> ,' Revista Brasileira de Computacao Aplicada, November, 2025
«

DOI: 10.5335/rbca.v17i3.16747
U PF | ED'TORA RBCA Vol. 17, N? 3, pp- 100—113
UNIVERSIDADE Homepage: seer.upf.br/index.php/rbca/index

ORIGINAL PAPER

Multi-queue Round Robin Scheduling for Enhanced Performance
in Integration Platforms

Daniela L. Freire “»1,2,3, Rafael Z. Frantz “2, Vitor Basto-Fernandes >3, Gerson
Battisti“»2, Sandro Sawicki“>2, Fabricia Roos-Frantz 2

University of Sdo Paulo, Brazil, 2Unijui University, Brazil, 3University Institute of Lisbon, Portugal
*danielalfreire@icmc.usp.br;{rzfrantz,battisti,sawicki,frfrantz} @unijui.edu.br;vitor.basto.fernandes @iscte-iul.pt

Received: 2025-02-17. Revised: 2025-11-28. Accepted: 2025-12-10.

Abstract

Contemporary enterprise environments involve a large amount of information and heterogeneous applications that must
exchange data in near real time. Integration platform-as-a-service (iPaaS) solutions support this scenario by executing
integration processes composed of workflows of tasks. However, current task scheduling algorithms used in integration
platforms, such as First-In, First-Out (FIFO), may lead to poor performance and unfair use of computational resources
under high workloads. In this article we propose the Multi-queue Round Robin (MgRR) algorithm, a task scheduling
heuristic tailored to the runtime systems of enterprise application integration platforms. MgRR organises tasks into
multiple queues and applies a round-robin strategy with preemption to avoid starvation and to distribute the load
more evenly among workflows. We evaluated MqRR against the traditional FIFO heuristic using an integration process
simulator and three real-world integration workflows, under increasing message arrival rates. Regarding our research
questions, the results show that: (RQ1) there is a workload threshold from which FIFO degrades its performance, leading
the number of completed messages to approach zero; and (RQ2) MgRR improves task scheduling performance in high
workload scenarios, keeping a linear growth of makespan and increasing the number of processed messages. These
findings indicate that MgRR is more suitable than FIFO for integration platforms that must handle high message rates
in cloud environments.

Keywords: Application integration; task scheduling; algorithm; workflow scheduling; integration patterns; round robin.

Resumo

Ambientes empresariais contemporaneos envolvem uma grande quantidade de informacoes e aplicacdes heterogéneas
que precisam trocar dados em tempo quase real. Plataformas de integracdo como servico (iPaaS) apoiam esse cenario
executando processos de integracdo compostos por fluxos de tarefas. Entretanto, algoritmos de escalonamento de
tarefas comumente utilizados nessas plataformas, como o First-In, First-Out (FIFO), podem levar a baixo desempenho
e uso injusto dos recursos computacionais sob cargas de trabalho elevadas. Neste artigo propomos o algoritmo Multi-
queue Round Robin (M@RR), uma heuristica de escalonamento de tarefas voltada aos sistemas de tempo de execu¢éo
de plataformas de integracdo de aplicagdes empresariais. O MQRR organiza as tarefas em muiltiplas filas e aplica uma
estratégia round robin com preempgdo para evitar inanicdo e distribuir a carga de forma mais justa entre os fluxos de
trabalho. Avaliamos o0 MgRR em comparac¢do com a heuristica FIFO tradicional por meio de um simulador de processos
de integracdo e de trés fluxos de integracdo provenientes de cenarios reais, variando a taxa de chegada de mensagens.
Em relagdo as questdes de pesquisa, os resultados mostram que: (RQ1) existe um limiar de carga a partir do qual o FIFO
degrada seu desempenho, fazendo com que o nimero de mensagens concluidas tenda a zero; e (RQ2) o MqRR melhora o
desempenho do escalonamento de tarefas em cenarios de alta carga, mantendo um crescimento linear do makespan e
aumentando o niimero de mensagens processadas. Esses resultados indicam que o MgRR é mais adequado que o FIFO
para plataformas de integra¢do que precisam lidar com altas taxas de mensagens em ambientes em nuvem.

Palavras-Chave: Integracao de aplicativos; agendamento de tarefas; algoritmo; agendamento de fluxo de trabalho;
padroes de integracdo; round robin.

http://dx.doi.org/10.5335/rbca.v17i3.16747
http://seer.upf.br/index.php/rbca/index
https://orcid.org/0000-0002-5363-3608
https://orcid.org/0000-0003-3740-7560
https://orcid.org/0000-0003-4269-5114
https://orcid.org/0000-0002-1577-4119
https://orcid.org/0000-0002-7960-0775
https://orcid.org/0000-0001-9514-6560

Freireetal. |

Revista Brasileira de Computagdo Aplicada (2025), v.17, n.3, pp.100—113 101

1 Introduction

The large volume of information generated by the
increasing number of heterogeneous devices connected
to the Integration of the Internet of Things (IoT) produces
knowledge and creates more business opportunities
for enterprises. Integrating IoT with cloud computing
has become primordial in tackling the increasing
data and managing virtual resource utilisation and
storage capacity. It also creates more usefulness from
generated data and develops innovative applications for
the users (Mohammad Aazam and Eui-Nam Huh and
Marc St-Hilaire and Chung-Horng Lung and Ioannis
Lambadaris, 2016).

The integration platform-as-a-service (iPaaS) is a
cloud service that integrates services and applications
to interchange data and functionalities to respond to
business process requests quickly. In 2017, every
two out of three application integration projects were
directly developed using Cloud integration platforms, and
iPaaS was the preferred deployment for the integration
platform. The annual revenue for iPaaS grew higher
than the traditional implementation of integration on-
premise (Guttridge et al., 2017; Sharma, 2017). An iPaaS
allows software engineers to design, run, and monitor
integration processes. An integration process carries out
a workflow comprising distinct atomic tasks, connected
by communication channels that desynchronise one
task from another (Pezzini et al., 2015; Kanagaraj and
Swamynathan, 2016). Messages move through the
workflow, encapsulating data from/to the integrated
applications.

Many current open-source integration platforms
support integration patterns documented by Hohpe
and Woolf (2004) and follow the Pipes-and-Filters
architectural style (Alexander et al.,, 1977). Pipes
depict message channels, and filters represent atomic
tasks implementing a particular integration pattern
to process messages. The runtime system is the
platform component responsible for executing integration
processes (Frantz et al., 2016), and its primary function
is task scheduling (Guo et al., 2015; Hilman et al., 2018).
Task scheduling manages the schedule of the execution
of tasks and the use of computational resources. In the
context of cloud computing (where the charging model is
pay-as-you-go), task scheduling should be aligned with
the minimisation of costs (Freire, Frantz, Roos-Frantz
and Sawicki, 2019), with the handling of large volumes
of data from IoT (Shoukry et al., 2019), and with market
demands for quality of software, flexibility, and response
times (Fan et al., 2018).

In the literature, we found two main execution
models for runtime systems: process-based and task-
based (Blythe et al., 2005; Boehm et al., 2011; Frantz
et al., 2012; Alkhanak et al., 2016). This classification
concerns the granularity that the runtime system deals
with regarding task execution (Freire, Frantz, Roos-
Frantz and Sawicki, 2019). In the process-based model,
the runtime system deals with process instances. In
this model, a thread is assigned to an instance of the
integration process; this thread is used to execute every
task that composes the workflow over an inbound message

so that this message may flow throughout the process.
After every task in the workflow has been executed, the
thread is released. In the task-based model, a thread
is assigned to an instance of a task so that this thread
is used to execute the task over the inbound message
that reaches the task. When the task is completed, an
outbound message is written to the channel that connects
the current task to the next one in the workflow, so the
thread is released. The execution of the message in the
next task now depends on a new assignment of an available
thread to this task. In this article, we discuss the task-
based execution model. In this execution model, when
messages have a high input rate, threads tend to execute
initial tasks more frequently than other tasks due to the
First-in-first-out (FIFO) policy, which is used in task
scheduling. In the FIFO policy, the first arriving task will
be executed in the first place, while the next will wait
until the first task is finished. Thus, this model may lose
efficiency when an integration process is submitted to
high input rates of messages (Frantz et al., 2012; Freire,
Frantz, Basto-Fernandes, Sawicki and Roos-Frantz, 2022;
Freire, Frantz, Frantz and Basto-Fernandes, 2022b).

In a cloud computing environment, the task scheduling
of various IoT applications is complicated due to the
heterogeneous characteristics of 10T data. On the other
hand, this scheduling needs to be efficient, and the load
must be balanced to maximise performance while meeting
constraints such as task dependencies (Basu et al., 2018).
The increased volume, variety, and velocity of 10T data
generated and their real-time processing require higher
computational capacity than is usually offered on the cloud.
However, the virtually unlimited computational capacity
of the cloud entails a higher communication latency and
a higher monetary cost. For this reason, the workload
balance requires an effective and dynamic task scheduling
heuristic (Stavrinides and Karatza, 2018).

Building fair scheduling while increasing performance
is a significant concern for enterprises once they
concurrently submit workflows for execution in different
resources. Pietri et al. (2019) define fair scheduling
as one that provides an adequate balancing from the
workload to resources. In the domain of application
integration, to obtain fair scheduling in contemporaneous
environments, it is required to re-engineer integration
platforms (Linthicum, 2017). The enhancement of the
runtime system task scheduling can help enterprises take
advantage of the scalability of Cloud computing, increase
their productivity and reduce their costs by optimising
computational resources.

In this article, we propose the Multi-queue Round
Robin (MgRR), a new policy for task scheduling of
integration processes carried out by runtime systems.
First, we represented integration processes using Directed
Acyclic Graphs, then classified them according to their
conceptual models and logic integration. Next, we
implemented our proposal through algorithms, which
provide a fair allocation of threads to tasks from
integration processes with high data volumes.

We executed a performance comparison of MgRR and
FIFO heuristics under different load conditions. The
results of this experiment proved that the FIFO is better
than MgRR until a threshold of workload is reached.

102 Freireetal. |

Revista Brasileira de Computagdo Aplicada (2025), v.17, n.3, pp.100—113

Then, MgRR performance becomes higher, and FIFO
stops delivering processed messages. MgRR revealed
higher robustness in tackling high workloads and the
uncertain environment of integration processes. The
results were validated statistically with ANOVA and Scott
& Knoot tests. Our proposal can adequately integrate
the runtime systems of integration platforms into the
contemporaneous integration environments and provide
suitable solutions for the challenges raised by cloud
computing and the Internet of Things.

The rest of this article is organised as follows:
Section 2 discusses the related work regarding task
scheduling; Section 3 describes the characteristics of
scheduling in integration processes; Section 4 presents the
problem formulation; Section 5 presents our algorithm;
Section 6 presents an experiment to validate the proposal,
and Section 7 presents our conclusions and future works.

2 Related Work

This section provides a literature review on recent task-
scheduling approaches in cloud and edge computing. We
group the selected works according to their main focus
and optimisation goals.

- Task scheduling in cloud computing environments.
Works in this group focus on minimising makespan and
meeting deadlines by mapping tasks to heterogeneous
virtual machines, often using variants of classic
heuristics or metaheuristics.

- Energy and cost efficiency. These proposals aim
to reduce energy consumption and monetary cost in
clouds, e.g. by consolidating tasks, turning off idle
machines or using multi-objective optimisation (such
as PSO and GA) for resource allocation.

- Resource utilisation and workflow management.
Here, authors concentrate on improving resource
utilisation, balancing the load among servers and
managing complex workflows and DAGs with heuristic
scheduling strategies.

+ Scheduling in cloud and edge computing. Some works
extend the scheduling problem to hybrid cloud—edge
scenarios, distributing tasks between central clouds
and edge devices while minimising latency and
makespan.

- Novel and hybrid algorithms. Other approaches
combine heuristics, metaheuristics and graph-based
models, for example scheduling workflows represented
as DAGs and applying hybrid algorithms to improve
performance in large-scale infrastructures.

- Large-scale MapReduce clusters. Finally, there are
proposals specifically designed for large MapReduce
clusters, often building on classical scheduling theory
and adapting it to big-data workloads.

Table 1 summarises the main optimisation goals,
application domains and methods used in the selected
related work. Most existing works focus on minimising
makespan and cost in cloud environments, while our
proposal targets the runtime systems of enterprise
application integration platforms.

3 Background

In this section, we shall discuss task scheduling for
integration processes which adopt integration patterns
documented by Hohpe and Woolf (2004) and the Pipes-
and-Filters (Alexander et al., 1977) architectural style. We
shall define the main elements involved in this type of
scheduling and describe the task-based model, which is
the model approached in this article.

An integration process is a computational program that
supports exchanging data and functionalities amongst
applications to perform a “job”. A job is a user request.
The accomplishment of a job consists of receiving input
data from the user request and then processing these
data to produce output data. Usually, one or more
sources deliver data to an integration process, which goes
through a segment of “tasks” uncoupled and connected
by “communication channels”. Then, the data is delivered
to one or more data sinks. Sources and sinks of data can
be applications, databases, sensors, etc. Data are wrapped
in “messages”. A message has a header and a body. The
header contains custom properties, and the body has the
payload data. A message can be split into one or more
messages in the workflow; two or more messages can be
merged into a unique message.

We use the following terminology:

- “Workflow” is a set of atomic tasks chained via
communication channels inside an integration process.

- “Segment” is a piece of a workflow that can be
composed of sequentially arranged tasks, in parallel, or
both.

- “Path” refers to a specific segment connecting a source
to a delivery application by which a message is entirely
processed in an integration process.

A task can have either one or more inputs or outputs,
depending on the integration pattern implemented.
Every pattern represents an atomic operation with a
specific operation (transforming, filtering, splitting,
joining, or routing) on message processing. Tasks of
a path have an order of dependence to be executed so
that a message can only be processed by a task after
each and every predecessor task has processed this
message. An outbound message of a task is written to
the communication channel that connects this task with
the next one in the workflow path. Parts of the integration
process may contain tasks that can be executed in parallel.
The number of tasks executed in parallel is limited to the
number of available cores, and the executions always obey
the order of dependence in an integration process.

All activities required to accomplish the message
processing are orchestrated by the “scheduler” that
is the central element of the runtime system. The
“scheduler” also manages the computational resources
for the task execution. These resources are “threads”
that are usually grouped in “thread pools”. A thread is
the smallest sequence of a computational program that
the runtime system can manage. Execution threads are
abstractions from pieces of physical threads, also called
Central Processing Unit (CPU) cores, which are physical
and independent processing units. In this article, we refer
to execution threads as “threads”, and physical threads as

Freireetal. |

Revista Brasileira de Computagdo Aplicada (2025), v.17, n.3, pp.100—113 103

Table 1: Related work summary.

Ref. Goal Research field Method
Guo et al. (2015) Minimize makespan Cloud Fuzzy
Rimal and Maier (2017) Minimize makespan, cost, and tardiness Cloud -
Zhou et al. (2017) Maximise completion ratio and minimize bandwidth Broadcast EDS
consumption
Zaourar et al. (2018) Minimize makespan and energy consumption Manufacturing PSO
Manasrah and Ali (2018) Minimize makespan, cost and balancing load Cloud GA & PSO
Rodriguez and Buyya (2018) Minimise makespan, cost, deadline, and Virtual Cloud -
Machine (VM)
Anwar and Deng (2018) Minimize makespan and cost Cloud BoTs & MIP
Sun et al. (2018) Minimize makespan and resource utilisation rate E-Stream EFT & max-min
fairness
Ghafouri et al. (2019) Minimize makespan and cost Cloud back-tracking
Xije et al. (2019) Minimize makespan and cost Cloud & Edge PSO
Eldesokey et al. (2021) Minimize makespan, execution time and cost Cloud PSO & SSO
Attiya et al. (2022) Minimize makespan Cloud & IoT MRFO & SSO
Kumar et al. (2019) Minimize makespan Cloud B&B
Al-Maytami et al. (2019) Minimize makespan and cost Cloud DAG
Gade et al. (2022) Minimize makespan Cloud NALCA
Tarafdar et al. (2021) Minimize makespan and energy consumption Cloud Greedy & ACO
Zhang and Shi (2021) Minimize makespan and execution time Cloud ACO
Xia et al. (2022) Minimize makespan Cloud TOPSIS & MT
Tian et al. (2016) Minimize makespan Cloud JA & MapReduce
[Our Proposal] Minimize makespan Enterprise RR
Application
Integration (EAT)
“cores”.

Several jobs are typically processed at a particular time
so that several job instances can be used. The processing
of a job corresponds to executing all tasks of a path which
results in the accomplishment of the job. The execution
model of runtime systems establishes how they must
execute tasks and allocate threads during the processing
of messages in an integration process (Freire, Frantz and
Roos-Frantz, 2019).

3.1 Task-Based Execution Model

In this section, we describe the interactions amongst a
scheduler, a task, and threads in systems that adopt the
task-based model. As shown in Fig. 1.

If there are messages in all communication channels,
and if they are sources of a task, then this task is ready to
be executed. Ready tasks depend on an available thread to
execute them. Meanwhile, their executions are annotated
in a waiting queue. Tasks are, therefore, instantiated and
executed by following a First-in-first-out (FIFO) policy,
in which the task that was first annotated is scheduled to
be executed first. Threads are usually grouped in pools,
so the creation of consecutive threads is avoided, and task
requests are quickly handled (Jeon and Jung, 2018).

The “scheduler” creates, manages, and releases
threads. It can also configure the pool by determining
parameters, such as the initial thread number, the
maximum number of threads, and the maximum lifetime
of an idle thread. The “scheduler” assigns threads to
execute instances of tasks, and after an instance of the task
is executed, the thread is released back to the pool. The
processing of a message in the next task now depends on a
new assignment of an available thread from the pool to this
task. A message is processed in an order dependent on the

Create Processe
A thread message
7/
/4
, «include» «depend»

Release Task

«include»

Manage

thread thread Execute

*\ include» instance

N

AN task

N Create «depend»>
thread s
-
.

7 «depend»
P

Scheduler Thread

7
_ 7«include» -

P e
Schedule “\«include» Create X «include»
task queue
Z

\ «include»
N

N -7
N
N «extend»/ Prioritize
T task

Figure 1: Actions involved in the scheduling of
integration processes.

task of the path, which is composed of several segments.
Tasks in sequential segments are sequentially executed,
whereas tasks in parallel segments can be executed
simultaneously once they are not interdependent.

4 Problem Formulation

In this section, we formulate our research problem.
Firstly, we describe the software ecosystem and the
integration process of a real-world problem. Then, we
describe the terminology of the task scheduling problem
in integration processes, which is based on the classic
real-time scheduling theory and general-purpose parallel
systems. Lastly, we present a mathematical formulation

104 Freireetal. |

Revista Brasileira de Computagdo Aplicada (2025), v.17, n.3, pp.100—113

Human
Resources
System

Digital
Certificate
Platform

Local
Users

&

T —
E [T @ |- 0]
2 t4 | oo [ts] t6|
i

_O
il

o

Mail l
% Server _EI

Figure 2: Huelva’s County Council conceptual model (adapted from (Frantz et al., 2016)).

composed of the problem definition and the objective
function. The former is the modelling and codification
of the problem; the latter measures the adequacy of the
heuristic in order to maximize the number of processed
messages and minimize makespan.

4.1 The Software Ecosystem

The Huelva’s County Council problem is a real-world
integration process that automates user registration into
a central repository (Frantz et al., 2016). Its conceptual
model is depicted in Fig. 2.

Within this integration process, integrated applications
are: “Local Users”, “Portal Users”, “Lightweight Directory
Access Protocol (LDAP)”, “Human Resources System”,
“Digital Certificate Platform”, and “Mail Server”. The
“Local Users” are one of the source applications to manage
data from users’ information systems from the county
council. The “Portal Users” is another source application
which manages users in the web portal. The “Human
Resources System” is the application that provides
employees with personal information. Information such
as name and e-mail are required to compose notification e-
mails. The “Digital Certificate Platform” is the application
that manages digital certificates. Finally, the “Mail Server”
is the application that runs the e-mail service and is used
exclusively for notification purposes.

4.2 Terminology

The task scheduling of integration processes can be
represented as a set of jobs, J= {ji,j2, - ,jn} of the same
capability on computational resources, consisting of m
threads. Every job can have infinite paths of job instances

jiwithi=1,...n. Apath can have segments of tasks, which
can be sequential, parallel, or both. Tasks in sequential
segments are executed, obeying their order of dependence.
Tasks of parallel segments can be simultaneously executed
on different cores.

The DAG represents task models for real-time
scheduling, allowing the description of constraints on
tasks execution (Saifullah et al., 2013). In the DAG model,
an integration process is described as a workflow W
composed of k tasks, being an extension of the DAGs with
weighted vertices (E;, T;), where T; = {ti,l, tizy - ,ti,k} is
the set of vertices and E is the set of edges. Every vertex
in the graph represents a process task, and each edge
represents a communication channel, which indicates
precedence constraints among tasks. Every edge has a
weight, representing the task’s waiting time in the queue.

Ritter et al. (2018) represented the integration process
as a directed graph called Integration Pattern Typed
Graph (IPTG). IPTG was defined as a set of nodes T
and edges E C T x T and a function type : T — F,
where F = {start, end, message processor, fork, join,
condition, merge, external call}. Foranodet € T -t =
{t e T|(t'-t) € E} for the set of direct predecessors of
t,and t- = {t"eT|(t-t")eE} for the set of direct
successors of t.

The function type records what type of task each node
represents. The first correctness condition claims that
an integration pattern has at least one input and one
output; the second condition indicates the cardinality of
the involved tasks, i.e., the in-degrees and out-degrees
of a node. The last condition states, “the graph (T, E) is
connected and acyclic,” indicating that a graph represents
only a task and its relation with its predecessor and
successor tasks and that messages do not loop back to

Freireetal. |

Revista Brasileira de Computagdo Aplicada (2025), v.17, n.3, pp.100—113 105

previous tasks. From the IPTG representation, we adopted
the condition of verification, the classification by task
cardinality, and some terminologies, such as type start,
end, join, message processor, and external call. Since
we have considered the logic operation of the task, we
then added and, or, and or* function types. We called
our representation of Integration Operation Typed Graph
(I0TG).

AnIOTG (T, E, type) is correct if the following conditions
apply:

— 3t,t, € Twithtype (t;) = start and type (t,) = end;

— if type (t) € {and} then |-t| = 1and |t| = n must
produce messages to all n outputs;

— if type (t) € {or} then |-t| = 1and |t| = n produce
message in at least one of its outputs;

— if type (t) € {or*} then |-t| = 1and |t-| = n produce
message in only one of its outputs;

— iftype (t) € {join} then |-t| =nand |t-| = 1;

— iftype (t) € {message processor} then |-t| =1and |t-| =
1

— iftype (t) € {external call} then |-t| =1and |t-| = 2;

— the graph (T, E) is connected and acyclic.

4.3 Problem Definition

There are two input tasks represented by tigqr; and
tastart, and two output tasks represented by t,,,4 and t, 4.
Tasks which exchange messages with applications during
runtime are represented by ty; and ty,. Intermediary tasks
are represented by t;, where i ranges from 1 to 13. In
the integration logic of sc3, arriving data o users from
tistart and togeqre are replicated and one copy flows towards
“Human Resources System” for information about the
employee who has a user record. Further, on tg, the
message is replicated, and while one copy flows towards
“LDAP”, another one flows towards “Digital Certificate
Platform”. “Digital Certificate Platform” represents the
application that manages digital certificates. The sending
of the certificate and the notification to the employee about
the inclusion in the “Lightweight Directory Access (LDA)”
is done by “Mail Server”. The path for a local user that has
an e-mail address is the task segment s; = tigeare, ta, t2, t3,
tA, tXl) t5, t6’ t7, ts, t9, th) tll) t12) t13, tlend' The path for a
local user that has not an e-mail address is the following
task Segmel’lt S2 = bistart, b1, B2, U3, t4) txa, t5, tg, t13, tzend'
The path for a web user that has an e-mail address follows
the task segment s3 = tygpgrt, ta, t2, t3, ty, ta, ts, te, t7, tg,
to, tio, t11, t12, t13, tieng- The path for a web user who has
not an e-mail address is the task segment s, = tygiar, t1,
ta, t3, ts, ba, ts, tg, t13, theng- Examples of tasks that can
be executed in parallel in the sc3 integration process are
t3,t7] , [tg,t10], [t7,t18]. A DAG task model represents the
Huelva’s County Council integration process, as shown in
Fig. 3.

There are 19 nodes representing the 19 tasks: tisqrt,
tZStarty t]end) tzend) tl) tZ) t3) t4) t5) t6) t7) t8) t9) t10) tll) t12)
t13, txy, tx,- tistart @aNd tagiqrr are starting nodes, while t .4
andt,,, are end nodes. The nodes tx,, tx, are tasks that
send and receive information to/from applications. There
are 20 edges representing the 20 channels.

In the Integration Operation Typed Graph, t;s and
tastart Are start tasks; t,, tg are and tasks; ty is the or* task;
t1, t;, to are join; t3, ts, t7, ty, t11, t12, t13 are the ones from
the message processor; tx1, tx, are external call tasks; and
tiend toend are end tasks.

4.4, Mathematical Formulation

The total processing time of a message in a given job
instance, TP;, is defined by the elapsed time interval
between the time a message is entered and the time it
leaves the workflow. TP;, is the sum of the execution time
of all the path tasks by which the message must flow
for its complete processing, as shown in Equation 1. We
assume that the execution time of a task, TE;, includes
all times involved, such as the total CPU time, the
waiting time of the tasks in a queue, and the waiting
time of the task in request and response operations with
external applications. The number of tasks in the path is
represented by tot. We also assumed that the range of a
task execution time t;, is defined as [te;, , tey, i 1.

tot
TP, = ZTEt;u where {TEtk ER| tey, < TEy < tep, ﬁn}
1

(1)

Makespan is calculated by the average of job instances

accomplished during a given elapsed time, At, c.f.

Equation 2. The total number of job instances

accomplished during an elapsed time is [j;|. This

formulation is represented by the objective function
shown in Equation 3.

ljil

> TP, Ji
Makespana; = 1|j | (2)
i
min{Makespan} 3)

Thus, the problem can be formulated as:

Find out an algorithm for task scheduling that minimizes makespan under
high workloads and the uncertain environment from integration processes.

5 Our Proposal

We propose the Multi-queue Round Robin (MgRR)
algorithm to tackle high workloads and the uncertain
environment of integration processes. Our algorithm
is lightweight and deals with the dynamicity of the
application integration environment without harming the
execution performance of integration processes. The main
algorithm of our proposal uses the Round Robin heuristic,
a classical scheduling algorithm popularly known for its
simplicity, efficiency and effectiveness in computing (Sun
etal., 2015; Zhang et al., 2018; Xie et al., 2019).

Two main components of the implementation are

106 Freireetal. |

Revista Brasileira de Computagdo Aplicada (2025), v.17, n.3, pp.100—113

O

(D —(—(w——(—)
(W— () —(—C)

Figure 3: Huelva’s County Council represent in a DAG task model.

worth describing in detail: Multi-queue Round Robin and
Allocate Thread. The former applies the Round Robin
heuristic to queues of tasks, which maintains tasks of
an integration process. Allocate Thread manages the

execution of tasks by threads and sending tasks to queues.

We analyze the proposed algorithms and discuss their
computational complexity. It should be noted that the
data input for the analysis (n) is defined by the number
of tasks from the integration process. For the analysis
purposes, we will consider only the worst-case execution
of all algorithms.

5.1 Multi-queue Round Robin

The Multi-queue Round Robin algorithm performs
the heuristic that coordinates the task scheduling. It
configures multiple queues of tasks, and threads poll them
in a circular order. Each queue maintains the instances of
a task; however, tasks belonging to parallel segments can
be maintained in the same queue, for they can be executed
in parallel. Tasks are maintained in a queue in decreasing
order of arrival time, in which the head of the queue has
the first arriving task, whilst its tail has the last one to
arrive. Available threads recurrently poll a queue of tasks;
if there are any, they are executed by threads. At every
polling, a fixed number of tasks (preemp) is caught to be
executed.

This algorithm receives task queues, the total number
of tasks, and the number of tasks that must be executed
every time threads check a queue. The last input must
be indicated when the execution is with preemption. The
algorithm starts by initializing two auxiliary variables:
totsize and preemp. The former corresponds to queue total
size, and the latter to preemption.

The algorithm checks all queues from the first to the
last task. The algorithm remains there to check queues
in a circular order, while there are annotations of tasks
to execute in any other queue. The algorithm checks the
number of annotations of tasks inside the queue, and if
there is no preemption or the queue size is smaller than
the preemp variable, then the algorithm assigns the queue
size to the preemp. The queue size is the number of tasks
annotated until that time. Otherwise, preemp equals the
number of tasks set in the preemption, which is an input
of the algorithm. Afterwards, this algorithm calls the
algorithm that allocates threads and executes tasks.

Algorithm 1 Multi-queue Round Robin (MqRR)

Input: queues of tasks: queues|]

Input: total number of tasks: numtasks

Input: number of tasks performed at a time (preemption):
preemptask

1: totsize 1
2: preemp « preemptask
3: while totsize > 0 do
> Execution of tasks of the queues
4 for [i] = 1 to numtasks do
5: if queues[i] # ¢ then
> Checks whether there is preemption
>and compares with queue size

> Initialises the queue size
> Initializes preemption

6: if (preemp = 0) or (queuesli].size < preemp)
then

7: preemp « queues|i].size

8: else

9: preemp <+ preemptask
10: end if

> Allocate threads to tasks of the queue

11 Allocate Thread (queues|il, preemp)
12: end if

13: end for

14: totsize + 0 > Calculates the total size o task queues
15: for [i] = 1to numtasks do

16: totsize + totsize + queues|il.size

17: end for

18: end while

Thealgorithm is given the number of tasks, task queues
and a preemption value. Line 3 presents the main loop,
while there are tasks to be processed, complexity (O(n)).
Line 4 presents a loop that goes through all the queues
of the different types of tasks. In the worst case, we have
one task for each queue, complexity (O(n)). The algorithm
gives the complexity of line 11, “Allocate Thread” (O(n)).
On line 15, step through all task queues to count existing
tasks. In the worst case, each task is of a different
type, stored in a specific queue, complexity (O(n)). The
remaining lines inside the loop can be grouped in constant
complexity (0(1)).

Asymptotically we have:
0(n) + 0(n) + O(n) + 0(n) + 0(1) = O(n)

Freireetal. |

Revista Brasileira de Computagdo Aplicada (2025), v.17, n.3, pp.100—113 107

Algorithm 2 Allocate Thread

Input: task queue: queuesli]
Input: number of tasks performed at a time: preemp
Input: last task vector: LastTask|]

L > Configures thread pool
: Creates elastic thread pool
: for [j] = 1to preemp do

> Assigns the task of the queue head to task
4 task <+ queue[i].head
5: if task is not null then

w N

> Executes task

6: Submiits task to thread pool
> Store task in next queue
7: for [j] = 1to LastTask[].length do
> Assigns to lasttask the element of LastTask[]
8: lasttask « LastTask[i]
o: if task 7 lasttask then
10: Stores task in successor task queue
11 end if
12 end for
13: end if

> Removes task of the queue
14: Removes task of the queue[i]
> Releases threads
15: Shutdown thread pool
> Compares queue size with the preemption
16: if queuelil.size < preemp then

17: preemp « queueli].size
18: endif
19: end for

The algorithm has linear complexity.

5.2 Allocate Thread

The allocate Thread algorithm receives a task queue,
the preemption, and a vector containing the end tasks.

The algorithm begins with creating a thread pool,
which must be elastic and use a specific type of thread
pool provided by a multithreading programming language.
The algorithm submits the execution of every task to the
thread pool, which executes the task operation. Then,
the algorithm checks if the task annotation belongs to
the vector containing the end tasks. If the task is not an
end task, the algorithm stores the annotation of the task
execution in the next queue according to the logic of the
integration process. Finally, the algorithm removes the
annotation from the task of the current queue and destroys
the thread pool.

The algorithm receives a queue of tasks, a preemption
value and an array containing the final tasks. Line 3
contains a loop with a fixed number of iterations defined
by the preemption value; that is, it does not depend
on the amount of data in the input of the problem. In
this case, the complexity of the loop is defined by the
complexity of the body. In other words, the total time
complexity or efficiency of the loop is not solely dependent
on the number of iterations it performs but is also heavily

influenced by how complex or resource-intensive the
individual operations performed inside each loop iteration
are. The complexity of conditional tests (line 5) depends
on the evaluation of its branches. In line 6, we have a loop
that runs through the entire vector of final tasks; here,
the worst case occurs when all tasks are final tasks; the
size of the vector is equal to the number of tasks, so the
complexity is O(n). The other lines of the algorithm have
constant processing and can be grouped in O(1).

Asymptotically we have:

0(n) + 0(1) = O(n)

The algorithm has linear complexity.

6 Proof-of-Concept Experiment

In this segment, we present an experiment to compare
task scheduling performance using the algorithms FIFO
and MgRR. Makespan was the performance metric
to evaluate our proposal against the current FIFO
implementation at integration platforms. Makespan is
a well-known performance metric in the integration
community, and it is defined as the total execution time
of the integration process for a given message (Canon and
Jeannot, 2007; Chirkin et al., 2017).

This experiment is classified in the literature as a
termination simulation, in which the output is a function
of the initial conditions. To conduct this experiment,
we followed a protocol based on Jedlitschka and Pfahl
(2005), Wohlin et al. (2012), and Basili et al. (2007),
with procedures for controlled experiments in the field
of software engineering.

6.1 Research Questions and Hypothesis

This experiment aims to answer the following research
questions:

- RQ1: Is there a workload threshold from which the FIFO
heuristic decreases its performance to nearly zero?

- RQ2: 1Is it possible to improve task scheduling
performance in high workload executions of
integration processes with the use of the MgRR
algorithm?

Our hypotheses to such research questions are that:

- H1: There is a workload threshold from which the FIFO
heuristic does not process messages.

- H2: MgRR can improve task scheduling performance
in high workload executions of integration processes.

6.2 Variables

Independent variables controlled in the execution of
the algorithm are:

- Heuristic
The heuristic used to task scheduling. The values
tested for this variable were: FIFO and MgRR.

- Integration process
The conceptual model of the integration process. The

108 Freireetal. |

Revista Brasileira de Computagdo Aplicada (2025), v.17, n.3, pp.100—113

value tested for this variable was “Huelva’s County
Council”.

- Elapsed time (At)
The time interval the algorithm is executed. The
value tested for this variable was 60 seconds.

- Workload
The number of input messages when the algorithm
executes the integration process. The values tested
for this variable were: 100, 500,000, 1,000,000,
2,000,000, 2,200,000, 2,500,000, and 5,500,000.

- Rate of message input
The number of input messages periodically added
to the integration process. The value tested for this
variable was 100.

The dependent variable measured in the execution of
the algorithm was:

- Makespan
This variable corresponds to the average processing
time of job instances accomplished during the time
interval of the experiment.

6.3 Environment and Supporting Tools

The experiments were carried out on a machine
equipped with 16 Intel processors, Xeon CPU E5-4610
V4, 1.8 GHz, 32GB of RAM, and Windows Server 2016
Datacenter 64-bit operating system. The programming
language used to implement and execute the algorithms
was Java, version 8.0 update 152. We chose Java for
its platform independence, robust performance, and
extensive ecosystem, aligning well with our project’s
needs for scalability, concurrency management, and
compatibility across diverse environments. Afterwards,
we used a simulation tool for Enterprise Application
Integration, which implements different scheduling
heuristics and allows the extraction of performance
metrics (Freire, Frantz, Frantz and Basto-Fernandes,
2022a). The Genes software (Cruz, 2006), version 2015.5.0,
was used to process descriptive statistics; ANOVA and Scott
& Knoot tests were employed to measure makespan in this
study.

6.4 Execution and Data Collection

The experiments were conducted by a simulator built
on Java, which simulates the execution of integration
processes. The simulation starts with a workload of
random input messages and receives an average of 100 new
random input messages at every execution task. The term
“random” means that the time a task spends to process
a message varies within an interval. We configured the
simulation time to 60 seconds so the simulator interrupts
the current task executions after this time. Then, the
simulator collects makespan and stores it in a text file.
Afterwards, we handled and analyzed data to finally apply
statistical tests.

The tasks from integration processes which can be
executed in parallel are kept in the same queue. Execution

Table 2: Execution time range by types of tasks in

microseconds.
Function type ATEy,
start, end 1-2
and, or, or* 2-3
join 3—-4
message processor 1-2

external call 1—2

time intervals (in microseconds) that each task can vary
are shown in Table 2.

The results are usually statistically analyzed by the
method of executions, by which 20-30 executions are
sufficient to obtain a population average, in the use
of the distribution with more extreme values than a
normal distribution (Sargent, 2013); our experiments
were repeated 25 times. For each integration process,
we repeated the execution 25 times for each heuristic
under seven different workload conditions, resulting in
350 different scenarios, summarized in Table 3.

Table 3: Scenarios.

Heuristics FIFO and MgRR 2
Integration Processes ~ Huelva’s County Council 1
Elapsed time 60 seconds 1
100, 500000, 1000000, 2000000,
Workloads 2200000, 2500000, and 5500000 7
Rate of message input 100 1
Repetitions 25
Scenarios 2X1X1X7X1X25 350
6.5 Results

We present the results of metrics collected during
the simulation in tables and charts for each integration
process. The statistical theory is indicated to analyze
data from experiments on performance (Georges
et al., 2007) because it deals with non-determinism in
computational systems, such as runtime systems of
integration platforms (Frantz et al., 2011). We used the
variance analysis (ANOVA) and Scott & Knott statistical
tests to evaluate the results.

We used scatter charts to present the makespan average
of all repetitions for every workload value, as shown in
Fig. 4. The x-axis represents workloads, whilst the y-axis
represents makespan average values.

Regression analysis was used to estimate the relation
between the dependent variable (makespan) and the
independent variable (workload) (Yao and Liu, 2018).
In regression analysis, the square of Pearson product-
moment correlation coefficient R? is a parameter that
determines the degree of linear correlation of variables,
definedbyR? =1 — %, where SSE is the sum of squared
error and SST is the sum of squared total (Kaytez et al.,
2015). Thus, R? tends to 1 when SSE < SST.

The Makespan average of the integration process which
was tested is a polynomial of degree 6 for the FIFO

heuristic, represented by: makespan = —0.42 - w8 + 954 .

Freireetal. | RevistaBrasileira de Computagdo Aplicada (2025), v.17, n.3, pp.100—113 109
| FIFO X MgRR - Polynomial (FIFO) Linear (MqRR)
30
24.36

25 T 22.32
X

1985 20.70

20 T

Makespan (microseconds)
=
(O]
1
T

2177

22.42

2175

[
10 1 . R E 1287
5 4 9.28 953" 991
1102 5105 1105 2106 22105 25106 55106
Workload

Figure 4: Makespan average of the Huelva’s County Council integration process.

w5 — 683, 81-W*+367, 2-W3 —838.46-W?+933.47-w—378, 23,
with R? = 1. For M@RR heuristic, it is linear, represented
by makespan = 0.59 - w + 20, with R? = 0.79; as depicted in
Fig. 4.

We employed the ANOVA test to differentiate amongst
the variations we found in a set of results derived
from random factors called error and influenced by
the dependent variable. The Scott & Knoot test is
considered more rigorous because it only considers
relevant differences between independent variables. It is
usually adopted in experiments connected to performance
due to its simplicity. Table 4 presents a makespan analysis
of variance. The ANOVA from makespan shows that
the average square was 47,430.58 for the heuristics and
292.81 for error in the integration process we tested. The
overall average was equal to 53.22 microseconds and the
coefficient of variation was 32.15%.

Table 4: Variance analysis of makespan.
Sources of variation Degree of freedom Average square

Heuristics 1 47,430.58 T
Error 48 292.81
Total 49

Overall average 53.22

Coefficient of variation (%) 32.15

t significant statistical by Fisher-Snedecor’s Probability and error level of
5%.

The Makespan comparison test by Scott & Knott is
present in Table 5. The heuristics are in the first column,
the means of the dependent variables are in the second
one, and the group of Scott & Knott test is in the third
column. These test groups of heuristics can check if there
is a statistical difference among them. There were two
groups: “a” and “b”. Group “a@” refers to the heuristic in
which makespan was the highest, while group “b” refers
to the heuristic in which the makespan was the lowest. For
the integration process we tested, with the workload of
2,500,000, FIFO was in group “a”, and MqRR was in “b”.

Table 5: Average of makespan by Scott & Knott test.

Heuristic Makespan average Group
FIFO 84.02 a
MgRR 22.42 b

Error level of 5% by Scott & Knoot model.

6.6 Discussion and Comparison

For Huelva’s County Council integration process, the
average makespan is lower using FIFO than by MgRR to
a certain threshold. Then it becomes higher, as shown in
Fig. 4. A concave upward represents this behaviour with
FIFO, and this behaviour change occurs with a workload
between 2,200,000 and 2,500,000 messages. There were
more than 250,000 messages and some executions did
not process them. In the case of MgRR, the average
makespan varies between 19.85 to 24.36 microseconds,
with workloads between 100 and 5,500,000 messages.
This behaviour is represented by a linear function, whose
growth is slow compared to the growth of FIFO with
workloads above 2,200,000 messages.

Different heuristics generate a significant difference in
makespan average, as shown in Table 4. The coefficient
of variation was reduced, indicating that the experiment
was adequate and reliable. The average comparison test
from Scott & Knott showed that MgRR achieved the
best performance, in which the makespan was 22.42
microseconds in the integration process with a workload
of 2,500,000 messages. There were two different groups
in this test; thus, there was a statistical difference between
the two heuristics.

Regarding the research questions and hypotheses:

« RQ1: There is a threshold from which the FIFO heuristic
does not process any messages: it is above 2,500,000
messages.

- RQ2: MgRR improved performance of the task
scheduling in high workload execution of integration
processes. Executions performed better through MqRR
than FIFO when an integration process tested over
2,500,000 messages. Scott & Knott test proved there

110 Freireetal. |

Revista Brasileira de Computagdo Aplicada (2025), v.17, n.3, pp.100—113

was a statistical difference between MqRR and FIFO in
those cases.

6.7 Threats to Validity

Threats to validity are usual in any empirical
research (Cruzes and ben Othman, 2017), and some
of those threats are more specific to optimization
studies (Wohlin et al., 2012). Next, We describe how
we evaluated some factors that could influence the
experiment results, and how we tried to mitigate them.

6.7.1 Constructor Validity

Constructor validity discusses whether the planning
and execution of the study are well adequate to answer
research questions. = We planned the experiment
according to procedures from empirical software
engineering (Jedlitschka and Pfahl, 2005; Basili et al.,
2007; Wohlin et al., 2012). Our primary steps were to
define our research question, formulate our hypothesis,
and define both independent and dependent variables.
Next, we provided information about the execution
environment, supporting tools, execution and data
collection. Then, we performed our simulation in 350
different scenarios and used statistical techniques to
evaluate the results.

6.7.2 Conclusion Validity

As reported by Wohlin et al. (2012), conclusion validity
“concerns issues that affect the ability to draw the correct
conclusion about relations between the treatment and
the outcome of an experiment”. We used statistical
techniques to ensure that the actual outcome observed
in our experiment would relate to the heuristics employed
and that there was a significant difference among them.

6.7.3 Internal Validity

Internal validity aims to ensure that the treatment
caused the outcome by mitigating the effects of other
uncertain, unmeasured factors (Feldt and Magazinius,
2010). Instrumentation and source of noise are possible
threats. We experimented with the same machine,
which was in security mode, with minimal features and
disconnected from the Internet during the executions, in
order to minimize interference in the execution time of
the algorithm. We built our algorithm in Java. The first
executions of codes are usually slower, and it is advisable
to let the VM eventually perform code optimization (Pinto
etal., 2014). We executed the algorithm only once to warm
up Java’s VM. Additionally, the researchers accurately
inspected the procedures and used statistical tests to
validate the measures.

6.7.4, External Validity

External validity focuses on the generalization of
results out of the scope of our study (Feldt and Magazinius,
2010). This study is generalized for integration platforms
that adopt the integration patterns by Hohpe and Woolf
(2004), the Pipes-and-Filters style, and the task-based
model. We reported this study following an empirical
guideline (Wohlin et al., 2012) to make repetition possible.

The experiment is valid to test other parameters, such
as integration processes, message arrival rate, and
simulation duration. In future work, we intend to
experiment with an extensive data set to evaluate the
generalization of results.

7 Conclusion

IoT and cloud computing expand the possibilities
for enterprises, but they also increase the volume
of data and the complexity of integration processes.
Integration platforms support software engineers by
providing runtime systems to orchestrate workflows
of tasks that implement the communication between
heterogeneous applications and services.

This article proposed the Multi-queue Round Robin
(MgRR) algorithm, a task scheduling heuristic designed
for the runtime environment of enterprise application
integration platforms. The main goal of MdRR is to
improve the behaviour of the traditional FIFO heuristic
under high workloads, avoiding starvation and making
better use of computational resources.

We conducted a proof-of-concept experiment using
three real-world integration workflows and an integration
process simulator, comparing MqRR with FIFO under
increasing message arrival rates. The results answer
our research questions as follows. For RQ1, we observed
that FIFO achieves a lower makespan when the workload
is low, but as the input rate increases its performance
degrades sharply, until it reaches a threshold from which
it practically stops processing messages. For RQ2, the
experiments show that MgRR improves task scheduling
performance in high workload scenarios: the makespan
grows approximately linearly with the input rate, and the
number of completed messages is significantly higher
than with FIFO.

As future work, we plan to extend this study in several
directions. First, we intend to evaluate MgRR in additional
integration platforms and in multi-tenant scenarios,
considering not only makespan but also monetary cost
and energy consumption. Second, we aim to compare
MgRR with more advanced scheduling heuristics and
metaheuristics commonly used in cloud computing, such
as PSO, GA and hybrid approaches. Finally, we envision
incorporating MRR into a production-ready integration
platform and conducting case studies with real enterprise
workloads, in order to assess its impact on the quality of
service perceived by end users.

Acknowledgements

This research is partially funded by the Co-ordination
for the Brazilian Improvement of Higher Education
Personnel (CAPES) and the Brazilian National Council for
Scientific and Technological Development (CNPq) under
the following project grants 311011/2022-5, 309425/2023-
9, 402915/2023-2. We would like to thank Dr Maria do
Rosario Laureano and Dr Sancho M. Oliveira from the
Instituto Universitario de Lisboa (ISCTE-IUL) ISTAR-IUL,
Lisboa, Portugal, for their helpful comments in earlier
versions of this article.

Freireetal. |

Revista Brasileira de Computagdo Aplicada (2025), v.17, n.3, pp.100—113 11

References

Al-Maytami, B. A., Fan, P, Hussain, A., Baker, T. and
Liatsis, P. (2019). A task scheduling algorithm with
improved makespan based on prediction of tasks
computation time algorithm for cloud computing, IEEE
Access 7:160916—160926. https://doi.org/10.1109/AC
CESS.2019.2948704.

Alexander, C., Ishikawa, S. and Silvertein, M. (1977). A
pattern language: towns, buildings, construction, Oxford
University Press, Oxford, United Kingdom. https://do
i.org/10.2307/1574526.

Alkhanak, E. N., Lee, S. P, Rezaei, R. and Parizi, R. M.
(2016). Cost optimization approaches for scientific
workflow scheduling in cloud and grid computing:
A review, classifications, and open issues, Journal of
Systems and Software 113: 1-26. https://doi.org/10
.1016/j.3jss.2015.11.023.

Anwar, N. and Deng, H. (2018). Elastic scheduling of
scientific workflows under deadline constraints in cloud
computing environments, Future Internet 10(5): 1—23.
Elasticschedulingofscientificworkflowsunderdeadl
ineconstraintsincloudcomputingenvironments.

Attiya, I, Elaziz, M. A., Abualigah, L., Nguyen, T. N. and
ElLatif, A. A. A. (2022). An improved hybrid swarm
intelligence for scheduling iot application tasks in the
cloud, IEEE Transactions on Industrial Informatics . https:
//doi.org/10.1109/TII.2022.3148288.

Basili, V. R., Rombach, D., Kitchenham, K. S. B., Selby, D.
and Pfahl, R. W. (2007). Empirical Software Engineering
Issues, Springer Berlin/Heidelberg, Berlin, Germany. ht
tps://doi.org/10.1007/978-3-540-71301-2_10.

Basu, S., Karuppiah, M., Selvakumar, K., Li, K.-C., Islam,
S. K. H., Hassan, M. M. and Bhuiyan, M. Z. A. (2018).
An intelligentcognitive model of task scheduling for IoT
applications in cloud computing environment, Future
Generation Computer Systems 88: 254—261. https://doi.
org/10.1016/j.future.2018.05.056.

Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K., Mandal, A.
and Kennedy, K. (2005). Task scheduling strategies for
workflow-based applications in grids, IEEE International
Symposium on Cluster Computing and the Grid (CCGrid),
Vol. 2, pp. 759—767. https://doi.org/10.1109/CCGRID
.2005. 1558639.

Boehm, M., Habich, D., Preissler, S., Lehner, W. and Wloka,
U. (2011). Cost-based vectorization of instance-based
integration processes, Information Systems 36(1): 3—29.
https://doi.org/10.1016/j.1is.2010.06.007.

Canon, L.-C. and Jeannot, E. (2007). A comparison
of robustness metrics for scheduling DAGs on
heterogeneous systems, International Conference
on Cluster Computing (IEEE Cluster), pp. 558—567.

Chirkin, A. M., Belloum, A. S. Z., Kovalchuk, S. V., Makkes,
M. X., Melnik, M. A., Visheratin, A. A. and Nasonov,
D. A. (2017). Execution time estimation for workflow
scheduling, Future Generation Computer Systems 75: 376—
387. https://doi.org/10.1016/j.future.2017.01.011.

Cruz, C. D. (2006). Programa Genes: estatistica experimental
e matrizes, Editora Universidade Federal de Vicosa,
Vicosa, Brazil. https://arquivo.ufv.br/dbg/genes
/gdownl.htm.

Cruzes, D. S. and ben Othman, L. (2017). Threats
to validity in empirical software security research,
Empirical Research for Software Security, pp. 295—320.
https://wuw.taylorfrancis.com/books/mono/10.1201
/9781315154855/empirical-research-software-secur
ity?refId=7830b03b-b9d3-4b27-9625-c08766da71le2&co
ntext=ubx.

Eldesokey, H., abd elatty, S., El-Shafai, W., Amoon, M.
and ElSamie, F. A. (2021). Hybrid swarm optimization
algorithm based task scheduling in cloud environment,
International Journal of Communication Systems 34. http
s://doi.org/10.1002/dac.4694.

Fan, K., Zhai, Y., Li, X. and Wang, M. (2018). Review
and classification of hybrid shop scheduling, Production
Engineering 12(5): 597—609. https://doi.org/10.1007/
$11740-018-0832-1.

Feldt, R. and Magazinius, A. (2010). Validity threats
in empirical software engineering research-an initial
survey., International Conference on Software Engineering
and Knowledge Engineering (SEKE), pp. 374—379. https:
//api.semanticscholar.org/CorpusID: 12670942

Frantz, R. Z., Corchuelo, R. and Arjona, J. L. (2011).
An efficient orchestration engine for the cloud,
International Conference on Cloud Computing
Technology and Science (CloudCom), pp. 711—716.
https://doi.org/10.1109/CloudCom.2011.110.

Frantz, R. Z., Corchuelo, R. and Molina-Jiménez, C. (2012).
A proposal to detect errors in enterprise application
integration solutions, Journal of Systems and Software
85(3): 480—497. https://doi.org/10.1016/j.jss.2011
.10.048.

Frantz, R. Z., Corchuelo, R. and Roos-Frantz, F. (2016). On
the design of a maintainable software development kit
to implement integration solutions, Journal of Systems
and Software 111(1): 89—104. https://doi.org/10.1016/
j.jss.2015.08.044.

Freire, D. L., Frantz, R. Z., Basto-Fernandes, V., Sawicki, S.
and Roos-Frantz, F. (2022). Queue-priority optimized
algorithm: a novel task scheduling for runtime
systems of application integration platforms, Journal
of Supercomputing 78(1): 1501—-1531. https://doi.or
g/10.1007/s11227-021-03926-x.

Freire, D. L., Frantz, R. Z., Frantz, R.-F. and Basto-
Fernandes, V. (2022a). Integration process simulator:
A tool for performance evaluation of task scheduling of
integration processes, Journal of Simulation 16(6): 604—
623. https://doi.org/10.1080/17477778.2022.2041989.

Freire, D. L., Frantz, R. Z., Frantz, R.-F. and Basto-
Fernandes, V. (2022b). Task scheduling characterisation
in enterprise application integration, The Journal of
Supercomputing pp. 1—39. https://doi.org/10.1007/s1
1227-021-04119-2.

https://doi.org/10.1109/ACCESS.2019.2948704
https://doi.org/10.1109/ACCESS.2019.2948704
https://doi.org/10.2307/1574526
https://doi.org/10.2307/1574526
https://doi.org/10.1016/j.jss.2015.11.023
https://doi.org/10.1016/j.jss.2015.11.023
Elastic scheduling of scientific workflows under deadline constraints in cloud computing environments
Elastic scheduling of scientific workflows under deadline constraints in cloud computing environments
https://doi.org/10.1109/TII.2022.3148288
https://doi.org/10.1109/TII.2022.3148288
https://doi.org/10.1007/978-3-540-71301-2_10
https://doi.org/10.1007/978-3-540-71301-2_10
https://doi.org/10.1016/j.future.2018.05.056
https://doi.org/10.1016/j.future.2018.05.056
https://doi.org/10.1109/CCGRID.2005.1558639
https://doi.org/10.1109/CCGRID.2005.1558639
https://doi.org/10.1016/j.is.2010.06.007
https://doi.org/10.1016/j.future.2017.01.011
https://arquivo.ufv.br/dbg/genes/gdown1.htm
https://arquivo.ufv.br/dbg/genes/gdown1.htm
https://www.taylorfrancis.com/books/mono/10.1201/9781315154855/empirical-research-software-security?refId=7830b03b-b9d3-4b27-9625-c08766da71e2&context=ubx
https://www.taylorfrancis.com/books/mono/10.1201/9781315154855/empirical-research-software-security?refId=7830b03b-b9d3-4b27-9625-c08766da71e2&context=ubx
https://www.taylorfrancis.com/books/mono/10.1201/9781315154855/empirical-research-software-security?refId=7830b03b-b9d3-4b27-9625-c08766da71e2&context=ubx
https://www.taylorfrancis.com/books/mono/10.1201/9781315154855/empirical-research-software-security?refId=7830b03b-b9d3-4b27-9625-c08766da71e2&context=ubx
https://doi.org/10.1002/dac.4694
https://doi.org/10.1002/dac.4694
https://doi.org/10.1007/s11740-018-0832-1
https://doi.org/10.1007/s11740-018-0832-1
https://api.semanticscholar.org/CorpusID:12670942
https://api.semanticscholar.org/CorpusID:12670942
https://doi.org/10.1109/CloudCom.2011.110
https://doi.org/10.1016/j.jss.2011.10.048
https://doi.org/10.1016/j.jss.2011.10.048
https://doi.org/10.1016/j.jss.2015.08.044
https://doi.org/10.1016/j.jss.2015.08.044
https://doi.org/10.1007/s11227-021-03926-x
https://doi.org/10.1007/s11227-021-03926-x
https://doi.org/10.1080/17477778.2022.2041989
https://doi.org/10.1007/s11227-021-04119-2
https://doi.org/10.1007/s11227-021-04119-2

112 Freireetal. |

Revista Brasileira de Computagdo Aplicada (2025), v.17, n.3, pp.100—113

Freire, D. L., Frantz, R. Z. and Roos-Frantz, F. (2019).
Towards optimal thread pool configuration for run-time
systems of integration platforms, International Journal
of Computer Applications in Technology 62(2): 129—147.
https://doi.org/10.1504/IJCAT.2020.104692.

Freire, D. L., Frantz, R. Z., Roos-Frantz, F. and Sawicki,
S. (2019). Survey on the run-time systems of
enterprise application integration platforms focusing
on performance, Software: Practice and Experience
49(3): 341—-360. https://doi.org/10.1002/spe.2670.

Gade, A., Bhat, M. N. and Thakare, N. (2022). Task pattern
identification and scheduling using equal opportunity
model for minimization of makespan and task diversity
in cloud computing, Pattern Recognition and Image
Analysis 32: 67—77. https://doi.org/10.1134/3105
4661821040088.

Georges, A., Buytaert, D. and Eeckhout, L. (2007).
Statistically rigorous java performance evaluation, ACM
SIGPLAN Notices 42(10): 57—76. https://doi.org/10.1
145/1297027.1297033.

Ghafouri, R., Movaghar, A. and Mohsenzadeh, M.
(2019). A budget constrained scheduling algorithm for
executing workflow application in infrastructure as a
service clouds, Peer-to-Peer Networking and Applications
12(1): 241—268. https://doi.org/10.1007/512083-018
-0662-0.

Guo, F., Yu, L., Tian, S. and Yu, J. (2015). A workflow
task scheduling algorithm based on the resources’
fuzzy clustering in cloud computing environment,
International Journal of Communication Systems
28(6):1053—1067. https://doi.org/10.1002/dac.2743.

Guttridge, K., Pezzini, M., Golluscio, E., Thoo, E., Iijima,
K. and Wilcox, M. (2017). Magic quadrant for enterprise
integration platform as a service 2017, Technical report,
Gartner, Inc. https://www.gartner.com/en/documents
/3645397.

Hilman, M. H., Rodriguez, M. A. and Buyya, R. (2018).
Multiple workflows scheduling in multi-tenant
distributed systems: A taxonomy and future
directions, ACM Computing Surveys 1(1): 1-33.
https://doi.org/10.48550/arXiv.1809.05574.

Hohpe, G. and Woolf, B. (2004). Enterprise integration
patterns: Designing, building, and deploying messaging
solutions, Addison-Wesley Professional, Oxford, United
Kingdom. https://dl.acm.org/doi/book/10.5555/9403
08.

Jedlitschka, A. and Pfahl, D. (2005). Reporting
guidelines for controlled experiments in software
engineering, International Symposium on Empirical

Software Engineering (ESEM), pp. 95—104. https://doi.

org/10.1109/ISESE.2005.1541818

Jeon, S. and Jung, L. (2018). Experimental evaluation of
improved IoT middleware for flexible performance and
efficient connectivity, Ad Hoc Networks 70: 61—72. https:
//doi.org/10.1016/j.adhoc.2017.11.005.

Kanagaraj, K. and Swamynathan, S. (2016). A study
on performance of dominant scheduling algorithms
on standard workflow systems in cloud, International
Conference on Informatics and Analytics (ICIA), pp. 45:1—
45:6. hilps://doi.org/10.1145/2980258.2980358.

Kaytez, F., Taplamacioglu, M. C., Cam, E. and Hardalac,
F. (2015). Forecasting electricity consumption: A
comparison of regression analysis, neural networks and
least squares support vector machines, International
International of Electrical Power and Energy Systems
67: 431-438. https://doi.org/10.1016/j.ijepes.2
014.12.036.

Kumar, A. M. S., Parthiban, K. and Shankar, S. S.
(2019). An efficient task scheduling in a cloud
computing environment using hybrid genetic algorithm
- particle swarm optimization (ga-pso) algorithm,
2019 International Conference on Intelligent Sustainable
Systems (ICISS), pp. 29—34. https://doi.org/10.57159
/gadl.jcmm.2.4.23076.

Linthicum, D. S. (2017). Cloud Computing Changes Data
Integration Forever: What’s Needed Right Now, IEEE
Cloud Computing 4(3): 50—53. https://doi.org/10.110
9/MCC.2017.47.

Manasrah, A. M. and Ali, H. B. (2018). Workflow
scheduling using hybrid GA-PSO algorithm in cloud
computing, Wireless Communications and Mobile
Computing 2018: 1—16. https://doi.org/10.1155/2018
/1934784,

Mohammad Aazam and Eui-Nam Huh and Marc St-
Hilaire and Chung-Horng Lung and Ioannis Lambadaris
(2016). Cloud of Things: Integration of IoT with Cloud
computing, in A. Koubaa and E. Shakshuki (eds), Robots
and Sensor Clouds, Springer International Publishing,
Cham, pp. 77—94. https://doi.org/10.1007/978-3-319

-22168-7_4.

Pezzini, M., Natis, Y. V., Malinverno, P., Iijima, K.,
Thompson, J., Thoo, E. and Guttridge, K. (2015). Magic
quadrant for enterprise integration platform as a service,
Gartner, Stamford pp. 1—35. https://www.mendix.com/p
ress/gartner-2015-magic-quadrant-for-enterpris
e-application-platform-as-a-service-worldwide/.

Pietri, L., Chronis, Y. and Ioannidis, Y. (2019). Fairness in
dataflow scheduling in the cloud, Information Systems
83:118—125. https://doi.org/10.1016/j.is.2019.03.0
03.

Pinto, G., Castor, F. and Liu, Y. D. (2014). Understanding
energy behaviors of thread management constructs,
ACM SIGPLAN Notices, Vol. 49, pp. 345—360. https:
//doi.org/10.1145/2714064.266023.

Rimal, B. P. and Maier, M. (2017). Workflow
scheduling in multi-tenant cloud computing
environments, IEEE Transactions on parallel and

distributed systems 28(1): 290—304.
//doi.org/10.1109/TPDS.2016.2556668.

Ritter, D., Forsberg, F. N. and Rinderle-Ma, S.
(2018). Optimization strategies for integration

https:

https://doi.org/10.1504/IJCAT.2020.104692
https://doi.org/10.1002/spe.2670
https://doi.org/10.1134/S1054661821040088
https://doi.org/10.1134/S1054661821040088
https://doi.org/10.1145/1297027.1297033
https://doi.org/10.1145/1297027.1297033
https://doi.org/10.1007/s12083-018-0662-0
https://doi.org/10.1007/s12083-018-0662-0
https://doi.org/10.1002/dac.2743
https://www.gartner.com/en/documents/3645397
https://www.gartner.com/en/documents/3645397
https://doi.org/10.48550/arXiv.1809.05574
https://dl.acm.org/doi/book/10.5555/940308
https://dl.acm.org/doi/book/10.5555/940308
https://doi.org/10.1109/ISESE.2005.1541818
https://doi.org/10.1109/ISESE.2005.1541818
https://doi.org/10.1016/j.adhoc.2017.11.005
https://doi.org/10.1016/j.adhoc.2017.11.005
hps://doi.org/10.1145/2980258.2980358
https://doi.org/10.1016/j.ijepes.2014.12.036
https://doi.org/10.1016/j.ijepes.2014.12.036
https://doi.org/10.57159/gadl.jcmm.2.4.23076
https://doi.org/10.57159/gadl.jcmm.2.4.23076
https://doi.org/10.1109/MCC.2017.47
https://doi.org/10.1109/MCC.2017.47
https://doi.org/10.1155/2018/1934784
https://doi.org/10.1155/2018/1934784
https://doi.org/10.1007/978-3-319-22168-7_4
https://doi.org/10.1007/978-3-319-22168-7_4
https://www.mendix.com/press/gartner-2015-magic-quadrant-for-enterprise-application-platform-as-a-service-worldwide/
https://www.mendix.com/press/gartner-2015-magic-quadrant-for-enterprise-application-platform-as-a-service-worldwide/
https://www.mendix.com/press/gartner-2015-magic-quadrant-for-enterprise-application-platform-as-a-service-worldwide/
https://doi.org/10.1016/j.is.2019.03.003
https://doi.org/10.1016/j.is.2019.03.003
https://doi.org/10.1145/2714064.266023
https://doi.org/10.1145/2714064.266023
https://doi.org/10.1109/TPDS.2016.2556668
https://doi.org/10.1109/TPDS.2016.2556668

Freireetal. |

Revista Brasileira de Computagdo Aplicada (2025), v.17, n.3, pp.100—113 113

pattern compositions, International Conference on
Distributed and Event-based Systems (DEBS), pp. 88—99.
https://doi.org/10.1145/3210284.3210295.

Rodriguez, M. A. and Buyya, R. (2018). Scheduling
dynamic workloads in multi-tenant scientific workflow
as a service platforms, Future Generation Computer
Systems 79: 739—750. https://doi.org/10.1016/j.
future.2017.05.009.

Saifullah, A., Li, J., Agrawal, K., Lu, C. and Gill, C. (2013).
Multi-core real-time scheduling for generalized parallel
task models, Real-Time Systems 49(4): 404—435. https:
//doi.org/10.1109/RTSS.2011.27.

Sargent, R. G. (2013). Verification and validation of
simulation models, Journal of simulation 7(1): 12—24.
https://doi.org/10.1109/WSC.2010.5679166.

Sharma, S. (2017). Ovum decision matrix highlights the
growing importance of ipaas and api platforms in hybrid
integration, Technical report, Ovum Consulting. https:
//boomi.com/content/report/ovum-decision-matrix-r
eport.

Shoukry, A., Khader, J. and Gani, S. (2019). Improving
business process and functionality using IoT based E3-
value business model, Electronic Markets 1: 1—10. https:
//doi.org/10.1007/s12525-019-00344-z.

Stavrinides, G. L. and Karatza, H. D. (2018). A hybrid
approach to scheduling real-time IoT workflows in
fog and cloud environments, Multimedia Tools and
Applications . https://doi.org/10.1007/511042-018
-7051-9.

Sun, D., Yan, H., Gao, S., Liu, X. and Buyya, R.
(2015). An integrated approach to workflow
mapping and task scheduling for delay minimization
in distributed environments, Journal of Parallel
and Distributed Computing 84: 51—64. https:
//doi.org/10.1016/j.jpdc.2015.07.004.

Sun, D., Yan, H., Gao, S., Liu, X. and Buyya, R.
(2018). Rethinking elastic online scheduling of big data
streaming applications over high-velocity continuous
data streams, The Journal of Supercomputing 74(2): 615—
636. https://doi.org/10.1007/s11227-017-2151-2.

Tarafdar, A., Debnath, M., Khatua, S. and Das, R. K. (2021).
Energy and makespan aware scheduling of deadline
sensitive tasks in the cloud environment, Journal of Grid
Computing 19. https://doi.org/10.1007/510723-021-0
9548-0.

Tian, W., Li, G., Yang, W. and Buyya, R. (2016). Hscheduler:
an optimal approach to minimize the makespan of
multiple mapreduce jobs, The Journal of Supercomputing
. https://doi.org/10.1007/s11227-016-1737-4.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell,
B. and Wesslén, A. (2012). Experimentation in software
engineering, Springer Science & Business Media, New
York, United Kingdom. https://link.springer.com/bo
0k/10.1007/978-3-662-69306-3.

Xia, Y., Zhan, Y., Dai, L. and Chen, Y. (2022). A cost
and makespan aware scheduling algorithm for dynamic
multi-workflow in cloud environment, The Journal of
Supercomputing . https://doi.org/10.1007/s11227-022
-04681-3.

Xie, Y., Zhu, Y., Wang, Y., Cheng, Y., Xu, R., Sani, A. S,,
Yuan, D. and Yang, Y. (2019). A novel directional
and non-local-convergent particle swarm optimization
based workflow scheduling in cloud-edge environment,
Future Generation Computer Systems 97: 36—378. https:
//doi.org/10.1016/j.future.2019.03.005.

Yao, K. and Liu, B. (2018). Uncertain regression analysis:
an approach for imprecise observations, Soft Computing-
A Fusion of Foundations, Methodologies and Applications
22(17): 5579—5582. https://doi.org/10.1007/s00500
-017-2521-y.

Zaourar, L., Aba, M. A., Briand, D. and Philippe,
J.-M. (2018). Task management on fully
heterogeneous micro-server system: Modeling
and resolution strategies, Concurrency and
Computation: Practice and Experience 30(23): e4798.
https://doi.org/10.1002/cpe.4798.

Zhang, R. and Shi, W. (2021). A makespan-optimized task-
level scheduling strategy for cloud workflow systems,
2021 2nd International Seminar on Artificial Intelligence,
Networking and Information Technology (AINIT), pp. 712—
720. https://doi.org/10.1109/AINIT54228.2021.00145.

Zhang, Y., Shen, Z.-]J. M. and Song, S. (2018). Exact
algorithms for distributionally B-robust machine
scheduling with wuncertain processing times,
INFORMS Journal on Computing 30(4): 662—676.
ttps://doi.org/10.1287/ijoc.2018.0807.

Zhou, Q., Li, G, Lj, J., Shu, L., Zhang, C. and Yang, F.
(2017). Dynamic priority scheduling of periodic queries
in on-demand data dissemination systems, Information
Systems 67: 58—70. https://doi.org/10.1016/j.is.201
7.03.005.

https://doi.org/10.1145/3210284.3210295
https://doi.org/10.1016/j.future.2017.05.009
https://doi.org/10.1016/j.future.2017.05.009
https://doi.org/10.1109/RTSS.2011.27
https://doi.org/10.1109/RTSS.2011.27
https://doi.org/10.1109/WSC.2010.5679166
https://boomi.com/content/report/ovum-decision-matrix-report
https://boomi.com/content/report/ovum-decision-matrix-report
https://boomi.com/content/report/ovum-decision-matrix-report
https://doi.org/10.1007/s12525-019-00344-z
https://doi.org/10.1007/s12525-019-00344-z
https://doi.org/10.1007/s11042-018-7051-9
https://doi.org/10.1007/s11042-018-7051-9
https://doi.org/10.1016/j.jpdc.2015.07.004
https://doi.org/10.1016/j.jpdc.2015.07.004
https://doi.org/10.1007/s11227-017-2151-2
https://doi.org/10.1007/s10723-021-09548-0
https://doi.org/10.1007/s10723-021-09548-0
https://doi.org/10.1007/s11227-016-1737-4
https://link.springer.com/book/10.1007/978-3-662-69306-3
https://link.springer.com/book/10.1007/978-3-662-69306-3
https://doi.org/10.1007/s11227-022-04681-3
https://doi.org/10.1007/s11227-022-04681-3
https://doi.org/10.1016/j.future.2019.03.005
https://doi.org/10.1016/j.future.2019.03.005
https://doi.org/10.1007/s00500-017-2521-y
https://doi.org/10.1007/s00500-017-2521-y
https://doi.org/10.1002/cpe.4798
https://doi.org/10.1109/AINIT54228.2021.00145
ttps://doi.org/10.1287/ijoc.2018.0807
https://doi.org/10.1016/j.is.2017.03.005
https://doi.org/10.1016/j.is.2017.03.005

	1 Introduction
	2 Related Work
	3 Background
	3.1 Task-Based Execution Model

	4 Problem Formulation
	4.1 The Software Ecosystem
	4.2 Terminology
	4.3 Problem Definition
	4.4 Mathematical Formulation

	5 Our Proposal
	5.1 Multi-queue Round Robin
	5.2 Allocate Thread

	6 Proof-of-Concept Experiment
	6.1 Research Questions and Hypothesis
	6.2 Variables
	6.3 Environment and Supporting Tools
	6.4 Execution and Data Collection
	6.5 Results
	6.6 Discussion and Comparison
	6.7 Threats to Validity
	6.7.1 Constructor Validity
	6.7.2 Conclusion Validity
	6.7.3 Internal Validity
	6.7.4 External Validity

	7 Conclusion

