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Resumo
Como problema de otimização, o problema de minimização de trocas de ferramentas retém diversos estudos no campo dapesquisa operacional sobre suas diferentes variações, enfatizado por sua relevância acadêmica e industrial. Embora osmétodos atuais para solução deste problema reportem soluções de altíssima qualidade, o tempo computacional requeridotem se mostrado proibitivo frente ao aspecto prático do problema. Assim, neste trabalho, apresenta-se um método parageração de soluções válidas de alta qualidade em baixo tempo computacional, que possam ser utilizadas como soluçõesiniciais por métodos mais robustos, visando acelerá-los e contribuir para a qualidade final das soluções. A abordagemproposta consiste em uma nova implementação do método de descida randômica em vizinhança variável contendobuscas locais tradicionais e especializadas. Para geração do ponto inicial de exploração do método proposto, foramconsideradas cinco heurísticas propostas originalmente para o problema do caixeiro viajante. Os resultados obtidosforam comparados com uma estratégia recente da literatura para geração de soluções iniciais e demonstraram melhoriasignificativa. Adicionalmente, o método proposto foi comparado ao atual estado da arte para o problema tratado ereportou um gap médio de apenas 5,36%, evidenciando a alta qualidade das soluções reportadas para o objetivo proposto.
Palavras-Chave: Descida em vizinhança variável; Heurísticas construtivas; Manufatura flexível; Otimização combinató-ria; Trocas de ferramentas.
Abstract
As an optimization problem, the job sequencing and tool switching problem has been the subject of several studies inoperations research on its different variations, emphasizing its academic and industrial relevance. Although currentmethods approaching this problem yield extremely high-quality solutions, the computational time required has provenprohibitive when considering the practical aspects of the problem. Thus, in this paper, a method is presented forgenerating valid, high-quality solutions in low computational time, which can be used as initial solutions by morerobust methods, aiming to accelerate them and contribute to the final quality of the solutions. The proposed approachconsists of a new implementation of the random variable-neighborhood descent method using traditional and tailoredlocal searches. Five traveling salesman problem heuristics were considered to generate the initial exploration pointfor the proposed method. The results obtained were compared with a recent strategy in the literature for generatinginitial solutions, which demonstrated significant improvement. Additionally, the proposed method was compared to thecurrent state-of-the-art method for the addressed problem, and an average gap of only 5.36% was reported, evidencingthe high quality of the solutions achieved for the proposed objective.
Keywords: Combinatorial optimization; Constructive heuristics; Flexible manufacturing; Tool switching; RandomVariable Neighborhood Descent.
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1 Introdução
Inicialmente conceituados para usinagem, os Sistemas deManufatura Flexíveis (SMFs) tomaram direcionamentosignificativo para as indústrias modernas a partir dos anos1980, atenuando problemas de trade off entre produçãoveloz e qualidade, frente à perspectiva fordista de manufa-tura e ascendendo campos de estudo tecnológicos influen-ciados pelos problemas advindos deste novo formato.Um SMF pode ser usualmente caracterizado por umconjunto de máquinas-ferramenta (ou máquinas flexí-veis), computacionalmente controlado e interligado porum sistema automático de manuseio de materiais, visandoautomatizar o processo produtivo de larga escala sem de-mandar linhas adicionais de produção (Silveira, 2019).Desta forma, diferentes tarefas podem ser processadas poruma mesma máquina-ferramenta, desde que as ferramen-tas necessárias para o processamento destas sejam previ-amente alocadas à máquina. Cada máquina-ferramentapossui um magazine responsável por conter as ferramen-tas dispostas para utilização durante o processamento deuma determinada tarefa (Mancio and Sellitto, 2017). En-tretanto, o número total de ferramentas disponíveis, emgeral, é superior a capacidade do magazine.Ao se analisar o gerenciamento de um SMF, nota-sea intrínseca necessidade de realizar periódicas trocas deferramentas no magazine das máquinas visando o proces-samento sequencial de um conjunto de tarefas. Dado o altocusto que estas trocas de ferramentas acarretam aos SMFs,cerca de 25% a 30% dos custos fixos e variáveis (Beezãoet al., 2017), esta observação impele diversos estudos daliteratura a se interessarem pelos problemas que buscamminimizar o número total de trocas de ferramentas emuma cadeia produtiva de um SMF.Neste contexto, Tang (1986) introduz o problema deminimização de trocas de ferramentas (ou job sequencing
and tool switching problem, SSP). Um problema NP-Difícil(Crama et al., 1994), ou seja, para o qual não se conhecealgoritmo determinístico polinomial para sua solução, queconsiste em definir uma ordem para o processamento deum conjunto de tarefas por uma máquina flexível e o seuposterior plano de trocas de ferramentas, visando minimi-zar o número de trocas de ferramentas necessárias.Desde seu trabalho seminal, o SSP tem sido ampla-mente estudado na literatura (Calmels, 2019). Entre asprincipais abordagens ao problema, destacam-se soluçõesbaseadas em meta-heurísticas. De forma geral, estes mé-todos partem de uma solução inicial (ou uma populaçãode soluções iniciais) e empregam componentes de intensi-ficação e diversificação com o intuito de aprimorar a qua-lidade das soluções obtidas. Por conseguinte, a geraçãode boas soluções iniciais é de extrema importância para aprogressão do estado da arte deste problema.Diante disto, neste trabalho, propõe-se um método dedescida randômica em vizinhança variável (random varia-
ble neighborhood descent, RVND), introduzido por Subra-manian et al. (2010), para geração de soluções que possamser utilizadas como soluções iniciais por outros métodos.O RVND foi escolhido por permitir a combinação de múlti-plas estruturas de vizinhanças, em ordem aleatória, emum tempo computacional aceitável, o que garante diversi-dade e velocidade na construção das soluções iniciais. Por

não possuir estratégias de diversificação que permitamescapar de ótimos locais não globais, não é esperado queo RVND reporte soluções competitivas em relação ao es-tado da arte, entretanto, a utilização destas soluções comoponto inicial por método baseados em trajetória, ou parageração de indivíduos utilizados por meta-heurísticas po-pulacionais, pode contribuir para diminuir o tempo com-putacional demandado por estes métodos ou para melho-rar os resultados alcançados.O método proposto é avaliado em uma extensa campa-nha experimental. Os resultados obtidos são comparadoscom uma heurística proposta para geração de soluçõesiniciais por Soares (2023) e apresentam um avanço signi-ficativo. Adicionalmente, para confirmar a qualidade dassoluções reportadas pelo método proposto, os resultadossão comparados aos reportados pelo atual estado da artepara o problema.O restante deste trabalho está organizado da seguinteforma. Na Seção 2, apresenta-se a descrição formal doproblema. A revisão da literatura sobre o SSP é exposta naSeção 3. Na Seção 4, os métodos propostos são detalhados.A Seção 5, apresenta os experimentos computacionais re-alizados e os resultados alcançados. Por fim, na Seção 6,apresenta-se as conclusões e os trabalhos futuros.
2 Descrição do problema

Introduzido formalmente por Tang (1986), o SSP ocorreem um SMF contendo uma única máquina flexível e con-siste em determinar uma ordem para o processamentode um conjunto T = {1, . . . , n} de tarefas, bem como defi-nir as ferramentas que deverão ser inseridas ou removi-das na máquina antes do início do processamento de cadatarefa, visando minimizar a quantidade total de trocasde ferramentas. A máquina flexível possui um conjunto
F = {1, . . . , l} de ferramentas que podem ser utilizadas.Cada tarefa i demanda um subconjunto Fi (Fi ∈ F) de fer-ramentas para ser processada. Durante o processamentode uma determinada tarefa, as ferramentas em uso sãoarmazenadas em um compartimento denominado maga-
zine. A capacidade C do magazine é suficiente para contertodas as ferramentas necessárias para o processamento deuma tarefa isolada, ou seja, C ≥ |Fi|. Entretanto, em geral,o conjunto total de ferramentas disponíveis é superior a
C, logo, considerando-se o processamento sequencial dastarefas, faz-se necessário efetuar trocas de ferramentasno magazine. Embora o tempo para trocar as ferramentasdentro do magazine seja desprezível, as trocas de ferra-mentas entre a área de armazenamento e o magazine sãocustosas, assim, faz-se necessário minimizá-las com oobjetivo de aumentar a eficiência da máquina flexível.São numerosas as variações do SSP (Calmels, 2019),dado o contexto industrial ao qual está inserido, todavia,este trabalho se preocupa em abordar soluções para suaversão padrão, também conhecido como SSP uniforme, queconsidera algumas pressuposições para o plano de trocasde ferramentas (Bard, 1988; Crama et al., 1994): (i) cadaferramenta ocupa uma posição única no magazine; (ii) ape-nas uma ferramenta deve ser trocada por vez; (iii) o tempopara remover ou inserir uma ferramenta é constante, in-dependente de qual seja; (iv) tem-se conhecimento do
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conjunto e subconjunto de ferramentas com antecedência;(v) não são consideradas trocas por avarias ou desgastes;e, (vi) uma ferramenta só precisa ser removida se for subs-tituída por outra.
Uma instância para o SSP pode ser representada atra-vés de uma matriz binária W, tendo cada linha da matrizcomo uma tarefa e cada coluna como uma ferramenta. Paratoda ferramenta j necessária ao processamento da tarefa i,toma-se wij = 1, caso contrário, wij = 0. A Tabela 1 apre-senta a matriz binária para uma instância arbitrária doSSP em que considera-se n = 5, F = {1, . . . , 9} e C = 7.

Tabela 1: Instância arbitrária do SSP
Tarefas Ferramentas1 2 3 4 5 6 7 8 9

1 0 1 1 1 0 1 0 0 02 0 0 0 1 1 0 0 0 13 1 1 1 0 1 0 1 0 04 0 0 1 1 1 0 1 0 05 1 1 0 0 0 1 0 1 1

A solução para uma determinada instância é obtida atra-vés da permutação π das colunas do plano de trocas de fer-
ramentas. O plano de trocas de ferramentas pode ser repre-sentado por uma matriz binária Qπ = {qij} sendo i ∈ T e
j ∈ F. As colunas do plano de trocas de ferramentas repre-sentam o estado do magazine durante o processamento deuma determinada tarefa, assim, um elemento qij = 1 indicaa presença da ferramenta no magazine, enquanto qij = 0,o contrário. A ordem das colunas é definida de acordo coma permutação π e indica a ordem de processamento dastarefas.

A Tabela 2 apresenta um plano de trocas de ferramentaspara a instância introduzida na Tabela 1. A ordem para oprocessamento das tarefas foi definida arbitrariamentecomo π = {1, 2, 3, 4, 5}. Sublinhados denotam ferramentasinseridas ou removidas imediatamente antes do processa-mento da tarefa corrente. A primeira tarefa a ser proces-sada (tarefa 1) requer apenas quatro ferramentas. Dada acapacidade do magazine (C = 7), ferramentas adicionais,necessárias para o processamento das próximas tarefassão carregadas. Assim, antes do início do processamentoda tarefa 1, o magazine da máquina foi carregado com asferramentas {2, 3, 4, 5, 6, 7, 9}, sendo {4, 9} necessáriospara o processamento da tarefa 2 e {7} para o da tarefa 3,gerando sete trocas de ferramentas. Caso não houvesse ta-manho suficiente no magazine para conter as ferramentas{4, 9} durante o processamento da primeira tarefa, antesque a tarefa 2 pudesse ser processada, tais ferramentasdeveriam ser inseridas no magazine. Antes do processa-mento da tarefa 3, fez-se necessário inserir a ferramenta{1}, o que gerou a exigência de desalocar uma das ferra-mentas presentes no magazine. Entre as ferramentas can-didatas a remoção (ferramentas que não são requeridaspela tarefa atual), seleciona-se aquelas que serão mais tar-diamente necessárias, de acordo com a política Keep tool
needed soonest, KTNS, introduzida por Tang and Denardo(1988). Neste exemplo, a ferramenta {6} foi selecionadae removida, resultando em uma troca de ferramenta an-

tes do processamento da tarefa 3. Para o processamentosequencial da tarefa 4, todas as ferramentas necessárias jáestavam previamente carregadas. Por fim, antes do pro-cessamento da tarefa 5, as ferramentas {6, 8} foram inse-ridas no magazine, enquanto as ferramentas {3, 4} foramremovidas, resultando em mais duas trocas de ferramen-tas. Ao final, para o processamento de todas as tarefasna ordem exemplificada, foram necessárias 10 trocas deferramentas.
Tabela 2: Exemplo de plano de trocas de ferramentas.
Ferramentas Tarefas1 2 3 4 5

1 0 0 1 1 12 1 1 1 1 13 1 1 1 1 04 1 1 1 1 05 1 1 1 1 16 1 1 0 0 17 1 1 1 1 18 0 0 0 0 19 1 1 1 1 1

O plano de trocas de ferramentas pode ser avaliado pelaEq. (1), proposta por Crama et al. (1994). Esta equaçãocalcula o número de inversões de zero para um na matrizbinária. Para que o carregamento inicial de ferramentasseja contabilizado, faz-se necessário inserir uma colunaartificial à matriz, em que todos os elementos são iguais à0, ou seja, Rπ
t0 = 0.

ZSSP(Rπ) = ∑
t∈T

∑
f∈F

rπtf (1 − rπtf−1) (1)

Tendo por objetivo minimizar o número total de trocasde ferramentas, a função objetivo do SSP pode ser escritaconforme Eq. (2), sendo Π o conjunto de todas as possíveispermutações para o processamento das tarefas.
min
π∈Π

{Zπ
SSP(R)} (2)

3 Revisão da Literatura
A exposição incoativa realizada pelo trabalho Tang andDenardo (1988), a qual formalizou as bases para o SSP eintroduziu a política KTNS, tem, desde a década de 1980,impulsionado novos trabalhos interessados no SSP e suasdiversas variações (Soares and Carvalho, 2020; Calmels,2022; Cura, 2023; Rifai et al., 2022). Uma revisão detalhadada literatura destes estudos pode ser obtida a partir do tra-balho de Calmels (2019). Segue-se, a partir dos parágrafosseguintes, um panorama das principais contribuições aoSSP em sua versão padrão (também nomeado na literaturacomo SSP Uniform), cronologicamente organizado.Conforme mencionado, o trabalho de Tang and Denardo(1988), define as bases do SSP. O problema é modelado e re-solvido como uma instância do Traveling Salesman Problem
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(TSP), ou problema do caixeiro viajante. No mesmo artigo,os autores desenvolvem a política KTNS que permite cal-cular em tempo determinístico polinomial a solução ótimapara o número de trocas de ferramentas para uma dadasequência fixa de tarefas a serem processadas. No mesmoano, Bard (1988) modelou o SSP como um problema deprogramação linear não inteira e utilizou um método de
branch-and-bound para resolver uma relaxação Lagrange-ana. Com o intuito de minimizar o tempo de execução aoadquirir boas soluções, o número de iterações foi limitado,reportando-se soluções que representam ótimos locais.Gray et al. (1993) discutem sobre a elaboração de mo-delos de decisão para gerenciamento de ferramentas nocontexto do SSP. Crama et al. (1994) comprovam que o SSPcomo pertencente à classe de problemas NP-difícil paraqualquer instância com C ≥ 2. Novamente o problema éabordado como instância do TSP. Embora seja evidente arecorrência desta modelagem na literatura (Ahmadi et al.,2018; Djellab et al., 2000; Hertz et al., 1998; Laporte et al.,2004; Shirazi and Frizelle, 2001), Yanasse and Lamosa(2006) reportam a ineficiência de tal abordagem, dada anão equivalência entre o SSP e o TSP.Laporte et al. (2004) propõe um novo modelo de pro-gramação linear inteira que apresenta melhores valoresde relaxação linear ante o modelo de Tang and Denardo(1988). Algoritmos de branch-and-bound e branch-and-
cut utilizando instâncias próprias do trabalho também sãoapresentados para efeito de comparação e análise. Res-pectivamente, um demonstrou aptidão para resolver deforma ótima instâncias com até 9 tarefas, enquanto o outroinstâncias com até 25 tarefas.Yanasse et al. (2009) apresentaram um algoritmo enu-merativo capaz de superar os resultados obtidos por La-porte et al. (2004). Senne and Yanasse (2009) apresentamtrês implementações do algoritmo beam search baseadasem enumeração, entretanto, os resultados não são compa-rados a outros métodos da literatura.Um método híbrido que mescla um algoritmo genéticode chaves aleatórias viciadas (Biased Random-Key Genetic
Algorithm, BRKGA) com um algoritmo de busca de agrupa-mento (Clustering Search, CS) foi apresentado por Chaveset al. (2016). Os experimentos computacionais utilizaramas instâncias propostas por Yanasse et al. (2009) e Cramaet al. (1994), reportando melhores resultados para todosos problemas.A exploração da relação entre o SSP e problema de mini-mização de blocos de uns consecutivos (Consecutive block
minimization, CBM) forneceu recursos que contribuíramsignificativamente para os resultados de Paiva and Car-valho (2017). O trabalho apresenta uma heurística cons-trutiva, uma nova representação do problema em grafose uma nova implementação da meta-heurística busca lo-cal iterada (iterated local search, ILS) para o SSP. Os expe-rimentos computacionais consideraram 1670 instâncias(Yanasse et al., 2009; Crama et al., 1994; Catanzaro et al.,2015) e reportaram valores equivalentes ou melhores paratodos os problemas.Apesar de não exposta a métrica para determinar asdistâncias utilizadas na abordagem, Ahmadi et al. (2018)modelaram o SSP como uma instância do TSP de segundaordem (2-TSP) e resolveram o problema utilizando umalgoritmo genético q-learning. Os autores consideraram

apenas um subconjunto das instâncias disponíveis (Ca-tanzaro et al., 2015; Crama et al., 1994) e apresentam me-lhorias marginais ante o trabalho de Paiva and Carvalho(2017).da Silva et al. (2021) apresentam uma nova formula-ção para o SSP adotando um modelo de multi-fluxo. Osexperimentos utilizaram um subconjunto das instânciasdisponíveis na literatura (Catanzaro et al., 2015; Yanasseet al., 2009). Os resultados obtidos superam os resulta-dos reportados pelos modelos anteriores. No entanto, omodelo ainda não é capaz de resolver os problemas commaiores dimensões dentro do tempo limite de uma hora.Mecler et al. (2021) apresentam um algoritmo de pes-quisa híbrida (Hybrid Genetic Search, HGS) para o SSP. Alémdas instâncias tradicionais, um novo conjunto contendo60 problemas de maiores dimensões é apresentado. Osresultados relatados demonstraram melhorias médias sig-nificativas para todos os conjuntos de instâncias, compa-rados aos resultados obtidos pelos métodos de Ahmadi et al.(2018), Chaves et al. (2016) e Paiva and Carvalho (2017).Soares (2023) propõe uma nova implementação que ex-plora a solução exata do CBM (Soares et al., 2020) comoestratégia parcial para a solução do SSP. Apresenta-se umaheurística para geração de soluções iniciais, uma imple-mentação da meta-heurística ILS e uma nova implemen-tação do BRKGA. Os resultados obtidos foram comparadosaos reportados por Mecler et al. (2021) e, embora o tempocomputacional requerido seja substancialmente menor, osvalores de solução não superam o trabalho anterior.Almeida et al. (2025) apresentam uma implementaçãodo método de revenimento paralelo (Parallel Tempering,PT) para abordagem ao SSP. Os experimentos computaci-onais consideraram apenas as maiores instâncias dispo-níveis(Mecler et al., 2021). Resultados melhores ou iguaisforam reportados para 7 dos 12 subconjuntos das instân-cias.Entre as instâncias disponíveis na literatura, apenasos maiores problemas, propostos por Mecler et al. (2021)permanecem como um desafio frente à alta qualidade dosmétodos propostos para solução do SSP. Assim, nos experi-mentos computacionais reportados na Seção 5, considera-se apenas este conjunto de instâncias. Como não há domi-nância de um único método sobre este problemas, os me-lhores valores de solução conhecidos (Mecler et al., 2021;Almeida et al., 2025) são considerados para aferir a quali-dade do método proposto.
4 Métodos
Conforme mencionado, a abordagem do SSP como umainstância do TSP tem se mostrado ineficiente na literatura(Yanasse and Lamosa, 2006). Entretanto, esta modelagemé totalmente dependente da métrica utilizada para geraçãoda matriz de distância. Assim, neste trabalho, examina-se o desempenho de heurísticas propostas originalmentepara o TSP, aplicadas ao SSP com uma métrica específica,que considera as características intrínsecas ao SSP. Emseguida, a melhor solução reportada por qualquer destesmétodos é aprimorada por buscas locais organizadas emum RVND. Nas próximas seções, as heurísticas seleciona-dos e o método proposto são apresentados.
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4.1 Heurísticas construtivas

De forma geral, uma heurística construtiva tem por ob-jetivo alcançar uma solução válida pela adição iterativade novos elementos a uma solução inicialmente vazia. Aforma de escolha de cada elemento é definida de acordocom o problema abordado e com a função de avaliação con-siderada (Souza, 2008). No contexto deste trabalho, a cadaiteração uma nova tarefa é adicionada a solução visandoum escalonamento completo que minimize o número totalde trocas de ferramentas. A seguir, são descritas as cincoheurísticas selecionadas como parte da abordagem parasolução do SSP. Todas as heurísticas foram originalmentepropostas para o TSP, entretanto, são descritas aqui já nocontexto do problema abordado.A tradicional heurística do vizinho mais próximo, a par-tir de uma dada tarefa inicial, escolhe como próxima tarefaa ser alocada aquela para a qual possuir a menor diferença(distância) considerando-se os requisitos de ferramentas.Todas as tarefas são consideradas como tarefa inicial. Parao cálculo da distância, considera-se o número de trocasde ferramentas obtido pelo KTNS sobre o escalonamentoparcial. Esta estratégia resulta em uma distância mais pre-cisa para o SSP pois considera o histórico de ferramentasdo magazine. Dado que, C ≥ |Fi|, é possível que ferramen-tas adicionais sejam previamente carregadas no magazine.Caso alguma destas ferramentas seja requerida pela pró-xima tarefa, isto resultará na diminuição da distância efe-tiva entre as tarefas. Eventuais empates são resolvidos deforma aleatória. Estas mesmas estratégias para constru-ção da matriz de distâncias e para solução de empates sãoutilizadas em todas as heurísticas consideradas.O algoritmo de Bellmore e Nemhauser (Bellmore andNemhauser, 1968) utiliza de iterações para construir sub-rotas (soluções parciais), que seguem o critério de inserçãoem extremidades. Todas as tarefas são consideradas comopossível tarefa inicial e, para cada tarefa ainda não alo-cada, avalia-se o custo de inserção (distância) em ambasas extremidades da sub-rota, ou seja, no início e no fimdo escalonamento parcial. A tarefa com o menor custo éselecionada e adicionada à extremidade correspondente.A heurística inserção mais barata considera uma sub-rota inicial envolvendo três tarefas. A cada iteração,calcula-se o custo da inserção de uma nova tarefa entretodos os pares de tarefas escalonados sequencialmente.A tarefa que resultar no menor custo é adicionada. Parageração da sub-rota inicial, todos possíveis trios de tarefassão considerados.Inspirada no jogo de mesmo nome, a heurística dominó(Ismail, 2019), considera cada tarefa como uma pedra dojogo. Uma pedra é aleatoriamente selecionada e colocadasobre a mesa (tarefa inicial do escalonamento). As pedrasrestantes são aleatoriamente divididas entre dois jogado-res. A cada turno (uma iteração do método), um jogadorseleciona entre as suas pedras a que possuir maior seme-lhança (menor distância) para as pedras posicionadas emuma das extremidades da mesa, o que corresponde às ex-tremidades do escalonamento parcial, e a adiciona ao jogo.O processo se repete, alternando-se os turnos entre osjogadores até que todas as pedras sejam posicionadas. Em-bora semelhante à heurística proposta por Bellmore andNemhauser (1968), a divisão aleatória das tarefas entre os

jogadores e o escalonamento em turnos garante que estaheurística obtenha resultados diferentes.
O método de atribuição em termos de uns (Basirzadeh,2014) divide todos os elementos de uma mesma linha damatriz de distâncias pelo menor elemento desta linha, ge-rando pelo menos um elemento com valor igual a um emcada linha. O valor de cada menor elemento é armaze-nado e associado à linha correspondente. Em seguida, omesmo processo é executado para cada coluna. A partir danormalização de linhas e colunas, a atribuição de uns seresponsabiliza por descartar o menor número de linhase colunas necessários para atribuir todos os uns indepen-dentes da matriz, e, caso o número mínimo de linhas aserem descartadas seja igual à ordem da matriz, tem-se asolução completa. Caso contrário, repete-se os processosanteriores sobre as linhas e colunas não cobertas. A atribui-ção ocorre por exclusão mútua, garantindo que um mesmoum não seja atribuído para linhas e colunas diferentes. Ocritério de prioridade ordena os valores mínimos armaze-nados durante a fase de normalização para escalonar astarefas (a tarefa com o menor elemento marcado é inseridaprimeiro), construindo assim, uma solução completa.

4.2 Descida randômica em vizinhança variável

O método descida em vizinhança variável (Mladenović andHansen, 1997), a partir de uma dada solução inicial, buscaobter um ótimo local a partir de mudanças sistemáticasna estrutura de vizinhança explorada. Um conjunto devizinhanças é abordado sequencialmente. Toda vez quea exploração resultar na melhoria da solução corrente, oprocesso se reinicia a partir da primeira estrutura de vi-zinhança considerada. Ao final do processo exploratório,um ótimo local comum a todas as vizinhanças exploradasé retornado.
Para uma maior eficiência, a ordem de exploração dasvizinhanças consideradas pelo VND deve ser previamentedefinida. Este processo de calibração das vizinhanças podeser computacionalmente custoso (Souza, 2008) e não hágarantias que a ordem estabelecida seja a melhor opçãopara todas as instâncias. Assim, visando adotar uma es-tratégia que extirpasse do método seu caráter sequenci-almente ordenatório, Subramanian et al. (2010) apresen-tam o método de descida randômica em vizinhança variável(random variable neighborhood descent, RVND). Esta novaversão do VND distingue-se do original apenas pela adoçãode um processo randômico de ordenação das vizinhanças.Ao adotar uma estratégia que inclui aleatoriedade em seuprocesso exploratório, o RVND é capaz de encontrar solu-ções inalcançáveis pelo processo determinístico e rígidode seu predecessor.
Para abordagem ao SSP, a melhor solução entre as re-portadas pelas heurísticas descritas na Seção 4.1 é utilizadacomo solução inicial para o RVND. Em seguida, são aplica-das as buscas locais maior arrependimento, 2-opt e or-optem ordem aleatória. Quando um ótimo local comum a estasvizinhanças é encontrado, o método encerra-se e a soluçãoé reportada. As buscas locais utilizadas são apresentadasem detalhes nas seções que se seguem.
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4.2.1 Busca localmaior arrependimentoUtilizada em uma abordagem recente ao SSP (Soares andCarvalho, 2024), a busca local maior arrependimento clas-sifica as tarefas de uma dada solução para o SSP de acordocom a quantidade de trocas de ferramentas ocasionadaspor seu respectivo escalonamento. Em seguida, as tarefasque mais demandaram trocas de ferramentas são realoca-das. Todas as possíveis posições para reinserção são con-sideradas e a tarefa é mantida na posição em que resultarno menor número de trocas de ferramentas. A classifi-cação das tarefas garante que o método reposicione pri-meiramente as tarefas críticas, ou seja, aquelas que maisestavam contribuindo negativamente para a qualidade dasolução.
4.2.2 Busca local 2-optO clássico método 2-opt, originalmente proposto por Croes(1958) para o TSP, quando aplicado ao SSP resulta na in-versão de um segmento da solução. Por exemplo, sendoo escalonamento original [1, 2, 3, 4, 5] e, considerando-secomo pontos para a realização do movimento, as posições2 e 4, após a o movimento obteríamos a solução vizinha[1, 4, 3, 2, 5]. Após a realização de todos os movimentospossíveis, aquele que resultar na melhor solução é man-tido.
4.2.3 Busca local or-optTambém proposto originalmente para o TSP, a busca local
or-opt (Or, 1976) quando aplicada ao SSP seleciona trêsblocos consecutivos de tarefas para realocação. Esta estra-tégia permite que novas soluções sejam geradas ao mesmotempo em que se mantém a estrutura sequencial de cadabloco, permitindo que regiões não alcançáveis pelas bus-cas locais anteriores sejam exploradas. Assim como nasbuscas locais anteriores, todos os possíveis movimentossão executados e a melhor solução é mantida.
5 Experimentos
Uma série de experimentos computacionais foi realizadapara definir a versão final do método proposto, mensurara qualidade das soluções reportadas e avaliar seu compor-tamento. O ambiente computacional utilizado consiste deum computador com processador Apple M2 de 3.49 GHzcom 8 GB de memória RAM sob o sistema operacional ma-
cOS Sonoma. Todos os métodos foram implementados emC++, compilados com GCC 15.0.0 e as opções de otimização-O3 e -march = native.O SSP possui quatro conjuntos benchmark de instân-cias disponíveis na literatura (Crama et al., 1994; Yanasseet al., 2009; Catanzaro et al., 2015; Mecler et al., 2021). En-tretanto, frente à alta qualidade dos métodos atuais parasolução do SSP, apenas o conjunto mais recente, contendoos maiores problemas, permanece como um desafio. Esteconjunto, proposto por Mecler et al. (2021), possui 60 ins-tâncias divididas em três subgrupos (F1, F2, F3) contendo20 instâncias cada. As instâncias do subgrupo F1 possuem50 tarefas, 75 ferramentas e capacidade do magazine vari-ando entre 25 e 40. O subgrupo F2 possui instâncias com 60tarefas, 75 ferramentas e capacidade do magazine variandoentre 35 e 50. O último subgrupo, F3, possui problemas

com 70 tarefas, 105 ferramentas e capacidade do magazinevariando entre 40 e 55. Todas as instâncias propostas porMecler et al. (2021) foram consideradas nos experimentosrealizados.
5.1 Experimentos preliminares

Embora as heurísticas selecionadas sejam amplamenteutilizadas em abordagens ao TSP, não há na literatura com-paração direta entre elas no contexto do SSP. Assim, umasérie de experimentos preliminares foram realizadas paraaferir o comportamento destas heurísticas em comparaçãoao atual estado da arte para o SSP e para averiguar se hápredominância de alguma sobre as outras, visando evitaro desperdício de tempo computacional com heurísticasque sistematicamente reportem piores resultados. As heu-rísticas foram individualmente executadas para todas asinstâncias. Devido a aleatoriedade utilizada nos critériosde desempate, cada heurística foi executada 20 vezes. Asinstâncias foram agrupadas por tarefas (n), ferramentas(l) e capacidade do magazine (C) e os resultados médioscomparados com o atual estado da arte, considerando-seos melhores resultados reportados pelos métodos de Me-cler et al. (2021) e Almeida et al. (2025).A Fig. 1 apresenta um gráfico boxplot comparando o gapmédio reportado por cada heurística, a saber, vizinho maispróximo (1), Bellmore e Nemhauser (2), inserção mais ba-rata (3), dominó (4) e atribuição em termos de uns (5). O
gap foi calculado como 100 × solução heurística−Estado da arteEstado da arte .Conforme pode ser visualizado no gráfico, as heurísticasvizinho mais próximo e Bellmore e Nemhauser dominamtodas as outras em relação à qualidade das soluções obti-das, havendo reportado, respectivamente, um gap médiode 12, 84% e 12, 75%. Para estas duas heurísticas, o boxplotindica uma distribuição concentrada, com valores máxi-mos e mínimos quartis próximos à mediana. A heurísticavizinho mais distante reportou os piores resultados, apre-sentando um gap médio próximo a 70%. As demais heu-rísticas reportaram um gap médio próximo a 30%. Nãohavendo outliers ou casos específicos que justifiquem autilização das heurísticas dominadas, apenas as heurís-ticas vizinho mais próximo e Bellmore e Nemhauser sãocomparadas para a geração da solução inicial utilizada pelométodo RVND proposto, sendo utilizada a que reportar amelhor solução.
5.2 Avaliação do método proposto

Após a realização dos experimentos preliminares, definiu-se a versão final do método RVND proposto. Para aferir aqualidade das soluções reportadas, os resultados obtidosforam comparados ao método heurístico utilizado por So-ares and Carvalho (2024) para geração de soluções iniciais.A Tabela 3 apresenta os resultados reportados por Soaresand Carvalho (2024) e os resultados obtidos a partir de 20execuções individuais do método proposto. Seguindo opadrão adotado por Mecler et al. (2021) os resultados sãoagrupados por número de tarefas (n), ferramentas (l) ecapacidade do magazine (C). Além dos valores reporta-dos pelo método de Soares and Carvalho (2024) (H_CBM),apresenta-se os resultados obtidos pelo método proposto
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Figura 1: Gráfico boxplot dos gaps das heurísticas em comparação ao estado da arte.
(RVND) e o gap médio. Cada linha da tabela apresenta oresultado médio para um subconjunto contendo cinco ins-tâncias. Os melhores valores são destacados em negrito.

n l C H_CBM RVND gap(%)50 75 25 331,80 323,18 -3,5050 75 30 266,80 253,57 -6,3050 75 35 222,00 205,53 -8,9250 75 40 188,00 169,22 -11,4960 90 35 515,80 503,04 -3,2660 90 40 425,60 404,00 -6,3460 90 45 358,80 331,04 -9,0360 90 50 303,80 274,90 -10,8070 105 40 704,20 682,04 -3,9270 105 45 594,80 563,25 -6,2570 105 50 510,20 472,61 -8,3570 105 55 441,40 376,00 -10,60
Tabela 3: Comparação dos resultados obtidos com ométodo de Soares and Carvalho (2024)
Em comparação ao H_CBM, o método proposto reportoumelhores soluções médias para todos os subconjuntos deinstâncias, apresentando gap médio de -7,40%. Entre os

gaps médios individuais, destaca-se o reportado para osubconjunto contendo os problemas de maiores dimensões(n = 50, l = 75, C = 40), -11,49%. O tempo demandado pelométodo de Soares and Carvalho (2024) para geração dassoluções iniciais não é reportado no artigo original, assim,para este experimento, não é possível comparar o tempo de

execução dos métodos. Entre as heurísticas utilizadas pelométodo proposto, a heurística do vizinho mais próximofoi utilizada em 51,5% das soluções e a heurística Bellmoree Nemhauser em 49,5%.Para uma avaliação mais acurada do método proposto,os resultados obtidos são comparados ao atual estado daarte para o SSP. Conforme mencionado, os melhores resul-tados conhecidos para as instâncias aqui utilizadas variamentre os resultados reportados pelos métodos de Mecleret al. (2021) (HGS) e Almeida et al. (2025) (PT). Assim,nos experimentos aqui descritos, considera-se como valorde referência o melhor valor reportado por qualquer umdestes métodos, calculado conforme demonstrado pelaEq. (3).
min(HGS, PT) (3)

A Tabela 4, seguindo o mesmo padrão definido para atabela anterior, mostra a comparação entre o método pro-posto e o atual estado da arte (EA). Para o estado da arte,apresenta-se a média das melhores soluções (S∗), a médiadas soluções (S) e o tempo médio de execução em segundos(T). Para o método proposto, além destes dados, apresenta-se o valor médio da solução inicial (I) reportado pelas heu-rísticas, o desvio padrão (σ) reportado considerando-se as20 execuções individuais do método proposto, e gap médio,calculado como 100 × RVND(S∗)−EA(S∗)EA(S∗) . Em seus respecti-
vos trabalhos, Mecler et al. (2021) (HGS) e Almeida et al.
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n l C Estado da arte RVND
S∗ S T I S∗ S T σ gap(%)50 75 25 293,40 293,56 1004,01 323,18 302,00 308,49 23,82 3,37 2,9350 75 30 226.,20 226,40 1107,12 253,57 236,80 244,37 21,61 3,73 4,6950 75 35 182,20 182,38 1223,64 205,53 194,20 199,09 20,07 2,78 6,5950 75 40 149,80 149,92 1342,78 169,22 160,60 165,08 18,84 2,57 7,2060 90 35 449,60 450,40 12082,73 503,04 464,20 473,41 80,16 5,19 3,2560 90 40 359,60 360,88 1414,80 404,00 375,80 386,35 68,57 5,16 4,5060 90 45 292,20 293,70 9304,33 331,04 310,60 319,08 61,85 4,54 6,4460 90 50 241,00 241,94 1679,71 274,90 260,20 266,79 54,56 3,54 7,9770 105 40 616,60 617,44 22535,20 682,04 638,40 648,42 199,62 5,60 3,5370 105 45 504,00 504,90 20405,51 563,25 527,40 539,04 179,69 6,28 4,6470 105 50 419,60 421,08 17456,87 472,61 445,40 455,94 161,99 5,65 6,1570 105 55 353,60 354,09 1967,96 399,90 376,00 386,86 147,86 5,55 6,45

Tabela 4: Comparação dos resultados obtidos com o atual estado da arte.
(2025) não consideram o carregamento inicial de tarefascomo trocas. Tal abordagem não é consenso na literatura.Como neste trabalho todas as inserções de ferramentasno magazine são consideradas como trocas, os valores ori-ginais publicados foram corrigidos para se considerar ocarregamento inicial das ferramentas.Considerando-se todos os subconjuntos de instâncias, ométodo proposto reportou um gap médio de apenas 5,36%,variando entre gaps médios individuais de 2,93% e 7,97%.Considerando-se que o objetivo do RVND aqui propostoé gerar soluções iniciais para métodos mais robustos, osbaixos gaps reportados indicam uma altíssima qualidadedas soluções. O tempo computacional médio requerido foide apenas 87,30 segundos, correspondendo, em média, aapenas 1,15% do tempo demandado pelo método estadoda arte, demonstrando a viabilidade da aplicação do mé-todo proposto na geração de soluções iniciais. O desviopadrão médio foi de apenas 4,97, demonstrando a efici-ência do método em gerar soluções com alta qualidade ebaixa variação em execuções individuais.Em relação às buscas locais, considerando-se todas asexecuções do método proposto, a busca local or-opt foia que mais contribuiu para a qualidade final da solução,sendo responsável por 74,50% das melhorias. Em seguida,temos a busca local maior arrependimento e 2-opt, respon-sáveis respectivamente por 14,11% e 11,39% das melhorias.
6 Conclusões

Sendo um problema industrial prático de ampla aplicação,é essencial que os métodos para solução do SSP obtenhamresultados em baixo tempo computacional. Embora asabordagens recentes ao SSP apresentem soluções com altaqualidade, o tempo de execução de tais métodos repre-senta um desafio às suas aplicações práticas. Assim, nestetrabalho, propõe-se uma abordagem para geração de solu-ções válidas com alta qualidade que possam ser utilizadascomo soluções iniciais por métodos mais robustos, com aintenção de acelerar o processo exploratório e melhorar aqualidade final dos resultados obtidos.A abordagem apresentada consiste na geração de umasolução válida utilizando-se heurísticas propostas origi-nalmente para o problema do caixeiro viajante e, posteriormelhoria desta solução através de algoritmos de busca lo-cal organizados em um método aleatório de descida em

vizinhança variável. Os experimentos computacionais re-alizados comparam os resultados reportados com umaestratégia prévia da literatura para geração de soluções ini-ciais e com o atual estado da arte para o problema. Frentea estratégia anterior para a geração de soluções iniciais, ométodo proposto apresenta melhorias significativas. No-vos melhores resultados foram apresentados para todas asinstâncias consideradas, reportando-se um gap médio de-7,40%. Em comparação ao atual estado da arte, emboranão seja o objetivo deste trabalho uma comparação direta,o método proposto mostrou-se competitivo, reportando
gaps médios variando entre 2,93% e 7,97%.Os trabalhos futuros derivados deste estudo se concen-trarão no desenvolvimento de novas abordagens para oSSP que, utilizando o método proposto para geração desoluções iniciais, consigam evoluir o atual estado da artepara o problema.
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