
Identificação da maior elipse com excentricidade prescrita inscrita em um
polígono não convexo através do Continuous Grasp

Victor Billy da Silva 1

Marcus Ritt 2

João Batista da Paz Carvalho 3

Marcos José Brusso 4

Juliano Tonezer da Silva 4

Resumo: Este trabalho apresenta um algoritmo heurístico, baseado no Continuous Grasp, que
busca encontrar a maior elipse, de excentricidade prescrita, inscrita no interior de um polígono não
convexo e um estudo de caso da eficiência desta abordagem. Primeiramente, descreve-se o método
Continuous Grasp e a formulação matemática do problema de otimização global. Após, é descrito
o algoritmo implementado. Por fim, relata-se os resultados obtidos através de uma avaliação experi-
mental.

Palavras-chave: Continuos Grasp. Otimização. Polígono não convexo.

Abstract: This paper presents a heuristic algorithm based on Continuous Grasp to finding the
largest ellipse, with prescribed eccentricity, inscribed in a non-convex polygon and a case study of
the efficiency of this approach. We describe Continuous Grasp, present a mathematical formulation
of the global optimization problem and report the results of an experimental evaluation.

Keywords: Continuous Grasp. Optimization. Non-convex polygon.

1 Introdução

Problemas de otimização global buscam encontrar o máximo ou o mínimo de uma função tipicamente
multimodal sobre um domínio discreto ou contínuo [1]. Por definição, um problema de otimização global visa
determinar o máximo, ou o mínimo, global x∗ ∈ S ⊆ Rn tal que f(x∗) ≥ f(x),∀x ∈ S, sendo S uma região de
Rn e f : S → R.

O projeto 3D-Gemas estuda, entre outros problemas, o de maximizar o aproveitamento volumétrico de
gemas de pedras preciosas utilizadas para lapidação. Como exemplo, pode-se citar o software Otimizador 3D
Gemas, ferramenta computacional integrante da tecnologia 3D Gemas [4], com o objetivo de encontrar para cada
gema, digitalizada tridimensionalmente, qual o modelo virtual de lapidação e o posicionamento do mesmo que
resulte no maior aproveitamento volumétrico destas.

Recentemente, Hirsch et al. (2006), propuseram a meta-heurística Continuous Grasp (C-Grasp) para so-
lucionar problemas contínuos de otimização global. O C-Grasp gera soluções, repetidamente, utilizando um algo-
ritmo guloso construtivo, aplicando a essas soluções uma busca local estocástica visando encontrar soluções de boa
qualidade. Uma vantagem desse método é que não são necessárias informações da derivada da função objetivo.

1Centro Tecnológico de Pedras Gemas e Joias do RS, Soledade (RS) - Brasil
{victorbilly.silva@gmail.br}
2Instituto de Informática, UFRGS, Porto Alegre (RS) - Brasil
{marcus.ritt@inf.ufrgs.br}
3Instituto de Matemática Pura e Aplicada, UFRGS, Porto Alegre (RS) - Brasil
{carvalho@mat.ufrgs.br}
4Curso de Ciência da Computação, UPF, Campus 1 - BR 285 - Passo Fundo (RS) - Brasil
{brusso,tonezer@upf.br}

http://dx.doi.org/10.5335/rbca.2012.2078

Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, v. 4, n. 1, p. 61-70, mar. 2012 61



Figura 1: Exemplo de uma instância (azul) do problema e da solução ótima.

Atualmente, o software Otimizador 3D Gemas usa algoritmos genéticos como procedimento principal de
otimização. Este trabalho tem como objetivo avaliar a meta-heurística C-Grasp como método alternativo. Para
isso, foi avaliado o algoritmo proposto em [1], em um estudo de caso. O problema selecionado busca encontrar a
elipse de maior área, com excentricidade prescrita, inscrita no interior de um polígono arbitrário. Esse problema é
uma versão bidimensional de otimização solucionado pelo software otimizador 3D Gemas, servindo, então, como
bom parâmetro de estudo para avaliar o C-Grasp.

No que concerne à organização do trabalho, na seção seguinte apresentamos a definição e formulação mate-
mática do problema proposto. Na seção 3 o método C-Grasp é descrito. Na seção 4 os resultados computacionais
são discutidos e, por fim, na seção 5 são aferidas as considerações finais sobre este trabalho.

2 Formulação Matemática do problema

Dados os pontos (x1, y1), (x2, y2), . . ., (xn, yn) de um polígono P no plano, nosso objetivo é encontrar
a maior elipse com excentricidade prescrita contida no interior de P. Sendo a excentricidade da elipse fixa uma
restrição do nosso problema [4], e sabendo que a elipse possui semieixos maior e menor denotados por a0, b0. A
maior elipse contida na área determinada por esse polígono é definida por quatro parâmetros a serem identificados:
escala α, coordenadas do centro da elipse xc, yc e ângulo de giro θ.

A Figura 1 exemplifica o problema apresentado. O contorno representa o polígono P e a elipse representa
uma instância de solução obtida através do C-Grasp.

2.1 Problema de otimização

Sendo a elipse formada por parâmetros (xc, yc, θ) e sendo α a escala sobre os semi-eixos maior e menor
da elipse (a0, b0), o problema de otimização global tem como objetivo encontrar os parâmetros (x∗c , y

∗
c , θ
∗) que

maximizam α(xc, yc, θ) sujeitos às restrições

S(xc, yc, θ, α) = {(x, y) | x = xc + αa0 cos θ, y = yc + αb0 sin θ, θ ∈ [0, 2π]} ⊆ P (1)

A restrição (1) garante que a elipse está no interior do polígono P. Assim, temos estabelecido um “problema
de otimização global com restrições”. Métodos para solução computacional desse problema existem na literatura
[3]. Pela razão que nossa função objetivo não é diferenciável, o vetor gradiente∇α(xc, yc, θ) em geral sequer está
definido (mesmo se esse não fosse o caso, não é óbvio como calculá-lo analiticamente) e, portanto, uma extensa
lista de métodos baseados no gradiente [3] não pode ser usada. Devemos, então, aplicar métodos de otimização
que não usem derivadas, mas que tenham razoável convergência global, ao contrário do conhecido método de
coordenadas cíclicas ou melhoramentos deste [3]. O método Continuous Grasp [2] apresenta tais características

Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, v. 4, n. 1, p. 61-70, mar. 2012 62



necessárias para a resolução do problema, e nesse contexto será analisado no presente trabalho. Já a formulação
da função objetivo, que gera soluções viáveis para este problema de otimização, é apresentada a seguir.

2.2 Estratégia computacional para calcular a função objetivo

A função objetivo modelada matematicamente para essa aplicação visa encontrar soluções viáveis para o
problema de otimização proposto, isto é, dados os parâmetros (xc, yc, θ), sendo (xc, yc) as coordenadas do centro
da elipse, θ o ângulo de giro da elipse, centrada em seu sistema de coordenadas locais, a função objetivo deve
encontrar o valor máximo para α tal que a equação (1) seja satisfeita.

A Figura 2(a) traz um exemplo de uma solução viável para dados parâmetros, (xc, yc, θ) enquanto a Figura
2(b) demonstra uma solução não viável para o mesmo conjunto de parâmetros.

(a) Solução viável (b) Solução inviável

Figura 2: Exemplo de uma solução viável e de uma solução inviável

A estratégia computacional adotada para avaliar a função objetivo consiste em buscar linearmente (método
de bissecção simples) na direção da componente α, em um dado intervalo [l, u], onde l é o limitante inferior e u um
limitante superior para α. A busca por bissecção usa um método de penalização que verifica se a elipse formada
por dados parâmetros, mais uma escala α, está totalmente inscrita em um polígono P. Caso isso não ocorra a
solução é penalizada em função da área da elipse no exterior do polígono. Na Figura 3 podemos observar, ainda
para o mesmo trio de parâmetros citados acima, o comportamento da função objetivo, utilizando-se da função
penalizadora, para valores de α entre 0.1 e 0.6. O máximo global ocorre com α = 0.47 e para valores maiores
ocorre a penalização, como por exemplo para α = 0.5.

O comportamento da função penalizadora justifica a utilização do método de bissecção simples na busca
unidimensional executada pela função objetivo, pois esta garante que só existe um máximo global para essa função
em questão (α ≈ 0.47) e para qualquer valor α > 0.47 o valor da função é negativo, ou seja, há penalização, pois
a elipse é parcialmente exterior ao polígono.

Ainda, para tornar a função objetivo mais explícita, exemplificaremos o método de penalização formulado.

2.3 Função penalizadora

Conforme visto, a função penalizadora atribui penalidades para um conjunto de parâmetros e mais uma
escala α. Para isso, é necessário verificar se a elipse S é interior a P, ou seja, se nenhum dos segmentos de P a
intercepta.

Visto que P não é necessariamente convexo, um modo robusto de averiguar se S é interior a P consiste
em percorrer uma lista de pontos {x̄j , ȳj} ótimos (segundo critério de ortogonalidade), distribuídos ao longo das

Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, v. 4, n. 1, p. 61-70, mar. 2012 63



Figura 3: Gráfico da função objetivo

arestas de P. Após, transformamos cada um desses pontos para o sistema de coordenadas locais da elipse S. Sendo
(x′j , y

′
j) a representação de (x̄j , ȳj), no sistema de coordenadas locais de S, sua transformação se dá por meio das

equações

x′j = cos(θ)(x̄j − xc) + sen(θ)(ȳj − yc); (2)

y′j = −sen(θ)(x̄j − xc) + cos(θ)(ȳj − yc); (3)

Finalmente, o ponto (x′j , y
′
j) é exterior à fronteira da elipse canônica se e somente se

x′j
a2

+
y′j
b2
> 1 (4)

Assim, se para todos os pontos ótimos a equação (4) for satisfeita, a elipse S é interior a P, e o valor da
função penalizadora nesse caso é α. Caso contrário, se a elipse S possui partes exteriores a P, um valor fp de
penalização é estipulado da seguinte maneira:

fp =
∑
j∈n

g(cj(xj)) (5)

onde

g(cj(xj)) = max(1−
x′j
a2

+
y′j
b2
, 0). (6)

Dessa forma, com a formulação da função objetivo, utilizando penalidades, pode-se, então, implementar o
método C-Grasp, que será relatado a seguir.

3 Método C-Grasp

C-Grasp é uma meta-heurística que tem como objetivo solucionar problemas contínuos de otimização global
[1]. C-Grasp é um método multipartida que consiste, basicamente, em efetuar dois passos:

Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, v. 4, n. 1, p. 61-70, mar. 2012 64



1. uma fase de construção que combina técnicas gulosas e randomizadas, para gerar soluções iniciais custo-
eficientes;

2. uma busca local, visando melhorar as soluções construídas na fase anterior, enquanto um dado critério de
parada não for satisfeito. Geralmente se estabelece o número de iterações como critério. Nessa seção serão
apresentadas as principais características desse método.

3.1 Funcionamento do C-Grasp

C-Grasp visa otimizar globalmente (minimizar ou maximizar) uma função objetivo f(·) com domínio de
dimensão n em um universo representado pelos vetores l e u. Tem-se ainda os parâmetros hs, he , plo, sendo que
hs, he definem, respectivamente, o início e o fim da densidade da grade de discretização do problema, ao passo
que plo define a porção da vizinhança nas “redondezas” da solução atual, onde será realizada a busca local.

C-Grasp é um procedimento multipartida, sendo executado até que um dado critério de parada seja sa-
tisfeito. Cada vez que o critério de parada não é satisfeito, uma nova iteração C-Grasp acontece, inicializando,
primeiramente, uma solução x através da escolha randômica em um domínio uniformemente distribuído em Rn.
Após isso, são executados os procedimentos de construção e de busca local. Por fim, se o valor da função objetivo
f(x), retornada do procedimento de busca local, for melhor que o valor da atual melhor solução f(x∗), a melhor
solução f(x) e o conjunto de soluções x são atualizados. Nas próximas seções serão descritas, em detalhes, as
fases de construção e de busca local.

3.2 Fase de construção

A fase de construção busca – coordenada a coordenada do vetor de solução x, combinando características
gulosas, aleatórias e adaptativas –, uma melhora na solução atual gerada aleatoriamente no início do C-Grasp.
Nessa fase todas as coordenadas do vetor de solução x, ou seja, todos os parâmetros que se buscam encontrar, são
considerados livres e, conforme a solução for construída, essas coordenadas vão sendo fixadas. Um pseudocódigo
exemplificando a fase de construção é apresentado na sequência.

Sucintamente, o método consiste de um laço exterior que percorre cada coordenada i, ainda não fixada, do
vetor x, e executa uma busca unidimensional (line search) na direção dessa coordenada i, sendo que as demais
n − 1 coordenadas permanecem sem alterar seus valores atuais. Posteriormente, uma lista restrita de candidatos
LRC é preenchida com as coordenadas i ainda não fixadas. A LRC recebe, para cada coordenada, um valor de
função objetivo que não é maior do que um limite acima do menor valor de função objetivo encontrado, para todas
as coordenadas. Este limite estabelecido é um valor µ, escolhido aleatoriamente entre 0 e 1, e cada coordenada i só
será inserida na lista LRC se seu valor estiver entre o limite µ do intervalo da distância, entre o maior e menor valor
de função objetivo já calculados. Explicitamente isso significa que para µ = 0 o método irá escolher gulosamente
a coordenada com o menor valor de função objetivo, e para µ = 1 irá escolher alguma coordenada aleatoriamente.

Após, uma coordenada j da LRC é eleita randomicamente, e essa coordenada j é, então, fixada. Assim,
todas as coordenadas em x serão fixadas, uma a uma, repetindo esse procedimento. Quando todas as coordenadas
estiverem fixadas, o novo conjunto solução x é retornado, encerrando essa fase.

3.3 Fase de busca local

O procedimento de busca local tem como objetivo melhorar a solução x decorrente da fase de construção.
Para isso, verifica-se na vizinhança de x∗ se existe um x′, tal que o valor da função f(x′) seja melhor que f(x∗).
A busca local examina um número de pontos PontosParaExaminar – porção plo da vizinhança da solução x∗ –
contidos em uma grade Sh, que tem sua discretização inicial em hs e final em he. O algoritmo a seguir apresenta

Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, v. 4, n. 1, p. 61-70, mar. 2012 65



um pseudocódigo deste procedimento.

Data: x, funçãoObjetivo
Result: houveMelhora, x

1 coordenadasLivres← {1, 2, ..., n};
2 µ← rand(0, 1);
3 usarNovamente← falso;
4 while livres 6= 0 do
5 gMin← +∞;
6 gMax← −∞;
7 for i← 1 to n do
8 if i ∈ livres then
9 if usarNovamente = falso then

10 zi ← buscaLinear(x, funcaoObjetivo);
11 gi ← f(x∗i );
12 end if
13 end if
14 end for
15 LRC← 0 ;
16 Limiar← gMin + mu · (gMax-gMin);
17 for i=1 to n do
18 if i ∈ coordenadasLivres and gi ≥ Limiar then
19 LRC← LRC

⋃
i ;

20 end if
21 end for
22 j ← selecionaELementoRandomicamente(LRC);
23 if xj = zj then
24 usarNovamente = verdadeiro;
25 end if
26 else
27 xj ← zj ;
28 usarNovamente = falso;
29 houveMelhora← verdadeiro;
30 end if
31 coordenadasLivres← coordenadasLivres \j;
32 end while

Algoritmo 1: Pseudo-Código da fase de Construção do C-GRASP

Data: x, funçãoObjetivo
Result: x, houveMelhora

1 x∗← x;
2 f∗← f(x);
3 NumPontosNaGrade←

∑
1≤i≤nd(ui − li)/he ;

4 PontosParaExaminar← dplo·NumPontosNaGradee ;
5 PontosExaminados← 0 ;
6 while PontosExaminados 6= PontosParaExaminar do
7 PontosExaminados← PontosExaminados + 1;
8 x← selecionaElementoRandomicamente(Bh(x

∗));
9 if l ≤ x ≤ u and f(x) > f∗ then

10 x∗← x;
11 f∗← f(x);
12 houveMelhora← verdadeiro;
13 PontosExaminados← 0;
14 end if
15 end while

Algoritmo 2: Pseudo-Código da fase de Busca Local do C-GRASP

Um laço externo é repetido PontosParaExaminar vezes, sendo que interno a esse laço um ponto x′ é sele-
cionado aleatoriamente em um conjunto Bh. Os pontos em Bh são calculados por meio da projeção dos pontos
da grade Sh, em uma hyperesfera, com raio de tamanho h, centralizada em x∗. Se o ponto x′ eleito pertence ao
domínio [l, u], isto é, l ≤ x′ ≤ u, e f(x′) < f(x∗), então, os valores de x∗ são atualizados para x′.

Por fim, a implementação do algoritmo para o presente trabalho foi baseada no pseudocódigo do Continuous
Grasp, descrito em [1], que contém mais detalhes sobre o algoritmo.

Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, v. 4, n. 1, p. 61-70, mar. 2012 66



4 Resultados experimentais

A métrica utilizada para avaliar o método C-Grasp consistiu em aplicar o método em um conjunto de quatro
polígonos não convexos. Para esse conjunto de polígonos, observou-se o número de avaliações da função objetivo,
o tempo desprendido para encontrar a maior elipse, e o valor da escala α dessa elipse final. Utilizou-se diferentes
parâmetros para o C-Grasp. Esta seção apresenta os resultados obtidos para esses testes.

4.1 Ambiente de testes

Todos os testes foram executados com um Intel Core i7 CPU 2.80 GHz 8 MB cache e 12 GB de memória,
usando o sistema operacional Ubuntu 9. O algoritmo foi implementado na linguagem de programação C++ e
compilado com GNU g++ 4.4.1. Além disso, utilizou-se o algoritmo Mersenne Twister [6] para a geração de
números aleatórios, distribuídos uniformemente.

4.2 Resultados numéricos

Conforme visto no método C-Grasp, a informação necessita de três parâmetros para sua execução, hs, he,
plo, e, além disso, necessita que seja definido um critério de parada. O parâmetro hs foi invariante para todos os
testes efetuados, tendo como valor hs = 1.0, e o critério de parada adotado foi o número de iterações (maxIt).
Adicionou-se uma restrição ao parãmetro plo, que tem seu valor fixo em 0.7, limitando seu número máximo. Foram
efetuados, variando esses parâmetros, quatro testes:

• (a) he = 0.1,min(plo, 100)

• (b) he = 0.1,min(plo, 500)

• (c) he = 0.1,min(plo, 1000)

• (d) he = 0.01,min(plo, 100)

Para os testes (a), (b) e (c) avaliou-se também o número máximo de iterações maxIt (critério de parada), testando
com valores para maxIt: 1, 2, 5, 10. Para o teste (d) utilizou-se maxIt=2.

Utilizou-se ainda, para o C-Grasp, como domínio para a função objetivo

xmin ≤ xc ≤ xmax, onde [xmin, xmax] ⊂ P, (7)

ymin ≤ yc ≤ ymax, onde [ymin, ymax] ⊂ P, (8)

0 ≤ θ < 2π. (9)

Os valores utilizados como semieixos para a elipse foram a0 = 12.432 e b0 = 10.0, onde a representa o
semieixo maior e b o semieixo menor, sendo a excentricidade obtida pela relação entre esses eixos.

As tabelas a seguir demonstram os resultados obtidos, sendo esses a média de 100 execuções do C-Grasp
para cada teste. Estas possuem a seguinte nomenclatura: a coluna n representa a quantidade de vértices de cada
polígono; o tempo é expresso em segundos (coluna t(s)); a coluna α apresenta a média final do resultado do C-
Grasp; a coluna D.P. (α) representa o desvio padrão da população de testes; e a coluna f(x) traz o valor médio de
avaliações da função objetivo. A Tabela 1 contém os dados do teste (a); a Tabela 2, do teste (b); a Tabela 3 do teste
(c), e a Tabela 4, do teste (d).

Os dados apresentados nas tabelas mostram coerência nos resultados, sendo que o desvio padrão para todos
os testes é relativamente baixo, e o valor final α do C-Grasp ficou com duas casas decimais exatamente iguais para
todos os testes (exceto um valor 0.4198 na Tabela 1). O que significa que o algoritmo implementado converge

Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, v. 4, n. 1, p. 61-70, mar. 2012 67



Tabela 1: Dados do teste (a)
Teste (a) - hs:1.0, he:0.1, maxPlo:100

MaxIter: 1 MaxIter: 2 MaxIter: 5 MaxIter: 10
n t(s) α D.P.(α) f(x) t(s) α D.P.(α) f(x) t(s) α D.P.(α) f(x) t(s) α D.P.(α) f(x)

212 0,23 0,7414 0,0027 104 0,44 0,7424 0,0005 208 1,03 0,7428 0,0005 500 2,07 0,7431 0,0005 1016
392 0,37 0,4198 0,0031 95 0,73 0,4212 0,0009 191 1,82 0,4218 0,0005 480 3,59 0,4220 0,0003 953
23 0,05 0,6781 0,0090 102 0,07 0,6831 0,0050 203 0,15 0,6853 0,0007 504 0,28 0,6856 0,0005 1007

122 0,15 0,6919 0,0027 106 0,27 0,6933 0,0011 213 0,66 0,6939 0,0006 535 1,30 0,6942 0,0004 1072

Tabela 2: Dados do teste (b)
Teste (b) - hs:1.0, he:0.1: maxPlo:500

MaxIter: 1 MaxIter: 2 MaxIter: 5 MaxIter: 10
n t(s) α D.P.(α) f(x) t(s) α D.P.(α) f(x) t(s) α D.P.(α) f(x) t(s) α D.P.(α) f(x)

212 0,36 0,7423 0,0006 105 0,70 0,7424 0,0005 210 1,73 0,7429 0,0005 523 3,42 0,7433 0,0004 1042
392 0,65 0,4213 0,0014 102 1,28 0,4218 0,0004 203 3,19 0,4221 0,0003 508 6,30 0,4222 0,0002 1012
23 0,06 0,6797 0,0078 104 0,11 0,6833 0,0053 209 0,25 0,6854 0,0005 525 0,47 0,6857 0,0003 1032

122 0,24 0,6926 0,0024 111 0,46 0,6936 0,0010 223 1,12 0,6941 0,0004 560 2,22 0,6943 0,0004 1113

seguramente para a solução global, ou em suas proximidades, e não há divergência de respostas (o que pode
acontecer em métodos heurísticos).

Analisando os dados nas tabelas correspondentes, pode-se observar, como é esperado, que quanto maior o
número de iterações – critério de parada maxIt – maior é o grau de confiabilidade da resposta (menor o desvio
padrão), maior a média da solução α e, como consequência negativa, maior o tempo de execução.

O parâmetro plo interfere diretamente no tempo de execução do método; no entanto, aumentando seu va-
lor, nem sempre corresponde ao ganho em confiabilidade ou em média da resposta α. Isso pode ser observado
comparando-se os dados apresentados nas tabelas, com o parâmetro plo = 500 x plo = 1000, os valores do desvio
padrão são os mesmos para as duas variações de teste (salvo a quantidade de casas decimais especificadas = 103).
O ganho na média final α é observado apenas na quarta casa decimal, não representando um aumento significativo
na resposta.

O teste (d) avalia a influência do parâmetro he no tempo e na confiabilidade da resposta, aumentando a
densidade da grade de discretização do domínio com he = 0.01. É possível observar que esse teste apresentou um
melhor resultado (maior média α) para três dos quatro polígonos testados, com uma confiabilidade (desvio padrão
relativamente baixo) boa. Isso indica que o parâmetro he interage diretamente na qualidade da resposta e com um
he elevado pode-se usar um número baixo de iterações (numIt=2), nivelando o tempo gasto de processamento.

Os dados apresentados comprovam a eficácia do C-Grasp. Apesar disso, um método simples e totalmente
aleatório é introduzido na próxima subseção em comparativo ao C-Grasp. Esse método deve comprovar a qua-
lidade do C-Grasp quanto ao uso do tempo de processamento, demonstrando que mesmo sendo randômico a
meta-heurística C-Grasp converge para uma solução global, utilizando eficazmente o tempo desprendido na sua
execução.

4.3 Comparando o C-Grasp com um método aleatório

Em comparativo ao método C-Grasp utilizado para este trabalho, fizemos a implementação de um método
completamente aleatório. Esse método gera, a cada iteração, três valores aleatórios para os parâmetros xc, yc, θ e,
gulosamente, armazena o maior valor de α resultante da função objetivo cada vez que essa é avaliada. Utilizou-se
como critério de parada o número máximo de avaliações à função objetivo maxAvaliações = 350, sendo esse valor

Tabela 3: Dados do teste (c)
Teste (c ) - hs:1.0, he:0.1: maxPlo:1000

MaxIter: 1 MaxIter: 2 MaxIter: 5 MaxIter: 10
n t(s) α D.P.(α) f(x) t(s) α D.P.(α) f(x) t(s) α D.P.(α) f(x) t(s) α D.P.(α) f(x)

212 0,50 0,7422 0,0005 104 1,00 0,7426 0,0006 208 2,45 0,7430 0,0005 518 4,96 0,7433 0,0004 1046
392 1,02 0,4215 0,0013 107 2,00 0,4219 0,0004 214 4,91 0,4222 0,0003 523 9,83 0,4224 0,0002 1049
23 0,09 0,6786 0,0084 107 0,15 0,6836 0,0050 209 0,35 0,6853 0,0017 523 0,69 0,6857 0,0003 1061

122 0,35 0,6927 0,0023 113 0,68 0,6937 0,0011 225 1,62 0,6942 0,0004 556 3,28 0,6944 0,0004 1122

Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, v. 4, n. 1, p. 61-70, mar. 2012 68



Tabela 4: Dados do teste (d)
Teste (d) - hs:1.0, he:0.01, maxPlo:100

MaxIter: 2
Pol n t(s) α D.P.(α) f(x)

pol1 212 1,24 0,7446 0,0001 326
pol2 392 1,93 0,4226 0,0005 304
pol3 23 0,17 0,6842 0,0054 318
pol4 122 0,72 0,6957 0,0002 336

a média (nas 100 execuções anteriores) de avaliações da função objetivo – necessário no teste (d) para que o C-
Grasp alcance o fim de sua iteração. A Tabela 5 traz os resultados do método aleatório implementado, utilizando
para as colunas a mesma nomenclatura das tabelas anteriores.

Tabela 5: Dados do teste com o algoritmo randômico
Teste randômico

maxAvaliações: 350
Pol n t(s) α D.P.(α) f(x)

pol1 212 0,47 0,6781 0,0140 350
pol2 392 0,70 0,3804 0,0269 350
pol3 23 0,07 0,6256 0,0048 350
pol4 122 0,27 0,6243 0,0102 350

O algoritmo randômico realiza a tarefa em tempo consideravelmente menor. No entanto, o valor médio de
α é bem menor que o valor atingido pelo C-Grasp, se comparado à qualquer um dos testes. Além disso, o desvio
padrão do algoritmo aleatório é, também, relativamente maior que o valor obtido pelo C-Grasp, demonstrando a
instabilidade do método completamente aleatório. Nesse sentido, pela análise dos dados gerados por esse algoritmo
simples, é possível contrastar os dados com os obtidos pelos C-GRASP e concluir que esse método faz uso de suas
técnicas, não apenas se utiliza de soluções totalmente aleatórias.

5 Considerações finais e trabalhos futuros

Neste trabalho apresentou-se a implementação de um algoritmo heurístico baseado no método C-GRASP
[1] como solução ao problema de encontrar a maior elipse, com excentricidade prescrita, inscrita no interior de um
dado polígono não convexo. Por meio deste estudo de caso mediu-se a potencialidade do C-Grasp e comparou-se
também o seu desempenho com um método totalmente aleatório. Os dados apresentados demonstram a potenciali-
dade desse método e sua eficácia na resolução do problema, pois o método convergiu seguramente para o máximo
global, em todos os testes efetuados em um tempo satisfatório.

Almeja-se como trabalho futuro otimizar o tempo gasto no algoritmo atual implementado e contrastar os
resultados obtidos com a meta-heurística C-Grasp com outros métodos de otimização global, tais como algoritmo
genético, Hook and Jeeves [3], e avaliar qual o melhor método para solucionar esse problema. Por fim, sendo o
C-Grasp a melhor alternativa para solucionar o problema, pretende-se implementar um algoritmo para encontrar o
maior elipsoide num poliedro não convexo, utilizando-se desse método para o software Otimizador 3D-Gemas em
comparativo à atual versão que utiliza algoritmos genéticos.

6 Agradecimentos

Agradecimento à Fapergs pelo apoio ao projeto 3D Gemas-II por meio do edital Fapergs 003/2009 ARD,
com vigência até fev. 2011, prorrogado até jul. 2011.

Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, v. 4, n. 1, p. 61-70, mar. 2012 69



7 *

Referências

[1] HIRSCH, M. J. et al. Speeding up Continuous GRASP. European Journal of Operational Research. v. 205,
p. 507-521, 2010.

[2] HIRSCH, M. J. et al. Global optimization by continuous GRASP. Optimization Letters, 2006.

[3] BAZARRA M.; SHERALI, H.; Shetty, C. Nonlinear programming, theory and algorithms. Third Edition,
Toronto: John-Wiley. 1993.

[4] BRUSSO, M. J. et al. Tecnologia 3D Gemas: otimização do aproveitamento de gemas coradas digitalizadas
tridimensionalmente. In: Tecnologias para o setor de gemas, joias e mineração. Porto Alegre: IGEO/UFRGS,
2010, p. 40-52. 2010.

[5] FIOREST, M. B. Algoritmos genéticos na otimização da lapidação de gemas coradas. Trabalho de conclusão
de curso - Instituto de Ciências Exatas e da Terra. Universidade de Passo Fundo, 2010.

[6] WAGNER, R. (2009) Mersenne Twister Random Number Generator. Disponível em: <http://pastebin.com/
J92wAxXV>. Acesso em: 5 jun. 2011.

Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, v. 4, n. 1, p. 61-70, mar. 2012 70

http://pastebin.com/J92wAxXV
http://pastebin.com/J92wAxXV
Carlos Holbig
Stamp


	Introdução
	Formulação Matemática do problema
	Problema de otimização
	Estratégia computacional para calcular a função objetivo
	Função penalizadora

	Método C-Grasp
	Funcionamento do C-Grasp
	Fase de construção
	Fase de busca local

	Resultados experimentais
	Ambiente de testes
	Resultados numéricos
	Comparando o C-Grasp com um método aleatório

	Considerações finais e trabalhos futuros
	Agradecimentos
	*

