-
problemas que podem ser mais facilmente compreendidos
e avaliados. Para esse processo, o AHP possui os seguintes
passos:

Passo 1: O problema é decomposto em uma hierarquia
de critérios, subcritérios e alternativas. A Fig. 1 mostra
uma estrutura hierarquica genérica. A raiz da hierarquia é
ameta ou objetivo do problema a ser estudado e sintetizado,
os nos folha sdo as alternativas a serem comparadas. Entre
estes dois niveis estdo diferentes critérios e sub-critérios.

Objetivo ‘
Critério 2...

Critério 1 Critério P

Subcritério 1 1... Subcritério 2 1... Subcritério P 1...

Subcritério 1 L Subcritério 2 M Subcritério P N

Alternativa 1 Alternativa 2 Alternativa 3 Alternativa Q

Figura 1: Hierarquia genérica do AHP (Bhushan e Rai,
2004)

Passo 2: Neste passo o especialista define as priorida-
des para cada critério e alternativa. A importancia de cada
critério em relagdo aos outros e de cada alternativa em re-
lacdo as outras é apurada utilizando comparacdo em pares.
A Tabela 1 (Saaty, 1990), é usada para expressar numerica-
mente a importancia relativa sobre critérios e alternativas.

Passo 3: As comparacoes par a par dos varios critérios
gerados no passo anterior sao organizadas em uma matriz
quadrada. Os elementos da diagonal principal da matriz
tém o valor 1. O critério da linha (i) é melhor que o da

Tabela 1: Escala gradativa de comparacdo quantitativa das
alternativas
Valor Importancia Relativa
1 Igual importancia
Ligeiramente mais importante
Fracamente mais importante
Fracamente a moderadamente mais importante
Moderadamente mais importante
Moderadamente a fortemente mais importante
Fortemente mais importante
Extremamente mais importante
Absolutamente mais importante

OO\ [|WIN

coluna (j) se o valor do elemento (i, j) for maior que 1. Caso
contrario o critério da coluna (j) é melhor que o da linha
(i). Os dois sao equivalentes se o valor do elemento (i,j) for
igualai.

Passo 4: Neste passo é construido um vetor com os pe-
sos relativos para todos os critérios da matriz do passo
anterior. Esse vetor representa os pesos de cada critério.
Esse vetor é obtido através da eleva¢io ao quadrado da ma-
triz de prioridade, obtida no passo anterior, e sdo somados
os valores de suas linhas, para que cada um desses valores
seja dividido pela soma do total das linhas. Esses valores
sdo calculados e normalizados.

Passo 5: A consisténcia da matriz de ordem n é avaliada.
As comparagdes feitas por este método sdo subjetivas e o
AHP tolera inconsisténcia através da quantidade de redun-
dancia na abordagem. Se este indice de consisténcia nédo
conseguir chegar a um nivel desejado, respostas para as
comparagoes devem ser re-examinadas. Essa relagao de
consisténcia (CR) é dada pela razio:

_a

Onde o indice de consisténcia, CI, é calculado como:

I = (Amax — n)
(n—-1)

onde Amax é 0 autovalor maximo da matriz de julgamento.
Este CI pode ser comparado com o de uma matriz aleatéria,
RCI. Os detalhes do calculo RCI sdo discutidos por Saaty
(Saaty, 1990), o qual fornece os valores de RCI para serem
usados no calculo da CR. E esses valores sdo apresentados
na Tabela 2. Ele sugere ainda que o valor da CR deve ser
inferior a 0,1 ou seja, o processo é considerado aceitavel se
a CR for inferior a 10%.

Tabela 2: Valores referentes ao RCI

n <3 3 4 5 6 7 8
RCI | 0 | 058 | 0,9 | 1,12 | 1,24 | 1,32 | 1,41
n 9 10 11 12 13 14 15
RCI [1,45 | 1,49 | 1,51 | 1,48 | 1,56 | 1,57 | 1,59

Passo 6: A classificacdo de cada alternativa é multipli-

Giletal. |

Revista Brasileira de Computagdo Aplicada (2025), v.17, n.3, pp.84—99 87

cada pelos pesos dos subcritérios e agregada para obter
classificacdes locais em relacdo a cada critério. As classifi-
cagoes locais sdo entdo multiplicadas pelos pesos dos crité-
rios e agregadas para obter as classificagdes globais. O AHP
produz entdo valores dos pesos para cada alternativa ba-
seados no julgamento de importancia de cada alternativa
em relacdo as outras com respeito a um critério comum.

3 Um Processo para Buscas nao Estruturadas
em Codigo Fonte

Buscando auxiliar os desenvolvedores nas buscas em c6-
digo fonte, este trabalho consiste na especificacdo de um
processo para a busca de informacdo de forma ndo estru-
turada, otimizando assim o tempo gasto com a analise dos
resultados obtidos, e diminuindo a necessidade de refina-
mento das consultas para melhorar os resultados.

O processo possibilita que um determinado provedor
de ferramentas possa viabilizar a classifica¢do de elemen-
tos de uma ou mais linguagens de programacao. E que
essa classificacdo determine a ordem de retorno dos arqui-
vos relevantes em consultas realizadas por desenvolvedo-
res. Por exemplo, uma vez que um determinado provedor
tenha definido a importancia relativa dos elementos de
programacao escritos em uma dada linguagem de progra-
macao, um desenvolvedor qualquer pode efetuar buscas
ndo estruturadas em repositorios desta linguagem e obter
os resultados ordenados de acordo com essa importancia.

O processo proposto consiste em trés etapas: Definicdo,
Reificagdo e Analise. O processo inicia na etapa de Defini-
¢ao, na qual sao selecionados os elementos relevantes da
linguagem de programacao. Esses elementos sdo priori-
zados, e é definida e avaliada uma funcdo de classificagdo.
A segunda etapa é a Reificac¢do. Nesta etapa, é criado um
modelo reificado para que as consultas sejam executadas
nesse modelo. A terceira etapa, na qual o processo ter-
mina, € a etapa de Andlise. Nela sdo escritas as consultas,
que sdo processadas e executadas e seus resultados sao
classificados e analisados.

Como cada etapa do processo pode ser desempenhada
separadamente optou-se, para um melhor entendimento,
por detalha-las em separado. Para que qualquer processo
seja realizado, é preciso definir quem sera responsavel por
executar as tarefas e por analisar os artefatos de entrada e
a integralidade dos artefatos produzidos. Isso faz com que
seja necessario definir os papéis que serdo desempenhados
durante o processo. Para este processo, foram definidos
dois papéis: o Tool Provider, que é o responsavel por dar
inicio ao processo e decidir quais as ferramentas serdo
utilizadas na sua efetivacdo, e o Analista, o qual realizara
as consultas.

A seguir sdo descritas as etapas do processo. A Secdo 3.1
descreve a etapa de Definicdo, suas atividades e artefatos,
a Sec¢do 3.2 mostra a etapa de Reificacdo, a qual gera um
metamodelo que pode ser manipulado. A Secao 3.3 detalha
as atividades da etapa de Andlise, na qual as consultas sdo
executadas e os resultados obtidos.

3.1 Etapa de Definicao

O objetivo desta etapa € priorizar elementos (selecionados
a partir de uma determinada linguagem de programacao),
e definir uma funcao de classificagdo que tera a responsabi-
lidade de classificar os arquivos retornados como relevan-
tes nas consultas realizadas. Esta etapa possui as seguintes
atividades: Selecionar conceitos, Priorizar elementos, Defi-
nir fungdo de classificagdo e Avaliar fungdo de classificagdo.
AFig. 2 mostra essas atividades. A seguir sao detalhadas
as atividades da etapa de Defini¢ao.

3.1.1 Selecionar conceitos

O objetivo desta atividade é selecionar as estruturas da
linguagem de programacao que devem ser consideradas
importantes paraabusca. Esta atividade tem como entrada
os artefatos Requisitos de busca e Linguagem alvo e gera o
artefato Conceitos. A Fig. 3 mostra a atividade com os seus
artefatos, os quais sdo detalhados a seguir:

- Requisitos de busca: lista quais os objetos que serdao
objetivos das buscas. Por exemplo, Deve ser possivel
buscar por nomes de pacotes, ou, Deve ser possivel buscar
por tipo de adendos.

- Linguagem alvo: define em qual linguagem de progra-
macao as consultas serdo realizadas. Por exemplo, pode
ser utilizada uma linguagem OO como Java, ou uma
linguagem estruturada como C, dentre outras.

- Conceitos: define quais elementos de uma determi-
nada linguagem de programacao serao considerados
relevantes. Um Conceito pode ser uma classe, um as-
pecto, dentre outros. Estes elementos serao a referéncia
para a extracao dos metadados. Por exemplo, caso o pro-
cesso seja empregado na linguagem de programacao
Java e fosse necessario buscar por nomes de pacotes, 0
artefato Conceitos definiria os Pacotes Java, como um
desses elementos.

3.1.2 Priorizar elementos

Esta atividade tem como objetivo fornecer os elementos de
uma linguagem de programagao priorizados. Para tal, ela
recebe o artefato Conceitos, gerado na atividade anterior
e juntamente com os artefatos Opinides de especialistas e
Método de priorizagdo, fornece esses elementos prioriza-
dos de forma quantitativa, ou seja, com valores para que
possam ser utilizados na proxima atividade. Como artefato
de saida, essa atividade produz o artefato Priorizacdo. A
Fig. 4 mostra a atividade Priorizar elementos, e a seguir sao
detalhados os artefatos desta atividade:

- Opinioes de especialistas: descrevem a prioridade re-
lativa entre itens definidos no artefato Conceitos. Por
exemplo, se o processo for aplicado em uma linguagem
orientada a objetos, as opinides de especialistas podem
definir que uma ocorréncia do objeto da busca em uma
classe deve ter um valor maior que a mesma ocorréncia
em um método.

- Método de prioriza¢do: Um Método de priorizacdo pos-
sibilita quantificar os itens dos Conceitos, a partir das
definicOes das Opinides de especialistas. Este método
pode ser um método estatistico, um método de decisdo
multicritério, como o AHP apresentado na Segdo 2, ou

88

Giletal. |

Revista Brasileira de Computagdo Aplicada (2025), v.17, n.3, pp.84—99

Definicao

[Funcdo Insatisfatoria]

Definir funcao

classificacao

Selecionar conceitos H Priorizar elementos @4{

Avaliar funcao
de
classificacao

[Funcao OK]

Figura 2: Etapa de Definicao

Linguagem alvo

Conceitos

Requisitos
de busca

o B
L] o

. Selecionar
Tool Provider .
conceltos

Figura 3: Atividade Selecionar conceitos

Opinides de Método de
especialistas priorizagdo

Conceitos

o —B

Priorizagao

)
£

Tool Provider

Priorizar
elementos

Figura 4: Atividade Priorizar elementos

outro método que o Tool Provider achar conveniente.
Esta atividade tem como saida a Priorizacdo, que servira
de entrada para a proxima atividade.

Priorizacdo: é uma lista a qual retrata as estruturas de
uma determinada linguagem de programacao, classi-
ficadas em ordem de importancia. Também é possivel
que essa lista possua pesos para cada um de seus itens.
Por exemplo, em uma linguagem OO essa lista pode-
ria ser representada da seguinte forma (usando pesos
hipotéticos):

Ordem Estrutura Peso
1° Pacote 0,3
20 Classe 0,2
30 Método 0,1

3.1.3 Definir fungdo de classifica¢do

O objetivo desta atividade é definir uma fungdo para ser
aplicada em cada unidade de compilacdo que seja retor-
nada como relevante durante a realizagao das consultas. A
Fig. 5 mostra a atividade Definir func¢do de classificacdo que
recebe a Prioriza¢do, gerada na atividade anterior, e tem
como saida uma Fungdo de classificacdo, a qual é detalhada
a seguir:

Priorizagdo

|
Q
g =

Definir

fungao de
classificagao

Fungao de

Tool Provider classificagio

Figura 5: Atividade Definir fungdo de classificagdo

- Fungcdo de classificacdo: define a fun¢do que sera apli-

cada para classificar as unidades de compilagao para
as consultas realizadas. Por exemplo, essa funcao po-
deria ser representada pelo peso de uma determinada
estrutura de cddigo, multiplicado pelo niimero de vezes
que o objeto da consulta aparece nessa estrutura. Por
exemplo, se considerassemos apenas a ocorréncia de
um termo em métodos, a representacdo da fungdo po-
deria ser: f(t) = (nEmMeétodos(t) » pesoMétodos), onde
n seria o numero de ocorréncias de (t) em métodos e
0 peso seria o valor dado a importancia dos métodos,
com base nas Opinides de especialistas.

Giletal. |

Revista Brasileira de Computagdo Aplicada (2025), v.17, n.3, pp.84—99 89

3.1.4 Avaliar fungdo de classificagdo

Esta atividade tem como objetivo avaliar se a Fungdo de
classificagdo contempla as necessidades definidas pelo
Tool Provider. Para essa avaliagao, esta atividade neces-
sita da realizacdo da Reifica¢do, e também, das atividades
da Analise.

AFig. 6 mostra a atividade Avaliar fungdo de classifica-
¢do, a qual recebe como artefatos de entrada: Fungdo de
classificacdo, gerado na atividade anterior, os Programas de
teste e as Consultas de teste, e tem como artefato de saida a
Avaliagdo. Abaixo os artefatos Programas de teste, Consultas
de teste e Avaliacdo, sao detalhados:

Programas

Fungio de
classificagio de teste

Consultas
de teste

AN
>— B

Avaliagdo

O
£

Tool Provider

Avaliar
fungao de
classificagao

Figura 6: Atividade Avaliar fungdo de classificagdo

- Programas de teste: S3o programas em um repositorio
de cadigo fonte, que serao utilizados para que sejam
executadas as consultas para que possa ser analisada a
classificacao dos seus resultados.

- Consultas de teste: S3do consultas realizadas para que
sejam analisados os resultados da busca e a classificacdo
desses resultados.

- Avaliacao: Este artefato define se a fungao de classifi-
cacdo atende os critérios de importancia definidos pelo
usuario na atividade Priorizar elementos. Esta avaliacdo
pode ser feita usando métricas de medigdo de desempe-
nho em recuperagao de informagao como a Precisdo e a
Revocacdo, ou pode ser feita de maneira empirica, ou
seja, baseada no conhecimento do decisor.

3.2 Etapa de Reificacao

A etapa de Reificagdo é responsavel por transformar os
elementos de cddigo fonte em informagoes estruturais,
ou seja, metamodelos que serao disponibilizados para a
utilizacdo de varias formas. Esta etapa possui apenas uma
atividade: Reificar programas. O motivo pelo qual optou-se
por deixar essa etapa separada, apesar de ter apenas uma
atividade, foi que ela pode ter que ser desempenhada peri-
odicamente para atualizar a base de dados consultada. No
caso da base de dados ser pequena, esta etapa pode ser de-
sempenhada toda a vez que novos arquivos de codigo fonte
forem adicionados, alterados ou excluidos. Por outro lado,
se o processo for aplicado em um repositério de tamanho

expressivo, esta etapa tera que ser realizada de maneira
periddica, como é feito em alguns repositdrios disponiveis
na Web.

Reificar
"

Figura 7: Etapa de Reificacdo

Reificagdo

Esta atividade é a responsavel por transformar os arqui-
vos de codigo fonte em um metamodelo que sera usado
para realizar as consultas. A Fig. 8 mostra a atividade que
tem como entrada os Conceitos e as Unidades de compilagdo,
e como saida o Modelo Reificado, os quais sdo detalhados a

seguir:

Unidades de Conceitos

compilagio \ /
£ >—— 8
Modelo reificado

Reificar programas
Tool Provider

Figura 8: Atividade de Reificar programas

- Unidades de compilag¢ao: Sdo os arquivos que compdem
o repositério onde o processo sera aplicado. Este arte-
fato pode representar um repositério pessoal, de uma
empresa ou um repositério disponivel na nuverm como:
Github, Google Code, BitBucket, entre outros.

- Modelo Reificado: Representa as informacoes sobre a
estrutura dos programas, disponiveis e prontas para
serem consultadas, ou seja, sao os metadados dos pro-
gramas em um metamodelo que sera manipulado.

3.3 Etapa de Analise

O objetivo desta etapa é que a partir da necessidade de
encontrar determinados termos de consulta, o Analista es-
creva uma consulta, e sejam encontrados os arquivos que
contém esses termos, e esses arquivos sejam apresenta-
dos para o Analista em ordem de relevancia com base nas
defini¢Oes da etapa de Defini¢ao. Possivelmente a etapa
de Analise sera a mais desempenhada do processo, pois
as outras etapas sé sdo realizadas para melhorar os resul-
tados da Analise. A Fig. 9 apresenta o fluxo desta etapa,
a qual possui as seguintes atividades: Escrever consulta,

90 Giletal. |

Revista Brasileira de Computagdo Aplicada (2025), v.17, n.3, pp.84—99

Escrever
consulta

Processar Executar
consulta consulta

Classificar
Resultados

Busca

Refinar
consulta

| Analisar

©< [Sim]

[Resultados atendem as necessidades da consulta?]

resultados

Figura 9: Etapa de Analise

Processar consulta, Executar consulta, Classificar resultados,
Analisar resultados e Refinar consulta, que serdo detalhadas
nas proximas segdes.

3.3.1 Escrever consulta

Nesta atividade, o Analista transcreve para uma consulta
os termos que ele deseja encontrar. A Fig. 10 mostra a ati-
vidade Escrever consulta a qual produz uma Consulta escrita,
que é detalhada a seguir:

>—8

Escrever consulta

Analista Consulta escrita

Figura 10: Atividade Escrever consulta

- Consulta escrita: Este artefato representa a consulta
feita pelo Analista. Como qualquer consulta nao estru-
turada, essa consulta pode ser apenas uma sequéncia
de caracteres, ou pode ter algum refinamento, depen-
dendo do motor de busca utilizado. No caso deste arte-
fato possuir mais de um termo, a Fungdo de classificagdo
serd aplicada nos n termos da consulta. A Consulta es-
crita servira como um dos artefatos de entrada para a
proxima atividade.

3.3.2 Processar consulta

Esta atividade é responsavel por submeter a Consulta es-
crita a0 mesmo processamento ao qual foram submetidas
as Unidades de compilagdo do repositdrio utilizado. Esta
atividade sendo executada por um sistema automatizado,
dispensaria o papel do Tool Provider. Como artefatos de
entrada, esta atividade possui a Consulta escrita, gerada na
atividade anterior, e o Modelo de processamento, e, como
saida, a Consulta processada. A Fig. 11 apresenta a atividade
Processar consulta. A seguir sao detalhados os artefatos

desta atividade:

Consulta Modelo de
escrita processamento

N/

> —

Processar consulta

Consulta processada

O
£

Tool Provider

Figura 11: Atividade Processar consulta

+ Modelo de processamento: O Modelo de processamento
depende do motor de busca utilizado para a realizacao
das consultas, e necessariamente precisa seguir os mes-
mos passos de processamento da atividade Reificar pro-
gramas realizada na etapa de Reificacao.

- Consulta processada: Este artefato representa os ter-
mos da consulta processados com base no artefato Mo-
delo de processamento. Este processamento € feito de
forma transparente ao Analista.

3.3.3 Executar consulta

Aatividade Executar consulta tem o objetivo de buscar no re-
positdrio alvo os documentos que satisfazem os termos do
artefato Consulta processada, para que esses arquivos pos-
sam ser classificados na préxima atividade. Esta atividade
recebe o artefato Consulta processada, produzido na ativi-
dade anterior mais o artefato Modelo Reificado gerado na
etapa de Reifica¢ao e juntamente com o artefato Motor de
busca, produz o artefato Documentos retornados. A Fig. 12
mostra esta atividade, e seus artefatos sdo detalhados a
seguir:

+ Motor de busca: Este artefato representa o motor de

Giletal. | RevistaBrasileira de Computagdo Aplicada (2025), v.17, n.3, pp.84—99 91
no artefato Documentos retornados, poderia ser alterada
desta forma:

Consulta Motor Modelo Arquivo2. java
processada debusca reificado Arquivo3. java

/
—>—B

Executar consulta

o
Analista

Documentos
retornados

Figura 12: Atividade Executar consulta

busca que sera utilizado para executar as consultas, tal
como o Code Finder (de Faveri, 2013).

- Documentos retornados: Caracteriza-se pelos arqui-
vos que serao retornados como relevantes na execu-
¢do de uma determinada consulta. Este artefato servira
como entrada para a préxima atividade. Por exemplo:

Arquivol. java
Arquivo2. java
Arquivo3. java

3.3.4 Classificar resultados

O objetivo desta atividade é apresentar para o Analista
os documentos retornados como relevantes de uma ma-
neira que seja possivel afirmar que esses documentos estdao
em ordem do mais relevante para o menos relevante. A
Fig. 13 exibe a atividade Classificar resultados juntamente
com seus artefatos de entrada Documentos retornados e
Fungdo de classificagdo e também o seu artefato de saida
Resultados classificados, o qual é detalhado abaixo:

Fungio de Documentos
classificagio retornados

\ /
D—.

Classificar resultados

Resultados
classificados

o)
£

Analista

Figura 13: Atividade Classificar resultados

- Resultados classificados: Caracteriza-se por apresen-
tar os Documentos retornados classificados conforme a
Fungdo de classificagdo, ou seja, classificados com as pre-
feréncias do usuario. Por exemplo a lista apresentada

Arquivol. java

3.3.5 Analisar resultados

0 Objetivo desta atividade é avaliar se os Resultados clas-
sificados atendem as necessidades do Analista. A Fig. 14
mostra esta atividade juntamente com seus artefatos, o
quais sdo detalhados a seguir:

Resultados
classificados

Método de
avaliacdo

:>_.

Analisar resultados

o
Analista

Resultados
avaliados

Figura 14: Atividade Analisar resultados

- Método de avaliag¢do: Descreve a maneira pela qual sera
avaliado o resultado das consultas realizadas. Essa ava-
liacao pode ser utilizando algum método pré-definido,
ou simplesmente através da visualizacdo dos resulta-
dos.

- Resultados avaliados: Define se as necessidades da con-
sulta foram atendidas ou se sera necessario realizar a
atividade de Refinar consulta, ou até mesmo reiniciar o
processo novamente.

3.3.6 Refinar consulta

A Fig. 15 mostra a atividade Refinar consulta a qual ndo é
uma atividade obrigatéria, ela apenas possibilita o refina-
mento de uma determinada consulta, se houver necessi-
dade, para melhorar o seu resultado. Esta atividade, apesar
de ser muito comum em consultas nao estruturadas, dimi-
nui a necessidade de que o processo seja reiniciado desde
o inicio. Porém, a ideia deste processo é que ndo seja pre-
ciso reescrever as consultas varias vezes. Esta atividade
tem como artefato de entrada a Consulta escrita, e como
saida produz o artefato Consulta refinada, que é detalhado
abaixo:

- Consulta refinada: Representa a consulta produzida na
atividade Escrever consulta, escrita de uma forma que
possa produzir um resultado melhor, caso possivel.

92 Giletal. |

Revista Brasileira de Computagdo Aplicada (2025), v.17, n.3, pp.84—99

Consulta escrita

|

>—B

Refinar consulta

Analista Consulta refinada

Figura 15: Atividade Refinar consulta

4 Avaliacao

De forma a avaliar o processo proposto, foram feitas duas
instancia¢des. A primeira para a linguagem Java e a se-
gunda para a linguagem orientada a aspectos Aspect]. Para
cada, sdo exemplificadas duas consultas e os resultados
dessas consultas, analisados. Para as instanciacoes do pro-
cesso, foi utilizado o método de prioriza¢do multi-critério
AHP (Saaty, 1990), para reificar os arquivos foi usado o
framework AOPJungle (de Faveri, 2013) e como motor de
busca foi adotado o Code Finder (de Faveri, 2013) e imple-
mentado com base no Apache Lucene.

4.1 Instanciacao para Java

Esta secdo apresenta uma possivel instanciacdo do pro-
cesso para a linguagem de programacao Java. A seguir
sdo detalhados os artefatos de entrada e saida para cada
atividade.

Os artefatos da atividade Selecionar conceitos foram as-
sim definidos:

- Linguagem alvo: Java.

- Requisitos de busca: Deve ser possivel buscar infor-
macdes acerca de: pacotes, classes, métodos, e outros
elementos.

- Conceitos: Pacote, Classe Principal®, demais Classes,
Mégodo Principal, demais Métodos e Outros elemen-
tos?.

A seguir sdo detalhados os artefatos da atividade Priori-
zar elementos:

- Método de priorizacdo: AHP.

- Opinides de especialistas: Foram consideradas as opi-
nioes dos desenvolvedores do processo. Para a aplica¢ao
do método AHP, considerando o artefato Conceitos, es-
sas opinides ficaram assim representadas:

— Um Pacote Java é:

* Fracamente mais importante que uma Classe Prin-

1Algumas bibliotecas desconsideram o conceito de classe principal,
para essa instanciacdo foi decidido manter esse conceito.

2Aqui sdo considerados todos os elementos que n3o se enquadram nas
classificagdes anteriores.

cipal;
* Moderadamente mais imp. que as demais Classes;
* Fortemente mais imp. que o Método Principal;
* Extremamente mais imp. que os demais Métodos;
* Absolutamente mais imp. que os Outros Elementos.

— Uma Classe Principal é:

* Fracamente mais imp. que as demais Classes;

* Moderadamente mais imp. que o Método Principal;
* Fortemente mais imp. que os demais Métodos;

* Extremamente mais imp. que os Outros Elementos.

— Uma Classe é:

* Fracamente mais imp. que o Método Principal;

* Moderadamente mais imp. que os demais Métodos;

* Moderadamente mais imp. que os Outros Elemen-
tos.

— Um Meétodo Principal é:

* Fracamente mais imp. que os demais Métodos;
* Moderadamente mais imp. que os Outros Elemen-
tos.

— Um Método é Fracamente mais imp. que os Outros
Elementos.

- Priorizac¢do: Com as informagdes das Opinibes de espe-
cialistas e dos Conceitos foi possivel utilizar o Método de
priorizacdo AHP para priorizar os elementos.

A Tabela 3 mostra as comparacdes entre pares, com
seus valores quantitativos respeitando o que foi apre-
sentado na Tabela 1, e mostra, em valores, as relacées
entre as estruturas do cddigo definidas nas Opinides de
especialistas.

Aplicando os passos do AHP para esta matriz de compa-
racoes par a par entre os elementos selecionados, obte-
mos 0s pesos para cada elemento do programa.
Portanto, os pesos para a 6-tupla Pesos =
(Pacote, ClasseP, Classes, MétodoP,

Meétodos, OutrosE), sdo respectivamente os valores de:
V' = [0,4634 0,2593 0,1409 0,0708 0, 0405 0,0248]
Ou seja a relacdo de consisténcia, calculada conforme
descrito na Secdo 2.2 é de aproximadamente 2,85%,
adequado segundo o AHP. Desta forma, o artefato Prio-
rizacdo ficou assim definido:

Ordem Estrutura Peso
10 Pacote 0,4634
20 Classe Principal 0,2593
30 Demais Classes 0,1409
40 Método Principal 0,0708
50 Demais Métodos 0,0405
60 Outros Elementos 0,0248

0 artefato de saida da atividade Definir fungdo de classi-
ficagdo, é detalhado a seguir:

- Funcdo de classificacao: A Fungdo de classificagdo foi de-
finida levando em conta o nimero de vezes que o objeto
da consulta foi encontrado em um determinado arquivo,
multiplicado pelo peso relativo a estrutura de c6digo na
qual o objeto da consulta foi encontrado. Desta forma,
a funcgao ficou assim definida:

Giletal. |

Revista Brasileira de Computagdo Aplicada (2025), v.17, n.3, pp.84—99 93

Tabela 3: Matriz de Prioridades

Localizacdo | Pacote | ClasseP. | Classes | Método P. | Métodos | OutrosE.
Pacote 1 3 5 7 8 9
Classe P. 1/3 1 3 5 7 8
Classes 1/5 1/3 1 3 5 7
Meétodo P. 1/7 1/5 1/3 1 3 5
Métodos 1/8 1/7 1/5 1/3 1 3
Corpo P. 1/9 1/8 1/7 1/5 1/3 1

f(uc,t) = toP(uc, t) * WP + toCP(uc, t) + wCP + toC(uc, t) *
wC +toMP(uc, t) «wMP + to(uc, t) xwM + toOE(uc, t) x WOE
Onde toP, toCP, toC, toMP, toM e toOE, sdo respectiva-
mente: func¢des que calculam total de ocorréncias do
termo (t) em uma unidade de compilacdo (uc) em um
pacote, em uma classe principal, em outras classes, em
um método principal, em outros métodos e em outros
elementos. Da mesma forma, woP, woCP, woC, woMP,
woM e woOE, sdo respectivamente: peso de pacote, peso
de classe principal, peso de outras classes, peso de mé-
todo principal, peso de outros métodos e peso de outros
elementos.

De posse dos valores definidos no artefato Priorizagdo,
a Fungdo de classificagdo para esta instanciacao, pode
ser definida como:

f(uc,t) = toP(uc,t) x 0,4634 + toCP(uc,t) * 0,2593 +
toC(uc, t) * 0,1409 + toMP(uc, t) x 0,0708 + toM(uc, t) *
0, 0405 + toOE(uc, t) * 0,0248.

A seguir sdo detalhados os artefatos da atividade Avaliar
funcdo de classificagdo:

- Programas de teste: Foi utilizado um repositério com
alguns projetos conhecidos para facilitar a avaliacdo dos
resultados das consultas.

- Consultas de teste: Foram realizadas duas consultas, a
primeira buscando a string cfc e a segunda buscando a
string Metric.

4.1.1 Primeira Consulta

Esta consulta tem como a Consulta escrita a string cfg. Apds
ser processada e executada, esta consulta retornou qua-
tro arquivos como relevantes. Esses arquivos compdem o
artefato Documentos retornados, e sdo analisados a seguir:

- 0 arquivo HelloWord.java contém a string cfg no nome
do Pacote, nalinha 1;

1 package cfg;

2

3 import org.hibernate.Session;

4 import org.hibernate.Transaction;

5

6 public class HelloWorld {

7 public static void main(String[] args) {

8 Session s = HibernateUtil.getSessionFactory().

9 openSession() ;
10 Transaction tx = s.beginTransaction();

11 s.save(new Metric("wom", "Weigthed Operations on Methods"));
12 s.save(new Metric("dit", "Deep of Inheritance Tree"));
13 s.save(new Metric("noc", "Number of Children"));
14 s.save(new Metric("loc", "Lines of Code"));

15 tx.commit () ;
16 s.close();

17 }
18 }

- O arquivo DataBaseCreator.java contém duas ocorrén-

cias da string cfg sendo as duas no método principal,
naslinhase 6;

package teste.consultas;

1
2
3 public class DatabaseCreator {

4 public static void main(String[] args) {

5 Configuration cfg = new AnnotationConfiguration().configure();
6 SchemaExport schemaExport = new SchemaExport(cfg);

7 schemaExport.create(false, true);

8 }

9 }

- 0 Arquivo Activator.java contém quatro ocorréncias da
string cfg, a primeira em uma declaragéo de variavel na
linha 5, a qual é considerada como outros elementos, e
as outras trés nos demais métodos nas linhas 11, 14 e
18;

package br.ufsm.aopjungle;

1
2
3 public class Activator extends AbstractUIcfg {
4 public static final String id = "AOPJungle";
5 private static Activator cfg;

6 public Activator() {

7

8

System.out.println ("Initializing Activator ...");
}
9 public void start(BundleContext context) throws Exception {
10 super.start(context) ;
11 cfg = this;
12 s
13 public void stop(BundleContext context) throws Exception {
14 cfg = null;
15 super.stop(context) ;
16 ¥
17 public static Activator getDefault() {
18 return cfg;
19 }
20 }

- O arquivo WebService.java contém trés ocorréncias da
string cfg, todas sendo comentarios e localizadas em
outros elementos, na linha 8.

package comTrabWebservice;

1
2
3 public class WebService {

4 public String teste(String algo) {
5 return "o retorno" + algo;
6 }
7}
8 //cfg cfg cig

Ao aplicar a funcao de classificacao os valores obtidos
sao:

- f(WebService.java, “cfg”) = 3+ 0,0248 = 0, 0744

- f(Activator.java, “cfg”) = 1x0,0248+3x0, 0405 = 0, 1463
- f(DatabaseCreator.java, “cfg”) = 2 + 0,0708 = 0,1416

+ f(HelloWord.java, “cfg”) = 1% 0,4634 = 0, 4634

A Tabela 4 mostra a classificagio dos arquivos apés a
atividade Classificar resultados, representando o artefato
Resultados classificados.

94 Giletal. |

Revista Brasileira de Computagdo Aplicada (2025), v.17, n.3, pp.84—99

Tabela 4: Ordem do Resultado da Consulta por “cfg”

Arquivo Val. Classificacdo | Classificacdo
HelloWord.java 0,4634 1°
Activator.java 0,1463 20
DatabaseCreator.java 0,1416 30
WebService.java 0,0744, 40

4.1.2 Segunda Consulta
Até a etapa de Reificacdo, a segunda consulta realizada
possui os mesmos artefatos da primeira consulta. Ape-
nas na etapa de Analise, na atividade Escrever consulta,
o artefato Consulta escrita é representado pela string
Metric. Como resultado, foram retornados os arqui-
VOS: TokenProcessor. java, HelloWorld. java, Metric. java,
Teste.java € HibernateUtil. java.

Assim como realizado na primeira consulta, foi aplicada
a funcdo de classificacdo e feita a comparagao entre os
resultados.

+ 0 arquivo TokenProcessor.java apresenta cinco ocorrén-
cias da string Metric, todas elas em outros elementos,
nalinha 9;

package br.ufsm.ajsearch.inf;

public interface TokenProcessor {
public void setContext(boolean isContext);
public boolean isContext();
public String translate(Token token, TokenProcessor context);
public String getModifierTag();
}

//Metric Metric Metric Metric Metric

O O AN HWN R

+ 0arquivo HelloWord.java possui quatro ocorréncias da
string Metric, todas no método principal, nas linha 11,
12,13 e 14;

1 package cfg;

2

3 import org.hibernate.Session;

4 import org.hibernate.Transaction;

5

6 public class HelloWorld {

7 public static void main(Stringl[] args) {

8 Session s = HibernateUtil.getSessionFactory().

9 openSession() ;
10 Transaction tx = s.beginTransaction();

1 s.save(new Metric("wom", "Weigthed Operations on Methods"));
12 s.save(new Metric("dit", "Deep of Inheritance Tree"));
13 s.save(new Metric("noc", "Number of Children"));

14 s.save(new Metric("loc", "Lines of Code"));

15 tx.commit () ;

16 s.close();

17 ¥

18 }

No arquivo Metric.java foram encontradas quatro ocor-
réncias da string Metric, uma no nome da classe prin-
cipal na linha 4, e trés em métodos nas linhas 20, 22 e
26;

1 package teste.consultas;

2

3 QEntity

4 public class Metric{

5 QId

6 private String id;

7 private String description;
8 public String getId() {

9 return id;

10 ¥

1 public void setId(String id) {

12 this.id = id;

13 }

14 public String getDescription() {

15 return description;

16 &

17 public void setDescription(String description) {
18 this.description = description;

19 }

20 public Metric() {

21 }

22 public Metric(String id) {

23 this();

24, setId(id);

25 }

26 public Metric(String id, String description) {
27 this(id);

28 setDescription(description);

29

30 }

- Oarquivo Teste.java apresenta uma ocorréncia da string
Metric no nome do pacote, nalinha 1;

1 package Metric;

2

3 public class Teste {

4 public int soma(int a, int b){
5 return a+b;

6 ¥

7

}

- 0 arquivo HibernateUtil.java apresenta uma ocorréncia
da string Metric em outros elementos, na linha 11.

package teste.consultas;

1
2
3 public class HibernateUtil {

4 public static SessionFactory getSessionFactory() {
5 return sessionFactory;

6 s

7 public static void shutdown() {

8 getSessionFactory().close();

9 }

10 }

11 //Metric

_ Aplicando a fungdo de classificagdo, os valores obtidos
sdo:

- f(TokenProcessor.java, “Metric”) = 5 x 0,0248 = 0,1240

« f(HelloWord.java, “Metric”) = 4 x 0,0708 = 0,2832

. f(Mgtréc.java, “Metric”) = 1% 0,2593 + 3 * 0,0405 =
0,380

. f(’Teste. java, “Metric”) = 1% 0,4634 = 0,4634

- f(HibernateUtil.java, “Metric”) = 1% 0,0248 = 0,0248

ATabela 5 mostra a saida classificada, ap6s ser realizada
a atividade Classificar resultados.

Tabela 5: Ordem do Resultado da Consulta por “Metric”

Classificada
Arquivo Valor de Classificacao | Classificacdo
Teste.java 0,4634 10
Metric.java 0,3808 20
HelloWord.java 0,2832 30
TokenProcessor.java 0,1240 40
HibernateUtil.java 0,0248 50

A comparacao dos resultados das duas consultas utili-

Giletal. |

Revista Brasileira de Computagdo Aplicada (2025), v.17, n.3, pp.84—99 95

zadas como exemplo mostra que o processo pode mudar
consideravelmente a ordem dos resultados, facilitando as
buscas

4.2 Instanciacao para Aspect]

Apesar de o processo poder ser aplicado em repositérios
com arquivos de mais de uma linguagem de programa-
¢ao, para uma avalia¢do mais clara, optou-se por realizar
instanciac¢des diferentes para cada linguagem. Esta secdao
apresenta uma instanciagao do processo para a linguagem
Aspect], a seguir sdao detalhados os artefatos para cada ati-
vidade.

Para a atividade Selecionar conceitos, os artefatos foram
assim definidos:

- Linguagem alvo: Aspect].

- Requisitos de busca: Deve ser possivel encontrar infor-
magdes acerca de: nome de pacotes, nome de aspectos,
adendos, declaracdes intertipos, pontos de corte e de-
claracdes de heranca/alerta/erro (declare parents/war-
ning/error).

- Conceitos: Pacote, Aspecto, Adendo, Declaragao Inter-
tipo, Ponto de Corte, Expressdo de Junc¢ao (Pointcut Ex-
pression) e Declaragao de Heranca/Alerta/Erro.

Os artefatos da atividade Priorizar elementos, sao detalha-
dos a seguir:

- Método de priorizacdo: AHP.

- Opinioes de especialistas: Foram consideradas as opi-
nides dos proprios desenvolvedores do processo. Para a
aplicacdo do método AHP, essas opinides ficaram assim
representadas:

— Um Pacote Aspect] é:

* Ligeiramente mais importante que um aspecto;

* Fracamente mais imp. que um adendo;

* Moderadamente mais imp. que uma declaragao in-
tertipos (ITD)3;

* Fortemente mais imp. que um ponto de corte/ex-
pressao de juncao.

* Extremamente mais imp. que uma declaragao de
alerta/erro.

— Um Aspecto é:

* Ligeiramente mais imp. que um adendo;
* Fracamente mais imp. que uma ITD;

* Moderadamente mais imp. que um ponto de corte’.
* Fortemente mais imp. que uma declaracao de aler-
ta/erro.

— Um Adendo é:

* Ligeiramente mais imp. que uma ITD;

3Toda a incidéncia de uma declaragio de heranga sera considerada,
para questoes de classificagdo, com a mesma importancia de uma
ocorréncia de uma declaragao intertipos.

4Toda a ocorréncia de uma expressio de jungdo, terd 0 mesmo valor de
um ponto de corte. Tomou-se essa decisdo porque uma expressdo de
juncao sempre é utilizada para capturar um ponto de corte

* Fracamente mais imp. que um ponto de corte/ex-
pressdo de jungao .

* Moderadamente mais imp. que uma declaracao de
alerta/erro.

— Uma Declaragdo Intertipo é:

* Ligeiramente mais imp. que um ponto de corte/ex-
pressdo de jungao.

* Fracamente mais imp. que uma declaracdo de aler-
ta/erro.

— Um Ponto de Corte/Expressdo de Jungdo é Ligeiramente
mais imp. que uma declaracdo de alerta/erro.

- Priorizagao: Apds serem feitos os passos realizados na
Secao 4.1 para a obtencdo dos pesos para cada conceito,
o artefato Priorizacdo, ficou assim definido:

Ordem Estrutura Peso
10 Pacote 0,4107
20 Aspecto 0,2560
30 Adendo 0,1541
40 Declaracgdo Intertipos 0,0902
50 Ponto de Corte 0,0544
60 Declaracdo de Erro/Alerta 0,0347

Com uma relacdo de consisténcia (CR) de aproximada-
mente 1,2%, adequada segundo o AHP.

Como artefato de saida esta atividade produz o artefato
Fungdo de classificagdo, detalhado a seguir:

- Fungdo de classificacdo: a fungao foi definida usando
o0s pesos obtidos com o método AHP:
f(p) = toP x WP + toAs x WAs + toAd = WAd + toDIT + wDIT +
toPC x wPC + toDEW x wDEW).
onde toP, toAs, toAd, toDIT, toPC e toDEW, sao respecti-
vamente: total de ocorréncias em pacote, em aspectos,
em adendos, em declaracgoes intertipos, em pontos de
corte e em declaragdes de erro/alerta. Da mesma forma,
woP, woAs, woAd, woDIT, woPC e woDEW, sao respecti-
vamente: peso de pacotes, de aspectos, de adendos, de
declaragoes intertipos, de pontos de corte e de declara-
¢oes de erro/alerta.
De posse dos valores definidos no artefato Priorizagdo,
a Fungdo de classificagdo para esta instanciacao, pode
ser definida como:
f(p) = toP % 0, 4107 + toAs « 0,2560 + toAd = 0,1541 +
toDIT 0,0902 + toPC * 0, 0544, + toDEW x 0, 0347.

A seguir sdo detalhados os artefatos da atividade Avaliar
fungdo de classificagéo:

- Programas de teste: Foi utilizado um repositério com
um conjunto de arquivos limitado, para que fosse pos-
sivel avaliar o processo.

- Consultas de teste: Foram realizadas duas consultas a
primeira buscando pela string AspectTetris e a segunda
buscando a string Menu.

4.2.1 Primeira Consulta

A seguir, mostramos os arquivos de resultado para
a primeira consulta realizada na linguagem Aspect]:
AO0JBindingDataset.aj, AspectTest.aj, TestAspect.aj €
DesignCheck.aj. A string AspectTetris representa o ar-
tefato Consulta escrita.

96 Giletal. |

Revista Brasileira de Computagdo Aplicada (2025), v.17, n.3, pp.84—99

Os quatro arquivos que foram retornados como rele-
vantes, compondo o artefato Documentos retornados, sao
detalhados a seguir:

- O arquivo AQJBindingDataset.aj possui trés incidéncias
da string AspectTetris, na linha 9, todas elas em co-
mentarios. Comentarios ndo foram definidos como es-
truturas relevantes, desta forma, o peso de classificagao
deste arquivo € zero.

package br.ufsm.aopjungle.bindings;

public privileged aspect AOJBindingDataset {
pointcut callType(A0JTypeble type) : call (* List+.add(..)) &&
args(type) && within(AOJCompilationUnit);

* First phase, only saves type on the typeTable. Second pass will
looking for AOJungle

* Correspondence and fill the value

* AspectTetris AspectTetris AspectTetris

1
2
3
4
5 /*x
6
7
8

9 * Q@param type The visited type
Lo */
11 after (A0JTypeble type) : callType(type) {
12 getProject (type) .getBindingMapping () . put (type.getNode (), type);
13
iVA private AOJProject getProject(A0JTypeble type) {
15 A0JCompilationUnit cUnit = (ADJCompilationUnit)type.getOwner();
6 AOJPackageDeclaration pack = (AO0JPackageDeclaration)cUnit.
getOuner () ;
17 A0JProject project = (AOJProject)pack.getOwner();
n8 return project;
9
DO }

O arquivo AspectTest.aj, contém uma ocorréncia da
string AspectTetris em uma declaracdo de heranca, na
linha 4. Ficando assim o peso de classificagao deste ar-
quivo:

f(AspectTest.aj) = 1+ 0,0902 = 0,0902.

package com.ajtetris.core;

1
3 public aspect AspectTest {

4 declare parents : ParentTest extends AspectTetris;
5

}

O arquivo TestAspect.aj, contém uma ocorréncia da
string AspectTetris em um adendo, na linha 10. Ficando
assim o peso de classificacdo deste arquivo:
f(TestAspect.aj) = 1% 0,1541) = 0,1541.

/*
* Copyright 2003 Gustav Evertsson All Rights Reserved.
*/

package com.ajtetris.aspects;

public aspect TestAspect {
pointcut logPoint(String fileName) : call(* com.ajtetris.logic.
TetrisImages.loadImage(String)) && args(fileName);
before(String fileName) : logPoint(fileName) {
System.out.println(thisJoinPoint.getSignature() + ", " +
fileName + ", AspectTetris");

}

RO V0o JOUIPRWN R

e

}

0 arquivo DesignCheck.aj,contém uma ocorréncia da
string AspectTetris em uma declaragao de alerta, na
linha 7. Sendo esta a classificagao deste arquivo:
f(DesignCheck.aj) = 1% 0,347 = 0,0347.

1 package com.ajtetris.aspects.developemnt;

3 public aspect DesignCheck {

A declare warning: call(com.ajtetris.gui.BlockPanel.new(..)) && !
within(Gui.*) && !'within(Aspects..*): "Do not create
BlockPanel outside the Gui package!";

5 declare warning: call(* com.ajtetris.core.AspectTetris.*(..)) && !
within(com.ajtetris.core.AspectTetris) && !within(Aspects

..x): "Do not call AspectTetris outside the class, use the
IEventListner interface!";

6 |

A Tabela 6 mostra a ordem de visualizacdo dos resulta-
dos da consulta com a realizacdo do processo.

Tabela 6: Ordem do Resultado da Consulta por
“AspectTetris' Classificada

Arquivo Peso | Classificacdo
TestAspect.aj 0,1541 10
AspectTest.aj 0,0902 20
DesignCheck.aj 0,0347 30
AOQJBindingDataset.aj 0 4°

4.2.2 Sequnda Consulta

A seguir, é mostrado o resultado da segunda consulta re-
alizada na linguagem Aspect]. O artefato Consulta escrita
é a string Menu, e compdem o artefato Documentos re-
tornados, os seguintes arquivos: PolicyEnforcements.aj,
ExceptionHandler.aj, NextBlock.aj € Menu.aj.

- 0 arquivo PoliceEnforcements.aj possui duas ocorrén-
cias da string Menu, todas em comentdarios, na linha
4. Comentarios nao foram definidos como estruturas
relevantes, desta forma, o peso de classificacao deste
arquivo é zero.

package br.ufsm.aopjungle.util;

/* This review is here only to test

* Menu Menu

*/

import java.util.List;

import br.ufsm.aopjungle.metamodel.commons.AOJCompilationUnit;
import br.ufsm.aopjungle.metamodel.commons.A0JTypeble;

-
OO I U W N

public aspect PoliceEnforcements {

11 pointcut setTypeNotWithinCompilationUnits() :

12 call (x List+.add(AOJTypeble)) && !'within(AOJCompilationUnit);

13 declare error : setTypeNotWithinCompilationUnits() :

IVA "Use addType method of AOJCompilationUnit class instead";

15 pointcut callType(AOJTypeble type) :

n6 call (* List+.add(..)) && args(type) && within(
A0JCompilationUnit) ;

17 ¥

0 arquivo ExceptionHandler.aj, contém uma ocorréncia
da string Menu dentro de um adendo, na linha 7. Fi-
cando assim o peso de classificacao deste arquivo:
f(ExceptionHandler.aj) = 1 0,1541 = 0,1541.

package br.ufsm.aopjungle.exception;

public aspect ExceptionHandler {

1

2

3

4 declare soft : InvalidStackObjectException : execution (¥ *.*(

ASTNode)) ;

5 pointcut visitStackException() : execution (* br.ufsm.aopjungle.
ADJungleVisitor.*(..));

6 before() : visitStackException() {

7 System.out.println("Menu");

8 3

9

Lo void around (ASTNode node) :
args (node) {

11 try {

12 proceed(node) ;

execution (* *.visit(ASTNode)) &&

Giletal. | RevistaBrasileirade Computagdo Aplicada (2025), v.17, n.3, pp.84—99 97
1[34. ’ C:g;fog(;::a;;‘:f:ga;:fgjefxff:f"e;:t::; szj e{ct type is not the Tabela 7: ReSUItado da Consulta por (‘Menu”
15 3 i Arquivo Peso | Classificacio
6
ﬁ7 } ’ NextBlock.aj 0,3082 10
- Oarquivo NextBlock.aj, duas incidéncias da string Menu Menu.aj 0,2560 2°
em um adendo, nas linhas 28 e 29. Ficando assim o peso ExceptionHandler.aj 0,1541 30
de classificacdo deste arquivo: PoliceEnf ts.ai o o
f(NextBlock.aj) = 2 0,1541 = 0,3082. olicerniorcements.aj 4

package com.ajtetris.aspects.logic;

import java.util.Random;

import com.ajtetris.aspects.gui.x*;
import com.ajtetris.gui.*;

import com.ajtetris.logic.*;

public aspect NextBlock {
pointcut guilnit() : execution(com.ajtetris.gui.TetrisGUI.new(..))

O OV WN =

Lo pointcut getNextBlock()

getRandomBlock());
11 protected BlockPanel nextBlockPanel;
12 protected int nextBlock;

: call(* com.ajtetris.core.AspectTetris.

13 after() : guilnit() {

4 Random rn = new Random();

15 nextBlock = rn.nextInt(Blocks.NUMBEROFTYPES) ;

6 nextBlockPanel = new BlockPanel(4, 4, "");

17 if (GameInfo.infoPanel != null)

n8 GameInfo.infoPanel.add (nextBlockPanel) ;

9 nextBlockPanel.setBlocks (Blocks.getBlock(nextBlock)) ;
2O ¥

21 int[J[] around() : getNextBlock() {

p2 int currentBlock = nextBlock;

R3 Random Menu = new Random();

DA nextBlock = Menu.nextInt(Blocks.NUMBEROFTYPES);

p5 nextBlockPanel.setBlocks (Blocks.getBlock(nextBlock)) ;
D6 return Blocks.getBlock(currentBlock) ;

R7 ¥

D8 3

- 0 arquivo Menu.aj, contém uma ocorréncia da string
Menu no nome de um aspecto, na linha 9. Sendo esta a
classificacao deste arquivo:
f(Menu.qaj) = 10,2560 = 0,2560.

package com.ajtetris.aspects.gui;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import com.ajtetris.gui.x*;

import com.ajtetris.eventinterface.*;

O OOV WN =

public aspect Menu implements ActionListener {

no protected JMenultem newGameMI;

11 protected JMenultem pauseMI;

12 protected JMenultem exitMI;

13 protected IEventListner tetris;

4 pointcut guilnit() : execution(com.ajtetris.gui.TetrisGUI.new(..))

H
15 pointcut tetrisInit(IEventListner tetris)

: execution(com.ajtetris
.core.AspectTetris.new(..)) && target(tetris);
6 after() : guiInit() {
17 // code omitted...
n8 }
19 3

A Tabela 7 mostra o resultado ap6s a aplica¢ao do pro-
Cesso.

5 Trabalhos Relacionados

Consultas em cédigo de programas constituem uma das
técnicas para as atividades de reengenharia de software
(Kullbach e Winter, 1999). Seja na atividade de compre-
ensdo de codigo ou durante as atividades de refatoracao,

as linguagens de consulta em c6digo, como JTL (Java Tool
Language) (Cohen et al., 2006) e CodeQuest (Hajiyev et al.,
2006), fornecem recursos para que desenvolvedores recu-
perem informacoes, coletem métricas e naveguem pelas
estruturas de um programa.

Mecanismos de consulta em cdodigo fonte tém sido ex-
tensivamente estudados, principalmente no contexto de
orientagdo a objetos, para qual ferramentas como as apre-
sentadas por Urma e Mycroft (2012, 2015), ou a apresen-
tada por Bajracharya et al. (2014), assim como linguagens
tém sido propostas (Janzen e De Volder, 2003; McCormick
e De Volder, 2004; Cohen et al., 2006; Hajiyev et al., 2006).
Essas ferramentas e linguagens também sao relevantes no
estudo de busca em outros paradigmas, pois normalmente
as linguagens de novos paradigmas sdo extensoes de lin-
guagens existentes, como Aspect], que é uma extensao de
Java. Independentemente disso, existem linguagens pro-
postas especificamente para um paradigma especifico, tal
como o paradigma orientado a aspectos (de Faveri, 2013).

Consultas ndo estruturadas, ou seja, sem um formato,
regra ou sequéncia padronizados, dependem dos critérios
de classificacdo dos algoritmos usados pelos motores de
busca aos quais elas sdo submetidas. O usuario final ndo
pode mudar a maneira como um algoritmo classifica as
palavras ou os arquivos, mas ele pode interagir com o sis-
tema formulando ou reformulando uma consulta (Croft
etal., 2010). Essa interacdo é uma parte crucial para o pro-
cesso de recuperacao de informacao, e pode determinar se
o motor de busca esta realizando um servico eficaz.

As abordagens de consulta baseadas em palavras-chave
exigem que os usuarios descrevam suas necessidades, e
em seguida, combinem essa consulta textual ao texto con-
tido no cédigo fonte. Assim, o sucesso da pesquisa geral-
mente depende da capacidade dos usuarios em selecionar
palavras que podem ter sido utilizadas, ou que sejam seme-
lhantes as utilizadas no cédigo (Stolee et al., 2016). Esse
processo pode exigir que as consultas sejam remodeladas
varias vezes.

Consultas ndo estruturadas tem sido exploradas em fer-
ramentas que indexam cddigo em diferentes niveis e dife-
rentes linguagens a partir de repositérios contendo uma
grande quantidade de arquivos. Diferentemente da abor-
dagem proposta neste trabalho, a grande maioria das ferra-
mentas de consulta ndo estruturada para codigo fonte ndo
apresenta critérios de classificacdo que priorizem docu-
mentos de maior relevancia ao usudrio, tais como (Nerdy-
Data, 2024), (Krugle, 2024) e (Basu, 2024).

Em sintese, embora linguagens de consulta estruturada,
como JTL e CodeQuest, oferecam mecanismos expressivos
para recuperacdo de informacdes e identificacdo de oportu-
nidades de refatoracdo, elas exigem conhecimento prévio

98 Giletal. |

Revista Brasileira de Computagdo Aplicada (2025), v.17, n.3, pp.84—99

de sintaxe especifica e dependem da estrutura da lingua-
gem alvo. Por outro lado, ferramentas de busca ndo estru-
turada, como NerdyData, Krugle e OpenHub, permitem
consultas livres, mas ndo fornecem critérios de prioriza-
¢do sensiveis ao contexto do usuario ou as caracteristicas
da linguagem.

Diferentemente dessas abordagens, o processo pro-
posto combina a flexibilidade das consultas ndo estrutura-
das com um mecanismo de classificagao baseado na impor-
tancia relativa dos elementos da linguagem, permitindo
ordenar resultados conforme preferéncias definidas pelos
desenvolvedores e aumentando a precisdao da recuperagao
de informacao.

6 Conclusoes

Este artigo apresentou um processo para consultas em c4-
digo fonte. O processo possibilita aos usuarios a definicao
de quais fragmentos de c6digo fonte serdo considerados
importantes no momento da realizacao das consultas. Esta
definicao permite uma melhora na classificacdo dos re-
sultados, ocasionando uma diminui¢do no tempo gasto
com a analise desses resultados. Por utilizar técnicas de
consultas ndo estruturadas, este processo nao impde aos
usuarios a necessidade de aprender uma nova sintaxe para
obter resultados com uma maior exatiddao nas consultas
executadas. Para a validagao do processo foram realizadas
duas instanciagOes. A primeira na linguagem orientada a
objetos Java e a segunda na linguagem orientada a aspec-
tos Aspect], demonstrando a aplicabilidade do processo.
Como trabalho futuro, estuda-se a aplicacao de outros mé-
todos de decisdao multi-critério para a defini¢do dos pesos,
incluindo abordagens automatizadas de acordo com repo-
sitdrios de larga escala da linguagem alvo.

Referéncias

Bajracharya, S., Ossher, J. e Lopes, C. (2014). Sourcerer:
An infrastructure for large-scale collection and analysis
of open-source code, Science of Computer Programming
79: 241—259. https://doi.org/10.1016/j.scico.2012

.04.008.

Basu, S. (2024). Ohloh. Acessado em Novembro/2024,
http://code.openhub.net/.

Bhushan, N. e Rai, K. (2004). Strategic decision making:
applying the analytic hierarchy process, Springer Science
& Business Media. https://doi.org/10.1007/b97668.

Cohen, T., Gil, J. e Maman, L. (2006). JTL: the Java tools
language, ACM SIGPLAN Notices 41(10): 89—108. https:
//dl.acm.org/doi/10.1145/1167515.1167481.

Croft, W. B., Metzler, D. e Strohman, T. (2010). Search en-
gines: Information retrieval in practice, Vol. 520, Addison-
Wesley Reading. https://dl.acm.org/doi/book/10.555
5/1516224.

de Faveri, C. (2013). Uma linguagem especifica de dominio
para busca em codigo orientado a aspectos, Mestrado /
UFSM . https://repositorio.ufsm.br/handle/1/5435.

Fokaefs, M., Tsantalis, N. e Chatzigeorgiou, A. (2007).
Jdeodorant: Identification and removal of feature envy
bad smells, 2007 IEEE ICSM, IEEE, pp. 519—520. https:
//doi.org/10.1109/ICSM. 2007 .4362679.

Fowler, M. (1999). Refactoring: Improving the design of
existing code, Addison-Wesley, USA. https://dl.acm.o
rg/doi/book/10.5555/311424.

Godfrey, M. W. e German, D. M. (2008). The past, pre-
sent, and future of software evolution, 2008 Frontiers
of Software Maintenance, IEEE, pp. 129—138. https:
//doi.org/10.1109/FOSM. 2008 .4659256.

Hajiyev, E., Verbaere, M. e De Moor, O. (2006). Codequest:
Scalable source code queries with datalog, ECOOP 2006,
Nantes, France, July 3-7,2006., Springer, pp. 2—27. https:
//dl.acm.org/doi/10.1007/11785477_2.

Hecht, M., Piveta, E., Pimenta, M. e Price, R. T. (2006).
Aspect-oriented code generation, Anais do SBES’06, SBC,
pp. 209—223.

ISO (2022). ISO/IEC/IEEE 14764:2022 - Software engine-
ering — Software life cycle processes — Maintenance
, Standard, International Organization for Standardiza-
tion, Geneva, CH.

Janzen, D. e De Volder, K. (2003). Navigating and querying
code without getting lost, Proc of AOSD’03, pp. 178—187.
https://dl.acm.org/doi/10.1145/643603.643622.

Junior, J. E. T., Neto, H. E. V. T., Faveri, C. D., de Brum Saccol,
D., Vizzotto, J. K. e Piveta, E. K. (2019). A refactoring
catalog for lambda expressions in Java, Int. J. Softw. Eng.
Knowl. Eng. 29(6): 791—818. https://doi.org/10.1142/
S021819401950027X.

Kerievsky, J. (2004). Refactoring to patterns, Pearson. http
s://dl.acm.org/doi/10.5555/993772.

Krugle (2024). Acessado em Novembro/2024, http: //www.
krugle.com/.

Kullbach, B. e Winter, A. (1999). Querying as an enabling
technology in software reengineering, Proc. of CSMR’99,
IEEE, pp. 42—50. https://dl.acm.org/doi/10.5555/794
202.795241.

Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D. E.
e Turski, W. M. (1997). Metrics and laws of software
evolution-the nineties view, Proc of Metrics’97, IEEE,
Pp. 20—32. https://dl.acm.org/doi/10.5555/823454.
823901.

McCormick, E. e De Volder, K. (2004). JQuery: finding your
way through tangled code, Companion to OOPSLA’04,
Pp- 9—10. https://dl.acm.org/doi/abs/10.1145/10286
64.1028670.

Mens, T. e Tourwé, T. (2004). A survey of software
refactoring, IEEE Transactions on software engineering
30(2): 126—139. https://dl.acm.org/doi/10.1109/TSE
.2004.1265817.

NerdyData (2024). Acessado em Novembro/2024, http:
//nerdydata.com/.

https://doi.org/10.1016/j.scico.2012.04.008
https://doi.org/10.1016/j.scico.2012.04.008
http://code.openhub.net/
https://doi.org/10.1007/b97668
https://dl.acm.org/doi/10.1145/1167515.1167481
https://dl.acm.org/doi/10.1145/1167515.1167481
https://dl.acm.org/doi/book/10.5555/1516224
https://dl.acm.org/doi/book/10.5555/1516224
https://repositorio.ufsm.br/handle/1/5435
https://doi.org/10.1109/ICSM.2007.4362679
https://doi.org/10.1109/ICSM.2007.4362679
https://dl.acm.org/doi/book/10.5555/311424
https://dl.acm.org/doi/book/10.5555/311424
https://doi.org/10.1109/FOSM.2008.4659256
https://doi.org/10.1109/FOSM.2008.4659256
https://dl.acm.org/doi/10.1007/11785477_2
https://dl.acm.org/doi/10.1007/11785477_2
https://dl.acm.org/doi/10.1145/643603.643622
https://doi.org/10.1142/S021819401950027X
https://doi.org/10.1142/S021819401950027X
https://dl.acm.org/doi/10.5555/993772
https://dl.acm.org/doi/10.5555/993772
http://www.krugle.com/
http://www.krugle.com/
https://dl.acm.org/doi/10.5555/794202.795241
https://dl.acm.org/doi/10.5555/794202.795241
https://dl.acm.org/doi/10.5555/823454.823901
https://dl.acm.org/doi/10.5555/823454.823901
https://dl.acm.org/doi/abs/10.1145/1028664.1028670
https://dl.acm.org/doi/abs/10.1145/1028664.1028670
https://dl.acm.org/doi/10.1109/TSE.2004.1265817
https://dl.acm.org/doi/10.1109/TSE.2004.1265817
http://nerdydata.com/
http://nerdydata.com/

Giletal. | RevistaBrasileira de Computagdo Aplicada (2025), v.17, n.3, pp.84—99

99

Piveta, E. K. (2009). Improving the search for refactoring
opportunities on object-oriented and aspect-oriented
software (PhD Thesis/UFRGS). https://lume.ufrgs.b
r/handle/10183/15651.

Piveta, E., Pimenta, M., Aratjo, J., Moreira, A., Guer-
reiro, P. e Price, R. T. (2009). Representing refacto-
ring opportunities, Proceedings of the 2009 ACM sym-
posium on Applied Computing, pp. 1867—1872. https:
//dlnext.acm.org/doi/abs/10.1145/15629282.1529701.

Pizka, M. e Jurgens, E. (2007). Automating language
evolution, IEEE/IFIP Symposium on Theoretical Aspects
of Software Engineering (TASE’07), IEEE, pp. 305—315.
https://dl.acm.org/doi/abs/10.1109/TASE.2007.13.

Pressman, R. S. e Maxim, B. R. (2021). Engenharia de soft-
ware. Uma abordagem profissional., McGraw Hill Brasil.

Robillard, M. P. e Murphy, G. C. (2007). Representing con-
cerns in source code, ACM Transactions on Software En-
gineering and Methodology (TOSEM) 16(1): 3—es. https:
//dl.acm.org/doi/abs/10.1145/1189748.1189751.

Saaty, T. L. (1990). How to make a decision: the analytic
hierarchy process, European Journal of Operational Rese-
arch 48(1): 9—26. https://doi.org/10.1016/0377-221
7(90)90057-1.

Stolee, K. T., Elbaum, S. e Dwyer, M. B. (2016). Code search
with input/output queries: Generalizing, ranking, and
assessment, Journal of Systems and Software 116: 35—48.
https://doi.org/10.1016/j.jss.2015.04.081.

Urma, R.-G. e Mycroft, A. (2012). Programming language
evolution via source code query languages, Workshop on
Evaluation and Usability of Programming Languages and
Tools, PLATEAU ’12, ACM, New York, NY, USA, p. 35—-38.
https://doi.org/10.1145/2414721.2414728.

Urma, R.-G. e Mycroft, A. (2015). Source-code queries
with graph databases—with application to program-
ming language usage and evolution, Science of Computer
Programming 97: 127—134. https://doi.org/10.1016/j.
scico.2013.11.010.

Vargas, R. V. e IPMA-B, P. (2010). Using the Analytic Hie-
rarchy Process (AHP) to select and prioritize projectsina
portfolio, PMI Global Congress, Vol. 32, PA: PMI Washing-
ton, DC, pp. 1—22.

https://lume.ufrgs.br/handle/10183/15651
https://lume.ufrgs.br/handle/10183/15651
https://dlnext.acm.org/doi/abs/10.1145/1529282.1529701
https://dlnext.acm.org/doi/abs/10.1145/1529282.1529701
https://dl.acm.org/doi/abs/10.1109/TASE.2007.13
https://dl.acm.org/doi/abs/10.1145/1189748.1189751
https://dl.acm.org/doi/abs/10.1145/1189748.1189751
https://doi.org/10.1016/0377-2217(90)90057-I
https://doi.org/10.1016/0377-2217(90)90057-I
https://doi.org/10.1016/j.jss.2015.04.081
https://doi.org/10.1145/2414721.2414728
https://doi.org/10.1016/j.scico.2013.11.010
https://doi.org/10.1016/j.scico.2013.11.010

	1 Introdução
	2 Referencial Teórico
	2.1 Evolução, Refatoração e Consulta em Código
	2.2 AHP

	3 Um Processo para Buscas não Estruturadas em Código Fonte
	3.1 Etapa de Definição
	3.1.1 Selecionar conceitos
	3.1.2 Priorizar elementos
	3.1.3 Definir função de classificação
	3.1.4 Avaliar função de classificação

	3.2 Etapa de Reificação
	3.3 Etapa de Análise
	3.3.1 Escrever consulta
	3.3.2 Processar consulta
	3.3.3 Executar consulta
	3.3.4 Classificar resultados
	3.3.5 Analisar resultados
	3.3.6 Refinar consulta

	4 Avaliação
	4.1 Instanciação para Java
	4.1.1 Primeira Consulta
	4.1.2 Segunda Consulta

	4.2 Instanciação para AspectJ
	4.2.1 Primeira Consulta
	4.2.2 Segunda Consulta

	5 Trabalhos Relacionados
	6 Conclusões

