
Explorando a elasticidade de nuvens IaaS para
reconfigurar dinamicamente aplicações n-camadas
Devair Dener Darolt, Felipe Rodrigo de Souza, Guilherme Piegas Koslovski 1

Resumo: Com o surgimento das nuvens computacionais dinâmicas, aspectos de gerenciamento
relacionados com provisionamento sob demanda, escalável e elástico, tornaram-se realidade para
provedores e usuários. Nesse cenário, infraestruturas virtuais são provisionadas para hospedar ser-
viços com elevado número de acessos, explorando a elasticidade oferecida pelos provedores para
adaptar os recursos computacionais e de comunicação à carga de trabalho submetida, mantendo a
qualidade do serviço hospedado. Usualmente, serviços hospedados na nuvem são decompostos em
diversas camadas, sendo cada camada individualmente configurável. Uma reconfiguração pode ser
iniciada a partir de um pico de processamento, latência elevada na resposta ao usuário final, entre
outros indicadores, variando de acordo com as necessidades da aplicação hospedada. Nesse cenário,
o presente trabalho propõe um mecanismo para reconfigurar infraestruturas virtuais elásticas, melho-
rando a relação entre tempo de resposta de uma aplicação n-camadas e o custo de provisionamento
do serviço. O algoritmo utiliza o tempo de processamento das requisições submetidas à aplicação
como limiar de elasticidade, aumentando o diminuindo o número de máquinas virtuais alocadas. A
implementação e análise da solução foi realizada com o simulador de nuvens computacionais Cloud-
Sim. A análise experimental indicou uma diminuição no custo de provisionamento combinado com
um menor tempo de resposta quando a aplicação é hospedada em uma infraestrutura elástica.

Palavras-chave: Elasticidade, CloudSim, Nuvens Computacionais, IaaS, Servidores Web

Abstract: With the advances introduced by cloud computing, the dynamic and elastic provisioning
of virtual resources have became reality for providers and users. In this scenario, virtual infrastruc-
tures are allocated to host services capable of supporting a large number of requests, exploiting the
elasticity offered by providers to adapt computing and communications resources to the application
workload, and simultaneously reducing provisioning costs. Usually, cloud services are decompo-
sed in layers, which are individually configured. In this scenario, a reconfiguration can be started
from a workload peak, delay in communication, low response time, among others, being defined
by the hosted application goal. The present work extends CloudSim, a cloud computing simula-
tor, implementing an algorithm to explore the elasticity of resources. The algorithm uses requests
time processing as a performance indicator. Experimental analysis indicated a low provisioning cost
combined with a shorter response time when the application is hosted on an elastic infrastructure.

Keywords: Elasticity, CloudSim, Cloud Computing, IaaS, Multitiered Applications

1 Introdução

O paradigma de Computação em Nuvem revolucionou o provisionamento de serviços na Internet ao permitir
um acesso ubíquo, conveniente e sob demanda a um conjunto configurável de recursos computacionais comparti-
lhados, que podem ser rapidamente provisionados e liberados com mínimo esforço gerencial [15]. Recentemente,
as nuvens computacionais estão consolidadas em várias comunidades acadêmicas, governamentais e industriais
devido às facilidades de gerenciamento que foram introduzidas, como agilidade na alocação de recursos, esca-
labilidade e elasticidade [12]. Sobretudo, as nuvens computacionais foram amplamente difundidas pelo baixo
investimento necessário para disponibilizar serviços on-line.
1Programa de Pós-Graduação em Computação Aplicada (PPGCA), Departamento de Ciência da Computação (DCC), Universidade do Estado
de Santa Catarina (UDESC), Joinville (SC) - Brasil
devairdarolt@gmail.com, feliperodrigodesouza@gmail.com, guilherme.koslovski@udesc.br

http://dx.doi.org/10.5335/rbca.v8i2.5414

Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 2



Dentre os serviços ofertados por provedores de nuvem, o presente trabalho foca em Infraestrutura como
Serviço (Infrastructure as a Service – IaaS). Este modelo trata do fornecimento dos recursos (processamento,
capacidade de armazenamento, entre outros) em sua forma fundamental, através da abstração em máquinas virtuais
(MVs) [15]. Em uma infraestrutura virtual (IV), qualquer aplicação pode ser hospedada, sendo que os requisitos
de processamento, armazenamento e comunicação são especificados pelos usuários solicitantes. Uma IV pode
hospedar sistemas distribuídos complexos, modelados em n-camadas, servindo aplicações SaaS (Software as a
Service) ou PaaS (Platform as a Service). Usualmente, as IVs que hospedam aplicações n-camadas distribuem a
carga de trabalho entre subsistemas constituintes, sendo decompostos em balanceadores de carga, servidores web e
servidores de banco de dados ou arquivos. Assim, quando uma requisição é submetida às aplicações com esse tipo
de arquitetura, os balanceadores de carga identificam quais servidores web estão aptos a receber as requisições,
considerando métricas como carga de trabalho atual (número de requisições sendo atendidas), taxa de utilização
da CPU, tráfego de rede, utilização da memória, entre outras.

A qualidade do serviço hospedado (QoS – Quality of Service) e a qualidade percebida pelo usuário final
(QoE – Quality of Experience) são métricas resultantes da configuração da IV que hospeda a aplicação [24]. Me-
lhorar a eficiência dos serviços hospedados (QoS ou QoE) é um requisito crucial para empresas e organizações
que pretendem atingir um grande público. Seguindo essa motivação, as aplicações n-camadas hospedadas em IVs
podem explorar a elasticidade para manter ou melhorar a qualidade do serviço oferecido [6]. Em IaaS, MVs podem
ser destruídas quando poucas requisições são enviadas à aplicação, diminuindo o custo necessário para manter a IV,
ou agregadas ao serviço quando houver um pico na utilização da aplicação. É latente a necessidade de estudo sobre
modelos que permitam o ajuste dinâmico dos recursos computacionais reservados para atender picos de demanda
em aplicações hospedadas. Sobretudo, os mecanismos de reconfiguração elástica devem considerar a perspectiva
do custo operacional necessário para manutenção do serviço [27]. O presente trabalho explora a elasticidade dos
recursos que compõem uma infraestrutura virtual para otimizar o desempenho de aplicações n-camadas hospe-
dadas. O mecanismo desenvolvido considera a definição de limiares para indicação da qualidade da aplicação
hospedada, representando a perspectiva do usuário do serviço. Os limiares são agnósticos à aplicação, sendo
definidos pelo usuário contratante durante o estabelecimento do acordo de nível de serviço. Quando os limiares
são ultrapassados, MVs são acrescentadas ou removidas à IV. Ainda, um parâmetro é indicado para definir o
percentual de elasticidade buscada, evitando um aumento desnecessário no custo de provisionamento.

Realizar procedimentos de análise, implementação e validação de modelos em cenários de produção induz
custos computacionais, financeiros e gerenciais. Embora gerenciadores de nuvens computacionais (e.g., OpenS-
tack, OpenNebula, Eucalyptus) disponibilizem mecanismos para provisionamento elástico, a extensão para imple-
mentação do mecanismo e a calibragem inicial dos modelos de elasticidade requerem a composição de protótipos
temporários ou a adaptação de ambientes de produção (cenários reais compartilhados por múltiplos usuários).
Ainda, protótipos permitem uma experimentação em escala reduzida do modelo. Dessa forma, para analisar a
solução proposta, diversos cenários são estudados com o simulador de nuvens computacionais CloudSim [5], em
especial a versão com suporte à rede [9]. Em suma, a opção por simulações remete ao baixo investimento necessá-
rio para simular configurações de datacenters reais, sem a necessidade de contratação de serviços em provedores
ou o desenvolvimento de protótipos. A análise experimental compreendeu três cenários envolvendo aplicações
n-camadas, variando o número de requisições submetidas ao sistema e o percentual máximo de elasticidade acor-
dado entre usuários e provedores. Os resultados indicaram a diminuição no custo de provisionamento combinado
com um menor tempo de resposta quando a aplicação é hospedada em uma infraestrutura elástica. O custo de pro-
visionamento considerado representa o número de recursos computacionais reservados durante um determinado
período de tempo. Ainda, os resultados apontam que a definição de um limite máximo para redimensionamento
elástico é salutar considerando a relação custo e tempo de resposta.

O restante deste artigo é organizado da seguinte forma: a Seção 2 descreve as diferentes formas de forneci-
mento de elasticidade, detalhando a elasticidade em aplicações n-camadas. O mecanismo utilizado para a tomada
de decisão é descrito na Seção 3. A implementação do mecanismo no simulador CloudSim é descrita na Seção 4.
A Seção 5 apresenta os resultados obtidos com as simulações, discutindo perspectivas de trabalhos futuros. Por
sua vez a Seção 6 apresenta os trabalhos relacionados, enquanto a Seção 7 conclui o trabalho.

Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 3



2 A Elasticidade de Recursos em Nuvens Computacionais

Umas das motivações para migração de aplicações para a nuvem, é a possibilidade de provisionamento
elástico. A elasticidade é um recurso de gerenciamento ofertado por provedores de nuvens computacionais, per-
mitindo que usuários possam aumentar ou diminuir, de maneira rápida, os recursos computacionais virtuais, em
tempo real [6]. Ou seja, uma aplicação hospedada inicialmente com n máquinas virtuais compondo sua IV, pode
ser dinamicamente reconfigurada para atender picos de trabalho ou novas demandas, alterando a configuração para
n ± x, onde x representam as MVs elásticas (criadas ou destruídas). Assim, uma aplicação elástica é aquela que
automaticamente adapta-se ao contexto de execução.

Provedores de nuvem e usuários possuem diferentes visões sobre a elasticidade em nuvens computacionais.
Para os provedores, fica a responsabilidade de gerenciar os recursos e realizar alterações nas infraestruturas virtu-
ais provisionadas. Na visão dos usuários, o substrato computacional é totalmente abstraído, sendo acessado por
interfaces que facilitam a utilização, permitindo, consequentemente, que o usuário foque no plano de negócio do
serviço hospedado. Inclusive, os usuários possuem a percepção de que os recursos computacionais são infinitos [4].

Usualmente, provedores permitem a configuração de elasticidade através de APIs (Application Program-
ming Interface), linguagens (e.g., CloudFormation 2), ou através de mecanismos de reconfiguração dinâmica, como
por exemplo Google Compute Engine Autoscaler 3 e Amazon Auto Scaling 4. No primeiro método (APIs e lin-
guagens), a elasticidade da infraestrutura é chamada de elasticidade manual e fica a cargo dos contratantes do
serviço, enquanto no segundo a escalabilidade é realizada através da análise do comportamento computacional da
IV. A análise do redimensionamento pode ser realizada com modelos analíticos ou baseados em heurísticas [8]. Os
métodos analíticos inferem o comportamento do sistema, porém possuem uma complexidade de desenvolvimento
e gerenciamento elevada, principalmente em sistemas com alta variação da carga de trabalho.

Em contrapartida, as heurísticas usualmente diminuem o tempo necessário para a reconfiguração elástica,
entretanto, sendo menos eficientes em relação a otimização quando comparadas aos modelos analíticos. Em sua
maioria [8], controlam a elasticidade de uma IV através do monitoramento da capacidade da CPU, tráfego de rede,
utilização de memória e taxas de entrada e saída. Para as métricas de monitoramento de CPU, normalmente são
definidos limiares superiores e inferiores considerando a carga de processamento [17]. Alguns métodos conside-
ram os requisitos da aplicação, distribuindo o sistema através de balanceadores de cargas [22]. Em outras, métricas
representam o objetivo de nível de serviço e o acordo de nível de serviço (SLA). O primeiro visa definir os requi-
sitos da aplicação, como disponibilidade e desempenho, enquanto o segundo trata de características mensuráveis
como, vazão, tempo de resposta e outras características referente a qualidade.

2.1 Estratégias para Provisionamento de Elasticidade

Em nuvens computacionais, as estratégias de elasticidade podem ser classificadas em replicação (elastici-
dade horizontal), redimensionamento (elasticidade vertical) e migração. A elasticidade horizontal busca adicionar
e remover MVs na infraestrutura virtual do usuário, dando maior escalabilidade ao sistema. Nesse método, ima-
gens de MVs são criadas contendo uma réplica do serviço hospedado. O aumento do número de réplicas ativas
diminui o risco de indisponibilidade, pois na ocorrência de uma falta em um ou mais equipamentos, as demais
MVs permanecem respondendo as requisições dos usuários. Por sua vez, o método de elasticidade vertical com-
preende o redimensionamento das capacidades dos recursos provisionados (e.g., CPU, disco, rede e memória). Já a
migração é a técnica mais simples de provisionamento de elasticidade e consiste em mover MVs entre hospedeiros
físicos distintos [8].

A migração de uma MV segue o mesmo princípio da criação, ou seja, o hospedeiro destinatário deve possuir
recursos computacionais suficientes para hospedar a MV migrante, bem como as demais MVs já provisionadas
no equipamento. Essa técnica pode trazer vantagens para o usuário final, como por exemplo a minimização da
distância entre as MVs [26]. Ao minimizar a distância entre MVs, normalmente a latência de comunicação é
diminuída, melhorando o desempenho das aplicações hospedadas [13] [21]. A Figura 1 mostra como o processo
de migração pode ser utilizado para redistribuir ou centralizar as MVs em nós computacionais com capacidade

2AWS CloudFormation: https://aws.amazon.com/cloudformation/
3Google Compute Engine Autoscaler: https://cloud.google.com/compute/docs/autoscaler/v1beta2/.
4Amazon Auto Scaling: https://aws.amazon.com/autoscaling/.

Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 4

https://aws.amazon.com/cloudformation/
https://cloud.google.com/compute/docs/autoscaler/v1beta2/
https://aws.amazon.com/autoscaling/


compatível. Em caso de centralização (c), os demais nós podem ser desativados, o que consequentemente permite
a diminuição de custos administrativos (e.g., reserva de recursos, economia de energia). O contrário também
pode ser realizado: as máquinas virtuais podem ser descentralizadas objetivando o aumento da confiabilidade de
uma IV [7] [3]. Alguns provedores de nuvens públicas, como a Amazon EC2 5, Microsoft Windows Azure 6 e
Google Cloud Platform 7 exploraram principalmente a elasticidade horizontal. Seguindo a tendência dos principais
provedores de nuvens públicas, o presente estudo tem seu foco voltado para uma combinação de elasticidade
horizontal com migração de serviços.

Figura 1: Exemplo de provisionamento de elasticidade com migração de MVs (extraído de [6]). (a) Configuração
inicial; (b) Migração de 2 MVs do nó 3 para o nó 2; (c) Migração de todas as MVs para o nó 1.

2.2 Elasticidade em Serviços n-Camadas

Obter eficiência em serviços hospedados na nuvem não é uma tarefa trivial. Corporações e instituições de
pesquisa têm investigado diferentes tipos de arquiteturas e tecnologias para composição de aplicações distribuídas,
objetivando a disponibilização de um serviço com qualidade para os usuários finais. Algumas arquiteturas de
aplicações web são divididas em diversas camadas lógicas (ou subsistemas), caracterizando a arquitetura de n-
camadas. Usualmente, são encontradas aplicações com arquiteturas compostas de até 3 camadas, sendo elas i)
camada de apresentação; ii) camada lógica; e iii) camada de persistência. Essa arquitetura facilita a divisão da
carga de trabalho em grupos especializados, facilitando assim o desenvolvimento, gerenciamento e manutenção
da aplicação, pois quando uma das camadas passa por alterações de tecnologia (por exemplo, atualização da
linguagem utilizada para desenvolvimento das interfaces, ou alteração na arquitetura do banco de dados) as demais
podem permanecer inalteradas.

A camada de apresentação é direcionada especificamente para atender as requisições de usuários. Em geral,
os sistemas web possuem nessa camada as páginas contendo formulários e interfaces que facilitam a interação dos
usuários com a camada lógica. Por sua vez, a camada lógica, independente das demais camadas, é destinada ao
conjunto de rotinas que gerenciam as regras do negócio (por exemplo, vendas, contabilidade, controle de estoque,
entre outros). Essa camada realiza a transição dos dados da camada de apresentação para a camada de persis-
tência. Já a camada de persistência tem como objetivo o tratamento dos dados brutos, sendo responsável pelo
gerenciamento e armazenamento desses dados de forma que possam ser recuperados por diversos sistemas inde-
pendentes [14]. Nessa camada é comum encontrarmos bancos de dados e servidores de arquivos. Dessa forma,
quando um sistema web, hospedado em uma nuvem elástica, recebe poucas requisições de usuário, é suficiente
que somente um servidor por camada esteja ativo. Entretanto, caso diversos usuários passem a acessar o sis-
tema simultaneamente, a arquitetura compreenderá novos recursos computacionais, de modo a atender as novas
requisições.

Embora a organização em n-camadas apresente aspectos positivos, encontrar a quantidade ótima de servi-
dores necessários para o fornecimento da aplicação é uma tarefa complexa. Existem pesquisas que buscam obter
de forma analítica a quantidade de servidores necessários analisando a viabilidade em relação ao SLA (Service
Level Agreement) [11] [25]. Isso requer um amplo entendimento e planejamento da aplicação e seus algoritmos.
Quando o planejamento é otimista (estima-se que a utilização será menor que a calculada), a capacidade planejada
pode ter uma sobrecarga comprometendo o funcionamento da aplicação, violando o SLA. Por outro lado, se o pla-

5Amazon EC2: https://aws.amazon.com/pt/ec2.
6Microsoft Windows Azure: https://azure.microsoft.com.
7Google Cloud Platform: https://cloud.google.com.

Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 5

https://aws.amazon.com/pt/ec2
https://azure.microsoft.com
https://cloud.google.com


nejamento for pessimista (estima-se que a utilização pode ser mais alta que a calculada), recursos desnecessários
podem ser reservados, gerando um alto custo de provisionamento.

Para representar as etapas de comunicação e computação realizadas por uma aplicação n-camadas, decom-
pomos a aplicação em balanceadores de cargas, servidores web e servidores de bancos de dados. Especificamente,
a Figura 2 demonstra o modelo que representa os estágios de processamento e comunicação necessários para aten-
der uma requisição: (i) inicialmente, o balanceador de carga recebe e envia a requisição para um servidor web,
guiando sua decisão por um algoritmo de balanceamento e distribuição de carga; (ii) o servidor web executa um
estágio de processamento e (iii) realiza uma requisição ao banco de dados; (iv) o banco de dados executa um está-
gio de processamento e (v) envia uma quantidade de dados para o servidor web de origem; (vi) os dados recebidos
do banco de dados são processados pelo servidor web, que posteriormente (vii) processa e responde a solicitação.

Em aplicações n-camadas, a elasticidade pode ser explorada em múltiplos pontos da IV. Tradicionalmente,
o número de servidores web pode ser aumentado ou diminuído de acordo com a carga submetida ao sistema. A
ocorrência de uma nova MV acrescida à IV é informada ao balanceador de carga, que consequentemente direci-
ona as requisições de usuários. Ainda, alguns gerenciadores de nuvens computacionais (e.g., OpenStack, Amazon
EC2, RackSpace) permitem a reconfiguração de uma MV provisionada, alterando o tipo de sua instância ou recon-
figurando parâmetros individuais (e.g., RAM, CPUs virtuais e armazenamento). Um raciocínio similar é realizado
com os dispositivos de armazenamento (legenda Banco de dados na Figura 2), independente do gerenciador e
tecnologia utilizados (e.g., banco de dados relacionais, noSQL), o subsistema de armazenamento (centralizado
ou distribuído) por ser aumentado ou diminuído, guiado pelo volume de dados armazenado e número de acessos
concorrentes.

Balanceador 

Servidor Web 1 Banco de Dados 1 

Servidor Web 2 Banco de Dados 2 

Servidor Web N Banco de Dados N 

I 

II 

III 

IV 

V 

IV VI

Figura 2: Caminho percorrido por uma requisição submetida à aplicação n-camadas modelada.

3 Mecanismo para Provisionamento de Aplicações n-Camadas Elásticas

O mecanismo para provisionamento e reconfiguração de serviços elásticos proposto explora a combinação
de migração e replicação de máquinas virtuais (elasticidade horizontal, conforme discutido na Seção 2.1) para
reconfiguração de uma IV, guiado por limiares informados pelo usuário contratante, durante o estabelecimento do
acordo de nível de serviço. Desta forma, a solução proposta é agnóstica ao serviço hospedado, desde que este
siga uma modelo n-camadas, conforme exemplificado pela Figura 2. Ainda, a escolha do algoritmo empregado
pelo balanceador de carga (e.g, round-robin, max-min) é uma informação relacionada com a aplicação, sendo
especificada pelo usuário. A definição de limiares permite a configuração de um serviço reativo, ou seja, quando
limiares são atingidos, o mecanismo atua acrescentando ou removendo máquinas virtuais, ou migrando tarefas
computacionais.

Embora exista a ilusão de poder computacional infinito, provedores de nuvem determinam uma capacidade
máxima permitida para adição de novos recursos. Por exemplo, o provedor Amazon EC2 permite que seus usuários
adicionem no máximo 20 instâncias por demanda, enquanto Google Computing Engine limita o número máximo

Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 6



de operações submetidas à interface de gerenciamento. No mecanismo proposto, o crescimento da IV elástica é
limitado por um valor máximo, estudado na análise experimental com diferentes valores, demonstrando a relação
obtida entre custo de alocação e desempenho da aplicação hospedada.

A heurística do mecanismo busca a diminuição do tempo médio de processamento das requisições subme-
tidas ao serviço, simultaneamente evitando o aumento do custo de provisionamento. Durante o provisionamento
de uma IV, instâncias de MVs podem receber servidores de diferentes tipos (banco de dados ou serviços web) em
quantidades variadas. Teoricamente, uma única MV pode suportar completamente a aplicação, reduzindo o custo
de provisionamento ao máximo em detrimento do desempenho da aplicação hospedada. A distribuição inicial das
MVs para os componentes da aplicação é baseada em uma distribuição proporcional de recursos em arquiteturas
n-camadas. Assim, definimos que a quantidade de servidores web (representada por w) é obtida a partir da equa-
ção w = (N − lb) c

c+ 1 , sendo: N o número máximo de MVs que podem ser provisionadas para o usuário; lb
a quantidade de balanceadores de carga; e c a quantidade máxima de servidores que podem ser conectados em
um único banco de dados. Por fim, com o número de servidores web definido, a quantidade de bancos de dados
necessária é definida por db = w

c . Essa abordagem visa uma distribuição eficiente dos recursos computacionais
solicitados pelo usuário para hospedar a aplicação distribuída, de modo que cada MV hospede ao menos um ser-
viço que constitui a aplicação, respeitando a quantidade máxima de conexões permitidas por banco de dados e
balanceadores de cargas.

Definir configuração 
inicial da IV

Informar LC, LD e LE
Definir MVS

Contabilizar TMR

TMR > LC

TMR < LD

F

Criar MV
MVS = MVS + 1
Migrar tarefas

MVS <= MVS + LEV

V

Migrar tarefas
Destruir MV

MVS = MVS - 1

V

F

F

Figura 3: Fluxograma do mecanismo para adaptação elástica das IVs.

A configuração inicial de uma IV pode ser alterada com a migração ou replicação de serviços. A medida
que a carga de trabalho aumenta (por exemplo, o número de acessos cresce), novas MVs são alocadas para atender
as requisições, e posteriormente é iniciada a migração das tarefas para as novas MVs que estejam com uma menor
carga de trabalho. Ainda, se há várias MVs alocadas e estas possuem poucas tarefas em execução, o mecanismo
decide pela migração das tarefas restantes, para posteriormente eliminar as MVs, diminuindo o custo de provisio-
namento final. A Figura 3 exemplifica o mecanismo de adaptação. Inicialmente, a configuração da infraestrutura
virtual é definida, identificando os valores iniciais de w, lb e db. O algoritmo é guiado por três limiares para to-
mada de decisão sobre a criação e destruição de MVs: limiar de criação (LC), limiar de destruição (LD) e limiar
de elasticidade (LE). LC e LD representam a variação máxima tolerada pela aplicação hospedada, enquanto LE
indica o aumento máximo de recursos previamente autorizado (limitado por provedores ou usuários durante o es-
tabelecimento do acordo de nível de serviço). LC e LD são confrontados com o tempo médio de resposta (TMR)
dos serviços hospedados. Quando o valor obtido é maior que o percentual máximo de variação identificado pelo
limiar superior, novas MVs são acrescentadas ao ambiente, respeitando, entretanto, o limiar de elasticidade. Uma
análise similar ocorre para a destruição de MVs. Assim como proposto em trabalhos anteriores [17], os limiares
podem ser ajustados para representar os objetivos das aplicações hospedadas.

Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 7



4 Implementação do Mecanismo no Simulador CloudSim

O mecanismo descrito na Seção 3 foi implementado como um módulo do simulador CloudSim [5], espe-
cificamente da versão com suporte à modelagem de recursos de comunicação [9]. Para modelar uma aplicação
distribuída e organizada em n-camadas, estendemos a classe AppCloudlet, criando a WebServerAppMultitier, que
recebe uma lista de MVs na qual são criadas as cloudlets (nomenclatura do simulador para representar tarefas).
Após a criação dos componentes da aplicação, são submetidas requisições para o sistema. Para representar um
cenário estabilizado, algumas requisições são submetidas antes do algoritmo de elasticidade entrar em execução.
Assim, antes da simulação ser iniciada, todos os estágios de comunicação do serviço hospedado já estão organi-
zadas na forma de máquinas de estado (conforme ilustrado na Figura 2). Os algoritmos descritos anteriormente
foram implementados no broker do simulador. No CloudSim, quando há mais de uma MV em um mesmo hos-
pedeiro físico, o framework realiza a execução em modo paralelo, permitindo que uma MV que esteja executando
em uma vCPU não tenha seu desempenho comprometido por MVs executando em outras vCPUs. Já o escalonador
de cloudlets executa no modo de tempo compartilhado: quando existe mais de uma cloudlet executando em uma
mesma MV, a execução é enfileirada de modo que uma necessite aguardar o término da anterior.

Os Algoritmos 1 e 2 apresentam pseudocódigos do mecanismo proposto (fluxograma da Figura 3). O pri-
meiro descreve a seleção de cloudlets (tarefas que compõem a aplicação n-camadas hospedada) para migração.
Para evitar o reprocessamento de respostas já iniciadas, optamos por não migrar serviços com comunicação em
andamento, ou seja, qualquer serviço aguardando ou enviando uma mensagem síncrona não será selecionado como
potencial candidato para migração. Ainda, cloudlets finalizando seu processamento não são selecionadas, pois o
tempo de migração é usualmente superior ao tempo de processamento remanescente. O Algoritmo 2 evidência que
a seleção das cloudlets e das MVs candidatas à migração ocorre em momentos distintos. Enquanto o Algoritmo 1
seleciona as cloudlets, os métodos overloadedVM() e underloadedVM() selecionam as MVs considerando
a carga de processamento (comparando o percentual de uso de CPU). A variação máxima tolerada pela aplica-
ção hospedada é representada por deltaAverageT ime no Algoritmo 2, enquanto o crescimento da IV elástica é
limitado por um valor máximo, representado pelo parâmetro elasticity.

Algorithm 1: findCloudletsToMigrate: pseudocódigo para encontrar as cloudlets que podem ser
migradas.

1 cloudlets: serviços que podem ser migrados;
2 for mv ∈ IV do
3 for cl ∈ cloudlets(mv) do
4 if cl is sending or waiting for a packet then
5 continue;

6 if cl is finished then
7 continue;

8 if cl is almost finished then
9 continue;

10 add cl to cloudlets;

11 return cloudlets;

5 Análise Experimental

Para estudar a aplicabilidade da solução proposta, uma análise experimental foi conduzida com o simulador
de nuvens computacionais CloudSim. Os experimentos foram realizados em um computador AMD Phenom II
com 4 GB de RAM e Linux Ubuntu 12.04.02. O simulador foi executado com o Java versão 1.7.0_09. Seguindo
trabalhos anteriores [21], cada hospedeiro físico foi modelado de forma padronizada com 16 GB de RAM e 16
CPUs, interconectados em uma topologia fat-tree [1] com largura de banda de 1 Gbps entre os switches de borda
e agregação, e 10 Gbps entre os switches de agregação e de núcleo. A topologia fat-tree foi selecionada devido
a ampla adoção em provedores de nuvens computacionais [24]. A Figura 4 apresenta a simplificação de uma

Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 8



Algorithm 2: elasticProvisioning: Pseudocódigo para determinar a criação ou destruição de MVs a
partir do tempo de processamento das requisições.

1 elasticity: percentual máximo de MVs elásticas;
2 runningVMs: MVs ativas;

3 deltaAverageT ime = updateRuntimeAverage();
4 cloudletsToMigrate = findCloudletsToMigrate();

5 if cloudletsToMigrate is ∅ then
6 return;

7 if (deltaAverageT ime ≥ lcreate) and (runningVMs ≤ runningVMs + elasticity) then
8 src = overloadedVM();
9 dst = createVMs();

10 migrateCloudlets(cloudletsToMigrate, src, dst);
11 runningVMs = updateRunningVMs(dst);

12 else if (deltaAverageT ime ≤ ldestroy) then
13 src = vmToDestroy();
14 dst = underloadedVM();
15 migrateCloudlets(cloudletsToMigrate, src, dst);
16 destroyVM(src);

topologia fat-tree. No presente trabalho, a topologia foi definida com 8 pods.

Figura 4: Simplificação de uma topologia fat-tree composta por 4 pods. O exemplo descreve a organização dos
switches de borda (edge), agregação (aggregation) e núcleo (core) [1].

As configurações das máquinas virtuais reservadas para hospedar a aplicação com arquitetura n-camadas
seguiram uma distribuição uniforme entre configurações pré-determinadas. Em suma, a configuração de RAM foi
selecionada entre 1, 2 e 4 GB, enquanto as CPUs virtuais foram selecionadas entre 1, 2, 4 e 8 núcleos alocados
por MV. Quanto aos enlaces de comunicação, a capacidade requisitada foi selecionada entre 50%, 25% e 12,5%
da menor capacidade ponto-a-ponto (a saber, 1 Gbps) da topologia física. A alocação inicial da IV foi realizada
seguindo o algoritmo de Alocação Orientada por Distância (AOD) [21], que busca a diminuição da distância entre
os recursos provisionados.

Para cada cenário, a IV foi inicialmente composta por 5 máquinas virtuais seguindo a distribuição de servi-
ços discutida na Seção 3 (resultando em 1 balanceador de carga, 3 servidores web e um banco de dados). Optamos
pelo algoritmo round-robin como padrão para distribuição das requisições recebidas pelo balanceador de carga. O
uso de carga sintética contempla uma variada gama de situações de configuração de MVs, analisando a aplicabili-
dade da solução proposta com diferentes configurações de aplicações n-camadas hospedadas na IV.

Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 9



Os parâmetros de entrada dos cenários de teste representam serviços web n-camadas usualmente hospeda-
dos em provedores de nuvem. Três cenários de testes, com cargas sintéticas, foram analisados variando o número
máximo de recursos elásticos: i) sem elasticidade (identificado nos gráficos pela legenda 0%); ii) 100% de elas-
ticidade; e iii) e o terceiro com 200% de elasticidade permitida. Cada cenário representa um possível acordo de
nível de serviço estabelecido entre o usuário contratante e o provedor de serviço. O percentual de elasticidade (0,
100 ou 200) indica o crescimento máximo acordado do número de máquinas virtuais (parâmetro elasticity do
Algoritmo 2). A escolha dos percentuais máximos de elasticidade foi baseada na configuração padrão do provedor
de nuvem pública Amazon EC2. Neste provedor, cada usuário pode solicitar no máximo 20 instâncias de MVs, ou
seja, um crescimento máximo de 200% sobre a configuração inicial indicada (5 MVs).

Inicialmente, 100 requisições foram submetidas para colocar o sistema em regime estável. Uma requisi-
ção representa um acesso ao serviço hospedado na nuvem computacional, sendo que seu processamento segue
o percurso apresentado na Figura 2. O tempo de processamento de uma cloudlet foi selecionado de forma uni-
forme entre 0,1 a 4 segundos (o tempo de processamento dos estágios representados na Figura 2). Já o tempo de
comunicação entre os recursos é guiado pelo volume de tráfego atual.

Buscando a simulação de picos de execução, foram adicionadas aleatoriamente entre 100 e 500 requisições.
Para o cenário sem elasticidade, as MVs não podem ser destruídas e novas MVs não podem ser criadas. Entretanto,
nos cenários com 100% e 200% de provisionamento elástico, as MVs são removidas (quando ociosas) ou dinami-
camente criadas até um limite de 100% (ou 200%) da quantidade inicialmente informada pelo usuário, aplicando
os Algoritmos 1 e 2. A definição dos limiares indicativos de saturação e ociosidade de um sistema não é uma
tarefa trivial. A quantificação da qualidade observada pelo usuário final requer um mecanismo de monitoração
na camada do usuário, sendo dependente da aplicação em questão. Baseado em observações experimentais, os
limiares lcreate e ldestroy foram definidos como 20% e 50%, respectivamente, para a aplicação analisada. Ou seja,
os limiares representam o melhor caso de configuração possível para a carga submetida.

A análise experimental quantificou duas métricas: o custo total de provisionamento e o tempo médio de
processamento das requisições. A primeira representa o investimento necessário para o provisionamento completo
da IV enquanto a segunda representa a visão dos usuários do serviço hospedado. O custo de provisionamento
foi definido como o somatório da capacidade de processamento reservado durante o período de provisionamento.
Para realizar uma análise comparativa, o custo de provisionamento sem elasticidade foi considerado como linha
de base, sendo comparado com as demais configurações. Em cada cenário foram realizadas 100 execuções, e as
barras de erros nos gráficos representam o intervalo de confiança de 95%.

5.1 Custo Total de Provisionamento

A Figura 5 apresenta o custo total de provisionamento para os cenários avaliados. Para o cenário sem elasti-
cidade (0%), o custo referente ao tempo de processamento realizado pelas 5 MVs inicialmente provisionadas para
atender as requisições é utilizado como base para comparações. Segundo os resultados apresentados na Figura 5,
as configurações elásticas obtiveram custo menor ou similar em todos os cenários avaliados. Especificamente, a
configuração com 100% de elasticidade máxima obteve o menor custo total de provisionamento. Essa situação
reflete um cenário real vivenciado em nuvens computacionais: o aumento dos recursos computacionais alocados
nem sempre resulta um uma melhora no serviço disponibilizado. Nesse caso, acrescentar mais MVs à IV repre-
senta uma maior distribuição dos processos. Ou seja, a ocorrência de gargalos de comunicação nos servidores ou
equipamentos comunicantes pode depreciar o serviço.

Quanto ao percentual de redução de custos, a configuração com 200% de elasticidade reduziu entre apro-
ximadamente 5% e 20% nos cenários analisados, enquanto uma configuração com 100% de elasticidade máxima
obteve uma redução de custos com valores entre 18% e 42%. Especificamente, no cenário com maior número de
requisições submetidas (Figura 5(e)) o uso do algoritmo elástico de reduziu aproximadamente 1,7 vezes o custo
total de provisionamento.

5.2 Tempo Médio de Processamento de Requisições

O tempo médio de processamento das requisições submetidas é apresentado na Figura 6 para os cenários
avaliados. Para 100 requisições (Figura 6(a)) a aceleração obtida no tempo médio de processamento com uso de

Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 10



(a) Cenário com 100 requisições. (b) Cenário com 200 requisições.

(c) Cenário com 300 requisições. (d) Cenário com 400 requisições.

(e) Cenário com 500 requisições.

Figura 5: Custo total de provisionamento das MVs alocadas para o usuário.

provisionamento elástico é baixa. Entretanto, para os demais cenários, a configuração com 100% de elasticidade
máxima acelerou o tempo médio de processamento em 1,3, 1,6, 1,77 e 5 vezes para 200, 300, 400 e 500 requisições,
respectivamente. Comparando o provisionamento estático (0%) com os modelos elásticos é evidente a redução do
tempo de processamento oriundo da aplicação do algoritmo de elasticidade.

Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 11



(a) Cenário com 100 requisições. (b) Cenário com 200 requisições.

(c) Cenário com 300 requisições. (d) Cenário com 400 requisições.

(e) Cenário com 500 requisições.

Figura 6: Tempo médio de processamento das requisição submetidas.

5.3 Discussão e Considerações

Analisando conjuntamente as métricas, é possível visualizar que um provisionamento com 100% de elasti-
cidade máxima é superior aos cenários sem elasticidade e com elasticidade máxima de 200%, tanto em relação ao
custo total (recursos provisionados durante o período de execução), quanto em relação ao tempo médio de resposta
das requisições. Ou seja, nem sempre um maior investimento em recursos computacionais (configurações com
200% de elasticidade máxima) resultará na melhora do serviço ofertado.

A configuração de ambientes elásticos não é uma tarefa trivial. Existem situações em que as métricas de uso

Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 12



de recursos disponibilizadas pelos provedores não são suficientes para representar a visão do usuário do sistema
hospedado. Por exemplo, a aplicação do algoritmo proposto neste trabalho em um ambiente de produção requer o
monitoramento constante do serviço hospedado. Atualmente, provedores de nuvem disponibilizam métricas refe-
rentes ao consumo das máquinas virtuais e de rede, deixando a monitoração da aplicação sob responsabilidade do
usuário contratante. A instrumentação de uma aplicação n-camadas para experimentação em um cenário de produ-
ção é apontada como perspectiva de continuação. Por fim, o provisionamento elástico de recursos de comunicação
(e.g., reserva de largura de banda, reconfiguração de caminhos) é uma linha futura promissora, já que a topologia
de rede pode ser um fator limitado para o desempenho da aplicação hospedada.

6 Trabalhos Relacionados

A literatura especializada compreende trabalhos atrelados ao provisionamento elástico de recursos e a si-
mulação de nuvens computacionais.

Trabalhos relacionados com a elasticidade de infraestruturas virtuais vem sendo desenvolvidos com o obje-
tivo de minimizar os custos para hospedagem de aplicações em nuvem tanto para clientes quanto para provedores,
mantendo em paralelo, a qualidade do serviço ofertado [8]. Esses trabalhos focam no monitoramento de métricas
como carga de processamento, volume de dados transferidos e capacidade da memória, delimitadas por limiares
para prover a elasticidade [17] [18] [19] [16]. Ainda, a predição do uso futuro de recursos virtuais tem sido utilizada
para tomada de decisão em ambientes elásticos [10] [20]. Complementarmente, provedores de nuvens computacio-
nais definem APIs e modelos para configuração de elasticidade, como por exemplo AWS CloudFormation, Google
Compute Engine Autoscaler e Amazon Auto Scaling.

Em suma, os trabalhos revisados objetivam o redimensionamento dos recursos computacionais guiado por
métricas tradicionais, referentes ao consumo computacional (utilização de CPU, volume de dados transferido,
entre outros). Embora eficientes, essas métricas não representam a visão do usuário utilizador do serviço hospe-
dado. Assim, o presente trabalho complementa o estudo introduzindo um algoritmo elástico guiado pelo tempo de
processamento da aplicação, ou seja, o tempo de resposta aguardado pelo usuário solicitante. Essa métrica repre-
senta uma visão combinada do uso dos recursos computacionais. A elasticidade não é guiada apenas por valores
absolutos de consumo de recursos, mas pelo seu impacto no tempo de processamento da aplicação.

Quanto a simulação, as pesquisam buscam a experimentação de novas tecnologias voltadas para tais am-
bientes e a identificação de novas oportunidades de pesquisa. Dentre os simuladores de nuvens computacionais
identificados, o CloudSim [5] é um simulador gratuito, que facilita o estudo de algoritmos e metodologias atra-
vés da extensão de classes desenvolvidas em Java. Por apresentar tais oportunidades, o framework vem sendo
incrementado ao longo dos anos [2] , permitindo simulações cada vez mais elaboradas e representativas. Em [9]
foi introduzida uma representação inicial da topologia de rede de um provedor de nuvem. Essa implementação
foi adaptada para representar a topologia fat-tree discutida na análise experimental. Recentemente, o Cloud-
SimSDN [23] foi proposto para simular no CloudSim ambientes com redes definidas por software, apresentando
um novo modelo de representação da infraestrutura, bem como incluindo ferramentas para testes e controle de polí-
ticas de alocação baseadas em fluxo. Uma possível combinação da reconfiguração introduzida por CloudSimSDN
com o algoritmo de elasticidade proposto nesse trabalho é indicada como perspectiva de continuidade do estudo
para investigar o provisionamento elástico dos recursos de comunicação em uma nuvens computacionais.

7 Conclusão

O conceito de nuvens computacionais foi amplamente difundido na comunidade acadêmica e comercial.
Dentre os fatores motivadores, destaca-se a elasticidade dos recursos computacionais. Melhorar a eficiência dos
serviços disponibilizados é um requisito crucial para diversas empresas e organizações que pretendem atingir um
grande público. Através da elasticidade, MVs podem ser destruídas quando poucas requisições são enviadas à
aplicação, ou agregadas ao serviço quando houver picos de utilização da aplicação. Entretanto, dificilmente os
mecanismos para provisionamento de elasticidade consideram a visão dos usuários solicitantes do serviço.

Nesse contexto, este trabalho propôs um mecanismo baseado no tempo médio de resposta das requisições
recebidas por uma aplicação distribuída e organizada em camadas. Quando o tempo médio de resposta ultrapassa

Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 13



um limiar representativo da qualidade percebida pelo usuário, o mecanismo acrescenta máquinas virtuais à in-
fraestrutura virtual, posteriormente migrando tarefas críticas (com elevado tempo de processamento). De forma
similar, quando um limiar de ociosidade é identificado, tarefas são consolidadas em máquinas virtuais, permitindo
a desativação de instâncias ocioasas.

Para análise do mecanismo, o framework CloudSim foi estendido, acrescentando a heurística proposta e
modelando cenários representativos de provedores de nuvem e aplicações web n-camadas. A análise experimental
indicou a diminuição do custo de provisionamento combinado com um menor tempo de resposta quando a apli-
cação é hospedada em uma infraestrutura elástica. Em relação a trabalhos futuros, as heurísticas podem levar em
consideração a utilização dos recursos de comunicação, bem como a origem das requisições recebidas.

Agradecimentos

Os autores gostariam de agradecer a UDESC pelo auxílio financeiro e ao Laboratório de Processamento
Paralelo e Distribuído (LabP2D) pela disponibilização dos recursos computacionais para a realização do trabalho.

Referências

[1] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, commodity data center network
architecture. SIGCOMM Comput. Commun. Rev., 38(4):63–74, August 2008.

[2] Cássio P. Alkmin and Daniel Cordeiro. SimMyCloud, simulando o gerenciamento de recursos virtualizados
em plataformas de computação em nuvem. In Salão de Ferramentas - SBRC 2014, Maio 2014.

[3] Peter Bodík, Ishai Menache, Mosharaf Chowdhury, Pradeepkumar Mani, David A Maltz, and Ion Stoica.
Surviving Failures in Bandwidth-Constrained Datacenters. In Proc. ACM SIGCOMM, pages 431–442, 2012.

[4] Rajkumar Buyya, Chee Shin Yeo, and Srikumar Venugopal. Market-oriented cloud computing: Vision, hype,
and reality for delivering it services as computing utilities. In Proc. of the 10th IEEE Int. Conf. on High
Performance Computing and Communications, HPCC ’08, pages 5–13, Washington, DC, USA, 2008. IEEE
Computer Society.

[5] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F. De Rose, and Rajkumar Buyya. Cloud-
sim: A toolkit for modeling and simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Softw. Pract. Exper., 41(1):23–50, January 2011.

[6] Rodrigo da Rosa Righi. Elasticidade em cloud computing: conceito, estado da arte e novos desafios. Revista
Brasileira de Computação Aplicada (RBCA), 5(2):2–17, 2013.

[7] G.A. De S Cavalcanti, R.R. Obelheiro, and G. Koslovski. Optimal resource allocation for survivable virtual
infrastructures. In 10th International Conference on the Design of Reliable Communication Networks, 2014.

[8] G. Galante and L.C.E. de Bona. A survey on cloud computing elasticity. In Utility and Cloud Computing
(UCC), 2012 IEEE Fifth International Conference on, pages 263–270, Nov 2012.

[9] S.K. Garg and R. Buyya. Networkcloudsim: Modelling parallel applications in cloud simulations. In Utility
and Cloud Computing (UCC), 2011 Fourth IEEE International Conference on, pages 105–113, Dec 2011.

[10] Zhenhuan Gong, Xiaohui Gu, and J. Wilkes. Press: Predictive elastic resource scaling for cloud systems. In
Network and Service Management (CNSM), 2010 International Conference on, pages 9–16, Oct 2010.

[11] Rui Han, Moustafa M. Ghanem, Li Guo, Yike Guo, and Michelle Osmond. Enabling cost-aware and adaptive
elasticity of multi-tier cloud applications. Future Gener. Comput. Syst., 32:82–98, March 2014.

[12] Brendan Jennings and Rolf Stadler. Resource management in clouds: Survey and research challenges. Jour-
nal of Network and Systems Management, pages 1–53, 2014.

Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 14



[13] G. Koslovski, S. Soudan, P. Goncalves, and P. Vicat-Blanc. Locating virtual infrastructures: Users and inp
perspectives. In Integrated Network Management (IM), 2011 IFIP/IEEE International Symposium on, pages
153–160, May 2011.

[14] Claudia Ferreira Gonzalez Llana and Márcio Francisco Campos. Identificando atividades para apoiar o de-
senvolvimento de sistemas para a web. Anais do Curso de Ciência da Computação. Volume III, 22230:5,
2003.

[15] Peter M. Mell and Timothy Grance. Sp 800-145. the nist definition of cloud computing. Technical report,
NIST, Gaithersburg, MD, United States, 2011.

[16] Fabio Morais, Francisco Brasileiro, Raquel Lopes, Ricardo Araujo, Augusto Macedo, Wade Satterfield, and
Leandro Rosa. Um arcabouço para provisionamento automática de recursos em provedores de iaas inde-
pendente do tipo de aplicação. In Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos -
SBRC, Brasília, Brasil, May 2013.

[17] R. J. ; PFITSCHER, M. A. PILLON, and R. R. OBELHEIRO. Diagnóstico do provisionamento de recursos
para máquinas virtuais em nuvens iaas. In 31o Simpósio Brasileiro de Redes de Computadores e Sistemas
Distribuídos - SBRC, Brasília, Brasil, May 2013.

[18] Ricardo J. Pfitscher, Mauricio A. Pillon, and Rafael R. Obelheiro. Customer-oriented diagnosis of memory
provisioning for iaas clouds. SIGOPS Oper. Syst. Rev., 48(1):2–10, May 2014.

[19] R. Righi, V. Rodrigues, C. Andre daCosta, G. Galante, L. Bona, and T. Ferreto. Autoelastic: Automatic
resource elasticity for high performance applications in the cloud. Cloud Computing, IEEE Transactions on,
PP(99):1–1, 2015.

[20] N. Roy, A. Dubey, and A. Gokhale. Efficient autoscaling in the cloud using predictive models for workload
forecasting. In Cloud Computing (CLOUD), 2011 IEEE International Conference on, pages 500–507, July
2011.

[21] Denivy B Ruck, Ramon Oliveira, and Guilherme P Koslovski. Comparação de algoritmos para alocação de
Infraestruturas Virtuais. Revista Brasileira de Computação Aplicada, Oct 2014.

[22] Rhodney Simões and Carlos Kamienski. Gerenciamento de elasticidade em nuvens privadas e híbridas. In
XII Workshop de Computação em Clouds e Aplicações - WCGA, Florianópolis, Brasil, May 2014.

[23] Jungmin Son, A.V. Dastjerdi, R.N. Calheiros, Xiaohui Ji, Young Yoon, and R. Buyya. Cloudsimsdn: Mode-
ling and simulation of software-defined cloud data centers. In Cluster, Cloud and Grid Computing (CCGrid),
2015 15th IEEE/ACM International Symposium on, pages 475–484, May 2015.

[24] William Stallings. Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud. Addison-Wesley
Professional, 1st edition, 2015.

[25] Tram Truong Huu, Guilherme Koslovski, Fabienne Anhalt, Johan Montagnat, and Pascale Vicat-Blanc Pri-
met. Joint elastic cloud and virtual network framework for application performance-cost optimization. Jour-
nal of Grid Computing, 9(1):27–47, 2011.

[26] William Voorsluys, James Broberg, Srikumar Venugopal, and Rajkumar Buyya. Cost of virtual machine live
migration in clouds: A performance evaluation. In Proceedings of the 1st International Conference on Cloud
Computing, CloudCom ’09, pages 254–265, Berlin, Heidelberg, 2009. Springer-Verlag.

[27] L. Wu, S. K. Garg, and R. Buyya. Sla-based resource allocation for software as a service provider (saas)
in cloud computing environments. In Cluster, Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM
International Symposium on, pages 195–204, May 2011.

Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 15


	Introdução
	A Elasticidade de Recursos em Nuvens Computacionais
	Estratégias para Provisionamento de Elasticidade
	Elasticidade em Serviços n-Camadas

	Mecanismo para Provisionamento de Aplicações n-Camadas Elásticas
	Implementação do Mecanismo no Simulador CloudSim
	Análise Experimental
	Custo Total de Provisionamento
	Tempo Médio de Processamento de Requisições
	Discussão e Considerações

	Trabalhos Relacionados
	Conclusão

