Gaspra - software for astronomical image processing in
high performance computing clusters

Fibio Andrijauskas !
André Leon Sampaio Gradvohl !

Resumo: H4 uma enorme quantidade de informagdo gerada por telescépios como imagens as-
trondmicas. Portanto, software e equipamentos podem processar essas imagens para encontrar
novos fendmenos e obter novos conhecimentos sobre o espaco. Considerando a necessidade de um
rapido processamento dessas imagens, apresentamos um software para processamento de imagens
astrondmicas em clusters de computacao de alto desempenho, que utilizam sistemas de memoria
compartilhada e distribuida, chamado Gaspra. Projetamos o Gaspra para processamento em lote
de grandes conjuntos de imagens astrondmicas, permitindo aos pesquisadores criar workflows cien-
tificos para obter novos conhecimentos a partir desses conjuntos de dados de imagens do espaco.
Experimentos com Gaspra mostram um aumento de velocidade de 3,5 vezes para processar uma
Unica imagem em cinco nés de processamento, suportando, cada nd, 64 threads distintos.

Palavras-chave: Imagens astrondmicas. Processamento de imagens. Processamento de alto
desempenho.

Abstract: There is a huge amount of information generated by telescopes as astronomical im-
ages. Therefore, software and equipment could process these images to find new phenomena and
obtain new knowledge about the space. Considering the need of rapid processing of those images,
we present a software for astronomical image processing in high-performance computing clusters,
which use shared and distributed memory systems, called Gaspra. We designed Gaspra to batch pro-
cess large sets of astronomical images, allowing researchers to create scientific workflows to obtain
new knowledge from these astronomy imagery data sets. Experiments with Gaspra show a 3.5-
fold speedup to process a single image in five processing nodes, each node supporting 64 different
threads.

Keywords: Astronomical images. Image processing. High-performance computing.

1 Introduction

The volume of information generated as astronomical images is constantly growing. The National Aeronau-
tics and Space Administration (NASA), the National Laboratory for Astrophysics and other space agencies have
plans for missions to gather space images, despite other active projects, which are still producing images from
outer space. This huge volume of visual information should receive scientific attention. Due to several techniques
that can improve, segment and analyze these images, we can obtain more information and knowledge from them.

As the amount of generated data increases, automatic processes become necessary to verify the relevance
of certain information sets. The goal is to determine whether those images should be stored or not, since we must
invest on large storage systems wisely.

On the other hand, techniques for image processing and analysis require large processing time. If we multi-
ply that time by the number and size of images from space, the total processing time (wall time) may be unfeasible.
Therefore, combining high-performance computing algorithms and image processing techniques, we can perform
fast analyzes and improvements in space images in shorter time, making the process feasible. Additionally, the
probability of finding phenomena (such as exploding stars or solar flares) increases with the implementation of
image operations frequently used for astronomical images.

!'School of Technology - University of Campinas. R. Paschoal Marmo, 1888 - CEP:13484-332 - Jd. Nova Itélia - Limeira-SP, Brazil
{fabio.andrijauskas@pos.ft.unicamp.br; gradvohl@ft.unicamp.br}

http://dx.doi.org/10.5335/rbca.2014.4072

Revista Brasileira de Computagdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 6, n. 2, p. 87-97, out. 2014 87

Carlos Holbig
Stamp

Carlos Holbig
Stamp

Recent research about astronomic investigation highlight the data tsunami in this field. Lawrence [1] in-
dicates that there will be a large volume of data and points the need for strategies to deal with that huge volume.
Berriman and Groom [2] and Jones et al. [3] indicate a major challenge in the treatment of such information.
They argued that the volume of stored data already surpasses one petabyte and grows about half petabyte per year.
Therefore, Astronomy needs techniques to address big data issues.

Another example that shows the growth of the astronomical amount of processed data is the Solar Dy-
namic Observatory (SDO) project from NASA. SDO produces images with 6 megapixels every 10 seconds. This
corresponds to 1.4 terabytes of information per day [4].

The InfraRed Science Archive (IRSA) at California Technology Institute is responsible to curate the science
products of NASA’s infrared and submillimeter missions, including many large-area and all-sky surveys. Missions
such as WISE, Spitzer, 2Mass, IRAS and Plank generated in 2011, about 350 terabytes of images. In 2013, the
IRSA itself has reached 700 terabytes of stored images and this number grows exponentially, as depicted in Figure
1.

Figure 1: The amount of data stored in IRSA from 2006 to 2013

800 - | | 1
IRSA general I

700 = e
600 —

500 -

400 — R
300 = .
200 -

L0 — v -
o, mm mm N .

2006 2007 2008 2009 2010 2011 2012 2013
Years

Data holding (TB)

Considering those aspects, we present Gaspra as a software developed for retrieving, processing, and dis-
playing relevant information from astronomical images. Gaspra produces images files in Portable Network Graph-
ics (PNG) format or files that the World Wide Telescope (WWT) can display. WWT is a Web 2.0 visualization
software environment, which brings together imagery from the world’s ground- and space-based telescopes for
universe exploration [5].

Gaspra runs on high-performance computing (HPC) hybrid architecture, i.e. an architecture with shared
and distributed memory systems [6]. Therefore, Gaspra focus on the e-science petascale Astronomy era, since it
merges HPC with Astronomy. Incidentally, Gaspra is an S-type asteroid that orbits very close to the inner edge of
the solar system asteroid belt.

1.1 Related work

There are other software to process astronomical images, such as MaxIm DL, PixInsight, ImagesPlus,
AIP4Win, Nebulosity?2, Iris, Astroart, Registax, AstroStack 3, K3 DS9 and Image Reduction and Analysis Facility
(IRAF). These software contain a collection of algorithms for image processing and analysis. However, not all of
them work on multicore architectures and none of them uses hybrid architectures. For this reason, these software
cannot produce on a large scale, i.e. they cannot handle a long series of astronomical images in batch.

In turn, Powell [7] reports a processing strategy that divides images into tiles to increase efficiency and

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 6, n. 2, p. 87-97, out. 2014 88

scalability. Nevertheless, this strategy does not use hybrid systems.

Another interesting software is Montage [8], which allows the construction of mosaics of space imagery.
Montage has similar features comparing with the Gaspra, including the use of high-performance processing with
shared memory systems. Still, Montage does not use hybrid architectures, because it does not work on shared
memory systems.

SkyQuery software, in other hand, consists of a federate database for astronomical data [9]. This federate
database integrates several databases with information access features similar to Gaspra. Yet, SkyQuery does
not integrates the techniques of image processing, event detection and hybrid memory systems. Thus, Gaspra
distinguishes it by the integration of astronomical images processing in batch and high-performance computing.
This feature allows researchers to automate the process by creating a scientific workflow to process astronomical
images, and free them to work into high-level scientific tasks.

Gaspra has other features: it stores the processing time of the filters for better tuning of computational pro-
cessing power (number of processing cores and processing nodes) and generates performance charts. Moreover,
Gaspra send notices and processed data to web servers, and retrieves the most recent images from Global Oscilla-
tion Network Group (GONG - a community-based program to conduct a detailed study of solar internal structure
and dynamics using helioseismology). Gaspra also reports position, size and area of detected solar flares.

Additionally, to present Gaspra, we organize this paper as follows: Section 2 presents the architecture of
Gaspra software, including its modules and their integration; Section 3 shows how to use Gaspra and reports some
results using it; and Section 4 presents the conclusion and future directions.

2 The Gaspra software

At a glance, the Gaspra software has six components designed to retrieve, process and display the informa-
tion concisely and rapidly. The retrieval phase access information in a standardized and secure way. The image
treatment phase improves the quality of image and extracts relevant information. The preview phase, in turn,
provides means for user visualization of information with artifacts to display such data.

2.1 Software architecture

Figure 2 depicts the architecture of the Gaspra software that has five modules implemented as follows.

The file system device (Figure 2-A) consists of a high storage capacity, low latency, and high transmission
rate using file types adherent to the nature of the data. It is necessary to use an image format that supports the
richness and variation of astronomical images. The format used is the Flexible Image Transport System (FITS)
[10], which is a specific image format recommended by NASA and International Astronomical Union to store
astronomical images. Thus, all images stored on the device are in FITS format.

However, to standardize access, avoid concurrency problems and maximize the speed on fetching the im-
ages, the Multithreaded Indexer (Figure 2-B) will catalog these using the database (Figure 2-C). After indexing,
the web server can access them (Figure 2-D).

We can access images manually or by software. An example of access by software is the ScriptGenerator
on Figure 2-E. The ScriptGenerator retrieves images through the web server to filter, segment or perform other
operation on FITS files using the Image Processor (Figure 2-F). To run these operations, ScriptGenerator auto-
matically writes a job script, which runs on a computer cluster with a queue system (e.g. IBM Load Leveler or
Portable Batch System) or even in a small cluster with the Message Passing Interface (MPI) library installed on.
The ScriptGenerator also triggers the indexing module or generates the files to publish at WWT. Furthermore, it
sends the images to the WWT conversion (Figure 2-G), which, in turn, makes image conversion, enabling the
image display at WWT.

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 6, n. 2, p. 87-97, out. 2014 89

Figure 2: Gaspra software architecture. A-Astronomy images file system. B-Multithread indexer. C-Database.
D-Web server for images. E-Script Generator. F-Image processor. G-WWT conversion

FITS FITS FITS
file file file

OIED
FITS FITS FITS Thread Thread
file flle fle | p——o—"""" 1

O O
FITS FITS FITS Thread Thread
file file file

B - Multithread indexer C - Database

A - Astronomical image
file system

Y

getimage.php | Retrieveimage Script generator Thread Thread | | Thread Thread | [Thread Thread Thread Thread
OO0l oo o |0 9
D) O Thread Thread | | Thread Thread | | Thread Thread Thread Thread
| h Threads Node Node Node Node
querylmage.php Job submission WWT conversion
D - Web server for images E - ScriptGenerator F - Image processor G - WWT conveter

2.2 Multithread indexer

The Multithread Indexer consists in a pool of threads that extracts FITS files headers, analyzes them, makes
necessary conversions, saves the information in the database and, at last, copies the images to the destination
directory. It uses modules Astronomy images file system and Multithread indexer (Figs. 2-A and 2-B) to produce
indexing.

These cataloging processes of images access the FITS files using the cfitsio library. After opening a
file, it reads the header, which has much of the image’s information, such as location and date, bits per pixel and
others [11].

One of the most important data is the image position. We should standardize these data to provide access
information for the coordinate system. The standardization process consists in conversion of all Right Ascension
(RA) positions in decimal hours and Declination (DEC) in degrees, following conversions described in [12].

However, since the amount of data is too big, it is necessary to make the process as fast as possible. Then,
the indexer uses a set of threads and a set of connections to use the full computing power available to minimize the
time of indexing.

This subsystem uses the OpenMP library to produce the multiple threads of indexing. Each thread maintains
a connection to the database. Thus, there is a one-to-one relationship between thread and connections. This
relationship increases the demands for the database system and network connections.

2.3 Web server

The web server acts as a gateway to retrieve images. Apache Web PHP and MySQL database handle
the requests for images. The service is based on the standards of the International Virtual Observatory Alliance,
specifically in the Simple Image Access Specification [13].

This server receives HTTP requests (named GET requests) where the variables are dynamic defined. In
other words, when we inform a variable in the uniform resource locator address, the server does the searches
based on the names and values of the variable transmitted. Thus, if the Indexing Service of the images adds more
information, there is no need to change the method get Image (from HTTP requests).

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 6, n. 2, p. 87-97, out. 2014 90

For instance, consider the request as the URL http://url.net/SIAP/getImage.php?naxis1=568. Then the sys-
tem searches an image in the database that has axis 1 with 568 points. In addition to this dynamic way, the system
accepts requests informed as RA and DEC positions or image size.

2.4 The ScriptGenerator

The Script Generator has several roles, such as recovers images through web server; generates a script
configuring how many threads and processes should be used in the cluster to process the images; submits the job to
cluster queue system; prepares images for to be displayed on WWT; and triggers the module for image indexing.
Figure 2-D depicts these six tasks.

The image retrieval phase is done by calling the wget program. When the user retrieves a set of predefined
files or a set of images, the system generates a script for each image to be processed.

After the creation of scripts, the cluster queue system receives the scripts and the images are processed.
At this point, one can choose which algorithm to processes the images. On image processing phase, one could
see the image in PNG format or send them to conversion and subsequent display in WWT. We use the Python
programming language to program this module. Thus, a researcher can change or create scripts the way he or she
desires.

2.5 Image processor

The module that processes images uses a hybrid system, which has shared and distributed memory systems.
Figure 3 shows the diagram for this module.

Figure 3: Parallel processing image module

Read images and l Analyze image ' Domain

execution parameters header decom position

Processing node

Processing node Processing node Processing node

v___

r———

Image
reconstruction

}- Save Image

Given the size of the image and the respective volumes of data, it is important to use high-performance
computing methods to reduce the overall processing time. Therefore, we use techniques for parallel programming
hybrid systems, which are a combination of shared and distributed memory architectures. We use OpenMP for
shared memory and MPI for distributed memory [14].

In a shared memory scenario, we divide the image into segments to apply filters and other processes. There-
fore, we divide the image in latitudinal segments of equal length, and we send each one of these segments to the
corresponding MPI process. We also send a small area of intersection to the MPI processes to provide information

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 6, n. 2, p. 87-97, out. 2014 91

http://url.net/SIAP/getImage.php?naxis1= 568

for algorithms that use neighbor pixels for processing.

Figure 3 shows a diagram depicting the parallel application. In the first step, the application reads the image
and some parameters for execution. After that, the application analyzes the image header to define the strategy
used in domain decomposition for the image.

Then, the system splits the image and sends each segment to corresponding processes using non-blocking
MPI_Isend. In turn, each OpenMP thread computes a segment. We parallelized the main loop, which iterates
on image segments, using the OpenMP #pragma omp parallel annotation. In addition, other OpenMP
annotations are used in algorithms to filter the brightest areas in images, such as #pragma omp parallel
for firstprivate and #pragma omp critical.

The program receives each segment using non-blocking MPI_Irecv. Before the final reconstruct, the
system uses a MPI_Barrier to synchronize each MPI process. Finally, the system saves it into the disk.

The ScriptGenerator is able to process images using the following algorithms in Gaspra: Binarization;
Detection of the brightest areas of the image; Diffusion filter; Edge detection; Inversion of pixels; Median filter;
Morphological filters (erosion and dilation in gray and binary images); Solar flares detection; Solar flares detection
using morphological filters; and Transformation in pixel scale (logarithmic, exponential and normalization).

2.6 Converting to the WWT

The conversion system uses several threads to process the images and prepare them to upload to WWT.
A thread searches in a directory for predefined images and passes the job to other thread for conversion. This
conversion creates a specific file for WWT (wtml file) and constructs the tiles. We used the basic functions of
libpng (functions to read files, define pixels and save it to disk) to produce these tiles. Thus, this parallelization has
a smaller granularity, allowing better use of computing power.

Figure 4 shows the procedure to create an image to display on the WWT. The first step in gray shade
“Load file list” is processed in parallel, which means that different files are loaded simultaneously, and each image
conversion is treated by one independent thread.

The “Decompress FITS file”” and “Get data header” steps gather image information for the “Header analysis
and segmentation” phase. After that, the “Convert RA and DEC to decimal hour” converts the right ascendant and
the declination from the header image to decimal hour, if needed.

The “Create directory structure” assemblies the directory structure as used by the WWT. An essential step
is the “Resize and create tiles”, which segments and resizes the image tiles used on WWT. The last steps “Create
WTML” and “Save images and WTML” creates the wtml files with the tiles recovered from the disk.

Figure 4: Procedure to create an image for display on WWT

o Decompress Header
Load file list FITS file Get data header -— analysis and segmentation
Convert RA and DEC . ;
to decimal hour Create directory Resize :’:md create — Create WTML
struture tiles

Y

Save images and WTML

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 6, n. 2, p. 87-97, out. 2014 92

3 Using Gaspra

The main interface of the system is the ScriptGenerator module, which integrates and triggers all system
modules. We design the system to facilitate the integration and automation of indexing, retrieval and visualization.

There are three options to run the ScriptGenerator. The first option is to run the indexer from the command
line, like “. /sg -1 <dir> <#threads>". Where the <dir> is the directory in which the images to be
indexed are stored and <#threads> is the number of threads that will perform this process.

Another option is to transform images into the wtml files. To run this option, the user should replace the
option —1i by —w in the former command line. The result will be automatically stored at the WWT.

In addition to performing these actions independently, it is possible to create a Python script to automate
the experiments, as the following code shows. The file should be stored at the “src/experiments” directory.

| import os, time
2 import BDClass, GeraArquivoClass, ParLLClass, ParAstroClass, UtilClass

3

4 class Experimento:

5 id = "sun" # It must exist a single experiment with the following id

6 def roda(self): # Definition of the Experiment

7 util = UtilClass.Util # Util class to help the image processing
8 astro = ParAstroClass.ParAstro() # Parameters for image processing

9 11 = ParLLClass.ParLL() # Parameters to specify how to process the image
10

11 # Class to generate files that control the exec. of image processing

12 genFiles = GenFilesClass.GenFile ()

13 while True:

14 util.getNSO(self) # Recover image from GONG

15 astro.qtyOpenMP = 12 # Process using 12 openmp threads

16 1l.node = 1 # Number of node to be used

17 1ll.total_tasks = 2; # Number of MPI process

18 astro.debug = 0 # Show debug info. during image proces. (0=no)?
19 astro.imgInput = ’../file.fits’ # Input image from GONG

20 astro.filter = ’s’ # Apply Sobel filter

21 astro.outputPng = ’../outputFits/filamentos.png’ # Output PNG file name
22 astro.outputFits = ’../outputFits/borda.fits’ # Output FITS file name
23

24 # Generate the file for LoadLeveler and execute in the cluster

25 genFiles.genFileLL (astro,1ll,nome, 1)

26 astro.filtro = ’'1le’ # Apply Logarithmic scale filter
27 astro.outputPng = ’../outputFits/escala.png’ # Output PNG file name
28 astro.outputFits = ’../outputFits/escala.fits’ # Output FITS file name
29

30 # Generate the file for LoadLeveler and execute in the cluster

31 genFiles.genFileLL (astro,1l,nome, 1)

32 astro.filter = "d’ # Filaments detection
33 astro.outputPng = ’../outputFits/filamento.png’ # Output PNG file name
34 astro.outputFits = ’../outputFits/filamento.fits’# Output FITS file name
35

36 # Generate the file for LoadLeveler and execute in the cluster

37 genFiles.genFileLL (astro,1l,nome, 1)

38 util.sendGA (self) # Send all png files to web server display

39 util.getRunData (self) # Recover execution time

40 util.createGraph (self) # Create time execution graph

41 util.sendEndEmail (self) # Send by email the execution time graph

42 util.genWWT (self,’../outputFits/filamento.fits’) # Create the WWT files

The user can specify the number of MPI process and the quantity of OpenMP threads per process as de-
scribed in lines 17 and 15, respectively. With this simple change, the system can process the images with more or

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 6, n. 2, p. 87-97, out. 2014 93

less threads and processes. This feature together with the ability to generate performance plots can help researchers
to tune how much of the computer cluster should be used to maximize the performance. Using instructions as
util.getNSO and util.get Img along Multithread Indexer provides access to large volume of information
and methods to process this data.

3.1 Results

To present some results using Gaspra, we show two examples. For the first example, consider the image
in Figure 5-A with 4095 x 4095 pixels. We use a computer cluster with five computing nodes, each one with
four 3.0 GHz Power 755 processors, 12 GB memory, with Infiniband interconnection. This configuration is able
to instantiate up to 32 simultaneous threads per processor, i.e. 8 cores per processor and 4 threads per core. The
cluster has the following software installed: AIX 6.1 operating system, IBM XL C 1.11 compiler, MPI 2.1 and
OpenMP 3.0 libraries, Python 2.6.7 interpreter and CFITSIO 3.29 library.

Using Gaspra, we call an algorithm that divides the image into areas and, using a median filter, displays
only the segments of this area with greater brightness. In Figure 5-B, it is possible to identify the areas with the
brightest spots of the image. These spots are the brightest considering a 32-bit floating point quantization. We
compress the scale for displaying only.

Figure 5: Test image used to detect the areas with the brightest spots (A) and brightest spots detected in the
image (B)

(B)

The chart depicted in Figure 6 shows the processing time for the brightest areas detection filter applied in an
image. With hybrid processing, we used the ScriptGenerator to produce many configurations of threads, processes
and number of processing nodes. We found that the best combination to minimize the processing time is to use 5
processing nodes (maximum number of nodes in our cluster), with 8 MPI processes per node and 64 threads for
each MPI process. The graph in Figure 6 shows the processing time of sets with 2, 4, 8, growing exponentially up
to 256 OpenMP threads for each MPI process.

For the second example, consider the image in Figure 7-A with 1024 x 1024 pixels and 32 bits per pixel,
which depicts the solar activity. We acquired this image from the SDO on May 10, 2014, when a solar flare
occurred with higher intensity than usual. Fig 7-B demonstrates the result of the image segmentation technique
adapted from [15] and included in Gaspra to detect this sort of event. The black dots within the square in Figure
7-B indicate the occurrence of solar flares. The higher density of these points indicates greater intensity of the
solar flares and consequently greater probability of coronal mass ejection.

Figure 8 shows the chart used to help the performance analysis. The experiment uses 8 MPI processes per
node. Each MPI process uses 2, 4, 8 and growing exponentially up to 256 OpenMP threads. In this case, different
from what we might expect, the best configuration for time uses 8 MPI processes, with 2 OpenMP threads for each

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 6, n. 2, p. 87-97, out. 2014 94

Figure 6: Time to process an astronomic image (Figure 5-A) using Gaspra, with 8 MPI processes in each
processing node and a set of 2, 4, 8, 16, 32, 64, 128 and 256 OpenMP threads for each MPI process

[p+]
O
©
©
=]
=
o
+

B0

>@OMII¥X

80 -

Time (Seconds)

4.73885

Figure 7: Sun image from SDO (A). Detection of solar flare in Sun image from SDO (B)

(A) (B)

MPI process.

We analyzed the performance results for filament and brightest spots detection using two outputs. One
output considers the speedup, while the other considers the system’s throughput. The first output is useful for
astronomical events that should be detected as soon as possible (solar storms, for instance).

However, other events or astronomical analysis could use more time to process more images. For that sort
of event, we consider the system’s throughput. For example, consider the filament detection in solar images using
five nodes: the system processes one image within nearly 2 seconds. Nevertheless, processing five images (one per
node) take approximately 2.5 seconds.

Gaspra generates performance plots, which let researchers to choose the best configuration for each sce-

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 6, n. 2, p. 87-97, out. 2014 95

Figure 8: Time to detect solar flares in the image of Figure 7-A using Gaspra, with 8 MPI processes in each
processing node and a set of 2, 4, 8, 16, 32, 64, 128 and 256 OpenMP threads for each MPI process

2 OpenMP

4 OpenMP

8 OpenMP
16 OpenMP
32 OpenMP
64 OpenMP
128 OpenMP
256 OpenMP

FOOEOXX+

Time (Seconds)

Node

nario. We achieved better speedup-folds using Gaspra with other filters and sequences in [14].

4 Conclusions

The Gaspra software is able to process large volumes of information, such as images from GONG observing
sites. In all modules of the software, there is a focus on the processing performance. Therefore, the system tries
to use full computing capacity to reduce the processing time. Some experiments show a speedup of 3.52-fold to
process one single image in five different processing nodes, each node supporting 64 independent threads.

When we design Gaspra, we were concerned with its use in less computing performance infrastructures. We
tried to ensure that even research groups with limited computer resources could realize their experiments. For this
reason, Gaspra enables users generate surveys from the filters performance and object detections to use computing
power in the most profitable way. After the execution of tasks, Gaspra does the surveys and enters performance
data into a specific database. Afterwards, Gaspra executes new tasks in the shortest time possible, depending on
the available infrastructure.

The main software interface consists of a program that guarantees their independence, agility and process
automation. Jobs run automatically as specified in Python scripts. Thus, a researcher can input parameters such as
a spatial position, make several runs and views, i. e., they can define a scientific workflow to process astronomical
imagery and obtain new and relevant information about astronomy phenomena.

We designed the processing module to run in a simple computer with multicore processors or even in a
more complex computing cluster with hybrid memory systems. In our future works, we plan to create a graphic
interface to specify and select experiments, and we are considering incorporate manycore hardware to achieve even
better performance.

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 6, n. 2, p. 87-97, out. 2014 96

Acknowledgment

The authors gratefully acknowledge the financial support from CAPES for providing the grants for research;
FAPESP (projects 2010/50646-6 and 2011/00861-0) for providing computing and research facilities. In addition,
the authors acknowledge the Big Bear Solar Observatory at New Jersey Institute of Technology and the InfraRed
Science Archive (IRSA) at California Technology Institute for the images; and Laboratoire d’Informatique de
Paris 6 for hosting the second author in his postdoctoral researches.

References

[1] LAWRENCE, A. .astronomy: Networked astronomy and the new media. In: . Bristol, England: Canopus
Academic, 2009. cap. Drowning in Data: VO to the rescue, p. 197.

[2] BERRIMAN, G. B.; GROOM, S. L. How will astronomy archives survive the data tsunami? Communications
of the ACM, ACM, New York, NY, USA, v. 54, n. 12, p. 52-56, dez. 2011. ISSN 0001-0782.

[3] JONES, D. et al. Big data challenges for large radio arrays. In: IEEE Aerospace Conference. Big Sky, MT:
[s.n.], 2012. p. 1-6. ISSN 1095-323X.

[4] MUELLER, D. et al. JHelioviewer: Visualizing large sets of solar images using JPEG 2000. Computing in
Science Engineering, v. 11, n. 5, p. 38—47, Sept 2009. ISSN 1521-9615.

[5] GOODMAN, A. et al. WorldWide Telescope in Research and Education. In: BALLESTER, P.; EGRET, D.;
LORENTE, N. P. F. (Ed.). Astronomical Data Analysis Software and Systems XXI. San Francisco: [s.n.], 2012.
(Astronomical Society of the Pacific Conference Series, 1), p. 267.

[6] RABENSEIFNER, R.; HAGER, G.; JOST, G. Hybrid MPI/OpenMP parallel programming on clusters of
multi-core SMP Nodes. In: 17th Euromicro International Conference on Parallel, Distributed, and Network-
based Processing. Weimar: [s.n.], 2009. p. 427-436.

[7] POWELL, M.; ROSSI, R.; SHAMS, K. A Scalable Image Processing Framework for gigapixel Mars and other
celestial body images. In: IEEE Aerospace Conference. Big Sky, MT: [s.n.], 2010. p. 1 —11. ISSN 1095-323X.

[8] JACOB,J. C. et al. Montage: a grid portal and software toolkit for science-grade astronomical image mosaick-
ing. Int. J. Computational Science and Engineering., v. 2009, p. 73—87, maio 2010.

[9] BUDAVARI, T.; DOBOS, L.; SZALAY, A. S. Skyquery: Federating astronomy archives. Computing in Science
Engineering, Institute of Electrical & Electronics Engineers (IEEE), v. 15, n. 3, p. 12-20, May 2013. ISSN
1521-9615.

[10] WELLS, D. C.; GREISEN, E. W.; HARTEN, R. H. FITS: a flexible image transport system. Astronomy &
Astrophysics supplement series, v. 44, p. 363, 1981.

[11] BERRY, R.; BURNELL, J. The Handbook of Astronomical Image Processing. 2nd. ed. EUA: Willmann-Bell,
Inc, 2005.

[12] DUFFETT-SMITH, P.; ZWART, J. Practical astronomy with your calculator or spreadsheet. 4th revised ed.
ed. England: Cambridge University Press, 2011. ISBN 978-0-521-14654-8/pbk; 978-0-511-85561-0/ebook.

[13] TODY, D.; PLANTE, R.; HARRISON, P. IVOA Recommendation: Simple Image Access Specification Ver-
sion 1.0. Washington, USA, 2011.

[14] ANDRIJAUSKAS, F.; GRADVOHL, A. L. S. Solar filaments detection using parallel programming in hybrid
architectures. In: Proceedings of the 2012 workshop on High-Performance Computing for Astronomy Date. New
York, NY, USA: ACM, 2012. p. 41-48. ISBN 978-1-4503-1338-4.

[15] GAO, J.; WANG, H.; ZHOU, M. Development of an automatic filament disappearance detection system.
Solar Physics, Kluwer Academic Publishers, v. 205, p. 93—103, 2002. ISSN 0038-0938.

Revista Brasileira de Computacao Aplicada (ISSN 2176-6649), Passo Fundo, v. 6, n. 2, p. 87-97, out. 2014 97

	Introduction
	Related work

	The Gaspra software
	Software architecture
	Multithread indexer
	Web server
	The ScriptGenerator
	Image processor
	Converting to the WWT

	Using Gaspra
	Results

	Conclusions

