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Resumo: Este trabalho apresenta uma abordagem para o problema da estimação de componentes
harmônicas presente nos sistemas elétricos de potência, utilizando algoritmos evolutivos. Os dados
de referência para o trabalho foram obtidos por meio do software Alternative Transients Program
(ATP). Foram aplicados o algoritmo genético compacto e o algoritmo genético simples para estimar
os parâmetros a fim de obter uma onda o mais próximo possível da onda fornecida pelo ATP. Os
resultados obtidos com os algoritmos evolutivos citados são comparados entre si, em diversos cená-
rios, e com os valores obtidos com a onda de referência gerada pelo software ATP. As comparações
foram feitas com o intuito de evidenciar qual algoritmo resolve o problema exposto para uma apli-
cação dispondo de recursos computacionais limitados. Com base nos resultados, verificou-se que o
algoritmo genético compacto resolve de forma satisfatória o problema proposto, sendo o CGA mais
indicado que o SGA em situações que necessitam de um menor esforço computacional.

Palavras-chave: Algoritmo genético compacto. Algoritmo genético simples. Harmônicas. Siste-
mas elétricos de potência.

Abstract: The following work presents an approach for the harmonic components estimation pro-
blem, present on electrical power systems, by making use of evolutionary algorithms. The referential
data was obtained by the alternative transients program (ATP) software. Compact and simple ge-
netic algorithms where then applied to estimate the parameters to generate a wave as similar as
possible to the one provided by the ATP software. The results yielded by the aforementioned evolu-
tionary algorithms were then compared with one another in a number of scenarios, and using the
values obtained by the wave of reference generated by the ATP software. The comparisons were
used to seek evidence of which algorithm solved the problem, in a setting with limited availability
of computational resources. Based on the generated results, it has been found that the Compact
Genetic Algorithm satisfactorily solves the proposed problem, and it is the most indicated method,
for when less computational effort is required.

Keywords: Compact genetic algorithm. Electrical power systems. Harmonics. Simple genetic
algorithm.

1 Introdução

Idealmente, os sistemas elétricos de potência (SEPs) devem apresentar uma rede simétrica [1] e operar com
forma de onda da tensão e corrente o mais próximo possível de uma senoide, contendo magnitude constante, bem
como a frequência de 60Hz±0.5Hz. Porém, essa situação nem sempre é encontrada, o que implica na ocorrência
de distúrbios na qualidade da energia elétrica (QEE) [2]. Os problemas na QEE estão associados a qualquer
distúrbio manifestado na tensão, corrente ou desvio de frequência que resulte em falha ou operação indevida dos
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equipamentos do consumidor [3]. Os estudos relacionados à QEE estão se tornando cada vez mais importantes,
devido às características das cargas e dos SEPs atuais, que são mais sensíveis aos distúrbios.

Dentre os vários distúrbios da QEE, existe uma classe denominada “distorção harmônica”. As distorções
harmônicas são distorções periódicas nas formas de onda das tensões e correntes, caracterizadas pela presença
de frequências que são múltiplas inteiras da frequência nominal do sistema (no caso do Brasil 60 Hz), geralmente
associadas à operação contínua de cargas com características não lineares [4]. Com o desenvolvimento tecnológico
e da eletrônica de potência, esses distúrbios se tornam cada vez mais relevantes, devido a equipamentos sensíveis
presentes nos SEPs e que exigem uma energia elétrica de melhor qualidade [5]. Alguns dos problemas causados
pelas distorções harmônicas são: aquecimento excessivo de dispositivos, disparo de dispositivos de proteção[6],
ressonância, tensão elevada entre neutro e terra, má operação de dispositivos e equipamentos e parada de processos
produtivos [7].

Cabe ressaltar que as cargas não lineares, cada vez mais presentes nos SEPs, são as mais sensíveis aos
distúrbios e também são as que mais provocam distorções harmônicas no SEP [8]. Portanto, a tendência é que a
presença das harmônicas nos SEPs se agrave e aumente as perdas econômicas provocadas pela má QEE. Por esses
motivos, várias pesquisas buscam métodos que melhorem a precisão e a velocidade dos algoritmos aplicados na
estimação das componentes harmônicas. Dentre as diversas técnicas utilizadas, destacam-se os métodos baseados
na transformada discreta de fourier (TDF)[9], transformada rápida de fourier (FFT) [10], no ajuste dos mínimos
quadrados (LS) [11], na transformada wavelet [12] e no filtro de Kalman [13]. Os métodos anteriormente menci-
onados podem ser afetados pelo componente de corrente contínua (CCC) [10], no entanto métodos baseados em
inteligência computacional, tais como redes neurais artificiais (ANN) [14] [15], otimização por enxame de partí-
culas (Particle Swarm Optimization - PSO) [16] e Algoritmos Genéticos [17] são pouco influenciados pelo CCC
[16] e apresentam bons resultados para a estimação das componentes harmônicas.

Considerando que as propostas que empregam algoritmos evolutivos (AE) para a estimação de componentes
harmônicas apresentam bons resultados, neste trabalho investigou-se a aplicabilidade e a eficiência do algoritmo
genético compacto (CGA - compact genetic algorithm) [18]. Para efeitos de validação, foi realizada uma com-
paração entre o CGA e o SGA (simple genetic algorithm) [19][20]. Ambos os algoritmos foram utilizados para
estimação dos valores eficazes e dos ângulos de fase das componentes harmônicas de sinais elétricos de tensão.
Com a utilização do CGA, é possível obter os benefícios da utilização de AE para estimação de componentes
harmônicas, contudo, utilizando um algoritmo de implementação simples, que exige poucos recursos computacio-
nais [21].

Este artigo está dividido em mais seis seções, além desta introdução. A segunda seção contém a descrição
do problema, na qual são apresentados os modelos matemáticos empregados. A terceira seção aborda os algoritmos
utilizados, enfatizando descrições relativas ao algoritmo genético simples e ao algoritmo genético compacto. A
quarta seção descreve a metodologia empregada para a obtenção das componentes harmônicas por meio de dois
modelos matemáticos distintos. A quinta seção expõe os resultados obtidos por meio dos algoritmos empregados.
A sexta seção contém discussões sobre os resultados. Por fim, a sétima seção apresenta as conclusões obtidas.

2 Descrição do problema

Uma onda pode ser representada matematicamente de várias maneiras. Uma delas é pela série de Fourier,
na qual é possível expressar uma onda em termos de sua componente contínua, fundamental e de suas componentes
harmônicas. Cada componente harmônica da onda possui sua própria amplitude e um ângulo de fase, além de uma
frequência, que deve ser múltipla inteira da frequência fundamental [3]. Assim, uma forma de onda em função do
tempo pode ser descrita pela Eq.(1) [16, 22]:

x(t) = x0e
−λt +

N∑
i=1

[Ac,icos(iω0t+ θc,i) +As,i sin(iω0t+ θs,i)] + e(t), (1)

na qual x(t) é o valor resultante da soma da componente contínua com as componentes harmônicas, x0 é a com-
ponente contínua do sinal e λ, uma constante de tempo. Ac,i, As,i, θc,i e θs,i são as amplitudes cosseno e seno e
os ângulos de fase das i-ésimas harmônicas, respectivamente; ω0 é a frequência angular; t é o tempo que ocorreu
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a amostra; i é a ordem da harmônica; e N é o número de harmônicas presentes no sinal utilizado para representar
x(t).

Para realizar a estimação dos parâmetros, a onda é discretizada em n amostras, com uma diferença constante
de tempo entre as amostras. Sendo assim, para cada tempo tn do domínio da função haverá um valor correspon-
dente x(tn). Dessa forma, a Eq.(1) pode ser reescrita conforme apontado pela Eq.(2):

 x(t1)
...

x(tn)

 = [M ]



x0
Ac,1
As,1

...
Ac,n
As,n

+


e(t1)
e(t2)

...
e(tn)

 , (2)

na qual x(t1) é o valor resultante da soma das componentes harmônicas para o tempo t1, [M] é a matriz representada
na Eq. (3) e e(tn) é o erro associado a cada instante de tempo tn [22].

[M ] =


e−λt1 cos(ω0t1 + θc,1) sin(ω0t1 + θc,1) · · · cos(Nω0tk + θc,N ) sin(Nω0tk + θc,N )

e−λt2 cos(ω0t2 + θc,1) sin(ω0t2 + θc,1) · · · cos(Nω0t2 + θc,N ) sin(Nω0t2 + θc,N )
...

...
...

...
...

...
e−λtm cos(ω0tm + θc,1) sin(ω0tm + θc,1) · · · cos(Nω0tm + θc,N ) sin(Nω0tm + θc,N )

 . (3)

Outra forma de representar a onda é por meio do somatório das formas de onda senoidais de cada compo-
nente harmônica individualmente [23], como mostrado na Eq. (4):

x(t) =

N∑
i=1

As,i sin(iω0t+ θs,i), (4)

na qual x(t) é o valor resultante ao somar as componentes harmônicas, As,i é a amplitude seno dos i-nésimos
harmônicos, ω0 é a frequência angular, t é o tempo que durou a medida da amostra, θs,i é o ângulo de fase, i é a
ordem da harmônica e N é o número de harmônicas presentes no sinal utilizado para representar x(t).

3 Algoritmos utilizados

Nesta seção será descrito o algoritmo genético simples e o algoritmo genético compacto utilizados neste
trabalho.

3.1 Algoritmo genético simples

Os AGs são algoritmos de busca e otimização global, baseados na teoria da evolução de Darwin e na
genética. Os AGs partem do pressuposto que, em uma determinada população, os melhores indivíduos têm maiores
chances de sobrevivência e de gerarem indivíduos cada vez mais aptos [20], garantindo, desta forma, que essa
população evolua e encontre uma solução para o problema.

Conforme apresentado no pseudocódigo da Figura 1a, o algoritmo genético simples apresenta as etapas de
inicialização da população, avaliação, seleção, cruzamento e mutação.

Primeiro, há a etapa de inicialização da população, na qual todos os indivíduos são avaliados utilizando
uma função de avaliação. No processo de seleção, um número N de indivíduos é selecionado para a etapa de
cruzamento. Depois do cruzamento, os novos indivíduos gerados passam pela etapa de mutação. Em seguida, os
novos indivíduos se tornam a nova população. Enquanto o critério de parada não for satisfeito, o algoritmo irá
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executar a partir da etapa de seleção. Ao fim da execução do algoritmo, a solução será o indivíduo que obtiver a
melhor avaliação.

3.2 Algoritmo genético compacto

A própria determinação dos parâmetros necessários para o funcionamento do SGA, tais como a taxa de
cruzamento e a taxa de mutação, por si só torna-se um problema de otimização dentro de outro problema de
otimização. A predição do movimento das populações é consideravelmente difícil [24]. Em função disso, novos
tipos de algoritmos vêm sendo desenvolvidos, os algoritmos de estimação de distribuição (EDA - Estimation of
Distribution Algorithms) [24], dos quais se pode citar o CGA como um dos modelos de EDA mais simples.

O CGA é um algoritmo com eficácia semelhante à do SGA, porém, consome menos recursos computacio-
nais por representar a população por meio de um vetor de probabilidade [21], ou seja, representa a proporção da
presença de cada gene na população. Logo, por não conter uma representação física da população (apenas o vetor
de probabilidade), o CGA torna-se um algoritmo mais simples de ser implementado em comparação ao SGA, além
de consumir menos recursos computacionais. A Figura 1b mostra o pseudocódigo do CGA, considerando como
mecanismo de seleção um torneio de tamanho 2. Cabe ressaltar que o CGA não envolve a etapa de mutação, ou
seja, é um algoritmo seleto-recombinativo.

O CGA tem como primeira etapa a inicialização do vetor de probabilidade, no qual para cada posição é
atribuído o valor de 0.5, ou seja, 50% de probabilidade de gerar o número 1 para aquela posição do indivíduo.
A segunda etapa consiste na geração de dois indivíduos levando em consideração o vetor de probabilidade. Na
terceira etapa, é realizada a avaliação dos indivíduos gerados e, na quarta etapa, ocorre a verificação de qual
indivíduo obtém a melhor avaliação. Baseado na comparação entre o melhor e o pior indivíduo é realizada a
atualização do vetor probabilidade na quinta etapa. Enquanto o vetor probabilidade não convergir, o algoritmo
continua sua execução a partir da segunda etapa. Quando convergir, o algoritmo para sua execução e a solução é
obtida por meio do vetor probabilidade.

Figura 1: Pseudocódigos dos algoritmos de otimização utilizados: (a) SGA; (b) CGA.

(a) (b)

4 Metodologia utilizada

Para realizar a estimação de componentes harmônicas, foram utilizados os algoritmos CGA e SGA, ambos
empregando os dois modelos matemáticos para estimação das componentes harmônicas previamente apresentadas.
O primeiro modelo utilizando a Eq. (1) (M1) será implementado considerando as sete primeiras componentes da
série de Fourier. Assim, o algoritmo estima trinta parâmetros, sendo 28 deles dedicados à amplitude dos senos,
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cossenos e ângulos de fase, e os outros dois para a componente contínua do sinal e para a constante de tempo. Para
representar os parâmetros da série de Fourier, foram utilizados 8 bits para cada parâmetro, pois se verificou ser
suficiente para representar os valores com uma boa precisão. Um indivíduo gerado quando empregado o modelo
(M1) é representado conforme a Figura 2.

Figura 2: Representação do indivíduo segundo o modelo M1.

Quando é utilizado o modelo da Eq. (4) (M2) o algoritmo estima quatorze parâmetros, pois o M2 estima
apenas as amplitudes e fases das componentes senoidais de cada harmônica, e não a componente contínua do sinal
ou a constante de tempo. Para cada um dos sete harmônicos, tem-se uma amplitude e um ângulo de fase, e dessa
forma o indivíduo é representado de acordo com a Figura 3.

Figura 3: Representação do indivíduo segundo o modelo M2.

A mesma representação dos indivíduos adotada para cada um dos modelos (M1 eM2), foi utilizada tanto no
SGA quanto no CGA. O SGA foi implementado com a taxa de cruzamento de 75%. Como o CGA não contempla
a etapa de mutação, com o intuito de realizar uma comparação mais justa, o SGA foi considerado sem a etapa de
mutação para observar o seu processo evolutivo sem esse operador. Adotou-se 75% para a taxa de cruzamento
pois foi observado em testes que uma taxa maior de cruzamento, não apresentou melhoria nos resultados, nem
economia de recursos computacionais.

Os dados utilizados nos testes são valores de tensão obtidos por simulação de um sistema elétrico de po-
tência utilizando o software ATP [25]. As avaliações dos indivíduos foram feitas por meio da comparação entre o
sinal original e o sinal gerado a partir dos parâmetros estimados. Para tanto, foram gerados os sinais de acordo com
(1), (4) e com a onda de referência gerada pelo ATP, contendo 64 amostras por ciclo, considerando os parâmetros
estimados.

A Figura 4 ilustra a comparação entre a forma de onda de um sinal medido e a forma de onda obtida a partir
dos parâmetros estimados. É possível observar que cada amostra do sinal estimado apresenta um erro em relação
à amostra equivalente do sinal medido, logo, o erro total entre os sinais é obtido pela soma dos erros das amostras.

Figura 4: Erro entre a onda medida e a onda estimada.
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É possível observar que, quanto menor for o erro entre a forma de onda medida e a estimada, melhor a
estimação dos parâmetros. Portanto, o objetivo é minimizar o valor da função de avaliação adotada que considera
os erros entre os sinais conforme a Eq. (5):

E =

√√√√ N∑
k=1

(xmed(tk)− xest(tk))2

N
, (5)

em que xmed é o sinal medido, xest é o sinal estimado, N é o número de amostras em um ciclo e E é o valor
da função avaliação que se pretende minimizar.

Ao utilizar a representação binária para os indivíduos da população, o CGA adota critério de parada baseado
na probabilidade de cada bit do indivíduo ser 1. Logo, se em todas as posições do vetor de probabilidade a
possibilidade de ser 1 for menor que 5% ou maior que 95 % o algoritmo deverá parar. Para o SGA foi adotado
o mesmo critério. Considerando que se trabalha com a população em vez de um vetor de probabilidade, quando
a porcentagem de bits iguais a 1 atingir 5% ou 95% para o mesmo lócus de todos os indivíduos da população, o
SGA deverá parar. Cabe ressaltar que o torneio [20] foi o tipo de seleção utilizada.

Todos os testes com os sinais obtidos foram realizados com a população variando de 100 até 10.000 e com
o tamanho de torneio variando de dois a 32 indivíduos. Para cada configuração, a média das avaliações de toda
a população corresponderá ao erro médio. Cada configuração foi executada dez vezes, a fim de obter a média
dos valores de erro médio, o menor erro obtido dentre as dez execuções e o número de avaliações. O número de
avaliações para o SGA foi calculado como sendo o produto entre a média do número de gerações das dez execuções
pelo tamanho da população. Já para o CGA, foi calculada como o produto entre o tamanho do torneio e a média
do número de gerações das dez execuções.

5 Resultados obtidos

Os modelos e algoritmos propostos para a estimação de harmônicos foram testados, dispondo de valores
de tensão obtidos por meio de simulações feitas com software ATP. Diferentes parâmetros foram variados nos
algoritmos, a fim de avaliar sua influência na obtenção dos resultados. Os resultados obtidos foram comparados
considerando as diferentes configurações utilizadas nos algoritmos.

5.1 Estimação das componentes harmônicas com utilização das metodologias propostas

No intuito de avaliar o desempenho dos algoritmos e modelos propostos, foram gerados diversos sinais com
harmônicos, dispondo de um SEP simulado via software ATP. Nesta seção, será apresentada a forma de onda de
uma das situações utilizadas, e essa forma de onda será comparada com as formas de onda geradas por meio dos
harmônicos estimados com diferentes configurações dos algoritmos.

A Figura 5a apresenta as ondas geradas com os harmônicos estimados mediante utilização do modelo M1

com o emprego do SGA e do CGA. Nesse teste, os parâmetros do SGA e do CGA foram: tamanho de torneio (k)
igual a dois e tamanho de população igual a cem indivíduos. Conforme se observa na Figura 5a, com a configuração
utilizada para os AGs, o CGA apresentou uma resposta melhor para a estimação dos harmônicos, uma vez que,
com a estimação proveniente do CGA, gerou-se uma onda mais próxima da onda original simulada via ATP.

A Figura 5b apresenta as ondas obtidas mediante os harmônicos estimados com utilização do modelo M2

com o emprego do SGA e do CGA. Nesse teste, os parâmetros do SGA e do CGA foram os mesmos utilizados no
caso anteriormente apresentado. Conforme se observa na Figura 5b, com a configuração utilizada para os AGs, o
CGA novamente apresentou uma resposta melhor para a estimação dos harmônicos, uma vez que, com a estimação
proveniente do CGA, gerou-se uma onda mais próxima da onda original simulada via ATP.

Avaliando as Figuras 5a e 5b, no intuito de comparar-se o desempenho dos modelos, observa-se que o
SGA utilizando M2 obteve um resultado ligeiramente melhor do que o SGA utilizando M1. Por sua vez, o CGA
utilizando M1 obteve uma onda mais próxima da onda medida que o CGA utilizando M2.
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Figura 5: Ondas obtidas com parâmetros estimados pelos algoritmos considerando tamanho do torneio (k) igual a
2 e tamanho de população igual a 100: (a) para M1; (b) para M2.

(a) (b)

Na Figura 6a, foi utilizado o M2, novamente com aplicação do SGA e do CGA. Pode-se perceber que o
aumento do tamanho de torneio (k) de dois para oito não contribuiu com a melhoria da estimação dos parâmetros,
conforme observado pela diferença entre a onda estimada e medida. O aumento do tamanho de torneio (k) de dois
para oito permitiu uma melhoria mais visível na onda estimada pelo SGA do que pelo CGA.

Figura 6: Ondas obtidas com parâmetros estimados pelos algoritmos, adotando tamanho do torneio (k) igual a 8
para M2, considerando: (a) tamanho de população igual a 100; (b) tamanho de população igual a 500.

(a) (b)

Na Figura 6b, pode-se perceber que, com o tamanho de torneio (k) igual a 8 e o tamanho de população igual
a quinhentos, tanto o CGA como o SGA conseguiram estimar adequadamente os parâmetros, gerando, assim,
ondas próximas da onda medida. Observa-se que o aumento do tamanho da população trouxe maiores mudanças
para o SGA do que para o CGA.

Para os testes apresentados pelas Figuras 6a e 6b, observou-se que o SGA foi mais suscetível às variações na
pressão seletiva. Essa observação é válida para os demais testes realizados, conforme será discutido nas próximas
seções.

As Tabelas de 1 a 4 apresentam os parâmetros de referência utilizados para obtenção de quatro formas de
onda de tensão distintas. Nessas tabelas apresenta-se, também, um comparativo que envolve resultados obtidos,
utilizando o CGA e o SGA, ambos adotando tanto M1 quanto M2 para estimação dos harmônicos, bem como a
resposta gerada pela TDF.
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Tabela 1: Valor RMS da tensão da frequência fundamental (V1) e componentes harmônicas em termos percentuais
da fundamental para a onda 1.

Onda 1

CGA com M1 CGA com M2 SGA com M1 SGA com M2 TDF
Referência Estimada Estimada Estimada Estimada Estimada

V1 0,4225 0,4214 0,4243 0,4514 0,3965 0,4281
V2 12,52 11,87 9,80 9,95 9,09 12,06
V3 2,59 3,20 1,96 7,44 6,29 2,72
V4 4,61 5,27 4,58 14,47 4,90 4,58
V5 3,58 2,63 3,27 40,45 6,29 3,56
V6 5,25 5,17 4,58 12,52 3,50 4,65
V7 2,00 1,85 1,96 12,87 2,10 1,31

Tabela 2: Valor RMS da tensão da frequência fundamental (V1) e componentes harmônicas em termos percentuais
da fundamental para a onda 2.

Onda 2

CGA com M1 CGA com M2 SGA com M1 SGA com M2 TDF
Referência Estimada Estimada Estimada Estimada Estimada

V1 0,3373 0,3351 0,3355 0,3770 0,3300 0,3447
V2 15,79 15,91 15,70 12,94 15,97 15,48
V3 6,44 3,34 5,79 8,94 12,61 6,71
V4 8,02 7,76 10,74 7,43 7,56 8,14
V5 6,36 6,48 7,44 4,93 5,88 6,09
V6 5,33 7,55 5,79 3,50 2,52 4,74
V7 4,86 4,95 5,79 5,23 4,20 3,73

Tabela 3: Valor RMS da tensão da frequência fundamental (V1) e componentes harmônicas em termos percentuais
da fundamental para a onda 3.

Onda 3

CGA com M1 CGA com M2 SGA com M1 SGA com M2 TDF
Referência Estimada Estimada Estimada Estimada Estimada

V1 0,2921 0,2954 0,2856 0,2542 0,2856 0,2997
V2 19,99 20,65 24,27 43,78 14,56 19,91
V3 13,08 10,36 12,62 16,17 14,56 12,86
V4 8,08 8,02 2,91 28,56 8,74 7,76
V5 6,77 7,11 4,85 15,93 4,85 6,32
V6 6,53 6,74 6,80 14,36 2,91 5,56
V7 4,05 3,93 4,85 8,58 6,80 2,73
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Tabela 4: Valor RMS da tensão da frequência fundamental (V1) e componentes harmônicas em termos percentuais
da fundamental para a onda 4.

Onda 4

Onda 04 CGA com M1 CGA com M2 SGA com M1 SGA com M2 TDF
Referência Estimada Estimada Estimada Estimada Estimada

V1 0,7122 0,7096 0,7071 0,6748 0,6794 0,7124
V2 2,79 2,21 2,75 11,68 3,67 2,78
V3 2,09 2,03 1,96 4,30 5,31 2,09
V4 1,73 1,11 1,96 3,11 3,67 1,73
V5 1,57 2,06 1,96 9,93 2,86 1,57
V6 1,61 1,76 1,18 8,30 0,41 1,61
V7 2,29 2,18 1,96 1,87 2,86 2,27

Cabe comentar que os resultados reportados nas tabelas de 1 a 4 com utilização do CGA foram obtidos
considerando o tamanho da população igual a cem indivíduos e com o torneio de tamanho dois. Já os resultados,
reportados nas quatro tabelas, com utilização do SGA foram obtidos considerando o tamanho da população igual
a quinhentos indivíduos e com o torneio de tamanho 8. Ressalta-se que os valores apresentados são sempre muito
próximos aos de referência, sendo, inclusive, em muitos casos, mais próximos do que os obtidos pela TDF.

Observa-se que em algumas situações, a estimação realizada com uso da TDF foi mais precisa do que a
obtida com os demais algoritmos, contudo, em aplicações em que existam recursos computacionais abundantes,
outras configurações dos AGs podem ser empregadas, possibilitando obtenção de resultados ainda melhores que
os apresentados nas tabelas de 1 a 4.

Nas seções a seguir, discutem-se os resultados obtidos, de uma forma mais geral, analisando-se alguns
critérios de qualidade das soluções encontradas.

5.2 Observação do erro médio

O erro médio (dado pela média entre os erros de todas as soluções após uma execução do algoritmo) foi
observado com o intuito de avaliar a convergência dos algoritmos. Um erro médio baixo significa que todas as
soluções estão convergindo para a mesma região do espaço de busca, o que implica uma boa robustez do método.

Para o tamanho do torneio igual a dois, conforme a Figura 7a, o SGA e CGA utilizando M1, tiveram o
erro médio semelhante a partir do tamanho de população igual a 2 mil indivíduos, sendo que este permaneceu
praticamente constante para as execuções com populações de até 10 mil indivíduos. O CGA utilizando M2 teve
um erro médio maior que as demais configurações. Com o aumento do tamanho da população o SGA, utilizando
M1, obteve um erro médio melhor que o CGA e que o SGA quando utilizado oM2. Nesse cenário o CGA utilizando
M1 obteve o menor erro médio para todos os tamanhos de população.

Considerando o tamanho do torneio igual a 8, conforme se observa na Figura 7b, inicialmente o SGA
utilizando M1 teve erro médio superior às demais situações. Porém, com o aumento da população, o erro médio
do SGA utilizando M1 ficou próximo ao do CGA e SGA, que utilizaram M2. O CGA utilizando M1 teve o erro
médio inferior ao dos demais gráficos.

Para o tamanho do torneio igual a 32, conforme a Figura 7c, o erro médio do SGA utilizandoM1 foi superior
aos demais para todos os tamanhos de população analisados. O CGA utilizando M2 teve o erro praticamente
constante, e menor que os gráficos dos SGAs para ambas as formas da série de Fourier. O CGA com M1 teve o
menor erro do cenário analisado.

Quando se analisa o erro médio considerando a utilização do mesmo modelo com aplicação de algoritmos
distintos, percebe-se que o desempenho é bem semelhante. O mesmo vale para quando se observa a aplicação
do mesmo algoritmo aos modelos diferentes, que têm comportamento similar quanto ao erro médio. Somente na
situação em que se adotou 32 como tamanho do torneio, observou-se certa discrepância entre o comportamento
do SGA e do CGA quanto ao erro médio. O erro médio observado com o CGA foi sempre menor do que o do
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Figura 7: Comparação do erro médio obtido com utilização do CGA e do SGA considerando M2 e M1, para: (a)
tamanho do torneio igual a 2; (b) tamanho do torneio igual a 8; (c) tamanho do torneio igual a 32.

(a) (b)

(c)

SGA para os diversos tamanhos de população adotados. Como o M1 possui mais parâmetros a serem estimados, o
aumento da pressão seletiva influenciou de forma negativa a convergência do SGA.

5.3 Observação do menor erro

Foi avaliado o menor erro obtido durante cada execução do algoritmo, para se verificar em que situações os
algoritmos permitiam a obtenção das melhores respostas e com que frequência elas eram obtidas. Considerando
o tamanho do torneio igual a dois, conforme a Figura 8a, o SGA com M1 apresentou um erro com valor superior
aos demais nos menores tamanhos de população. A partir do tamanho de população igual a 2 mil, obteve-se o erro
praticamente igual ao do CGA com M1. O CGA e o SGA com M2 obtiveram erros semelhantes em quase todos
os tamanhos de população.

Para o tamanho do torneio igual a 8, conforme a Figura 8b, o erro do SGA comM2 diminuiu com o aumento
do tamanho da população e se estabilizou a partir do tamanho de população igual a 2 mil, igualando-se com o CGA
utilizando M2. O SGA com M1 tem o erro maior do que os demais a partir do tamanho de população igual a 2.100
. A partir do tamanho de população igual a 2.100, M1 utilizando o SGA apresenta erro com valor inferior ao CGA
e ao SGA com ambos utilizando M2. O CGA com M1 possui valores de erro sempre menores que os demais
casos.

Com o tamanho do torneio igual a 32, conforme a Figura 8c, o SGA com M2 apresenta o valor do erro
superior ao CGA com M2, porém, igualam-se no tamanho de população (4.300) e estabilizam=se. O SGA com
M1 tem o menor erro, maior que os demais, porém, a partir do tamanho 4.300, para alguns tamanhos de população,
seu menor erro apresenta valores inferiores ao CGA e ao SGA com M2. O CGA com M1 possui valores de menor
erro melhores que os demais casos para todos os tamanhos de população.

Com essa análise, é possível afirmar que populações com tamanhos maiores que mil indivíduos não agregam
melhorias quanto à qualidade das soluções obtidas para o problema em questão, independentemente do modelo
e do algoritmo adotados. Comparando-se os gráficos de erro médio e de menor erro, é possível concluir que as
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populações dos diversos testes realizados estão convergindo para a melhor solução, pois os gráficos de erro médio
são muito semelhantes aos de menor erro, o que implica dizer que as soluções da população estão convergindo
para regiões próximas no espaço de busca.

Figura 8: Comparação do menor erro obtido com utilização do CGA e do SGA, considerando M2 e M1, para: (a)
tamanho do torneio igual a 2; (b) tamanho do torneio igual a 8; (c) tamanho do torneio igual a 32.

5.4 Observação do número de avaliações

Por meio do número de avaliações da função objetivo, é possível avaliar o tempo de convergência dos
modelos e algoritmos adotados. Essa análise é muito importante para determinação da viabilidade do uso desses
modelos na prática.

O CGA com M1, para todos os tamanhos de torneio, obteve o maior número de avaliações até que o
algoritmo convergisse, conforme pode ser observado nas Figuras 9a, 9b e 9c.

O SGA e CGA, com M2, apresentaram os menores números de avaliações com o tamanho de torneio (k)
igual a dois, em que o SGA apresentou valores menores de que o CGA. Com o tamanho de torneio (k) igual a 8,
Figura 9b, o SGA utilizando M1, M2 e o CGA utilizando M2 apresentaram resultados semelhantes, mas o SGA
apresentou os menores valores utilizando M2. Para tamanho de torneio igual a 32, Figura 9c, o SGA utilizando os
dois modelos apresentou os menores resultados, e o CGA utilizando M2 apresentou valores menores apenas que o
CGA utilizando M1.

É possível observar que a relação entre o número de avaliações realizadas pelo CGA para o M1 e M2, à
medida que se aumenta a população, mantém-se constante independentemente do tamanho do torneio adotado.
Verifica-se, também, que o M2 sempre requer um menor número de avaliações para convergir. Além disso, cabe
ressaltar que o M1 é mais complexo e apresenta mais parâmetros, o que demanda mais tempo de computação em
cada avaliação da função objetivo.
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Figura 9: Número de avaliações obtido com utilização do CGA e do SGA, considerando M2 e M1, para: (a)
tamanho do torneio igual a 2; (b) tamanho do torneio igual a 8; (c) tamanho do torneio igual a 32.

(a) (b)

(c)

6 Discussões

Após a apresentação dos resultados e testes realizados, algumas constatações merecem ser destacadas.
Inicialmente, quanto ao erro médio com torneio de tamanho 8, observa-se que o CGA obtém resultados melhores
que o SGA, utilizando tanto o M1 como o M2.

Já para os gráficos do menor erro, considerando o mesmo tamanho de torneio, igual a oito, o CGA utilizando
o M1 apresenta um erro menor em relação ao apresentado pelo SGA em qualquer tamanho de população. Por sua
vez, o CGA utilizando o M2 apresenta resultados semelhantes aos obtidos com o SGA com ambos os modelos.

No que tange ao número de avaliações, para um tamanho de torneio igual a oito, o número de avaliações
do CGA com utilização de M2 tende a ser similar ao do SGA, independentemente se o modelo utilizado é o M1

ou o M2. Além disso, o número de avaliações do CGA com utilização de M2 tende a ser metade do número de
avaliações do CGA com utilização de M1.

Dessa forma, é possível afirmar que a utilização do M2, com populações menores que mil indivíduos e
com tamanho de torneio igual a oito, é capaz de solucionar adequadamente o problema apresentado. Contudo,
considerando a possibilidade de uma aplicação embarcada, e observando-se os valores de erros de estimação
obtidos nos testes, destaca-se que é possível a utilização do M2 com torneio de tamanho dois e população de
cem indivíduos para obtenção de resultados satisfatórios. Essa última configuração foi a adotada nos resultados
apresentados com utilização do CGA nas Tabelas de 1 a 5 e permanecerá sendo empregada em futuros estudos de
implementação embarcada em FPGA das metodologias aqui apresentadas.
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7 Conclusões

As distorções harmônicas são distorções periódicas nas formas de onda das tensões e correntes, carac-
terizadas pela presença de frequências que são múltiplas inteiras da frequência nominal do sistema, geralmente
associadas à operação contínua de cargas com características não lineares. A importância deste estudo se deve ao
fato de as harmônicas interferirem no funcionamento de equipamentos eletrônicos, até mesmo chegando a danificá-
los, portanto, esse distúrbio deve ser identificado e diagnosticado com rapidez e precisão, possibilitando a adoção
de medidas que venham a saná-lo. Nesse sentido, este artigo apresenta a aplicação do algoritmo genético simples
e do algoritmo genético compacto para a estimação de componentes harmônicas.

Os sinais utilizados nas simulações foram gerados pelo software ATP e discretizados em 64 amostras por
ciclo. As amplitudes e fases da série de Fourier nos modelos M1 e M2 são estimadas pelos algoritmos CGA e
SGA para gerar um sinal de onda contendo as distorções harmônicas. Posteriormente, é calculado o erro médio
quadrático entre cada uma das 64 amostras de ambas as ondas, comparando a onda obtida pelo uso dos algoritmos
evolutivos e a onda obtida via simulação no software ATP. Para cada tamanho de população e tamanho de torneio,
a fim de validar os resultados, os algoritmos foram executados dez vezes e obtidos os valores de: erro médio,
menor erro e número de avaliações. Os resultados encontrados permitem inferir sobre qual algoritmo apresenta
um melhor comportamento a partir dos ajustes dos parâmetros tamanho de população e tamanho do torneio.

Para saber qual algoritmo melhor se comporta diante de uma maior ou menor disponibilidade de recursos
computacionais, foram feitos testes variando o tamanho de população e o tamanho do torneio. O tamanho de popu-
lação variou entre cem e 10 mil, a fim de analisar o comportamento dos algoritmos diante de diferentes situações e
de verificar com qual tamanho de população é possível conseguir resultados viáveis, levando em consideração que
o aumento da população implica no aumento do tempo de execução do algoritmo. No procedimento de seleção,
o torneio foi realizado adotando-se tamanhos de 2, 4, 8, 16 e 32 indivíduos, para observar a influência na pressão
seletiva no algoritmo. Com os resultados encontrados, verificou-se que os dois algoritmos apresentam soluções
adequadas para o problema em questão, desde que sejam adotados um modelo e parâmetros convenientes. Importa
destacar que, quando se utiliza o tamanho de população igual a cem e tamanho de torneio igual a dois indivíduos,
o CGA passa a ter um erro inferior ao SGA para a mesma configuração. Um maior número de gerações é ne-
cessário quando se utiliza o M1 em razão de haver mais parâmetros para otimizar quando comparado com o M2.
Portanto, para situações reais que exigem um menor esforço computacional o CGA, utilizando o M2 com tamanho
do torneio igual a dois indivíduos e tamanho de população igual a cem é suficiente para a obtenção de resultados
satisfatórios.

O estudo apresentado mostrou gráficos do erro médio, do menor erro e do número de avaliações em função
do tamanho de população. Também foram apresentados gráficos comparando uma onda de referência com ondas
obtidas ao utilizar o CGA e o SGA nos modelos M1 e M2. Para o CGA, utilizando tamanho de torneio igual
a dois e tamanho de população igual a cem, a onda obtida foi mais próxima da onda de referência que o SGA,
para tamanho de torneio igual a oito e tamanho de população igual a quinhentos. Constatou-se, também, que, para
tamanho de população igual a cem e utilizando o número de avaliações tanto do CGA quanto do SGA, essa onde
fica bastante próxima. Conforme mostrado neste trabalho, o CGA apresentou resultados tão bons quanto o SGA,
porém, por utilizar menos recursos computacionais, há possibilidade de, em trabalhos futuros, aproveitar o forte
paralelismo presente no algoritmo genético para implementá-lo em um sistema embarcado.
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