
Revista Brasileira de Computação Aplicada, November, 2025

DOI: 10.5335/rbca.v17i3.16747
Vol. 17, No 3, pp. 100–113
Homepage: seer.upf.br/index.php/rbca/index

O R I G I N A L P A P E R

Multi-queue Round Robin Scheduling for Enhanced Performance
in Integration Platforms

Daniela L. Freire ,1,2,3, Rafael Z. Frantz ,2, Vitor Basto-Fernandes ,3, GersonBattisti ,2, Sandro Sawicki ,2, Fabricia Roos-Frantz ,2
1University of São Paulo, Brazil, 2Unijuí University, Brazil, 3University Institute of Lisbon, Portugal

*danielalfreire@icmc.usp.br;{rzfrantz,battisti,sawicki,frfrantz}@unijui.edu.br;vitor.basto.fernandes@iscte-iul.pt
Received: 2025-02-17. Revised: 2025-11-28. Accepted: 2025-12-10.

Abstract
Contemporary enterprise environments involve a large amount of information and heterogeneous applications that mustexchange data in near real time. Integration platform-as-a-service (iPaaS) solutions support this scenario by executingintegration processes composed of workflows of tasks. However, current task scheduling algorithms used in integrationplatforms, such as First-In, First-Out (FIFO), may lead to poor performance and unfair use of computational resourcesunder high workloads. In this article we propose the Multi-queue Round Robin (MqRR) algorithm, a task schedulingheuristic tailored to the runtime systems of enterprise application integration platforms. MqRR organises tasks intomultiple queues and applies a round-robin strategy with preemption to avoid starvation and to distribute the loadmore evenly among workflows. We evaluated MqRR against the traditional FIFO heuristic using an integration processsimulator and three real-world integration workflows, under increasing message arrival rates. Regarding our researchquestions, the results show that: (RQ1) there is a workload threshold from which FIFO degrades its performance, leadingthe number of completed messages to approach zero; and (RQ2) MqRR improves task scheduling performance in highworkload scenarios, keeping a linear growth of makespan and increasing the number of processed messages. Thesefindings indicate that MqRR is more suitable than FIFO for integration platforms that must handle high message ratesin cloud environments.
Keywords: Application integration; task scheduling; algorithm; workflow scheduling; integration patterns; round robin.
Resumo
Ambientes empresariais contemporâneos envolvem uma grande quantidade de informações e aplicações heterogêneasque precisam trocar dados em tempo quase real. Plataformas de integração como serviço (iPaaS) apoiam esse cenárioexecutando processos de integração compostos por fluxos de tarefas. Entretanto, algoritmos de escalonamento detarefas comumente utilizados nessas plataformas, como o First-In, First-Out (FIFO), podem levar a baixo desempenhoe uso injusto dos recursos computacionais sob cargas de trabalho elevadas. Neste artigo propomos o algoritmo Multi-queue Round Robin (MqRR), uma heurística de escalonamento de tarefas voltada aos sistemas de tempo de execuçãode plataformas de integração de aplicações empresariais. O MqRR organiza as tarefas em múltiplas filas e aplica umaestratégia round robin com preempção para evitar inanição e distribuir a carga de forma mais justa entre os fluxos detrabalho. Avaliamos o MqRR em comparação com a heurística FIFO tradicional por meio de um simulador de processosde integração e de três fluxos de integração provenientes de cenários reais, variando a taxa de chegada de mensagens.Em relação às questões de pesquisa, os resultados mostram que: (RQ1) existe um limiar de carga a partir do qual o FIFOdegrada seu desempenho, fazendo com que o número de mensagens concluídas tenda a zero; e (RQ2) o MqRR melhora odesempenho do escalonamento de tarefas em cenários de alta carga, mantendo um crescimento linear do makespan eaumentando o número de mensagens processadas. Esses resultados indicam que o MqRR é mais adequado que o FIFOpara plataformas de integração que precisam lidar com altas taxas de mensagens em ambientes em nuvem.
Palavras-Chave: Integração de aplicativos; agendamento de tarefas; algoritmo; agendamento de fluxo de trabalho;padrões de integração; round robin.

http://dx.doi.org/10.5335/rbca.v17i3.16747
http://seer.upf.br/index.php/rbca/index
https://orcid.org/0000-0002-5363-3608
https://orcid.org/0000-0003-3740-7560
https://orcid.org/0000-0003-4269-5114
https://orcid.org/0000-0002-1577-4119
https://orcid.org/0000-0002-7960-0775
https://orcid.org/0000-0001-9514-6560

Freire et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.100–113 101

1 Introduction

The large volume of information generated by theincreasing number of heterogeneous devices connectedto the Integration of the Internet of Things (IoT) producesknowledge and creates more business opportunitiesfor enterprises. Integrating IoT with cloud computinghas become primordial in tackling the increasingdata and managing virtual resource utilisation andstorage capacity. It also creates more usefulness fromgenerated data and develops innovative applications forthe users (Mohammad Aazam and Eui-Nam Huh andMarc St-Hilaire and Chung-Horng Lung and IoannisLambadaris, 2016).The integration platform-as-a-service (iPaaS) is acloud service that integrates services and applicationsto interchange data and functionalities to respond tobusiness process requests quickly. In 2017, everytwo out of three application integration projects weredirectly developed using Cloud integration platforms, andiPaaS was the preferred deployment for the integrationplatform. The annual revenue for iPaaS grew higherthan the traditional implementation of integration on-premise (Guttridge et al., 2017; Sharma, 2017). An iPaaSallows software engineers to design, run, and monitorintegration processes. An integration process carries outa workflow comprising distinct atomic tasks, connectedby communication channels that desynchronise onetask from another (Pezzini et al., 2015; Kanagaraj andSwamynathan, 2016). Messages move through theworkflow, encapsulating data from/to the integratedapplications.Many current open-source integration platformssupport integration patterns documented by Hohpeand Woolf (2004) and follow the Pipes-and-Filtersarchitectural style (Alexander et al., 1977). Pipesdepict message channels, and filters represent atomictasks implementing a particular integration patternto process messages. The runtime system is theplatform component responsible for executing integrationprocesses (Frantz et al., 2016), and its primary functionis task scheduling (Guo et al., 2015; Hilman et al., 2018).Task scheduling manages the schedule of the executionof tasks and the use of computational resources. In thecontext of cloud computing (where the charging model ispay-as-you-go), task scheduling should be aligned withthe minimisation of costs (Freire, Frantz, Roos-Frantzand Sawicki, 2019), with the handling of large volumesof data from IoT (Shoukry et al., 2019), and with marketdemands for quality of software, flexibility, and responsetimes (Fan et al., 2018).In the literature, we found two main executionmodels for runtime systems: process-based and task-based (Blythe et al., 2005; Boehm et al., 2011; Frantzet al., 2012; Alkhanak et al., 2016). This classificationconcerns the granularity that the runtime system dealswith regarding task execution (Freire, Frantz, Roos-Frantz and Sawicki, 2019). In the process-based model,the runtime system deals with process instances. Inthis model, a thread is assigned to an instance of theintegration process; this thread is used to execute everytask that composes the workflow over an inbound message

so that this message may flow throughout the process.After every task in the workflow has been executed, thethread is released. In the task-based model, a threadis assigned to an instance of a task so that this threadis used to execute the task over the inbound messagethat reaches the task. When the task is completed, anoutbound message is written to the channel that connectsthe current task to the next one in the workflow, so thethread is released. The execution of the message in thenext task now depends on a new assignment of an availablethread to this task. In this article, we discuss the task-based execution model. In this execution model, whenmessages have a high input rate, threads tend to executeinitial tasks more frequently than other tasks due to theFirst-in-first-out (FIFO) policy, which is used in taskscheduling. In the FIFO policy, the first arriving task willbe executed in the first place, while the next will waituntil the first task is finished. Thus, this model may loseefficiency when an integration process is submitted tohigh input rates of messages (Frantz et al., 2012; Freire,Frantz, Basto-Fernandes, Sawicki and Roos-Frantz, 2022;Freire, Frantz, Frantz and Basto-Fernandes, 2022b).In a cloud computing environment, the task schedulingof various IoT applications is complicated due to theheterogeneous characteristics of IoT data. On the otherhand, this scheduling needs to be efficient, and the loadmust be balanced to maximise performance while meetingconstraints such as task dependencies (Basu et al., 2018).The increased volume, variety, and velocity of IoT datagenerated and their real-time processing require highercomputational capacity than is usually offered on the cloud.However, the virtually unlimited computational capacityof the cloud entails a higher communication latency anda higher monetary cost. For this reason, the workloadbalance requires an effective and dynamic task schedulingheuristic (Stavrinides and Karatza, 2018).Building fair scheduling while increasing performanceis a significant concern for enterprises once theyconcurrently submit workflows for execution in differentresources. Pietri et al. (2019) define fair schedulingas one that provides an adequate balancing from theworkload to resources. In the domain of applicationintegration, to obtain fair scheduling in contemporaneousenvironments, it is required to re-engineer integrationplatforms (Linthicum, 2017). The enhancement of theruntime system task scheduling can help enterprises takeadvantage of the scalability of Cloud computing, increasetheir productivity and reduce their costs by optimisingcomputational resources.In this article, we propose the Multi-queue RoundRobin (MqRR), a new policy for task scheduling ofintegration processes carried out by runtime systems.First, we represented integration processes using DirectedAcyclic Graphs, then classified them according to theirconceptual models and logic integration. Next, weimplemented our proposal through algorithms, whichprovide a fair allocation of threads to tasks fromintegration processes with high data volumes.We executed a performance comparison of MqRR andFIFO heuristics under different load conditions. Theresults of this experiment proved that the FIFO is betterthan MqRR until a threshold of workload is reached.

102 Freire et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.100–113

Then, MqRR performance becomes higher, and FIFOstops delivering processed messages. MqRR revealedhigher robustness in tackling high workloads and theuncertain environment of integration processes. Theresults were validated statistically with ANOVA and Scott& Knoot tests. Our proposal can adequately integratethe runtime systems of integration platforms into thecontemporaneous integration environments and providesuitable solutions for the challenges raised by cloudcomputing and the Internet of Things.The rest of this article is organised as follows:Section 2 discusses the related work regarding taskscheduling; Section 3 describes the characteristics ofscheduling in integration processes; Section 4 presents theproblem formulation; Section 5 presents our algorithm;Section 6 presents an experiment to validate the proposal;and Section 7 presents our conclusions and future works.
2 Related Work

This section provides a literature review on recent task-scheduling approaches in cloud and edge computing. Wegroup the selected works according to their main focusand optimisation goals.
• Task scheduling in cloud computing environments.Works in this group focus on minimising makespan andmeeting deadlines by mapping tasks to heterogeneousvirtual machines, often using variants of classicheuristics or metaheuristics.• Energy and cost efficiency. These proposals aimto reduce energy consumption and monetary cost inclouds, e.g. by consolidating tasks, turning off idlemachines or using multi-objective optimisation (suchas PSO and GA) for resource allocation.• Resource utilisation and workflow management.Here, authors concentrate on improving resourceutilisation, balancing the load among servers andmanaging complex workflows and DAGs with heuristicscheduling strategies.• Scheduling in cloud and edge computing. Some worksextend the scheduling problem to hybrid cloud–edgescenarios, distributing tasks between central cloudsand edge devices while minimising latency andmakespan.• Novel and hybrid algorithms. Other approachescombine heuristics, metaheuristics and graph-basedmodels, for example scheduling workflows representedas DAGs and applying hybrid algorithms to improveperformance in large-scale infrastructures.• Large-scale MapReduce clusters. Finally, there areproposals specifically designed for large MapReduceclusters, often building on classical scheduling theoryand adapting it to big-data workloads.

Table 1 summarises the main optimisation goals,application domains and methods used in the selectedrelated work. Most existing works focus on minimisingmakespan and cost in cloud environments, while ourproposal targets the runtime systems of enterpriseapplication integration platforms.

3 Background
In this section, we shall discuss task scheduling forintegration processes which adopt integration patternsdocumented by Hohpe and Woolf (2004) and the Pipes-and-Filters (Alexander et al., 1977) architectural style. Weshall define the main elements involved in this type ofscheduling and describe the task-based model, which isthe model approached in this article.An integration process is a computational program thatsupports exchanging data and functionalities amongstapplications to perform a “job”. A job is a user request.The accomplishment of a job consists of receiving inputdata from the user request and then processing thesedata to produce output data. Usually, one or moresources deliver data to an integration process, which goesthrough a segment of “tasks” uncoupled and connectedby “communication channels”. Then, the data is deliveredto one or more data sinks. Sources and sinks of data canbe applications, databases, sensors, etc. Data are wrappedin “messages”. A message has a header and a body. Theheader contains custom properties, and the body has thepayload data. A message can be split into one or moremessages in the workflow; two or more messages can bemerged into a unique message.We use the following terminology:

- “Workflow” is a set of atomic tasks chained viacommunication channels inside an integration process.- “Segment” is a piece of a workflow that can becomposed of sequentially arranged tasks, in parallel, orboth.- “Path” refers to a specific segment connecting a sourceto a delivery application by which a message is entirelyprocessed in an integration process.
A task can have either one or more inputs or outputs,depending on the integration pattern implemented.Every pattern represents an atomic operation with aspecific operation (transforming, filtering, splitting,joining, or routing) on message processing. Tasks ofa path have an order of dependence to be executed sothat a message can only be processed by a task aftereach and every predecessor task has processed thismessage. An outbound message of a task is written tothe communication channel that connects this task withthe next one in the workflow path. Parts of the integrationprocess may contain tasks that can be executed in parallel.The number of tasks executed in parallel is limited to thenumber of available cores, and the executions always obeythe order of dependence in an integration process.All activities required to accomplish the messageprocessing are orchestrated by the “scheduler” thatis the central element of the runtime system. The“scheduler” also manages the computational resourcesfor the task execution. These resources are “threads”that are usually grouped in “thread pools”. A thread isthe smallest sequence of a computational program thatthe runtime system can manage. Execution threads areabstractions from pieces of physical threads, also calledCentral Processing Unit (CPU) cores, which are physicaland independent processing units. In this article, we referto execution threads as “threads”, and physical threads as

Freire et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.100–113 103

Table 1: Related work summary.
Ref. Goal Research field MethodGuo et al. (2015) Minimize makespan Cloud FuzzyRimal and Maier (2017) Minimize makespan, cost, and tardiness Cloud -Zhou et al. (2017) Maximise completion ratio and minimize bandwidthconsumption Broadcast EDS
Zaourar et al. (2018) Minimize makespan and energy consumption Manufacturing PSOManasrah and Ali (2018) Minimize makespan, cost and balancing load Cloud GA & PSORodriguez and Buyya (2018) Minimise makespan, cost, deadline, and VirtualMachine (VM) Cloud -
Anwar and Deng (2018) Minimize makespan and cost Cloud BoTs & MIPSun et al. (2018) Minimize makespan and resource utilisation rate E-Stream EFT & max-minfairnessGhafouri et al. (2019) Minimize makespan and cost Cloud back-trackingXie et al. (2019) Minimize makespan and cost Cloud & Edge PSOEldesokey et al. (2021) Minimize makespan, execution time and cost Cloud PSO & SSOAttiya et al. (2022) Minimize makespan Cloud & IoT MRFO & SSOKumar et al. (2019) Minimize makespan Cloud B&BAl-Maytami et al. (2019) Minimize makespan and cost Cloud DAGGade et al. (2022) Minimize makespan Cloud NALCATarafdar et al. (2021) Minimize makespan and energy consumption Cloud Greedy & ACOZhang and Shi (2021) Minimize makespan and execution time Cloud ACOXia et al. (2022) Minimize makespan Cloud TOPSIS & MTTian et al. (2016) Minimize makespan Cloud JA & MapReduce
[Our Proposal] Minimize makespan Enterprise

Application
Integration (EAI)

RR

“cores”.Several jobs are typically processed at a particular timeso that several job instances can be used. The processingof a job corresponds to executing all tasks of a path whichresults in the accomplishment of the job. The executionmodel of runtime systems establishes how they mustexecute tasks and allocate threads during the processingof messages in an integration process (Freire, Frantz andRoos-Frantz, 2019).
3.1 Task-Based Execution Model

In this section, we describe the interactions amongst ascheduler, a task, and threads in systems that adopt thetask-based model. As shown in Fig. 1.If there are messages in all communication channels,and if they are sources of a task, then this task is ready tobe executed. Ready tasks depend on an available thread toexecute them. Meanwhile, their executions are annotatedin a waiting queue. Tasks are, therefore, instantiated andexecuted by following a First-in-first-out (FIFO) policy,in which the task that was first annotated is scheduled tobe executed first. Threads are usually grouped in pools,so the creation of consecutive threads is avoided, and taskrequests are quickly handled (Jeon and Jung, 2018).The “scheduler” creates, manages, and releasesthreads. It can also configure the pool by determiningparameters, such as the initial thread number, themaximum number of threads, and the maximum lifetimeof an idle thread. The “scheduler” assigns threads toexecute instances of tasks, and after an instance of the taskis executed, the thread is released back to the pool. Theprocessing of a message in the next task now depends on anew assignment of an available thread from the pool to thistask. A message is processed in an order dependent on the

Figure 1: Actions involved in the scheduling ofintegration processes.
task of the path, which is composed of several segments.Tasks in sequential segments are sequentially executed,whereas tasks in parallel segments can be executedsimultaneously once they are not interdependent.
4 Problem Formulation

In this section, we formulate our research problem.Firstly, we describe the software ecosystem and theintegration process of a real-world problem. Then, wedescribe the terminology of the task scheduling problemin integration processes, which is based on the classicreal-time scheduling theory and general-purpose parallelsystems. Lastly, we present a mathematical formulation

104 Freire et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.100–113

Local

Users

Portal

Users

LDAP
Mail

Server

Human

Resources

System

Digital

Certificate

Platform

t1start

t2start

t1

t3

t4

tx1 tx2

t5 t6

t7 t8

t9

t12
t13

t1endt2end

Figure 2: Huelva’s County Council conceptual model (adapted from (Frantz et al., 2016)).
composed of the problem definition and the objectivefunction. The former is the modelling and codificationof the problem; the latter measures the adequacy of theheuristic in order to maximize the number of processedmessages and minimize makespan.
4.1 The Software Ecosystem

The Huelva’s County Council problem is a real-worldintegration process that automates user registration intoa central repository (Frantz et al., 2016). Its conceptualmodel is depicted in Fig. 2.Within this integration process, integrated applicationsare: “Local Users”, “Portal Users”, “Lightweight DirectoryAccess Protocol (LDAP)”, “Human Resources System”,“Digital Certificate Platform”, and “Mail Server”. The“Local Users” are one of the source applications to managedata from users’ information systems from the countycouncil. The “Portal Users” is another source applicationwhich manages users in the web portal. The “HumanResources System” is the application that providesemployees with personal information. Information suchas name and e-mail are required to compose notification e-mails. The “Digital Certificate Platform” is the applicationthat manages digital certificates. Finally, the “Mail Server”is the application that runs the e-mail service and is usedexclusively for notification purposes.
4.2 Terminology

The task scheduling of integration processes can berepresented as a set of jobs, J= {j1, j2, · · · , jn} of the samecapability on computational resources, consisting of mthreads. Every job can have infinite paths of job instances

ji with i = 1, · · ·n. A path can have segments of tasks, whichcan be sequential, parallel, or both. Tasks in sequentialsegments are executed, obeying their order of dependence.Tasks of parallel segments can be simultaneously executedon different cores.The DAG represents task models for real-timescheduling, allowing the description of constraints ontasks execution (Saifullah et al., 2013). In the DAG model,an integration process is described as a workflow Wcomposed of k tasks, being an extension of the DAGs with
weighted vertices (Ei, Ti), where Ti = {

ti,1, ti,2, · · · , ti,k
} is

the set of vertices and E is the set of edges. Every vertexin the graph represents a process task, and each edgerepresents a communication channel, which indicatesprecedence constraints among tasks. Every edge has aweight, representing the task’s waiting time in the queue.Ritter et al. (2018) represented the integration processas a directed graph called Integration Pattern TypedGraph (IPTG). IPTG was defined as a set of nodes Tand edges E ⊆ T x T and a function type : T → F,where F = {start, end, message processor, fork, join,
condition, merge, external call}. For a node t ∈ T · t ={

t′ ∈ T | (t′ · t) ∈ E
} for the set of direct predecessors of

t, and t· = {
t′′ ∈ T | (t · t′′) ∈ E

} for the set of directsuccessors of t.The function type records what type of task each noderepresents. The first correctness condition claims thatan integration pattern has at least one input and oneoutput; the second condition indicates the cardinality ofthe involved tasks, i.e., the in-degrees and out-degreesof a node. The last condition states, “the graph (T, E) isconnected and acyclic,” indicating that a graph representsonly a task and its relation with its predecessor andsuccessor tasks and that messages do not loop back to

Freire et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.100–113 105

previous tasks. From the IPTG representation, we adoptedthe condition of verification, the classification by taskcardinality, and some terminologies, such as type start,
end, join, message processor, and external call. Sincewe have considered the logic operation of the task, wethen added and, or, and or∗ function types. We calledour representation of Integration Operation Typed Graph(IOTG).An IOTG (T, E, type) is correct if the following conditionsapply:
– ∃ t1, t2 ∈ T with type (t1) = start and type (t2) = end;– if type (t) ∈ {

and
} then |·t| = 1 and |t·| = n mustproduce messages to all n outputs;– if type (t) ∈ {or} then |·t| = 1 and |t·| = n producemessage in at least one of its outputs;– if type (t) ∈ {

or∗
} then |·t| = 1 and |t·| = n producemessage in only one of its outputs;– if type (t) ∈ {join} then |·t| = n and |t·| = 1;– if type (t) ∈ {message processor} then |·t| = 1 and |t·| =1;– if type (t) ∈ {

external call
} then |·t| = 1 and |t·| = 2;– the graph (T, E) is connected and acyclic.

4.3 Problem Definition

There are two input tasks represented by t1start and
t2start, and two output tasks represented by t1end and t2end.Tasks which exchange messages with applications duringruntime are represented by tx1 and tx2. Intermediary tasksare represented by ti, where i ranges from 1 to 13. Inthe integration logic of SC3, arriving data o users from
t1start and t2start are replicated and one copy flows towards“Human Resources System” for information about theemployee who has a user record. Further, on t6, themessage is replicated, and while one copy flows towards“LDAP”, another one flows towards “Digital CertificatePlatform”. “Digital Certificate Platform” represents theapplication that manages digital certificates. The sendingof the certificate and the notification to the employee aboutthe inclusion in the “Lightweight Directory Access (LDA)”is done by “Mail Server”. The path for a local user that hasan e-mail address is the task segment s1 = t1start, t1, t2, t3,
t4, tx1, t5, t6, t7, t8, t9, t10, t11, t12, t13, t1end. The path for alocal user that has not an e-mail address is the followingtask segment s2 = t1start, t1, t2, t3, t4, tx1, t5, t6, t13, t2end.The path for a web user that has an e-mail address followsthe task segment s3 = t2start, t1, t2, t3, t4, tx1, t5, t6, t7, t8,
t9, t10, t11, t12, t13, t1end. The path for a web user who hasnot an e-mail address is the task segment s4 = t2start, t1,
t2, t3, t4, tx1, t5, t6, t13, t2end. Examples of tasks that canbe executed in parallel in the SC3 integration process are[

t3, t7] , [t9, t10], [t7, t18]. A DAG task model represents theHuelva’s County Council integration process, as shown inFig. 3.There are 19 nodes representing the 19 tasks: t1start,
t2start, t1end, t2end, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12,
t13, tx1 , tx2 . t1start and t2start are starting nodes, while t1endandt2end are end nodes. The nodes tx1 , tx2 are tasks thatsend and receive information to/from applications. Thereare 20 edges representing the 20 channels.

In the Integration Operation Typed Graph, t1start and
t2start are start tasks; t2, t8 are and tasks; t6 is the or∗ task;
t1, t4, t10 are join; t3, t5, t7, t9, t11, t12, t13 are the ones fromthe message processor; tx1, tx2 are external call tasks; and
t1end, t2end are end tasks.
4.4 Mathematical Formulation

The total processing time of a message in a given jobinstance, TPji , is defined by the elapsed time intervalbetween the time a message is entered and the time itleaves the workflow. TPji is the sum of the execution timeof all the path tasks by which the message must flowfor its complete processing, as shown in Equation 1. Weassume that the execution time of a task, TEtk includesall times involved, such as the total CPU time, thewaiting time of the tasks in a queue, and the waitingtime of the task in request and response operations withexternal applications. The number of tasks in the path isrepresented by tot. We also assumed that the range of atask execution time tk is defined as [tetk ini
, tetk fin

].

TPji = tot∑
1

TEtk , where
{

TEtk ∈ R | tetk ini
≤ TEtk ≤ tetk fin

}
(1)Makespan is calculated by the average of job instancesaccomplished during a given elapsed time, ∆t, c.f.Equation 2. The total number of job instancesaccomplished during an elapsed time is |ji|. Thisformulation is represented by the objective functionshown in Equation 3.

Makespan∆t =
|ji|∑

1 TPji

|ji| (2)

min{Makespan} (3)
Thus, the problem can be formulated as:
Find out an algorithm for task scheduling that minimizes makespan under
high workloads and the uncertain environment from integration processes.

5 Our Proposal
We propose the Multi-queue Round Robin (MqRR)algorithm to tackle high workloads and the uncertainenvironment of integration processes. Our algorithmis lightweight and deals with the dynamicity of theapplication integration environment without harming theexecution performance of integration processes. The mainalgorithm of our proposal uses the Round Robin heuristic,a classical scheduling algorithm popularly known for itssimplicity, efficiency and effectiveness in computing (Sunet al., 2015; Zhang et al., 2018; Xie et al., 2019).Two main components of the implementation are

106 Freire et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.100–113

Figure 3: Huelva’s County Council represent in a DAG task model.
worth describing in detail: Multi-queue Round Robin andAllocate Thread. The former applies the Round Robinheuristic to queues of tasks, which maintains tasks ofan integration process. Allocate Thread manages theexecution of tasks by threads and sending tasks to queues.We analyze the proposed algorithms and discuss theircomputational complexity. It should be noted that thedata input for the analysis (n) is defined by the numberof tasks from the integration process. For the analysispurposes, we will consider only the worst-case executionof all algorithms.
5.1 Multi-queue Round Robin

The Multi-queue Round Robin algorithm performsthe heuristic that coordinates the task scheduling. Itconfigures multiple queues of tasks, and threads poll themin a circular order. Each queue maintains the instances ofa task; however, tasks belonging to parallel segments canbe maintained in the same queue, for they can be executedin parallel. Tasks are maintained in a queue in decreasingorder of arrival time, in which the head of the queue hasthe first arriving task, whilst its tail has the last one toarrive. Available threads recurrently poll a queue of tasks;if there are any, they are executed by threads. At everypolling, a fixed number of tasks (preemp) is caught to beexecuted.This algorithm receives task queues, the total numberof tasks, and the number of tasks that must be executedevery time threads check a queue. The last input mustbe indicated when the execution is with preemption. Thealgorithm starts by initializing two auxiliary variables:
totsize and preemp. The former corresponds to queue totalsize, and the latter to preemption.The algorithm checks all queues from the first to thelast task. The algorithm remains there to check queuesin a circular order, while there are annotations of tasksto execute in any other queue. The algorithm checks thenumber of annotations of tasks inside the queue, and ifthere is no preemption or the queue size is smaller thanthe preemp variable, then the algorithm assigns the queuesize to the preemp. The queue size is the number of tasksannotated until that time. Otherwise, preemp equals thenumber of tasks set in the preemption, which is an inputof the algorithm. Afterwards, this algorithm calls thealgorithm that allocates threads and executes tasks.

Algorithm 1 Multi-queue Round Robin (MqRR)

Input: queues of tasks: queues[]
Input: total number of tasks: numtasks
Input: number of tasks performed at a time (preemption):
preemptask

1: totsize← 1 ▷ Initialises the queue size2: preemp← preemptask ▷ Initializes preemption3: while totsize > 0 do
▷ Execution of tasks of the queues4: for [i] = 1 to numtasks do5: if queues[i] ̸= ∅ then

▷ Checks whether there is preemption
▷ and compares with queue size6: if (preemp = 0) or (queues[i].size < preemp)

then7: preemp← queues[i].size8: else9: preemp← preemptask10: end if
▷ Allocate threads to tasks of the queue11: Allocate Thread (queues[i], preemp)12: end if13: end for14: totsize← 0 ▷ Calculates the total size o task queues15: for [i] = 1 to numtasks do16: totsize← totsize + queues[i].size17: end for18: end while

The algorithm is given the number of tasks, task queuesand a preemption value. Line 3 presents the main loop,while there are tasks to be processed, complexity (O(n)).Line 4 presents a loop that goes through all the queuesof the different types of tasks. In the worst case, we haveone task for each queue, complexity (O(n)). The algorithmgives the complexity of line 11, “Allocate Thread” (O(n)).On line 15, step through all task queues to count existingtasks. In the worst case, each task is of a differenttype, stored in a specific queue, complexity (O(n)). Theremaining lines inside the loop can be grouped in constantcomplexity (O(1)).
Asymptotically we have:
O(n) + O(n) + O(n) + O(n) + O(1) = O(n)

Freire et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.100–113 107

Algorithm 2 Allocate Thread

Input: task queue: queues[i]
Input: number of tasks performed at a time: preemp
Input: last task vector: LastTask[]

1: ▷ Configures thread pool2: Creates elastic thread pool3: for [j] = 1 to preemp do
▷ Assigns the task of the queue head to task4: task← queue[i].head5: if task is not null then

▷ Executes task6: Submits task to thread pool
▷ Store task in next queue7: for [j] = 1 to LastTask[].length do

▷ Assigns to lasttask the element of LastTask[]8: lasttask← LastTask[i]9: if task ̸= lasttask then10: Stores task in successor task queue11: end if12: end for13: end if
▷ Removes task of the queue14: Removes task of the queue[i]

▷ Releases threads15: Shutdown thread pool
▷ Compares queue size with the preemption16: if queue[i].size < preemp then17: preemp← queue[i].size18: end if19: end for

The algorithm has linear complexity.
5.2 Allocate Thread

The allocate Thread algorithm receives a task queue,the preemption, and a vector containing the end tasks.The algorithm begins with creating a thread pool,which must be elastic and use a specific type of threadpool provided by a multithreading programming language.The algorithm submits the execution of every task to thethread pool, which executes the task operation. Then,the algorithm checks if the task annotation belongs tothe vector containing the end tasks. If the task is not anend task, the algorithm stores the annotation of the taskexecution in the next queue according to the logic of theintegration process. Finally, the algorithm removes theannotation from the task of the current queue and destroysthe thread pool.The algorithm receives a queue of tasks, a preemptionvalue and an array containing the final tasks. Line 3contains a loop with a fixed number of iterations definedby the preemption value; that is, it does not dependon the amount of data in the input of the problem. Inthis case, the complexity of the loop is defined by thecomplexity of the body. In other words, the total timecomplexity or efficiency of the loop is not solely dependenton the number of iterations it performs but is also heavily

influenced by how complex or resource-intensive theindividual operations performed inside each loop iterationare. The complexity of conditional tests (line 5) dependson the evaluation of its branches. In line 6, we have a loopthat runs through the entire vector of final tasks; here,the worst case occurs when all tasks are final tasks; thesize of the vector is equal to the number of tasks, so thecomplexity is O(n). The other lines of the algorithm haveconstant processing and can be grouped in O(1).Asymptotically we have:
O(n) + O(1) = O(n)The algorithm has linear complexity.

6 Proof-of-Concept Experiment
In this segment, we present an experiment to comparetask scheduling performance using the algorithms FIFOand MqRR. Makespan was the performance metricto evaluate our proposal against the current FIFOimplementation at integration platforms. Makespan isa well-known performance metric in the integrationcommunity, and it is defined as the total execution timeof the integration process for a given message (Canon andJeannot, 2007; Chirkin et al., 2017).This experiment is classified in the literature as atermination simulation, in which the output is a functionof the initial conditions. To conduct this experiment,we followed a protocol based on Jedlitschka and Pfahl(2005), Wohlin et al. (2012), and Basili et al. (2007),with procedures for controlled experiments in the fieldof software engineering.

6.1 Research Questions and Hypothesis

This experiment aims to answer the following researchquestions:
• RQ1: Is there a workload threshold from which the FIFOheuristic decreases its performance to nearly zero?• RQ2: Is it possible to improve task schedulingperformance in high workload executions ofintegration processes with the use of the MqRRalgorithm?

Our hypotheses to such research questions are that:
• H1: There is a workload threshold from which the FIFOheuristic does not process messages.• H2: MqRR can improve task scheduling performancein high workload executions of integration processes.

6.2 Variables

Independent variables controlled in the execution ofthe algorithm are:
- HeuristicThe heuristic used to task scheduling. The valuestested for this variable were: FIFO and MqRR.
- Integration processThe conceptual model of the integration process. The

108 Freire et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.100–113

value tested for this variable was “Huelva’s CountyCouncil”.
- Elapsed time (∆t)The time interval the algorithm is executed. Thevalue tested for this variable was 60 seconds.
- WorkloadThe number of input messages when the algorithmexecutes the integration process. The values testedfor this variable were: 100, 500,000, 1,000,000,2,000,000, 2,200,000, 2,500,000, and 5,500,000.
- Rate of message inputThe number of input messages periodically addedto the integration process. The value tested for thisvariable was 100.

The dependent variable measured in the execution ofthe algorithm was:
- MakespanThis variable corresponds to the average processingtime of job instances accomplished during the timeinterval of the experiment.
6.3 Environment and Supporting Tools

The experiments were carried out on a machineequipped with 16 Intel processors, Xeon CPU E5-4610V4, 1.8 GHz, 32GB of RAM, and Windows Server 2016Datacenter 64-bit operating system. The programminglanguage used to implement and execute the algorithmswas Java, version 8.0 update 152. We chose Java forits platform independence, robust performance, andextensive ecosystem, aligning well with our project’sneeds for scalability, concurrency management, andcompatibility across diverse environments. Afterwards,we used a simulation tool for Enterprise ApplicationIntegration, which implements different schedulingheuristics and allows the extraction of performancemetrics (Freire, Frantz, Frantz and Basto-Fernandes,2022a). The Genes software (Cruz, 2006), version 2015.5.0,was used to process descriptive statistics; ANOVA and Scott& Knoot tests were employed to measure makespan in thisstudy.
6.4 Execution and Data Collection

The experiments were conducted by a simulator builton Java, which simulates the execution of integrationprocesses. The simulation starts with a workload ofrandom input messages and receives an average of 100 newrandom input messages at every execution task. The term“random” means that the time a task spends to processa message varies within an interval. We configured thesimulation time to 60 seconds so the simulator interruptsthe current task executions after this time. Then, thesimulator collects makespan and stores it in a text file.Afterwards, we handled and analyzed data to finally applystatistical tests.The tasks from integration processes which can beexecuted in parallel are kept in the same queue. Execution

Table 2: Execution time range by types of tasks inmicroseconds.
Function type ∆TEttype
start, end 1 − 2
and, or, or∗ 2 − 3
join 3 − 4
message processor 1 − 2
external call 1 − 2

time intervals (in microseconds) that each task can varyare shown in Table 2.The results are usually statistically analyzed by themethod of executions, by which 20-30 executions aresufficient to obtain a population average, in the useof the distribution with more extreme values than anormal distribution (Sargent, 2013); our experimentswere repeated 25 times. For each integration process,we repeated the execution 25 times for each heuristicunder seven different workload conditions, resulting in350 different scenarios, summarized in Table 3.
Table 3: Scenarios.Heuristics FIFO and MqRR 2Integration Processes Huelva’s County Council 1Elapsed time 60 seconds 1

Workloads 100, 500000, 1000000, 2000000, 72200000, 2500000, and 5500000Rate of message input 100 1Repetitions 25
Scenarios 2 x 1 x 1 x 7 x 1 x 25 350

6.5 Results

We present the results of metrics collected duringthe simulation in tables and charts for each integrationprocess. The statistical theory is indicated to analyzedata from experiments on performance (Georgeset al., 2007) because it deals with non-determinism incomputational systems, such as runtime systems ofintegration platforms (Frantz et al., 2011). We used thevariance analysis (ANOVA) and Scott & Knott statisticaltests to evaluate the results.We used scatter charts to present the makespan averageof all repetitions for every workload value, as shown inFig. 4. The x-axis represents workloads, whilst the y-axisrepresents makespan average values.Regression analysis was used to estimate the relationbetween the dependent variable (makespan) and theindependent variable (workload) (Yao and Liu, 2018).In regression analysis, the square of Pearson product-moment correlation coefficient R2 is a parameter thatdetermines the degree of linear correlation of variables,defined by R2 = 1− SSE
SST , where SSE is the sum of squarederror and SST is the sum of squared total (Kaytez et al.,2015). Thus, R2 tends to 1 when SSE≪ SST.The Makespan average of the integration process whichwas tested is a polynomial of degree 6 for the FIFOheuristic, represented by: makespan = −0.42 ·w6 + 9.54 ·

Freire et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.100–113 109

9.28 9.53 9.91

12.87

15.64

19.85 20.70
22.32 21.77 21.75 22.42

24.36

0

5

10

15

20

25

30

M
ak

es
p

an
 (

m
ic

ro
se

co
n

d
s)

Workload

FIFO MqRR Polynomial (FIFO) Linear (MqRR)

1 102 5 105 1 106 2 106 2.2 106 2.5 106 5.5 106

Figure 4: Makespan average of the Huelva’s County Council integration process.
w5−683, 81·w4 +367, 2·w3−838.46·w2 +933.47·w−378, 23,with R2 = 1. For MqRR heuristic, it is linear, representedby makespan = 0.59 ·w + 20, with R2 = 0.79; as depicted inFig. 4.

We employed the ANOVA test to differentiate amongstthe variations we found in a set of results derivedfrom random factors called error and influenced bythe dependent variable. The Scott & Knoot test isconsidered more rigorous because it only considersrelevant differences between independent variables. It isusually adopted in experiments connected to performancedue to its simplicity. Table 4 presents a makespan analysisof variance. The ANOVA from makespan shows thatthe average square was 47,430.58 for the heuristics and292.81 for error in the integration process we tested. Theoverall average was equal to 53.22 microseconds and thecoefficient of variation was 32.15%.
Table 4: Variance analysis of makespan.Sources of variation Degree of freedom Average squareHeuristics 1 47,430.58 †

Error 48 292.81Total 49Overall average 53.22Coefficient of variation (%) 32.15
† significant statistical by Fisher-Snedecor’s Probability and error level of

5%.

The Makespan comparison test by Scott & Knott ispresent in Table 5. The heuristics are in the first column,the means of the dependent variables are in the secondone, and the group of Scott & Knott test is in the thirdcolumn. These test groups of heuristics can check if thereis a statistical difference among them. There were twogroups: “a” and “b”. Group “a” refers to the heuristic inwhich makespan was the highest, while group “b” refersto the heuristic in which the makespan was the lowest. Forthe integration process we tested, with the workload of2,500,000, FIFO was in group “a”, and MqRR was in “b”.

Table 5: Average of makespan by Scott & Knott test.Heuristic Makespan average GroupFIFO 84.02 aMqRR 22.42 b
Error level of 5% by Scott & Knoot model.

6.6 Discussion and Comparison

For Huelva’s County Council integration process, theaverage makespan is lower using FIFO than by MqRR toa certain threshold. Then it becomes higher, as shown inFig. 4. A concave upward represents this behaviour withFIFO, and this behaviour change occurs with a workloadbetween 2,200,000 and 2,500,000 messages. There weremore than 250,000 messages and some executions didnot process them. In the case of MqRR, the averagemakespan varies between 19.85 to 24.36 microseconds,with workloads between 100 and 5,500,000 messages.This behaviour is represented by a linear function, whosegrowth is slow compared to the growth of FIFO withworkloads above 2,200,000 messages.Different heuristics generate a significant difference inmakespan average, as shown in Table 4. The coefficientof variation was reduced, indicating that the experimentwas adequate and reliable. The average comparison testfrom Scott & Knott showed that MqRR achieved thebest performance, in which the makespan was 22.42microseconds in the integration process with a workloadof 2,500,000 messages. There were two different groupsin this test; thus, there was a statistical difference betweenthe two heuristics.Regarding the research questions and hypotheses:
• RQ1: There is a threshold from which the FIFO heuristicdoes not process any messages: it is above 2,500,000messages.• RQ2: MqRR improved performance of the taskscheduling in high workload execution of integrationprocesses. Executions performed better through MqRRthan FIFO when an integration process tested over2,500,000 messages. Scott & Knott test proved there

110 Freire et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.100–113

was a statistical difference between MqRR and FIFO inthose cases.
6.7 Threats to Validity

Threats to validity are usual in any empiricalresearch (Cruzes and ben Othman, 2017), and someof those threats are more specific to optimizationstudies (Wohlin et al., 2012). Next, We describe howwe evaluated some factors that could influence theexperiment results, and how we tried to mitigate them.
6.7.1 Constructor ValidityConstructor validity discusses whether the planningand execution of the study are well adequate to answerresearch questions. We planned the experimentaccording to procedures from empirical softwareengineering (Jedlitschka and Pfahl, 2005; Basili et al.,2007; Wohlin et al., 2012). Our primary steps were todefine our research question, formulate our hypothesis,and define both independent and dependent variables.Next, we provided information about the executionenvironment, supporting tools, execution and datacollection. Then, we performed our simulation in 350different scenarios and used statistical techniques toevaluate the results.
6.7.2 Conclusion ValidityAs reported by Wohlin et al. (2012), conclusion validity“concerns issues that affect the ability to draw the correctconclusion about relations between the treatment andthe outcome of an experiment”. We used statisticaltechniques to ensure that the actual outcome observedin our experiment would relate to the heuristics employedand that there was a significant difference among them.
6.7.3 Internal ValidityInternal validity aims to ensure that the treatmentcaused the outcome by mitigating the effects of otheruncertain, unmeasured factors (Feldt and Magazinius,2010). Instrumentation and source of noise are possiblethreats. We experimented with the same machine,which was in security mode, with minimal features anddisconnected from the Internet during the executions, inorder to minimize interference in the execution time ofthe algorithm. We built our algorithm in Java. The firstexecutions of codes are usually slower, and it is advisableto let the VM eventually perform code optimization (Pintoet al., 2014). We executed the algorithm only once to warmup Java’s VM. Additionally, the researchers accuratelyinspected the procedures and used statistical tests tovalidate the measures.
6.7.4 External ValidityExternal validity focuses on the generalization ofresults out of the scope of our study (Feldt and Magazinius,2010). This study is generalized for integration platformsthat adopt the integration patterns by Hohpe and Woolf(2004), the Pipes-and-Filters style, and the task-basedmodel. We reported this study following an empiricalguideline (Wohlin et al., 2012) to make repetition possible.

The experiment is valid to test other parameters, suchas integration processes, message arrival rate, andsimulation duration. In future work, we intend toexperiment with an extensive data set to evaluate thegeneralization of results.
7 Conclusion

IoT and cloud computing expand the possibilitiesfor enterprises, but they also increase the volumeof data and the complexity of integration processes.Integration platforms support software engineers byproviding runtime systems to orchestrate workflowsof tasks that implement the communication betweenheterogeneous applications and services.This article proposed the Multi-queue Round Robin(MqRR) algorithm, a task scheduling heuristic designedfor the runtime environment of enterprise applicationintegration platforms. The main goal of MqRR is toimprove the behaviour of the traditional FIFO heuristicunder high workloads, avoiding starvation and makingbetter use of computational resources.We conducted a proof-of-concept experiment usingthree real-world integration workflows and an integrationprocess simulator, comparing MqRR with FIFO underincreasing message arrival rates. The results answerour research questions as follows. For RQ1, we observedthat FIFO achieves a lower makespan when the workloadis low, but as the input rate increases its performancedegrades sharply, until it reaches a threshold from whichit practically stops processing messages. For RQ2, theexperiments show that MqRR improves task schedulingperformance in high workload scenarios: the makespangrows approximately linearly with the input rate, and thenumber of completed messages is significantly higherthan with FIFO.As future work, we plan to extend this study in severaldirections. First, we intend to evaluate MqRR in additionalintegration platforms and in multi-tenant scenarios,considering not only makespan but also monetary costand energy consumption. Second, we aim to compareMqRR with more advanced scheduling heuristics andmetaheuristics commonly used in cloud computing, suchas PSO, GA and hybrid approaches. Finally, we envisionincorporating MqRR into a production-ready integrationplatform and conducting case studies with real enterpriseworkloads, in order to assess its impact on the quality ofservice perceived by end users.
Acknowledgements

This research is partially funded by the Co-ordinationfor the Brazilian Improvement of Higher EducationPersonnel (CAPES) and the Brazilian National Council forScientific and Technological Development (CNPq) underthe following project grants 311011/2022-5, 309425/2023-9, 402915/2023-2. We would like to thank Dr Maria doRosário Laureano and Dr Sancho M. Oliveira from theInstituto Universitário de Lisboa (ISCTE-IUL) ISTAR-IUL,Lisboa, Portugal, for their helpful comments in earlierversions of this article.

Freire et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.100–113 111

References
Al-Maytami, B. A., Fan, P., Hussain, A., Baker, T. andLiatsis, P. (2019). A task scheduling algorithm withimproved makespan based on prediction of taskscomputation time algorithm for cloud computing, IEEE

Access 7: 160916–160926. https://doi.org/10.1109/AC
CESS.2019.2948704.

Alexander, C., Ishikawa, S. and Silvertein, M. (1977). A
pattern language: towns, buildings, construction, OxfordUniversity Press, Oxford, United Kingdom. https://do
i.org/10.2307/1574526.

Alkhanak, E. N., Lee, S. P., Rezaei, R. and Parizi, R. M.(2016). Cost optimization approaches for scientificworkflow scheduling in cloud and grid computing:A review, classifications, and open issues, Journal of
Systems and Software 113: 1–26. https://doi.org/10
.1016/j.jss.2015.11.023.

Anwar, N. and Deng, H. (2018). Elastic scheduling ofscientific workflows under deadline constraints in cloudcomputing environments, Future Internet 10(5): 1–23.
Elasticschedulingofscientificworkflowsunderdeadl
ineconstraintsincloudcomputingenvironments.

Attiya, I., Elaziz, M. A., Abualigah, L., Nguyen, T. N. andElLatif, A. A. A. (2022). An improved hybrid swarmintelligence for scheduling iot application tasks in thecloud, IEEE Transactions on Industrial Informatics . https:
//doi.org/10.1109/TII.2022.3148288.

Basili, V. R., Rombach, D., Kitchenham, K. S. B., Selby, D.and Pfahl, R. W. (2007). Empirical Software Engineering
Issues, Springer Berlin/Heidelberg, Berlin, Germany. ht
tps://doi.org/10.1007/978-3-540-71301-2_10.

Basu, S., Karuppiah, M., Selvakumar, K., Li, K.-C., Islam,S. K. H., Hassan, M. M. and Bhuiyan, M. Z. A. (2018).An intelligentcognitive model of task scheduling for IoTapplications in cloud computing environment, Future
Generation Computer Systems 88: 254–261. https://doi.
org/10.1016/j.future.2018.05.056.

Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K., Mandal, A.and Kennedy, K. (2005). Task scheduling strategies forworkflow-based applications in grids, IEEE International
Symposium on Cluster Computing and the Grid (CCGrid),Vol. 2, pp. 759–767. https://doi.org/10.1109/CCGRID
.2005.1558639.

Boehm, M., Habich, D., Preissler, S., Lehner, W. and Wloka,U. (2011). Cost-based vectorization of instance-basedintegration processes, Information Systems 36(1): 3–29.
https://doi.org/10.1016/j.is.2010.06.007.

Canon, L.-C. and Jeannot, E. (2007). A comparisonof robustness metrics for scheduling DAGs onheterogeneous systems, International Conference
on Cluster Computing (IEEE Cluster), pp. 558–567.

Chirkin, A. M., Belloum, A. S. Z., Kovalchuk, S. V., Makkes,M. X., Melnik, M. A., Visheratin, A. A. and Nasonov,D. A. (2017). Execution time estimation for workflowscheduling, Future Generation Computer Systems 75: 376–387. https://doi.org/10.1016/j.future.2017.01.011.

Cruz, C. D. (2006). Programa Genes: estatística experimental
e matrizes, Editora Universidade Federal de Viçosa,Viçosa, Brazil. https://arquivo.ufv.br/dbg/genes
/gdown1.htm.

Cruzes, D. S. and ben Othman, L. (2017). Threatsto validity in empirical software security research,
Empirical Research for Software Security, pp. 295–320.
https://www.taylorfrancis.com/books/mono/10.1201
/9781315154855/empirical-research-software-secur
ity?refId=7830b03b-b9d3-4b27-9625-c08766da71e2&co
ntext=ubx.

Eldesokey, H., abd elatty, S., El-Shafai, W., Amoon, M.and ElSamie, F. A. (2021). Hybrid swarm optimizationalgorithm based task scheduling in cloud environment,
International Journal of Communication Systems 34. http
s://doi.org/10.1002/dac.4694.

Fan, K., Zhai, Y., Li, X. and Wang, M. (2018). Reviewand classification of hybrid shop scheduling, Production
Engineering 12(5): 597–609. https://doi.org/10.1007/
s11740-018-0832-1.

Feldt, R. and Magazinius, A. (2010). Validity threatsin empirical software engineering research-an initialsurvey., International Conference on Software Engineering
and Knowledge Engineering (SEKE), pp. 374–379. https:
//api.semanticscholar.org/CorpusID:12670942.

Frantz, R. Z., Corchuelo, R. and Arjona, J. L. (2011).An efficient orchestration engine for the cloud,
International Conference on Cloud Computing
Technology and Science (CloudCom), pp. 711–716.
https://doi.org/10.1109/CloudCom.2011.110.

Frantz, R. Z., Corchuelo, R. and Molina-Jiménez, C. (2012).A proposal to detect errors in enterprise applicationintegration solutions, Journal of Systems and Software
85(3): 480–497. https://doi.org/10.1016/j.jss.2011
.10.048.

Frantz, R. Z., Corchuelo, R. and Roos-Frantz, F. (2016). Onthe design of a maintainable software development kitto implement integration solutions, Journal of Systems
and Software 111(1): 89–104. https://doi.org/10.1016/
j.jss.2015.08.044.

Freire, D. L., Frantz, R. Z., Basto-Fernandes, V., Sawicki, S.and Roos-Frantz, F. (2022). Queue-priority optimizedalgorithm: a novel task scheduling for runtimesystems of application integration platforms, Journal
of Supercomputing 78(1): 1501—-1531. https://doi.or
g/10.1007/s11227-021-03926-x.

Freire, D. L., Frantz, R. Z., Frantz, R.-F. and Basto-Fernandes, V. (2022a). Integration process simulator:A tool for performance evaluation of task scheduling ofintegration processes, Journal of Simulation 16(6): 604–623. https://doi.org/10.1080/17477778.2022.2041989.
Freire, D. L., Frantz, R. Z., Frantz, R.-F. and Basto-Fernandes, V. (2022b). Task scheduling characterisationin enterprise application integration, The Journal of

Supercomputing pp. 1–39. https://doi.org/10.1007/s1
1227-021-04119-2.

https://doi.org/10.1109/ACCESS.2019.2948704
https://doi.org/10.1109/ACCESS.2019.2948704
https://doi.org/10.2307/1574526
https://doi.org/10.2307/1574526
https://doi.org/10.1016/j.jss.2015.11.023
https://doi.org/10.1016/j.jss.2015.11.023
Elastic scheduling of scientific workflows under deadline constraints in cloud computing environments
Elastic scheduling of scientific workflows under deadline constraints in cloud computing environments
https://doi.org/10.1109/TII.2022.3148288
https://doi.org/10.1109/TII.2022.3148288
https://doi.org/10.1007/978-3-540-71301-2_10
https://doi.org/10.1007/978-3-540-71301-2_10
https://doi.org/10.1016/j.future.2018.05.056
https://doi.org/10.1016/j.future.2018.05.056
https://doi.org/10.1109/CCGRID.2005.1558639
https://doi.org/10.1109/CCGRID.2005.1558639
https://doi.org/10.1016/j.is.2010.06.007
https://doi.org/10.1016/j.future.2017.01.011
https://arquivo.ufv.br/dbg/genes/gdown1.htm
https://arquivo.ufv.br/dbg/genes/gdown1.htm
https://www.taylorfrancis.com/books/mono/10.1201/9781315154855/empirical-research-software-security?refId=7830b03b-b9d3-4b27-9625-c08766da71e2&context=ubx
https://www.taylorfrancis.com/books/mono/10.1201/9781315154855/empirical-research-software-security?refId=7830b03b-b9d3-4b27-9625-c08766da71e2&context=ubx
https://www.taylorfrancis.com/books/mono/10.1201/9781315154855/empirical-research-software-security?refId=7830b03b-b9d3-4b27-9625-c08766da71e2&context=ubx
https://www.taylorfrancis.com/books/mono/10.1201/9781315154855/empirical-research-software-security?refId=7830b03b-b9d3-4b27-9625-c08766da71e2&context=ubx
https://doi.org/10.1002/dac.4694
https://doi.org/10.1002/dac.4694
https://doi.org/10.1007/s11740-018-0832-1
https://doi.org/10.1007/s11740-018-0832-1
https://api.semanticscholar.org/CorpusID:12670942
https://api.semanticscholar.org/CorpusID:12670942
https://doi.org/10.1109/CloudCom.2011.110
https://doi.org/10.1016/j.jss.2011.10.048
https://doi.org/10.1016/j.jss.2011.10.048
https://doi.org/10.1016/j.jss.2015.08.044
https://doi.org/10.1016/j.jss.2015.08.044
https://doi.org/10.1007/s11227-021-03926-x
https://doi.org/10.1007/s11227-021-03926-x
https://doi.org/10.1080/17477778.2022.2041989
https://doi.org/10.1007/s11227-021-04119-2
https://doi.org/10.1007/s11227-021-04119-2

112 Freire et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.100–113

Freire, D. L., Frantz, R. Z. and Roos-Frantz, F. (2019).Towards optimal thread pool configuration for run-timesystems of integration platforms, International Journal
of Computer Applications in Technology 62(2): 129–147.
https://doi.org/10.1504/IJCAT.2020.104692.

Freire, D. L., Frantz, R. Z., Roos-Frantz, F. and Sawicki,S. (2019). Survey on the run-time systems ofenterprise application integration platforms focusingon performance, Software: Practice and Experience
49(3): 341–360. https://doi.org/10.1002/spe.2670.

Gade, A., Bhat, M. N. and Thakare, N. (2022). Task patternidentification and scheduling using equal opportunitymodel for minimization of makespan and task diversityin cloud computing, Pattern Recognition and Image
Analysis 32: 67–77. https://doi.org/10.1134/S105
4661821040088.

Georges, A., Buytaert, D. and Eeckhout, L. (2007).Statistically rigorous java performance evaluation, ACM
SIGPLAN Notices 42(10): 57–76. https://doi.org/10.1
145/1297027.1297033.

Ghafouri, R., Movaghar, A. and Mohsenzadeh, M.(2019). A budget constrained scheduling algorithm forexecuting workflow application in infrastructure as aservice clouds, Peer-to-Peer Networking and Applications
12(1): 241–268. https://doi.org/10.1007/s12083-018
-0662-0.

Guo, F., Yu, L., Tian, S. and Yu, J. (2015). A workflowtask scheduling algorithm based on the resources’fuzzy clustering in cloud computing environment,
International Journal of Communication Systems
28(6): 1053–1067. https://doi.org/10.1002/dac.2743.

Guttridge, K., Pezzini, M., Golluscio, E., Thoo, E., Iijima,K. and Wilcox, M. (2017). Magic quadrant for enterpriseintegration platform as a service 2017, Technical report,Gartner, Inc. https://www.gartner.com/en/documents
/3645397.

Hilman, M. H., Rodriguez, M. A. and Buyya, R. (2018).Multiple workflows scheduling in multi-tenantdistributed systems: A taxonomy and futuredirections, ACM Computing Surveys 1(1): 1–33.
https://doi.org/10.48550/arXiv.1809.05574.

Hohpe, G. and Woolf, B. (2004). Enterprise integration
patterns: Designing, building, and deploying messaging
solutions, Addison-Wesley Professional, Oxford, UnitedKingdom. https://dl.acm.org/doi/book/10.5555/9403
08.

Jedlitschka, A. and Pfahl, D. (2005). Reportingguidelines for controlled experiments in softwareengineering, International Symposium on Empirical
Software Engineering (ESEM), pp. 95–104. https://doi.
org/10.1109/ISESE.2005.1541818.

Jeon, S. and Jung, I. (2018). Experimental evaluation ofimproved IoT middleware for flexible performance andefficient connectivity, Ad Hoc Networks 70: 61–72. https:
//doi.org/10.1016/j.adhoc.2017.11.005.

Kanagaraj, K. and Swamynathan, S. (2016). A studyon performance of dominant scheduling algorithmson standard workflow systems in cloud, International
Conference on Informatics and Analytics (ICIA), pp. 45:1–45:6. hîĂps://doi.org/10.1145/2980258.2980358.

Kaytez, F., Taplamacioglu, M. C., Cam, E. and Hardalac,F. (2015). Forecasting electricity consumption: Acomparison of regression analysis, neural networks andleast squares support vector machines, International
International of Electrical Power and Energy Systems
67: 431–438. https://doi.org/10.1016/j.ijepes.2
014.12.036.

Kumar, A. M. S., Parthiban, K. and Shankar, S. S.(2019). An efficient task scheduling in a cloudcomputing environment using hybrid genetic algorithm- particle swarm optimization (ga-pso) algorithm,
2019 International Conference on Intelligent Sustainable
Systems (ICISS), pp. 29–34. https://doi.org/10.57159
/gadl.jcmm.2.4.23076.

Linthicum, D. S. (2017). Cloud Computing Changes DataIntegration Forever: What’s Needed Right Now, IEEE
Cloud Computing 4(3): 50–53. https://doi.org/10.110
9/MCC.2017.47.

Manasrah, A. M. and Ali, H. B. (2018). Workflowscheduling using hybrid GA-PSO algorithm in cloudcomputing, Wireless Communications and Mobile
Computing 2018: 1–16. https://doi.org/10.1155/2018
/1934784.

Mohammad Aazam and Eui-Nam Huh and Marc St-Hilaire and Chung-Horng Lung and Ioannis Lambadaris(2016). Cloud of Things: Integration of IoT with Cloudcomputing, in A. Koubaa and E. Shakshuki (eds), Robots
and Sensor Clouds, Springer International Publishing,Cham, pp. 77–94. https://doi.org/10.1007/978-3-319
-22168-7_4.

Pezzini, M., Natis, Y. V., Malinverno, P., Iijima, K.,Thompson, J., Thoo, E. and Guttridge, K. (2015). Magicquadrant for enterprise integration platform as a service,
Gartner, Stamford pp. 1–35. https://www.mendix.com/p
ress/gartner-2015-magic-quadrant-for-enterpris
e-application-platform-as-a-service-worldwide/.

Pietri, I., Chronis, Y. and Ioannidis, Y. (2019). Fairness indataflow scheduling in the cloud, Information Systems
83: 118–125. https://doi.org/10.1016/j.is.2019.03.0
03.

Pinto, G., Castor, F. and Liu, Y. D. (2014). Understandingenergy behaviors of thread management constructs,
ACM SIGPLAN Notices, Vol. 49, pp. 345–360. https:
//doi.org/10.1145/2714064.266023.

Rimal, B. P. and Maier, M. (2017). Workflowscheduling in multi-tenant cloud computingenvironments, IEEE Transactions on parallel and
distributed systems 28(1): 290–304. h t t p s :
//doi.org/10.1109/TPDS.2016.2556668.

Ritter, D., Forsberg, F. N. and Rinderle-Ma, S.(2018). Optimization strategies for integration

https://doi.org/10.1504/IJCAT.2020.104692
https://doi.org/10.1002/spe.2670
https://doi.org/10.1134/S1054661821040088
https://doi.org/10.1134/S1054661821040088
https://doi.org/10.1145/1297027.1297033
https://doi.org/10.1145/1297027.1297033
https://doi.org/10.1007/s12083-018-0662-0
https://doi.org/10.1007/s12083-018-0662-0
https://doi.org/10.1002/dac.2743
https://www.gartner.com/en/documents/3645397
https://www.gartner.com/en/documents/3645397
https://doi.org/10.48550/arXiv.1809.05574
https://dl.acm.org/doi/book/10.5555/940308
https://dl.acm.org/doi/book/10.5555/940308
https://doi.org/10.1109/ISESE.2005.1541818
https://doi.org/10.1109/ISESE.2005.1541818
https://doi.org/10.1016/j.adhoc.2017.11.005
https://doi.org/10.1016/j.adhoc.2017.11.005
hps://doi.org/10.1145/2980258.2980358
https://doi.org/10.1016/j.ijepes.2014.12.036
https://doi.org/10.1016/j.ijepes.2014.12.036
https://doi.org/10.57159/gadl.jcmm.2.4.23076
https://doi.org/10.57159/gadl.jcmm.2.4.23076
https://doi.org/10.1109/MCC.2017.47
https://doi.org/10.1109/MCC.2017.47
https://doi.org/10.1155/2018/1934784
https://doi.org/10.1155/2018/1934784
https://doi.org/10.1007/978-3-319-22168-7_4
https://doi.org/10.1007/978-3-319-22168-7_4
https://www.mendix.com/press/gartner-2015-magic-quadrant-for-enterprise-application-platform-as-a-service-worldwide/
https://www.mendix.com/press/gartner-2015-magic-quadrant-for-enterprise-application-platform-as-a-service-worldwide/
https://www.mendix.com/press/gartner-2015-magic-quadrant-for-enterprise-application-platform-as-a-service-worldwide/
https://doi.org/10.1016/j.is.2019.03.003
https://doi.org/10.1016/j.is.2019.03.003
https://doi.org/10.1145/2714064.266023
https://doi.org/10.1145/2714064.266023
https://doi.org/10.1109/TPDS.2016.2556668
https://doi.org/10.1109/TPDS.2016.2556668

Freire et al. | Revista Brasileira de Computação Aplicada (2025), v.17, n.3, pp.100–113 113

pattern compositions, International Conference on
Distributed and Event-based Systems (DEBS), pp. 88–99.
https://doi.org/10.1145/3210284.3210295.

Rodriguez, M. A. and Buyya, R. (2018). Schedulingdynamic workloads in multi-tenant scientific workflowas a service platforms, Future Generation Computer
Systems 79: 739–750. https://doi.org/10.1016/j.
future.2017.05.009.

Saifullah, A., Li, J., Agrawal, K., Lu, C. and Gill, C. (2013).Multi-core real-time scheduling for generalized paralleltask models, Real-Time Systems 49(4): 404–435. https:
//doi.org/10.1109/RTSS.2011.27.

Sargent, R. G. (2013). Verification and validation ofsimulation models, Journal of simulation 7(1): 12–24.
https://doi.org/10.1109/WSC.2010.5679166.

Sharma, S. (2017). Ovum decision matrix highlights thegrowing importance of ipaas and api platforms in hybridintegration, Technical report, Ovum Consulting. https:
//boomi.com/content/report/ovum-decision-matrix-r
eport.

Shoukry, A., Khader, J. and Gani, S. (2019). Improvingbusiness process and functionality using IoT based E3-value business model, Electronic Markets 1: 1–10. https:
//doi.org/10.1007/s12525-019-00344-z.

Stavrinides, G. L. and Karatza, H. D. (2018). A hybridapproach to scheduling real-time IoT workflows infog and cloud environments, Multimedia Tools and
Applications . https://doi.org/10.1007/s11042-018
-7051-9.

Sun, D., Yan, H., Gao, S., Liu, X. and Buyya, R.(2015). An integrated approach to workflowmapping and task scheduling for delay minimizationin distributed environments, Journal of Parallel
and Distributed Computing 84: 51–64. h t t p s :
//doi.org/10.1016/j.jpdc.2015.07.004.

Sun, D., Yan, H., Gao, S., Liu, X. and Buyya, R.(2018). Rethinking elastic online scheduling of big datastreaming applications over high-velocity continuousdata streams, The Journal of Supercomputing 74(2): 615–636. https://doi.org/10.1007/s11227-017-2151-2.
Tarafdar, A., Debnath, M., Khatua, S. and Das, R. K. (2021).Energy and makespan aware scheduling of deadlinesensitive tasks in the cloud environment, Journal of Grid

Computing 19. https://doi.org/10.1007/s10723-021-0
9548-0.

Tian, W., Li, G., Yang, W. and Buyya, R. (2016). Hscheduler:an optimal approach to minimize the makespan ofmultiple mapreduce jobs, The Journal of Supercomputing. https://doi.org/10.1007/s11227-016-1737-4.
Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell,B. and Wesslén, A. (2012). Experimentation in software

engineering, Springer Science & Business Media, NewYork, United Kingdom. https://link.springer.com/bo
ok/10.1007/978-3-662-69306-3.

Xia, Y., Zhan, Y., Dai, L. and Chen, Y. (2022). A costand makespan aware scheduling algorithm for dynamicmulti-workflow in cloud environment, The Journal of
Supercomputing . https://doi.org/10.1007/s11227-022
-04681-3.

Xie, Y., Zhu, Y., Wang, Y., Cheng, Y., Xu, R., Sani, A. S.,Yuan, D. and Yang, Y. (2019). A novel directionaland non-local-convergent particle swarm optimizationbased workflow scheduling in cloud-edge environment,
Future Generation Computer Systems 97: 36–378. https:
//doi.org/10.1016/j.future.2019.03.005.

Yao, K. and Liu, B. (2018). Uncertain regression analysis:an approach for imprecise observations, Soft Computing-
A Fusion of Foundations, Methodologies and Applications
22(17): 5579–5582. https://doi.org/10.1007/s00500
-017-2521-y.

Zaourar, L., Aba, M. A., Briand, D. and Philippe,J.-M. (2018). Task management on fullyheterogeneous micro-server system: Modelingand resolution strategies, Concurrency and
Computation: Practice and Experience 30(23): e4798.
https://doi.org/10.1002/cpe.4798.

Zhang, R. and Shi, W. (2021). A makespan-optimized task-level scheduling strategy for cloud workflow systems,
2021 2nd International Seminar on Artificial Intelligence,
Networking and Information Technology (AINIT), pp. 712–720. https://doi.org/10.1109/AINIT54228.2021.00145.

Zhang, Y., Shen, Z.-J. M. and Song, S. (2018). Exactalgorithms for distributionally β-robust machinescheduling with uncertain processing times,
INFORMS Journal on Computing 30(4): 662–676.
ttps://doi.org/10.1287/ijoc.2018.0807.

Zhou, Q., Li, G., Li, J., Shu, L., Zhang, C. and Yang, F.(2017). Dynamic priority scheduling of periodic queriesin on-demand data dissemination systems, Information
Systems 67: 58–70. https://doi.org/10.1016/j.is.201
7.03.005.

https://doi.org/10.1145/3210284.3210295
https://doi.org/10.1016/j.future.2017.05.009
https://doi.org/10.1016/j.future.2017.05.009
https://doi.org/10.1109/RTSS.2011.27
https://doi.org/10.1109/RTSS.2011.27
https://doi.org/10.1109/WSC.2010.5679166
https://boomi.com/content/report/ovum-decision-matrix-report
https://boomi.com/content/report/ovum-decision-matrix-report
https://boomi.com/content/report/ovum-decision-matrix-report
https://doi.org/10.1007/s12525-019-00344-z
https://doi.org/10.1007/s12525-019-00344-z
https://doi.org/10.1007/s11042-018-7051-9
https://doi.org/10.1007/s11042-018-7051-9
https://doi.org/10.1016/j.jpdc.2015.07.004
https://doi.org/10.1016/j.jpdc.2015.07.004
https://doi.org/10.1007/s11227-017-2151-2
https://doi.org/10.1007/s10723-021-09548-0
https://doi.org/10.1007/s10723-021-09548-0
https://doi.org/10.1007/s11227-016-1737-4
https://link.springer.com/book/10.1007/978-3-662-69306-3
https://link.springer.com/book/10.1007/978-3-662-69306-3
https://doi.org/10.1007/s11227-022-04681-3
https://doi.org/10.1007/s11227-022-04681-3
https://doi.org/10.1016/j.future.2019.03.005
https://doi.org/10.1016/j.future.2019.03.005
https://doi.org/10.1007/s00500-017-2521-y
https://doi.org/10.1007/s00500-017-2521-y
https://doi.org/10.1002/cpe.4798
https://doi.org/10.1109/AINIT54228.2021.00145
ttps://doi.org/10.1287/ijoc.2018.0807
https://doi.org/10.1016/j.is.2017.03.005
https://doi.org/10.1016/j.is.2017.03.005

	1 Introduction
	2 Related Work
	3 Background
	3.1 Task-Based Execution Model

	4 Problem Formulation
	4.1 The Software Ecosystem
	4.2 Terminology
	4.3 Problem Definition
	4.4 Mathematical Formulation

	5 Our Proposal
	5.1 Multi-queue Round Robin
	5.2 Allocate Thread

	6 Proof-of-Concept Experiment
	6.1 Research Questions and Hypothesis
	6.2 Variables
	6.3 Environment and Supporting Tools
	6.4 Execution and Data Collection
	6.5 Results
	6.6 Discussion and Comparison
	6.7 Threats to Validity
	6.7.1 Constructor Validity
	6.7.2 Conclusion Validity
	6.7.3 Internal Validity
	6.7.4 External Validity

	7 Conclusion

