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Resumo: Este trabalho apresenta um algoritmo heuristico, baseado no Continuous Grasp, que
busca encontrar a maior elipse, de excentricidade prescrita, inscrita no interior de um poligono nao
convexo e um estudo de caso da eficiéncia desta abordagem. Primeiramente, descreve-se o método
Continuous Grasp e a formulacdo matemética do problema de otimizagdo global. Apds, é descrito
o algoritmo implementado. Por fim, relata-se os resultados obtidos através de uma avaliagdo experi-
mental.

Palavras-chave: Continuos Grasp. Otimizagdo. Poligono ndo convexo.

Abstract:  This paper presents a heuristic algorithm based on Continuous Grasp to finding the
largest ellipse, with prescribed eccentricity, inscribed in a non-convex polygon and a case study of
the efficiency of this approach. We describe Continuous Grasp, present a mathematical formulation
of the global optimization problem and report the results of an experimental evaluation.

Keywords: Continuous Grasp. Optimization. Non-convex polygon.

1 Introducio

Problemas de otimizacdo global buscam encontrar o0 mdximo ou o minimo de uma fun¢do tipicamente
multimodal sobre um dominio discreto ou continuo [1]. Por definicdo, um problema de otimizacdo global visa
determinar o0 mdximo, ou o minimo, global z* € S C R™ tal que f(x*) > f(z),Vx € S, sendo S uma regido de
Rref:S—R.

O projeto 3D-Gemas estuda, entre outros problemas, o de maximizar o aproveitamento volumétrico de
gemas de pedras preciosas utilizadas para lapidacdo. Como exemplo, pode-se citar o software Otimizador 3D
Gemas, ferramenta computacional integrante da tecnologia 3D Gemas [4], com o objetivo de encontrar para cada
gema, digitalizada tridimensionalmente, qual o modelo virtual de lapidacdo e o posicionamento do mesmo que
resulte no maior aproveitamento volumétrico destas.

Recentemente, Hirsch et al. (2006), propuseram a meta-heuristica Continuous Grasp (C-Grasp) para so-
lucionar problemas continuos de otimizagdo global. O C-Grasp gera solucdes, repetidamente, utilizando um algo-
ritmo guloso construtivo, aplicando a essas solu¢des uma busca local estocdstica visando encontrar solu¢des de boa
qualidade. Uma vantagem desse método € que nao sdo necessarias informagdes da derivada da fun¢@o objetivo.
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Figura 1: Exemplo de uma instancia (azul) do problema e da solug@o 6tima.

Atualmente, o software Otimizador 3D Gemas usa algoritmos genéticos como procedimento principal de
otimizagdo. Este trabalho tem como objetivo avaliar a meta-heuristica C-Grasp como método alternativo. Para
isso, foi avaliado o algoritmo proposto em [1], em um estudo de caso. O problema selecionado busca encontrar a
elipse de maior drea, com excentricidade prescrita, inscrita no interior de um poligono arbitrario. Esse problema é
uma versdo bidimensional de otimizagdo solucionado pelo software otimizador 3D Gemas, servindo, entdo, como
bom pardmetro de estudo para avaliar o C-Grasp.

No que concerne a organizagdo do trabalho, na se¢do seguinte apresentamos a defini¢do e formulacao mate-
mitica do problema proposto. Na se¢do 3 o método C-Grasp é descrito. Na se¢do 4 os resultados computacionais
sdo discutidos e, por fim, na secdo 5 sdo aferidas as consideracdes finais sobre este trabalho.

2 Formulacao Matematica do problema

Dados os pontos (z1,y1), (2,Y2), - - - (Tn,Yn) de um poligono P no plano, nosso objetivo é encontrar
a maior elipse com excentricidade prescrita contida no interior de P. Sendo a excentricidade da elipse fixa uma
restri¢do do nosso problema [4], e sabendo que a elipse possui semieixos maior e menor denotados por ag, bg. A
maior elipse contida na drea determinada por esse poligono é definida por quatro parametros a serem identificados:
escala «, coordenadas do centro da elipse x., y. e angulo de giro 6.

A Figura 1 exemplifica o problema apresentado. O contorno representa o poligono P e a elipse representa
uma instancia de solucdo obtida através do C-Grasp.

2.1 Problema de otimizacao

Sendo a elipse formada por parimetros (z., y., ) e sendo « a escala sobre os semi-eixos maior e menor
da elipse (ao, bp), 0 problema de otimizacdo global tem como objetivo encontrar os pardmetros (z7,y’, 0*) que
maximizam «o(z., y., 0) sujeitos as restrigdes

S(Icaycaeaa) = {(I7y) | T =T+ aagcost,y =y, + abysing, f € [O,Q’N]} cP 9]

A restri¢do (1) garante que a elipse estd no interior do poligono P. Assim, temos estabelecido um “problema
de otimizacdo global com restricdes”. Métodos para solucdo computacional desse problema existem na literatura
[3]. Pela razdo que nossa fung@o objetivo ndo é diferencidvel, o vetor gradiente Vo(z., y., 8) em geral sequer estd
definido (mesmo se esse ndo fosse o caso, ndo é 6bvio como calculd-lo analiticamente) e, portanto, uma extensa
lista de métodos baseados no gradiente [3] ndo pode ser usada. Devemos, entdo, aplicar métodos de otimizacao
que ndo usem derivadas, mas que tenham razodvel convergéncia global, ao contrario do conhecido método de
coordenadas ciclicas ou melhoramentos deste [3]. O método Continuous Grasp [2] apresenta tais caracteristicas
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necessdrias para a resolugdo do problema, e nesse contexto serd analisado no presente trabalho. J4 a formulacio
da fung@o objetivo, que gera solugdes vidveis para este problema de otimizagdo, ¢ apresentada a seguir.

2.2 Estratégia computacional para calcular a func¢io objetivo

A fungdo objetivo modelada matematicamente para essa aplicagdo visa encontrar solucdes vidveis para o
problema de otimizaco proposto, isto é, dados os pardmetros (., y., #), sendo (2., y.) as coordenadas do centro
da elipse, 6 o angulo de giro da elipse, centrada em seu sistema de coordenadas locais, a fun¢do objetivo deve
encontrar o valor mdximo para « tal que a equagdo (1) seja satisfeita.

A Figura 2(a) traz um exemplo de uma solugéo vidvel para dados parimetros, (z., Y., #) enquanto a Figura
2(b) demonstra uma solugdo ndo viavel para o mesmo conjunto de parimetros.

15

10
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(a) Solugdo vidvel (b) Solucdo invidvel
Figura 2: Exemplo de uma solug@o vidvel e de uma solucio invidvel

A estratégia computacional adotada para avaliar a fun¢@o objetivo consiste em buscar linearmente (método
de bissec¢@o simples) na dire¢do da componente «, em um dado intervalo [/, u], onde [ é o limitante inferior e v um
limitante superior para «. A busca por bissec¢@o usa um método de penalizacdo que verifica se a elipse formada
por dados parametros, mais uma escala «, estd totalmente inscrita em um poligono P. Caso isso ndo ocorra a
solucdo € penalizada em funcdo da drea da elipse no exterior do poligono. Na Figura 3 podemos observar, ainda
para o mesmo trio de pardmetros citados acima, o comportamento da fun¢do objetivo, utilizando-se da fungao
penalizadora, para valores de « entre 0.1 e 0.6. O maximo global ocorre com o = 0.47 e para valores maiores
ocorre a penaliza¢do, como por exemplo para o« = 0.5.

O comportamento da fungdo penalizadora justifica a utilizagdo do método de bissecgdo simples na busca
unidimensional executada pela funcéo objetivo, pois esta garante que sé existe um maximo global para essa fungao
em questdo (« /2 0.47) e para qualquer valor « > 0.47 o valor da fun¢@o é negativo, ou seja, hd penalizag@o, pois
a elipse é parcialmente exterior ao poligono.

Ainda, para tornar a fungio objetivo mais explicita, exemplificaremos o método de penalizacdo formulado.

2.3 Funcao penalizadora

Conforme visto, a func¢do penalizadora atribui penalidades para um conjunto de pardmetros e mais uma
escala . Para isso, é necessdrio verificar se a elipse .S € interior a P, ou seja, se nenhum dos segmentos de P a
intercepta.

Visto que P ndo é necessariamente convexo, um modo robusto de averiguar se S € interior a P consiste
em percorrer uma lista de pontos {2}, 1;} 6timos (segundo critério de ortogonalidade), distribuidos ao longo das
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Figura 3: Grafico da funcio objetivo

arestas de P. Apds, transformamos cada um desses pontos para o sistema de coordenadas locais da elipse S. Sendo
. ~ _ . . - . .

(xj, yj) a representacio de (;, y/;), no sistema de coordenadas locais de .S, sua transformagéo se dd por meio das

equacoes

xl; = cos(0)(7; — x.) + sen(0) (Y5 — ye); )

Y, = —sen(0) (& — ) + cos(0) (7 — ye); 3)

Finalmente, o ponto (2}, y}) € exterior & fronteira da elipse canonica se e somente se

/ y
] J

Assim, se para todos os pontos 6timos a equagdo (4) for satisfeita, a elipse S € interior a P, e o valor da
funcélo penalizadora nesse caso € «. Caso contrdrio, se a elipse S possui partes exteriores a P, um valor fp de
penalizagdo € estipulado da seguinte maneira:

fp=> g(c(x;) ©)

JjEN

onde
ya

0. ©)

g(cj(zj)) = maxz(l — = _|_

Dessa forma, com a formulagio da fungéo objetivo, utilizando penalidades, pode-se, entdo, implementar o
método C-Grasp, que serd relatado a seguir.

3 Método C-Grasp

C-Grasp € uma meta-heuristica que tem como objetivo solucionar problemas continuos de otimizagao global
[1]. C-Grasp é um método multipartida que consiste, basicamente, em efetuar dois passos:
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1. uma fase de constru¢do que combina técnicas gulosas e randomizadas, para gerar solugdes iniciais custo-
eficientes;

2. uma busca local, visando melhorar as solu¢des construidas na fase anterior, enquanto um dado critério de
parada ndo for satisfeito. Geralmente se estabelece o nimero de itera¢cdes como critério. Nessa se¢@o serdo
apresentadas as principais caracteristicas desse método.

3.1 Funcionamento do C-Grasp

C-Grasp visa otimizar globalmente (minimizar ou maximizar) uma fungio objetivo f(-) com dominio de
dimensdo n em um universo representado pelos vetores [ e u. Tem-se ainda os pardmetros hg, h. , p;o, sendo que
hs, he definem, respectivamente, o inicio e o fim da densidade da grade de discretizagdo do problema, ao passo
que p;, define a por¢do da vizinhanga nas “redondezas” da solucdo atual, onde serd realizada a busca local.

C-Grasp é um procedimento multipartida, sendo executado até que um dado critério de parada seja sa-
tisfeito. Cada vez que o critério de parada ndo € satisfeito, uma nova iteracdo C-Grasp acontece, inicializando,
primeiramente, uma solugéo x através da escolha randomica em um dominio uniformemente distribuido em R™.
Apbs isso, sdo executados os procedimentos de construgdo e de busca local. Por fim, se o valor da fungéo objetivo
f(z), retornada do procedimento de busca local, for melhor que o valor da atual melhor solugdo f(z*), a melhor
solugdo f(z) e o conjunto de solugdes x sdo atualizados. Nas préximas se¢des serdo descritas, em detalhes, as
fases de construcdo e de busca local.

3.2 Fase de construcio

A fase de construg@o busca — coordenada a coordenada do vetor de solugdo =, combinando caracteristicas
gulosas, aleatérias e adaptativas —, uma melhora na solugdo atual gerada aleatoriamente no inicio do C-Grasp.
Nessa fase todas as coordenadas do vetor de solugdo z, ou seja, todos os pardmetros que se buscam encontrar, 3o
considerados livres e, conforme a solug@o for construida, essas coordenadas vao sendo fixadas. Um pseudocédigo
exemplificando a fase de construcio € apresentado na sequéncia.

Sucintamente, o0 método consiste de um lago exterior que percorre cada coordenada 7, ainda ndo fixada, do
vetor x, e executa uma busca unidimensional (/ine search) na direcdo dessa coordenada ¢, sendo que as demais
n — 1 coordenadas permanecem sem alterar seus valores atuais. Posteriormente, uma lista restrita de candidatos
LRC ¢ preenchida com as coordenadas ¢ ainda ndo fixadas. A LRC recebe, para cada coordenada, um valor de
funcao objetivo que ndo é maior do que um limite acima do menor valor de fun¢do objetivo encontrado, para todas
as coordenadas. Este limite estabelecido € um valor u, escolhido aleatoriamente entre 0 e 1, e cada coordenada ¢ s6
serd inserida na lista LRC se seu valor estiver entre o limite ;1 do intervalo da distincia, entre o maior e menor valor
de funcdo objetivo ja calculados. Explicitamente isso significa que para ;o = 0 o método ird escolher gulosamente
a coordenada com o menor valor de fungdo objetivo, e para x = 1 ird escolher alguma coordenada aleatoriamente.

Apbs, uma coordenada j da LRC € eleita randomicamente, e essa coordenada j €, entdo, fixada. Assim,
todas as coordenadas em x serdo fixadas, uma a uma, repetindo esse procedimento. Quando todas as coordenadas
estiverem fixadas, o novo conjunto solugdo z € retornado, encerrando essa fase.

3.3 Fase de busca local

O procedimento de busca local tem como objetivo melhorar a solu¢cdo = decorrente da fase de construg@o.
Para isso, verifica-se na vizinhanga de =* se existe um 2/, tal que o valor da fungdo f(2’) seja melhor que f(x*).
A busca local examina um nidmero de pontos PontosParaExaminar — por¢ao p;, da vizinhanca da solu¢io x* —
contidos em uma grade S}, que tem sua discretizacdo inicial em h e final em h.. O algoritmo a seguir apresenta
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um pseudocddigo deste procedimento.

Data: x, fun¢doObjetivo
Result: houveMelhora, x

1 coordenadasLivres« {1, 2, ..., n};

2 p < rand(0, 1);

3 usarNovamente < falso;

4 while livres # 0 do

5 gMin <+ +-o0;

6 gMax < —oo;

7 fori < 1tondo

8 if ¢ € livres then

9 if usarNovamente = falso then

10 z; < buscaLinear(z, funcaoObjetivo);
1 gi < f(x});

12 end if

13 end if

14 end for

15 LRC <+ 0;

16 Limiar <— gMin + mu - (gMax-gMin);

17 for i=1 ton do

18 if ¢ € coordenadasLivres and g; > Limiar then
19 | LRC<«LRCUJi;
20 end if
21 end for
22 7 < selecionaELementoRandomicamente(LRC);
23 if ; = z; then
24 usarNovamente = verdadeiro;
25 end if
26 else
27 xj < Zj 3
28 usarNovamente = falso;
29 houveMelhora < verdadeiro;
30 end if
31 coordenadasLivres <— coordenadasLivres \ j;
32 end while

Algoritmo 1: Pseudo-Cdédigo da fase de Construcdo do C-GRASP

Data: x, funcaoObjetivo

Result: x, houveMelhora

¥4 X;

[ f(=);

NumPontosNaGrade < >, -, -, [(u; — I;)/h] ;
PontosParaExaminar <— [p;,- NumPontosNaGrade] ;
PontosExaminados <— 0O ;

while PontosExaminados # PontosParaExaminar do
PontosExaminados <— PontosExaminados + 1;

z < selecionaElementoRandomicamente(Bp, (x*));
if | <z <wand f(x) > f* then

10 ¥ X

11 < f();

12 houveMelhora <— verdadeiro;

13 PontosExaminados < 0;

14 end if

15 end while

Algoritmo 2: Pseudo-Cdédigo da fase de Busca Local do C-GRASP

[ I 7 T R SR

Um lago externo € repetido PontosParaExaminar vezes, sendo que interno a esse lago um ponto z’ € sele-
cionado aleatoriamente em um conjunto Bj. Os pontos em By, sdo calculados por meio da proje¢do dos pontos
da grade S}, em uma hyperesfera, com raio de tamanho h, centralizada em x*. Se o ponto z’ eleito pertence ao
dominio [, u],isto é,1 < ' < w, e f(z') < f(x*), entdo, os valores de z* sdo atualizados para z’.

Por fim, a implementacao do algoritmo para o presente trabalho foi baseada no pseudocédigo do Continuous
Grasp, descrito em [1], que contém mais detalhes sobre o algoritmo.

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 4, n. 1, p. 61-70, mar. 2012 66



4 Resultados experimentais

A métrica utilizada para avaliar o método C-Grasp consistiu em aplicar o método em um conjunto de quatro
poligonos ndo convexos. Para esse conjunto de poligonos, observou-se o niimero de avaliagdes da funcgdo objetivo,
o tempo desprendido para encontrar a maior elipse, e o valor da escala « dessa elipse final. Utilizou-se diferentes
parametros para o C-Grasp. Esta sec@o apresenta os resultados obtidos para esses testes.

4.1 Ambiente de testes

Todos os testes foram executados com um Intel Core 17 CPU 2.80 GHz 8 MB cache e 12 GB de memodria,
usando o sistema operacional Ubuntu 9. O algoritmo foi implementado na linguagem de programacgdo C++ e
compilado com GNU g++ 4.4.1. Além disso, utilizou-se o algoritmo Mersenne Twister [6] para a geracdo de
numeros aleatérios, distribuidos uniformemente.

4.2 Resultados numéricos

Conforme visto no método C-Grasp, a informag@o necessita de trés parAmetros para sua execugio, hg, he,

Dio» €, além disso, necessita que seja definido um critério de parada. O parametro h, foi invariante para todos os
testes efetuados, tendo como valor h; = 1.0, e o critério de parada adotado foi o ndmero de iteracdes (maxIt).
Adicionou-se uma restricdo ao pardmetro p;,, que tem seu valor fixo em 0.7, limitando seu nimero maximo. Foram
efetuados, variando esses parametros, quatro testes:

e (a) he = 0.1, min(p,, 100)

e (b) he = 0.1, min(p;,, 500)

e (¢) he = 0.1, min(p;,, 1000)

e (d) he = 0.01, min(p;,, 100)
Para os testes (a), (b) e (c) avaliou-se também o nimero maximo de itera¢cdes max It (critério de parada), testando
com valores para maxIt: 1,2,5, 10. Para o teste (d) utilizou-se maxIt=2.

Utilizou-se ainda, para o C-Grasp, como dominio para a fungdo objetivo

Tmin S Te S Imamvonde ['Tmin; zmaz] C P7 (7)
Ymin S Ye S Ymazx onde [ymznu ymaz] - P7 (8)
0<6<2n. )

Os valores utilizados como semieixos para a elipse foram ag = 12.432 e by = 10.0, onde a representa o
semieixo maior e b o semieixo menor, sendo a excentricidade obtida pela relagdo entre esses eixos.

As tabelas a seguir demonstram os resultados obtidos, sendo esses a média de 100 execucgdes do C-Grasp
para cada teste. Estas possuem a seguinte nomenclatura: a coluna n representa a quantidade de vértices de cada
poligono; o tempo € expresso em segundos (coluna #(s)); a coluna « apresenta a média final do resultado do C-
Grasp; a coluna D.P. («) representa o desvio padrdo da populacio de testes; e a coluna f{x) traz o valor médio de
avaliagdes da fungdo objetivo. A Tabela 1 contém os dados do teste (a); a Tabela 2, do teste (b); a Tabela 3 do teste
(c), e a Tabela 4, do teste (d).

Os dados apresentados nas tabelas mostram coeréncia nos resultados, sendo que o desvio padrao para todos
os testes € relativamente baixo, e o valor final o do C-Grasp ficou com duas casas decimais exatamente iguais para
todos os testes (exceto um valor 0.4198 na Tabela 1). O que significa que o algoritmo implementado converge
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Tabela 1: Dados do teste (a)

Teste (a) - hs:1.0, he:0.1, maxPlo:100

MaxlIter: 1
t(s) a D.P(a) f(x)

Maxlter: 2
t(s) a D.P(a) f(x)

MaxlIter: 5
t(s) a D.P(a) f(x)

MaxlIter: 10
t(s) a D.P(a) f(x)

212
392

23
122

0,23 0,7414 0,0027 104
0,37 0,4198 0,0031 95
0,05 0,6781 0,0090 102
0,15 0,6919 0,0027 106

0,44 0,7424 0,0005 208
0,73 0,4212 0,0009 191
0,07 0,6831 0,0050 203
0,27 0,6933 0,0011 213

1,03 0,7428 0,0005 500
1,82 0,4218 0,0005 480
0,15 0,6853 0,0007 504
0,66 0,6939 0,0006 535

2,07 0,7431 0,0005 1016
3,59 0,4220 0,0003 953
0,28 0,6856 0,0005 1007
1,30 0,6942 0,0004 1072

Tabela 2: Dados do teste (b)

Teste (b) - hs:1.0, he:0.1: maxPlo:500

MaxlIter: 1
t(s) a D.P(a) f(x)

MaxlIter: 2
t(s) a D.P(x) f(x)

MaxlIter: 5
t(s) a D.P(a) f(x)

MaxlIter: 10
t(s) a D.P(a) f(x)

212
392

23
122

0,36 0,7423 0,0006 105
0,65 0,4213 0,0014 102
0,06 0,6797 0,0078 104
0,24 0,6926 0,0024 111

0,70 0,7424 0,0005 210
1,28 0,4218 0,0004 203
0,11 0,6833 0,0053 209
0,46 0,6936 0,0010 223

1,73 0,7429 0,0005 523
3,19 0,4221 0,0003 508
0,25 0,6854 0,0005 525
1,12 0,6941 0,0004 560

3,42 0,7433 0,0004 1042
6,30 0,4222 0,0002 1012
0,47 0,6857 0,0003 1032
2,22 0,6943 0,0004 1113

seguramente para a solucdo global, ou em suas proximidades, e ndao hd divergéncia de respostas (o que pode
acontecer em métodos heuristicos).

Analisando os dados nas tabelas correspondentes, pode-se observar, como € esperado, que quanto maior o
nimero de iteracdes — critério de parada maxIt — maior é o grau de confiabilidade da resposta (menor o desvio
padrdo), maior a média da solu¢do « e, como consequéncia negativa, maior o tempo de execucao.

O parametro p;, interfere diretamente no tempo de execu¢do do método; no entanto, aumentando seu va-
lor, nem sempre corresponde ao ganho em confiabilidade ou em média da resposta «.. Isso pode ser observado
comparando-se os dados apresentados nas tabelas, com o parametro p;, = 500 x p;, = 1000, os valores do desvio
padrio sdo os mesmos para as duas variacdes de teste (salvo a quantidade de casas decimais especificadas = 103).
O ganho na média final o € observado apenas na quarta casa decimal, ndo representando um aumento significativo
na resposta.

O teste (d) avalia a influéncia do pardmetro h. no tempo e na confiabilidade da resposta, aumentando a
densidade da grade de discretiza¢do do dominio com k. = 0.01. E possivel observar que esse teste apresentou um
melhor resultado (maior média o) para tré€s dos quatro poligonos testados, com uma confiabilidade (desvio padrao
relativamente baixo) boa. Isso indica que o pardmetro h. interage diretamente na qualidade da resposta e com um
h elevado pode-se usar um nimero baixo de iteragdes (numlit=2), nivelando o tempo gasto de processamento.

Os dados apresentados comprovam a eficicia do C-Grasp. Apesar disso, um método simples e totalmente
aleatorio € introduzido na préxima subsecdo em comparativo ao C-Grasp. Esse método deve comprovar a qua-
lidade do C-Grasp quanto ao uso do tempo de processamento, demonstrando que mesmo sendo randomico a
meta-heuristica C-Grasp converge para uma solu¢@o global, utilizando eficazmente o tempo desprendido na sua
execugao.

4.3 Comparando o C-Grasp com um método aleatério

Em comparativo ao método C-Grasp utilizado para este trabalho, fizemos a implementacdo de um método
completamente aleatdrio. Esse método gera, a cada iteracdo, trés valores aleatérios para os parimetros ., y., 0 e,
gulosamente, armazena o maior valor de « resultante da fungéo objetivo cada vez que essa é avaliada. Utilizou-se
como critério de parada o nimero maximo de avaliacdes a fung@o objetivo maxAvaliagées = 350, sendo esse valor

Tabela 3: Dados do teste (c)
Teste (c ) - hs:1.0, he:0.1: maxPlo:1000
MaxlIter: 2 MaxlIter: 5

a D.P(x) f(x)| t(s) a D.P(a) f(x)| t(s)

MaxlIter: 1
n| t(s) a D.P(a) f(x)| t(s)

MaxlIter: 10
a DP(a) f(x)

212
392

23
122

0,50 0,7422 0,0005 104
1,02 0,4215 0,0013 107
0,09 0,6786 0,0084 107
0,35 0,6927 0,0023 113

1,00 0,7426 0,0006 208
2,00 0,4219 0,0004 214
0,15 0,6836 0,0050 209
0,68 0,6937 0,0011 225

2,45 0,7430 0,0005 518
4,91 0,4222 0,0003 523
0,35 0,6853 0,0017 523
1,62 0,6942 0,0004 556

4,96 0,7433 0,0004 1046
9,83 0,4224 0,0002 1049
0,69 0,6857 0,0003 1061
3,28 0,6944 0,0004 1122
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Tabela 4: Dados do teste (d)

Teste (d) - hs:1.0, he:0.01, maxPlo:100
MaxlIter: 2

Pol n| t(s) a D.P.(a) f(x)
poll 212{1,24 0,7446 0,0001 326
pol2 392/1,93 0,4226 0,0005 304
pol3 2310,17 0,6842 0,0054 318
pol4 122(0,72 0,6957 0,0002 336

a média (nas 100 execucdes anteriores) de avaliacdes da fungdo objetivo — necessario no teste (d) para que o C-
Grasp alcance o fim de sua iteragdo. A Tabela 5 traz os resultados do método aleatério implementado, utilizando
para as colunas a mesma nomenclatura das tabelas anteriores.

Tabela 5: Dados do teste com o algoritmo randomico
Teste randomico
maxAvaliacoes: 350
Pol n| t(s) a D.P.(a) f(x)
poll 212/0,47 0,6781 0,0140 350
pol2 392/0,70 0,3804 0,0269 350
pol3 23/0,07 0,6256 0,0048 350
pol4 122/0,27 0,6243 0,0102 350

O algoritmo randémico realiza a tarefa em tempo consideravelmente menor. No entanto, o valor médio de
a € bem menor que o valor atingido pelo C-Grasp, se comparado a qualquer um dos testes. Além disso, o desvio
padrdo do algoritmo aleatério €, também, relativamente maior que o valor obtido pelo C-Grasp, demonstrando a
instabilidade do método completamente aleatério. Nesse sentido, pela andlise dos dados gerados por esse algoritmo
simples, é possivel contrastar os dados com os obtidos pelos C-GRASP e concluir que esse método faz uso de suas
técnicas, ndo apenas se utiliza de solugdes totalmente aleatorias.

5 Consideracoes finais e trabalhos futuros

Neste trabalho apresentou-se a implementacdo de um algoritmo heuristico baseado no método C-GRASP
[1] como solugdo ao problema de encontrar a maior elipse, com excentricidade prescrita, inscrita no interior de um
dado poligono ndo convexo. Por meio deste estudo de caso mediu-se a potencialidade do C-Grasp e comparou-se
também o seu desempenho com um método totalmente aleatdrio. Os dados apresentados demonstram a potenciali-
dade desse método e sua eficacia na resolugdo do problema, pois 0 método convergiu seguramente para 0 maximo
global, em todos os testes efetuados em um tempo satisfatério.

Almeja-se como trabalho futuro otimizar o tempo gasto no algoritmo atual implementado e contrastar os
resultados obtidos com a meta-heuristica C-Grasp com outros métodos de otimizagdo global, tais como algoritmo
genético, Hook and Jeeves [3], e avaliar qual o melhor método para solucionar esse problema. Por fim, sendo o
C-Grasp a melhor alternativa para solucionar o problema, pretende-se implementar um algoritmo para encontrar o
maior elipsoide num poliedro ndo convexo, utilizando-se desse método para o software Otimizador 3D-Gemas em
comparativo a atual versdo que utiliza algoritmos genéticos.
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