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Resumo: A mineragdo de dados agricolas, frequentemente, envolve o processamento de bases de
dados com poucas observagdes e alta dimensionalidade. Como a complexidade da amostra cresce
com a dimensionalidade dos dadoss esses dois fatores podem limitar a confianga nos resultados
obtidos ou produzir modelos em que hé overfitting. Uma forma de reduzir a dimensionalidade dos
dados e a complexidade da amostra é selecionar os atributos que sdo relevantes para a descri¢do do
fendomeno de interesse. Este trabalho apresenta um procedimento que combina métodos de busca e
andlise de componentes principais supervisionada e nao supervisionada para selecionar varidveis. O
procedimento remove as varidveis irrelevantes ou com pouca influéncia sobre a variagdo dos dados e
avalia o impacto da selecdo sobre tarefas de regressdo e classificacdo. Sempre que possivel, o nimero
de varidveis selecionadas é aquele que atende aos requerimentos da complexidade da amostra. O
procedimento foi testado na sele¢do de variaveis para indu¢do de modelos lineares multivariados e
redes neurais artificiais mediante uma base de dados de agricultura de precisdo. O procedimento
proposto permite uma solucdo de custo-beneficio entre a reducdo da dimensionalidade e a acurdcia

do modelo.

Palavras-chave: Anélise de componentes principais. Minerac¢do de dados. Selegdo de atributos.

Abstract:  Agricultural data mining often demands processing data bases with few observations
and high dimensionality. As sample complexity grows up with data dimensionality these factors can
constraint the confidence on obtained results as also overfitting. An approach for reducing data
dimensionality and sample complexity is to select the attributes that are relevant to describe the
phenomenon of interest. This work presents a procedure that combines search methods and super-
vised and unsupervised principal component analysis to select variables. The procedure removes
irrelevant variables or variables with small influence on data variation and evaluates the impact
of variable selection on tasks of regression and classification. Whenever possible, the number of
selected variables attends the sample complexity requirements. The procedure was tested to select
variables for the regression of multivariate linear models and artificial neural network classifiers
training on a precision agriculture data set. The proposed procedure supports the trades-off between

the dimensionality reduction and model accuracy.
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1 Introduction

Mathematical modeling is an important tool to capture the interactions among environment, soil and plants
and then to get a better understanding about the physiological processes [25]. It usually demands developing
multivariate models that relate a set of variables, describing physical and chemical features of plants and soil
involved in a study. An important step to proceed the multivariate modeling on agricultural data is selecting the
most relevant variables related to the response variable [24, 27]. A suitable variable set allows [11, 14, 12]: (i) to
discard redundant attributes or the ones that add noise to the data ; (ii) to reduce the risk of overfitting; (iii) to

reduce sample complexity; (iv) to make the model simpler; (v) to save time and resources in future data collection.

A point related with the item (iii) is that the confidence on data mining results depends on the size of sample
used to learn a pattern/function [7]. From this follows that to know how many observations a procedure needs for
inducing a model is a very important practical issue. The computer theorists named such automated learning aspect
as sample complexity [15], which establishes the smaller number of cases a learning algorithm requires to learn a
concept from data, given a prespecified error limit of its previsions.

Whereas the sample complexity grows with the data dimensionality [8], variable selection procedures could
make easier the requirements on the sample size. Basically, if the data analyst removes low relevance variables
before learning the model, it would be possible to learn a better model from a smaller sample [18]. Such approach
may be useful in domains where is common to have data sets with high dimensionality and few cases. An usual

situation in domains as agricultural, medical and biological research [19].

The principal component analysis (PCA) has been a useful tool for variable selection [17] [20] [23] [26].
However, PCA is an unsupervised procedure. That is, variable selection with PCA does not take into account the
influence of any input variable on the output one to decide if the former should be discarded or not. To overcome
this limitation the supervised principal components analysis (SPCA) proposed by Bair [1] provides an approach to
integrate supervised data in principal component analysis. The basic idea in SPCA is applying a filter to preselect
attributes that have a stronger association with the response variable and then to use PCA to remove input attributes

which are correlated between themselves.

Joliffe [9] presented two PCA based procedures for variable selection. Those methods, called B2 and B4,
do not use supervised information to execute that task. Considering it, this work presents a procedure for variable
selection that combines B2 and B4 methods with supervised PCA to select attributes for inducing regressors or
classifiers. Additionally, the proposed procedure provides information that can be used to trading-off between the
sample complexity and model accuracy. Experiments on agricultural data sets allows to evaluate the effectiveness

of the approach.

The paper is organized as follows: Section 2 presents the basic theory used in this work; Section 3 describes
the materials and methods used to perform the experiment; Section 4 presents the experimental results; Section 5

shows a discussion about the results and Section 6 presents the final remarks.

2 Background review

2.1 PCA-based variable selection

The purpose of the variable selection method is to choose the most relevant variables from a data set to

proceed data mining tasks. This approach, also called feature selection, attribute selection and dimensionality
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reduction, has been performed with a set of techniques. The PCA procedure provides support information to

implement some of them.

Principal component analysis is a procedure for dimensionality reduction of a data set with many interrela-
ted variables [11] [3]. The basic idea is to apply a linear transformation in order to highlight the shape of the data
variation. This linear transformation defines a new space where the main axes are called principal components.
The components are ordered so that the first components are related with the direction of the largest variation from
the data set. More formally, let D be a data set with multivariate observations and let Y be a matrix obtained from
D by subtracting the mean of every variable in the original data set. Here, Y is a matrix of N X d dimensions
so that N is the number of observations and d is the number of variables. Let S be the sample covariance matrix
computed from Y, A, the diagonal matrix of the eigenvalues of S, and, X, the matrix of the eigenvectors corres-
ponding to the eigenvalues in A. Furthermore, the matrices are organized so that the first elements in the diagonal

of the A matrix are the largest ones. From this follows that:
S = XAX" (D

The dimensionality reduction is obtained by removing the higher ordered components (less informative). After
this data analysis can be proceeded by observing the behavior of the data in the space defined by the first (main)
principal components. Another approach is to evaluate the contribution (load) from the original variables on the

main components and then to use some criteria to select or remove some of them.

Jolliffe [9, 10] presents two PCA-based variable selection procedures called B2 and B4. B2 and B4 proce-
dures are described in Figures 1 and 2, respectively.

Figure 1: B2 procedure

1. execute PCA over the whole data set;
2. set an eigenvalue threshold to cut the variables off; this threshold is denoted by Ag;

3. sort the principal components in ascending order by eigenvalue; let uq,...uq the ordered sequence of
components;

4. fori=1tod:

e determine the still non-associated highest loading variable X in w;;

e associate variable X with wu;;

5. remove the variables associated with those principal components which eigenvalues are less than Ag.

The main difference between B2 and B4 is that B2 rejects the variables that are strongly related with the
components that represent the smallest part of the data variation. B4, otherwise, rejects the variables which are

weakly related with the components which represent the most variation of data.

2.2 Supervised principal component analysis

The SPCA intends to concentrate the principal component analysis on input variables which have more
influence on a response variable [1]. To that, SPCA pre-selects the input variables which have more influence on

the output and then runs PCA on selected ones. The Figure 3 shows the SPCA procedure. L is a threshold on
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Figure 2: B4 procedure

1. execute PCA over the whole data set;
2. define an eigenvalue threshold (A1) to cut the variables off;

3. sort the principal components in descending order by eigenvalue; let ui,...uq the ordered sequence of
components;

4. fori =1tod:

e determine the still non-associated lowest loading variable X in wu;;

e associate variable X with wu;;

5. remove variables associated with those principal components which eigenvalues are greater than \;.

T

. . . . XTIy . . .
the regression coefficient and s is computed by the expression s; = ﬁ In this equation, X is the column
g

matrix associated with the respective attribute and s; is the standardized regression coefficient of X;.

Figure 3: SBCA procedure

1. compute the standardized regression coefficient s for each variable;

2. create a reduced matrix from D with only those variables whose absolute value of the standardized regres-
sion coefficient is greater than a threshold L (L is estimated by cross validation);

3. compute the first (or first few) principal components from the reduced data set;

4. use these principal components in a regression model to predict the outcome.

2.3 Regression and classification models

Consider a data set with N observations on a response variable Y and p predictor variables X1, Xo, ..., Xg4.

The goal of the multiple linear regression (MLR) is to determine a relationship between Y and X in the form [2]:

d
Y =fo+) BixXite @

i=1

In Equation 2, [ is the intercept, 3;, ¢ = 0..d, are the linear coefficients and ¢ is a random disturbance or

€1Tor.

Artificial neural network (ANN) is a mathematical model formed by a set of interconnected processing
units, called artificial neurons [7]. Each unit u calculates its value using an activation function that integrates
messages that the units connected to w send to it. The connections among the units are weighted. ANNs work
by getting an input signal and propagating it forward, layer by layer, until it arrives to output layer. When the
signal achieves the output layer the activation functions of its units are calculated and the results are related to the
response variable and interpreted by the user. A multilayer neural network typically has one layer of input units,

one or more intermediate layers, and one layer with output units. The ANNs weights are trained from data sets
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using specialized algorithms.

2.4 Sample complexity

In the computer learning theory, the number of examples/cases required by a learning algorithm to learn
a concept/pattern is named sample complexity [15]. In this context, the probably approximately correct (PAC)
learning framework provides results to calculate bounds on the sample complexity for a given learning task. Sum-

marily, the sample size, m, that allows an algorithm to learn a concept with probability between 0 and § having

mZ1~(4-log<2)+8-VC(H)-log(13>> 3)
€ o €

In the Inequation 3, V C' is the VC dimension of the learning problem [6]. For linear regression the VC

error between 0 and ¢ is:

dimension is given by VC(H) = d + 1, where d is the number of variables (dimensions of the data) [22]. For
neural networks, the VC dimension is defined as:

VC(H) =4q (r+1) log(e q).

In this equation, ¢ is the number of nodes in the hidden layers, r is the number of inputs for each hidden node and

e is the base of natural logarithm.

3 Materials and methods

Since this work intends to explore procedures for selecting variables on supervised data sets, particularly
with respect to the relevance of the selected variables and the reduction on sample complexity demands, expe-
riments were done with standard and supervised PCA. The data set used was obtained from an experiment on
precision agriculture carried out in Campos Novos Paulista (Brazil). The data set contains 2416 samples related to
the yield of maize (Zea mays L.) and the following physico-chemical soil attributes:

e chemical (0 — 20 cm layer): active acidity (pH) and total (H + Al); total organic matter (OM); available
phosphorus (P); exchangeable calcium (C'a), magnesium (M g) and potassium (K); sum of bases (SB =
Ca 4+ Mg + K); cation exchange capacity (CEC) in pH 7.0 (CEC = H + Al 4+ SB); base saturation

V= % %X 100); aluminum saturation (m = ﬁ).

e physical: (i) electrical conductivity (EC) in the 0 — 20 cm (surface £C') and 20 — 40 cm (subsurface EC')
layers; (ii) cone index (C'I) in the 0 — 5, 5 — 10, 10 — 15, 15 — 20, 20 — 25, 25 — 30, 30 — 35 and 35 — 40

cm layers.

The dataset was generated as described in [16]. Before processing the data outliers were removed if data
values exceed the mean plus or minus three the standard deviation [4]. Every record having at least one outlier in
a variable was cut off from the dataset. After this preprocessing, the number of cases in the dataset was reduced
from 2416 to 2138.

In next, the methods B2 and B4, proposed by [9], were applied to determine the variables that would be
used to regress the multivariate linear models (MLR) and to the train neural networks. The aim was to generate

models to predict the crop yield from the input variables in the dataset (chemical and physical soil properties). The

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 7, n. 1, p. 30-41, abr. 2015 34



determination coefficient (12?) was used to choose the best linear model generated by each procedure. The best

generated ANNs were determined by evaluating the sum of squared error (SSE).

The generated networks were multilayer perceptron [21] with one input layer, one hidden layer and one
output layer. The input layer was defined as the variables selected by B2 an B4. The number of nodes in the hidden
layers was % of the number of neurons in the input layer, with a minimum equal to 1. The output layer was set
to have just one neuron: the crop yield. The algorithm used in the learning task was Backpropagation [7] and the

number of epochs during training was 100.

In the sequence two methods for variable selection were developed. These methods, called B2+S and B4+S,
combine SPCA with B2 and B4 procedures. The Figure 4 presents a pseudocode that describes the procedures
B2+S and B4+S°.

Figure 4: Method for variable selection through supervised principal component analysis (B2+S, B4+S)

1. input a dataset D with n attributes;

2. input @ and b so that a,b € N and a > 2; these inputs represent the minimum and the maximum number
of variables to be rejected;

3. for each z from a to b do:

(a) for p going from 1 to z — 1 do:
i. remove p variables using the supervised criterion;
ii. remove ¢ = z — p variables with B2 or B4;
iii. form a group G,, with the p 4 ¢ selected (rejected) variables and form a subgroup of remaining
variables R, = D — G);
iv. build a model with the remaining varibles R,, and execute it to get the performance (R? or sum
of squared error or relative error)
v. save the performance V), into a vector V', and go to next p;

(b) Save the V), with the best performance value in V into a vector Z,,. Then, go to the next n;

4. Return vector Z with the best selections and analyze them to decide what the best subset of variables Z,,
has provided the more accurate model.

As previously, the B2+S and B4+S procedures were applied to select variables for the linear regression
and neural network training. Once again, the task was to generate models to predict the crop yield from the input
variables. The neural network topology was constrained as described in the first test. As before, linear and ANN

performances were evaluated by R? and SSE results, respectively.

The data set was split, many times, in training data (66% of the cases in the original data set) and validation
data (33% of the cases). At all, each test was repeated several times on 35 different randomly generated training
and evaluation sets. The overall result of each procedure was computed as the mean and the standard deviation of
R? and SSE scores. We consider to remove up to 15 variables from the original data. The sample complexity was

estimated assuming € = 0.1 and § = 0.05.

5Note that these methods select at least two variables.
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4 Results

The experiments were carried out aiming to compare the influence of the selection criteria on the predictive
performance of the generated classifiers and regressors. The results are presented in the Tables 1 and 2. The
first column of the Table 1 indicates the number of selected attributes, columns two to five present the mean and
standard deviation of determination coefficient of MLR learned from attributes selected with B2, B4, B2 + .S and
B4 + S, respectively. The last column shows the sample complexity (m). Table 2 has a similar structure except

that columns two to five reports the means and variance of sum of squared error of ANNSs learned in each test set.

Table 1: Experimental results for MLR - R?
#Attr. B2 B4 B2+ S B4+ S
Selected m o m o m o m o m
18 0.7062 | 0.0218 | 0.7047 | 0.0206 | 0.7097 | 0.0172 | 0.7059 | 0.0236 | 3277
17 0.7105 | 0.0184 | 0.7129 | 0.0198 | 0.7131 | 0.0178 | 0.7128 | 0.0191 | 3108
16 0.7095 | 0.0222 | 0.7048 | 0.0169 | 0.7209 | 0.0193 | 0.7194 | 0.0135 | 2939
15 0.7109 | 0.0205 | 0.7042 | 0.0215 | 0.7277 | 0.0145 | 0.7202 | 0.0125 | 2770
14 0.6964 | 0.0228 | 0.7031 | 0.0204 | 0.7278 | 0.0157 | 0.7268 | 0.0151 | 2601
13 0.7018 | 0.0218 | 0.6956 | 0.0197 | 0.7214 | 0.0119 | 0.7220 | 0.0130 | 2432
12 0.7009 | 0.0203 | 0.7032 | 0.0206 | 0.7235 | 0.0111 | 0.7234 | 0.0105 | 2263
11 0.6740 | 0.0248 | 0.6712 | 0.0159 | 0.7237 | 0.0115 | 0.7128 | 0.0125 | 2093
10 0.6553 | 0.0229 | 0.6743 | 0.0258 | 0.7126 | 0.0123 | 0.7048 | 0.0120 | 1924
9 0.6538 | 0.0229 | 0.6576 | 0.0232 | 0.6936 | 0.0110 | 0.6910 | 0.0156 | 1755
8 0.6488 | 0.0236 | 0.6513 | 0.0197 | 0.6880 | 0.0120 | 0.6867 | 0.0141 | 1586
7 0.6511 | 0.0252 | 0.6623 | 0.0230 | 0.6837 | 0.0112 | 0.6816 | 0.0099 | 1417
6
5

0.6443 | 0.0268 | 0.6397 | 0.0178 | 0.6846 | 0.0129 | 0.6762 | 0.0086 | 1248
0.6291 | 0.0290 | 0.5826 | 0.0278 | 0.6713 | 0.0137 | 0.6728 | 0.0164 | 1079

Table 2: Experimental results for ANN Classifier - SSE
#Attr. B2 B4 B2+ S B4+ S
Sel. I o n o n o I o m
18 132.4737 | 22.0656 | 135.8639 | 22.6306 | 130.7489 | 23.3395 | 128.0359 | 23.4387 | 17652
17 134.1064 | 28.3094 | 144.1744 | 35.8705 | 115.2205 | 18.1805 | 119.9280 | 15.7663 | 16637
16 127.3671 | 23.6653 | 123.4054 | 229159 | 1129119 | 18.0349 | 117.1445 | 14.0980 | 15792
15 130.6060 | 29.9840 | 126.7183 | 27.3079 | 108.7788 | 15.2239 | 109.3643 | 13.2144 | 14777
14 132.1723 | 35.5059 | 144.5409 | 38.7460 | 108.3647 | 12.4868 | 102.8849 | 13.7427 | 13932
13 141.8383 | 22.8159 | 119.0600 | 20.2282 | 100.0727 | 10.4200 | 108.2721 | 13.2380 | 6998
12 134.5904 | 20.0038 | 129.3881 | 18.5590 | 98.1271 12.2075 | 106.5018 | 8.1089 6490
11 117.4640 | 12.9698 | 122.1069 | 10.3275 | 111.0897 | 10.0081 | 115.0733 | 9.2617 5983
10 117.1820 | 9.1407 | 107.7079 | 10.7350 | 111.2271 | 7.9370 | 104.4065 | 9.2708 5476
9 113.0290 | 9.2985 105.1911 | 8.6089 | 110.0339 | 10.1347 | 110.3219 | 7.9812 4968
114.5403 | 11.8241 | 106.6504 | 8.0707 | 109.0685 | 6.7065 115.1356 | 9.1634 4461
108.6058 | 10.9559 | 107.9545 | 12.3594 | 110.3832 | 7.2711 | 121.2551 | 7.6308 4123
116.5220 | 12.1823 | 110.1580 | 10.2396 | 109.7526 | 6.4882 | 123.0404 | 8.0108 1079
157.6165 | 16.2754 | 168.4776 | 15.6080 | 127.5329 | 7.3648 | 117.7466 | 8.4202 910

| O\ | oo

Variable selection using B2+S and B4+S improved the performance of MLR learning. This conclusion is
supported by observing that, in Table 1, the mean of the determination coefficient of regressors generated by B2+S
and B4+S selection was higher than those generated with B2 and B4 (except in one case). Probably these better
results were achieved because supervised procedure discards attributes which are irrelevant for prediction before
applying PCA to select the variables that have more influence on uncorrelated principal components. That is, even

a variable contributing to data variation can be discarded if it has a low correlation with the output variable.

Furthermore, the results indicate that variable selection can provide a criteria to deal with tradeoffs decisi-
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ons between sample complexity requirements and maximization of accuracy score (or reversely, minimization of
error based scores) when learning from small datasets. Table 1 shows that the sample complexity exigencies (m)
decrease as less variables as selected. Particularly, the sample size demand is reached by the MLR models with
five and six variables. The better mean for R? was obtained by models with six variables selected by B2+S. In this
learning configuration the PAC learning theory specifies that the sample data must have 1248 records. Since the
training database has 2416 cases, it satisfies the PAC learning set (¢ = 0.1 and 6 = 0.05). Additionally, it must
be observed that the supervised selection procedure allowed to induce a model that attends the sample complexity

constraints with a not so large decline in the determination score (R? ~ 0.684).

The results of tests made with neural networks indicated that the supervised selection procedure contributed
to generate better classifiers in contrast to those obtained only by applying B2 and B4. In particular, the results also
showed that B2 + S variable selector also allowed to build ANNs with five or six input variables. These networks

showed a small decline of performance and a model structure requiring a sample size of 1079 cases.

5 Discussion

B2+S and B4+S procedures reduces data dimensionality by applying a sequential search to remove irre-
levant variables. The search procedure explores supervised information (standardized correlation coefficient) and
principal component analysis combined with classifier/regressor performance to decide about attribute removal.
The main advantage of this approach is to make possible to evaluate how much the use of a smaller set of attributes

downsizes the requirements on sample size and fullfils the machine learning expectations.

The attributes selected by B2+S and B4+S procedures preserved the most of the variation from data and
influence on crop yield. It positively has impacted on reducing the computational effort when proceeding the
regression or classification. The heuristic of B2+S and B4+S procedures favors the removal of bad regressors and

correlated attributes providing a strategy o trade off between dimensionality reduction and model precision.

When intending select relevant variables for linear regression and to attend PAC learning requirements, the
results showed that B2+S and B4+S performed better than B2 and B4. It can be more easily viewed in the figures 5
and 6 - for models with five or six variables. In those figures it is possible to observe that the supervised PCA scores
are superior to PCA scores. The difference between the results comes from the fact that SPCA selects the variables
which retains the most of the variance of the original data and have higher influence on the output variable. The
performance of models derived from supervised procedures was significantly better than those generated with
unsupervised ones - 5% of significance for paired T test. For neural networks the results are mixed. However,

supervised PCA criteria obtained the best result for models with less attributes.

Krzanowski [13], Jollife [9] and King ef al [12] also used PCA and sequential search to execute variable
selection. In those works the efficacy of the selection process was measured by proceeding a Procrustes analysis
to determine how much of the variation in original data was preserved by selected attributes. King et al [12] also
used a similarity score that summarizes the correlation matrix between principal components computed from the
original and reduced data. Those works do not consider the effect of variable selection in tasks as classification
and regression. In contrast, the procedures presented here use the performance of machine learning process as the

main score to quantify the effectiveness of the supervised/unsupervised strategies applied in variable selection.

The sequential search strategy employed by the proposed procedure can demand a considerable computatio-

nal [5]. Such framework could be unsuitable for variable selection in large highly dimensional data sets. However,
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Figure 5: Results of experiments with B2 (blue), B4 (red), B2+S (green) and B4+S (black) to variable selection
for regression

Coefficient of determinatiion

0.5 1 | 1 | 1
- 10 15 20

# of sclected variables

the proposed procedure could be sped up by using a local search strategy as hill-climbing with multiple re-starts

[21]. In such implementation it is necessary to consider the trade off between learning performance and speed.

6 Conclusions

This work presented a procedure that combines supervised PCA and Joliffe’s B2 and B4 procedures to select
variables. The proposed procedure is compared with the original B2 and B4 methods considering two factors: the
model quality and the sample complexity demands. The experiments show that, in general, the performance of
B2+S and B4+S procedures was higher than B2 and B4 performance for selecting variables to proceed linear
regression and neural network classification on a agricultural dataset. The experiments also allow to argue that,
usually, the use of PCA based selection methods to reduct data dimension and sample complexity exigencies

produces better regressors and classifiers when they are combined with supervised information.

When considering the application domain, that reducing the sample complexity requirements is an impor-
tant issue when applying multivariate methods to analyze agricultura data sets because in many situations they
have not many cases. The proposed procedure can contribute to extend the range of multivariate data analysis in

agricultural research by applying dimensionality reduction.

In future, we intend to extend this work in two ways. Firstly, by developing procedures that allow to
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Figure 6: Results of experiments with B2 (blue), B4 (red), B2+S (green) and B4+S (black) to variable selection

for regression

140

120

incorporate prior knowledge. Secondly, by evaluating the use of heuristic search methods instead of a sequential

one.
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