Explorando a elasticidade de nuvens IaaS para
reconfigurar dinamicamente aplicacoes n-camadas

Devair Dener Darolt, Felipe Rodrigo de Souza, Guilherme Piegas Koslovski !

Resumo: Com o surgimento das nuvens computacionais dindmicas, aspectos de gerenciamento
relacionados com provisionamento sob demanda, escaldvel e eldstico, tornaram-se realidade para
provedores e usudrios. Nesse cendrio, infraestruturas virtuais sdo provisionadas para hospedar ser-
vicos com elevado nimero de acessos, explorando a elasticidade oferecida pelos provedores para
adaptar os recursos computacionais e de comunicag¢do a carga de trabalho submetida, mantendo a
qualidade do servico hospedado. Usualmente, servicos hospedados na nuvem sdo decompostos em
diversas camadas, sendo cada camada individualmente configuravel. Uma reconfiguragdo pode ser
iniciada a partir de um pico de processamento, laténcia elevada na resposta ao usudrio final, entre
outros indicadores, variando de acordo com as necessidades da aplicacdo hospedada. Nesse cendrio,
o presente trabalho propde um mecanismo para reconfigurar infraestruturas virtuais eldsticas, melho-
rando a relacdo entre tempo de resposta de uma aplicagdo n-camadas e o custo de provisionamento
do servigo. O algoritmo utiliza o tempo de processamento das requisicdes submetidas a aplicagio
como limiar de elasticidade, aumentando o diminuindo o nimero de maquinas virtuais alocadas. A
implementacdo e andlise da solu¢do foi realizada com o simulador de nuvens computacionais Cloud-
Sim. A andlise experimental indicou uma diminui¢ao no custo de provisionamento combinado com
um menor tempo de resposta quando a aplicagdo € hospedada em uma infraestrutura eldstica.

Palavras-chave: Elasticidade, CloudSim, Nuvens Computacionais, [aaS, Servidores Web

Abstract: With the advances introduced by cloud computing, the dynamic and elastic provisioning
of virtual resources have became reality for providers and users. In this scenario, virtual infrastruc-
tures are allocated to host services capable of supporting a large number of requests, exploiting the
elasticity offered by providers to adapt computing and communications resources to the application
workload, and simultaneously reducing provisioning costs. Usually, cloud services are decompo-
sed in layers, which are individually configured. In this scenario, a reconfiguration can be started
from a workload peak, delay in communication, low response time, among others, being defined
by the hosted application goal. The present work extends CloudSim, a cloud computing simula-
tor, implementing an algorithm to explore the elasticity of resources. The algorithm uses requests
time processing as a performance indicator. Experimental analysis indicated a low provisioning cost
combined with a shorter response time when the application is hosted on an elastic infrastructure.

Keywords: Elasticity, CloudSim, Cloud Computing, laaS, Multitiered Applications

1 Introducao

O paradigma de Computagao em Nuvem revolucionou o provisionamento de servigos na Internet ao permitir
um acesso ubiquo, conveniente e sob demanda a um conjunto configurdvel de recursos computacionais comparti-
lhados, que podem ser rapidamente provisionados e liberados com minimo esfor¢co gerencial [15]. Recentemente,
as nuvens computacionais estdo consolidadas em varias comunidades acadé€micas, governamentais e industriais
devido as facilidades de gerenciamento que foram introduzidas, como agilidade na aloca¢do de recursos, esca-
labilidade e elasticidade [12]. Sobretudo, as nuvens computacionais foram amplamente difundidas pelo baixo
investimento necessdrio para disponibilizar servigos on-line.

IPrograma de Pés-Graduagio em Computagio Aplicada (PPGCA), Departamento de Ciéncia da Computagio (DCC), Universidade do Estado
de Santa Catarina (UDESC), Joinville (SC) - Brasil
devairdarolt@gmail.com, feliperodrigodesouza@gmail.com, guilherme.koslovski@udesc.br

http://dx.doi.org/10.5335/rbca.v8i2.5414

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 2

Dentre os servigos ofertados por provedores de nuvem, o presente trabalho foca em Infraestrutura como
Servi¢o (Infrastructure as a Service — laaS). Este modelo trata do fornecimento dos recursos (processamento,
capacidade de armazenamento, entre outros) em sua forma fundamental, através da abstracdo em maquinas virtuais
(MVs) [15]. Em uma infraestrutura virtual (IV), qualquer aplica¢do pode ser hospedada, sendo que os requisitos
de processamento, armazenamento e comunicagdo sdo especificados pelos usudrios solicitantes. Uma IV pode
hospedar sistemas distribuidos complexos, modelados em n-camadas, servindo aplica¢des SaaS (Software as a
Service) ou PaaS (Platform as a Service). Usualmente, as IVs que hospedam aplicagdes n-camadas distribuem a
carga de trabalho entre subsistemas constituintes, sendo decompostos em balanceadores de carga, servidores web e
servidores de banco de dados ou arquivos. Assim, quando uma requisicio é submetida as aplicagdes com esse tipo
de arquitetura, os balanceadores de carga identificam quais servidores web estdo aptos a receber as requisi¢des,
considerando métricas como carga de trabalho atual (niimero de requisi¢des sendo atendidas), taxa de utilizacao
da CPU, trafego de rede, utilizacdo da memodria, entre outras.

A qualidade do servigo hospedado (QoS — Quality of Service) e a qualidade percebida pelo usudrio final
(QoE — Quality of Experience) sdo métricas resultantes da configuracdo da IV que hospeda a aplicacdo [24]. Me-
lhorar a eficiéncia dos servi¢os hospedados (QoS ou QoE) é um requisito crucial para empresas e organizacdes
que pretendem atingir um grande ptiblico. Seguindo essa motivacdo, as aplicacdes n-camadas hospedadas em IVs
podem explorar a elasticidade para manter ou melhorar a qualidade do servigo oferecido [6]. Em [aaS, MVs podem
ser destruidas quando poucas requisi¢des sdo enviadas a aplicag¢do, diminuindo o custo necessario para manter a IV,
ou agregadas ao servico quando houver um pico na utilizacio da aplicacdo. E latente a necessidade de estudo sobre
modelos que permitam o ajuste dindmico dos recursos computacionais reservados para atender picos de demanda
em aplicagdes hospedadas. Sobretudo, os mecanismos de reconfiguracdo eldstica devem considerar a perspectiva
do custo operacional necessario para manutengdo do servico [27]. O presente trabalho explora a elasticidade dos
recursos que compéem uma infraestrutura virtual para otimizar o desempenho de aplicacées n-camadas hospe-
dadas. O mecanismo desenvolvido considera a definicdo de limiares para indicacdo da qualidade da aplicacdo
hospedada, representando a perspectiva do usudrio do servico. Os limiares sdo agndsticos a aplicacdo, sendo
definidos pelo usudrio contratante durante o estabelecimento do acordo de nivel de servico. Quando os limiares
sdo ultrapassados, MVs sdo acrescentadas ou removidas a IV. Ainda, um pardmetro é indicado para definir o
percentual de elasticidade buscada, evitando um aumento desnecessdrio no custo de provisionamento.

Realizar procedimentos de andlise, implementacao e validacdo de modelos em cendrios de producao induz
custos computacionais, financeiros e gerenciais. Embora gerenciadores de nuvens computacionais (e.g., OpenS-
tack, OpenNebula, Eucalyptus) disponibilizem mecanismos para provisionamento eldstico, a extensao para imple-
mentacdo do mecanismo e a calibragem inicial dos modelos de elasticidade requerem a composi¢@o de protétipos
tempordrios ou a adaptacdo de ambientes de produgdo (cendrios reais compartilhados por mdltiplos usudrios).
Ainda, protdtipos permitem uma experimentagdo em escala reduzida do modelo. Dessa forma, para analisar a
solucdo proposta, diversos cendrios sdo estudados com o simulador de nuvens computacionais CloudSim [5], em
especial a versdo com suporte a rede [9]. Em suma, a op¢do por simula¢des remete ao baixo investimento necessa-
rio para simular configuragdes de datacenters reais, sem a necessidade de contratacdo de servigos em provedores
ou o desenvolvimento de prototipos. A andlise experimental compreendeu trés cendrios envolvendo aplicagdes
n-camadas, variando o nimero de requisicdes submetidas ao sistema e o percentual maximo de elasticidade acor-
dado entre usudrios e provedores. Os resultados indicaram a diminui¢io no custo de provisionamento combinado
com um menor tempo de resposta quando a aplicagdo € hospedada em uma infraestrutura elastica. O custo de pro-
visionamento considerado representa o nimero de recursos computacionais reservados durante um determinado
periodo de tempo. Ainda, os resultados apontam que a definicdo de um limite maximo para redimensionamento
eldstico € salutar considerando a rela¢@o custo e tempo de resposta.

O restante deste artigo é organizado da seguinte forma: a Secdo 2 descreve as diferentes formas de forneci-
mento de elasticidade, detalhando a elasticidade em aplicagdes n-camadas. O mecanismo utilizado para a tomada
de decisdo € descrito na Secdo 3. A implementagdo do mecanismo no simulador CloudSim € descrita na Se¢ao 4.
A Secdo 5 apresenta os resultados obtidos com as simulagdes, discutindo perspectivas de trabalhos futuros. Por
sua vez a Secdo 6 apresenta os trabalhos relacionados, enquanto a Se¢do 7 conclui o trabalho.

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 3

2 A Elasticidade de Recursos em Nuvens Computacionais

Umas das motivacdes para migracdo de aplicacdes para a nuvem, € a possibilidade de provisionamento
eldstico. A elasticidade é um recurso de gerenciamento ofertado por provedores de nuvens computacionais, per-
mitindo que usudrios possam aumentar ou diminuir, de maneira rdpida, os recursos computacionais virtuais, em
tempo real [6]. Ou seja, uma aplicag¢do hospedada inicialmente com n maquinas virtuais compondo sua IV, pode
ser dinamicamente reconfigurada para atender picos de trabalho ou novas demandas, alterando a configuragdo para
n £ x, onde x representam as MVs eldsticas (criadas ou destruidas). Assim, uma aplicacdo eldstica € aquela que
automaticamente adapta-se ao contexto de execucao.

Provedores de nuvem e usudrios possuem diferentes visdes sobre a elasticidade em nuvens computacionais.
Para os provedores, fica a responsabilidade de gerenciar os recursos e realizar alteragdes nas infraestruturas virtu-
ais provisionadas. Na visdo dos usudrios, o substrato computacional € totalmente abstraido, sendo acessado por
interfaces que facilitam a utilizac¢do, permitindo, consequentemente, que o usudrio foque no plano de negécio do
servigo hospedado. Inclusive, os usudrios possuem a percep¢ao de que os recursos computacionais sdo infinitos [4].

Usualmente, provedores permitem a configuracdo de elasticidade através de APIs (Application Program-
ming Interface), linguagens (e.g., CloudFormation 2), ou através de mecanismos de reconfiguracdo dinAmica, como
por exemplo Google Compute Engine Autoscaler > e Amazon Auto Scaling *. No primeiro método (APIs e lin-
guagens), a elasticidade da infraestrutura é chamada de elasticidade manual e fica a cargo dos contratantes do
servico, enquanto no segundo a escalabilidade é realizada através da andlise do comportamento computacional da
IV. A andlise do redimensionamento pode ser realizada com modelos analiticos ou baseados em heuristicas [8]. Os
métodos analiticos inferem o comportamento do sistema, porém possuem uma complexidade de desenvolvimento
e gerenciamento elevada, principalmente em sistemas com alta variacdo da carga de trabalho.

Em contrapartida, as heuristicas usualmente diminuem o tempo necessario para a reconfiguragio elastica,
entretanto, sendo menos eficientes em relag@o a otimizagdo quando comparadas aos modelos analiticos. Em sua
maioria [8], controlam a elasticidade de uma I'V através do monitoramento da capacidade da CPU, trafego de rede,
utilizacdo de memoria e taxas de entrada e saida. Para as métricas de monitoramento de CPU, normalmente sio
definidos limiares superiores e inferiores considerando a carga de processamento [17]. Alguns métodos conside-
ram os requisitos da aplica¢do, distribuindo o sistema através de balanceadores de cargas [22]. Em outras, métricas
representam o objetivo de nivel de servico e o acordo de nivel de servigo (SLA). O primeiro visa definir os requi-
sitos da aplicacdo, como disponibilidade e desempenho, enquanto o segundo trata de caracteristicas mensuraveis
como, vazao, tempo de resposta e outras caracteristicas referente a qualidade.

2.1 Estratégias para Provisionamento de Elasticidade

Em nuvens computacionais, as estratégias de elasticidade podem ser classificadas em replicacdo (elastici-
dade horizontal), redimensionamento (elasticidade vertical) e migracdo. A elasticidade horizontal busca adicionar
e remover MVs na infraestrutura virtual do usudrio, dando maior escalabilidade ao sistema. Nesse método, ima-
gens de MVs sdo criadas contendo uma réplica do servico hospedado. O aumento do nimero de réplicas ativas
diminui o risco de indisponibilidade, pois na ocorréncia de uma falta em um ou mais equipamentos, as demais
MVs permanecem respondendo as requisi¢des dos usudrios. Por sua vez, o método de elasticidade vertical com-
preende o redimensionamento das capacidades dos recursos provisionados (e.g., CPU, disco, rede e memoria). Ja a
migracdo € a técnica mais simples de provisionamento de elasticidade e consiste em mover MVs entre hospedeiros
fisicos distintos [8].

A migra¢@o de uma MV segue o mesmo principio da criacdo, ou seja, o hospedeiro destinatario deve possuir
recursos computacionais suficientes para hospedar a MV migrante, bem como as demais MVs ji provisionadas
no equipamento. Essa técnica pode trazer vantagens para o usudrio final, como por exemplo a minimizacdo da
distancia entre as MVs [26]. Ao minimizar a distdncia entre MVs, normalmente a laténcia de comunicagio é
diminuida, melhorando o desempenho das aplicacdes hospedadas [13] [21]. A Figura 1 mostra como o processo
de migracdo pode ser utilizado para redistribuir ou centralizar as MVs em nés computacionais com capacidade

2AWS CloudFormation: https://aws.amazon.com/cloudformation/
3Google Compute Engine Autoscaler: https://cloud.google.com/compute/docs/autoscaler/v1beta2/.
4Amazon Auto Scaling: https://aws.amazon.com/autoscaling/.

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 4

https://aws.amazon.com/cloudformation/
https://cloud.google.com/compute/docs/autoscaler/v1beta2/
https://aws.amazon.com/autoscaling/

compativel. Em caso de centralizag@o (c), os demais nds podem ser desativados, o que consequentemente permite
a diminui¢do de custos administrativos (e.g., reserva de recursos, economia de energia). O contririo também
pode ser realizado: as maquinas virtuais podem ser descentralizadas objetivando o aumento da confiabilidade de
uma IV [7] [3]. Alguns provedores de nuvens publicas, como a Amazon EC2 >, Microsoft Windows Azure ¢ e
Google Cloud Platform 7 exploraram principalmente a elasticidade horizontal. Seguindo a tendéncia dos principais
provedores de nuvens puiblicas, o presente estudo tem seu foco voltado para uma combinagdo de elasticidade
horizontal com migragdo de servigos.

M1 Hib 2 a3 Ha 1 Mo 2 i 1
8 Cores « 1.6 GHz 4Cores« 1.2 GH 4 Cores = 1.2 GHz 8 Comes « 1.6 GHz 4 Cones = 1.2 GHz & Cores « 1.6 GHz

olo 00 |[@6Eeed
cIo [@@J@@ 6 |oollleee

Figura 1: Exemplo de provisionamento de elasticidade com migracdo de MVs (extraido de [6]). (a) Configuracdo
inicial; (b) Migracdo de 2 MVs do n6 3 para o né 2; (c) Migracao de todas as MVs para o n6 1.

2.2 Elasticidade em Servicos n-Camadas

Obter eficiéncia em servigos hospedados na nuvem ndo é uma tarefa trivial. Corporacdes e instituicdes de
pesquisa tém investigado diferentes tipos de arquiteturas e tecnologias para composi¢do de aplicacdes distribuidas,
objetivando a disponibilizagdo de um servico com qualidade para os usudrios finais. Algumas arquiteturas de
aplicacdes web sdo divididas em diversas camadas ldgicas (ou subsistemas), caracterizando a arquitetura de n-
camadas. Usualmente, sdo encontradas aplicagdes com arquiteturas compostas de até 3 camadas, sendo elas 1)
camada de apresentagdo; ii) camada 16gica; e iii) camada de persisténcia. Essa arquitetura facilita a divisdo da
carga de trabalho em grupos especializados, facilitando assim o desenvolvimento, gerenciamento e manutencao
da aplicagdo, pois quando uma das camadas passa por alteracdes de tecnologia (por exemplo, atualizacdo da
linguagem utilizada para desenvolvimento das interfaces, ou altera¢do na arquitetura do banco de dados) as demais
podem permanecer inalteradas.

A camada de apresentagdo € direcionada especificamente para atender as requisi¢des de usudrios. Em geral,
os sistemas web possuem nessa camada as paginas contendo formuldrios e interfaces que facilitam a intera¢do dos
usudrios com a camada légica. Por sua vez, a camada l6gica, independente das demais camadas, é destinada ao
conjunto de rotinas que gerenciam as regras do negdcio (por exemplo, vendas, contabilidade, controle de estoque,
entre outros). Essa camada realiza a transicdo dos dados da camada de apresentagdo para a camada de persis-
téncia. J4 a camada de persisténcia tem como objetivo o tratamento dos dados brutos, sendo responsdvel pelo
gerenciamento e armazenamento desses dados de forma que possam ser recuperados por diversos sistemas inde-
pendentes [14]. Nessa camada € comum encontrarmos bancos de dados e servidores de arquivos. Dessa forma,
quando um sistema web, hospedado em uma nuvem eldstica, recebe poucas requisi¢cdes de usudrio, é suficiente
que somente um servidor por camada esteja ativo. Entretanto, caso diversos usudrios passem a acessar O Sis-
tema simultaneamente, a arquitetura compreenderd novos recursos computacionais, de modo a atender as novas
requisicdes.

Embora a organiza¢do em n-camadas apresente aspectos positivos, encontrar a quantidade 6tima de servi-
dores necessarios para o fornecimento da aplicacdo € uma tarefa complexa. Existem pesquisas que buscam obter
de forma analitica a quantidade de servidores necessdrios analisando a viabilidade em relacdo ao SLA (Service
Level Agreement) [11] [25]. Isso requer um amplo entendimento e planejamento da aplicag@o e seus algoritmos.
Quando o planejamento € otimista (estima-se que a utilizacdo serd menor que a calculada), a capacidade planejada
pode ter uma sobrecarga comprometendo o funcionamento da aplica¢do, violando o SLA. Por outro lado, se o pla-

5 Amazon EC2: https://aws.amazon.com/pt/ec2.
®Microsoft Windows Azure: https://azure.microsoft.com.
"Google Cloud Platform: https://cloud.google.com.

Revista Brasileira de Computacio Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 5

https://aws.amazon.com/pt/ec2
https://azure.microsoft.com
https://cloud.google.com

nejamento for pessimista (estima-se que a utilizagdo pode ser mais alta que a calculada), recursos desnecessarios
podem ser reservados, gerando um alto custo de provisionamento.

Para representar as etapas de comunicagio e computagdo realizadas por uma aplica¢do n-camadas, decom-
pomos a aplicacdo em balanceadores de cargas, servidores web e servidores de bancos de dados. Especificamente,
a Figura 2 demonstra o modelo que representa os estidgios de processamento e comunicacio necessarios para aten-
der uma requisi¢do: (i) inicialmente, o balanceador de carga recebe e envia a requisi¢do para um servidor web,
guiando sua decisdo por um algoritmo de balanceamento e distribui¢do de carga; (ii) o servidor web executa um
estdgio de processamento e (iii) realiza uma requisicao ao banco de dados; (iv) o banco de dados executa um estd-
gio de processamento e (v) envia uma quantidade de dados para o servidor web de origem; (vi) os dados recebidos
do banco de dados s@o processados pelo servidor web, que posteriormente (vii) processa e responde a solicitaco.

Em aplicacdes n-camadas, a elasticidade pode ser explorada em multiplos pontos da IV. Tradicionalmente,
o ndmero de servidores web pode ser aumentado ou diminuido de acordo com a carga submetida ao sistema. A
ocorréncia de uma nova MV acrescida a IV € informada ao balanceador de carga, que consequentemente direci-
ona as requisi¢des de usudrios. Ainda, alguns gerenciadores de nuvens computacionais (e.g., OpenStack, Amazon
EC2, RackSpace) permitem a reconfigura¢do de uma MV provisionada, alterando o tipo de sua instincia ou recon-
figurando pardmetros individuais (e.g., RAM, CPUs virtuais e armazenamento). Um raciocinio similar € realizado
com os dispositivos de armazenamento (legenda Banco de dados na Figura 2), independente do gerenciador e
tecnologia utilizados (e.g., banco de dados relacionais, noSQL), o subsistema de armazenamento (centralizado
ou distribuido) por ser aumentado ou diminuido, guiado pelo volume de dados armazenado e nimero de acessos
concorrentes.

Il v

Balanceador

Figura 2: Caminho percorrido por uma requisi¢do submetida a aplicacdo n-camadas modelada.

3 Mecanismo para Provisionamento de Aplicacoes n-Camadas Elasticas

O mecanismo para provisionamento e reconfiguracio de servigos eldsticos proposto explora a combinagéo
de migragdo e replicagdo de mdaquinas virtuais (elasticidade horizontal, conforme discutido na Se¢do 2.1) para
reconfiguracdo de uma IV, guiado por limiares informados pelo usudrio contratante, durante o estabelecimento do
acordo de nivel de servico. Desta forma, a solu¢do proposta € agndstica ao servico hospedado, desde que este
siga uma modelo n-camadas, conforme exemplificado pela Figura 2. Ainda, a escolha do algoritmo empregado
pelo balanceador de carga (e.g, round-robin, max-min) é uma informacio relacionada com a aplicacdo, sendo
especificada pelo usudrio. A definicdo de limiares permite a configuragdo de um servico reativo, ou seja, quando
limiares sdo atingidos, o0 mecanismo atua acrescentando ou removendo maquinas virtuais, ou migrando tarefas
computacionais.

Embora exista a ilusdo de poder computacional infinito, provedores de nuvem determinam uma capacidade
méaxima permitida para adi¢do de novos recursos. Por exemplo, o provedor Amazon EC2 permite que seus usudrios
adicionem no médximo 20 instancias por demanda, enquanto Google Computing Engine limita o niimero maximo

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 6

de operacdes submetidas a interface de gerenciamento. No mecanismo proposto, o crescimento da IV eldstica é
limitado por um valor maximo, estudado na andlise experimental com diferentes valores, demonstrando a relagido
obtida entre custo de alocagdo e desempenho da aplicagdo hospedada.

A heuristica do mecanismo busca a diminui¢cdo do tempo médio de processamento das requisi¢des subme-
tidas ao servigo, simultaneamente evitando o aumento do custo de provisionamento. Durante o provisionamento
de uma IV, instincias de MVs podem receber servidores de diferentes tipos (banco de dados ou servicos web) em
quantidades variadas. Teoricamente, uma inica MV pode suportar completamente a aplicacdo, reduzindo o custo
de provisionamento ao miximo em detrimento do desempenho da aplicacdo hospedada. A distribui¢do inicial das
MVs para os componentes da aplicacdo é baseada em uma distribui¢éio proporcional de recursos em arquiteturas
n-camadas. Assim, definimos que a quantidade de servidores web (representada por w) € obtida a partir da equa-
ciow = (N — lb)ﬁ, sendo: N o nimero maximo de MVs que podem ser provisionadas para o usudrio; [b
a quantidade de balanceadores de carga; e ¢ a quantidade mixima de servidores que podem ser conectados em
um unico banco de dados. Por fim, com o nimero de servidores web definido, a quantidade de bancos de dados
necessdria € definida por db = *7. Essa abordagem visa uma distribui¢@o eficiente dos recursos computacionais
solicitados pelo usudrio para hospedar a aplicacdo distribuida, de modo que cada MV hospede ao menos um ser-
vigo que constitui a aplicacdo, respeitando a quantidade médxima de conexdes permitidas por banco de dados e
balanceadores de cargas.

Definir configuragao
inicial da IV

v

Informar LC, LD e LE
Definir MVS

v

—» Contabilizar TMR

Criar MV
MVS = MVS +1
Migrar tarefas

Migrar tarefas
Destruir MV
MVS = MVS - 1

L]

Figura 3: Fluxograma do mecanismo para adaptagao eldstica das I'Vs.

A configuracdo inicial de uma IV pode ser alterada com a migracdo ou replica¢do de servigos. A medida
que a carga de trabalho aumenta (por exemplo, o nimero de acessos cresce), novas MVs sdo alocadas para atender
as requisi¢des, e posteriormente € iniciada a migracao das tarefas para as novas MVs que estejam com uma menor
carga de trabalho. Ainda, se hd vdrias MVs alocadas e estas possuem poucas tarefas em execugdo, 0 mecanismo
decide pela migragdo das tarefas restantes, para posteriormente eliminar as MVs, diminuindo o custo de provisio-
namento final. A Figura 3 exemplifica o mecanismo de adaptacdo. Inicialmente, a configurag@o da infraestrutura
virtual é definida, identificando os valores iniciais de w, [b e db. O algoritmo é guiado por trés limiares para to-
mada de decisdo sobre a criacdo e destrui¢do de MVs: limiar de criacdo (LC), limiar de destruicao (LD) e limiar
de elasticidade (LE). LC e LD representam a variacdo mdxima tolerada pela aplicagdo hospedada, enquanto LE
indica 0 aumento miximo de recursos previamente autorizado (limitado por provedores ou usudrios durante o es-
tabelecimento do acordo de nivel de servi¢o). LC e LD séo confrontados com o tempo médio de resposta (TMR)
dos servigos hospedados. Quando o valor obtido é maior que o percentual maximo de variacio identificado pelo
limiar superior, novas MVs sdo acrescentadas ao ambiente, respeitando, entretanto, o limiar de elasticidade. Uma
andlise similar ocorre para a destruicdo de MVs. Assim como proposto em trabalhos anteriores [17], os limiares
podem ser ajustados para representar os objetivos das aplicagdes hospedadas.

Revista Brasileira de Computacio Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 7

4 Implementacio do Mecanismo no Simulador CloudSim

O mecanismo descrito na Se¢@o 3 foi implementado como um médulo do simulador CloudSim [5], espe-
cificamente da versdo com suporte a modelagem de recursos de comunicacio [9]. Para modelar uma aplicacio
distribuida e organizada em n-camadas, estendemos a classe AppCloudlet, criando a WebServerAppMultitier, que
recebe uma lista de MVs na qual sdo criadas as cloudlets (nomenclatura do simulador para representar tarefas).
Apés a criagdo dos componentes da aplicacdo, sdo submetidas requisi¢des para o sistema. Para representar um
cendrio estabilizado, algumas requisi¢des sdo submetidas antes do algoritmo de elasticidade entrar em execucdo.
Assim, antes da simulacdo ser iniciada, todos os estagios de comunica¢do do servi¢co hospedado ja estdo organi-
zadas na forma de mdaquinas de estado (conforme ilustrado na Figura 2). Os algoritmos descritos anteriormente
foram implementados no broker do simulador. No CloudSim, quando ha mais de uma MV em um mesmo hos-
pedeiro fisico, o framework realiza a execu¢cdo em modo paralelo, permitindo que uma MV que esteja executando
em uma vCPU ndo tenha seu desempenho comprometido por MVs executando em outras vCPUs. J4 o escalonador
de cloudlets executa no modo de tempo compartilhado: quando existe mais de uma cloudlet executando em uma
mesma MV, a execugdo € enfileirada de modo que uma necessite aguardar o término da anterior.

Os Algoritmos 1 e 2 apresentam pseudocddigos do mecanismo proposto (fluxograma da Figura 3). O pri-
meiro descreve a selecdo de cloudlets (tarefas que compdem a aplicagdo n-camadas hospedada) para migrag@o.
Para evitar o reprocessamento de respostas ja iniciadas, optamos por ndo migrar servigos com comunicagio em
andamento, ou seja, qualquer servico aguardando ou enviando uma mensagem sincrona ndo serd selecionado como
potencial candidato para migracdo. Ainda, cloudlets finalizando seu processamento nao sdo selecionadas, pois o
tempo de migracdo € usualmente superior ao tempo de processamento remanescente. O Algoritmo 2 evidéncia que
a selecdo das cloudlets e das MVs candidatas a migragdo ocorre em momentos distintos. Enquanto o Algoritmo 1
seleciona as cloudlets, os métodos overloadedV M () e underloadedV M () selecionam as MVs considerando
a carga de processamento (comparando o percentual de uso de CPU). A variacdo mdxima tolerada pela aplica-
c¢do hospedada € representada por delta AverageTime no Algoritmo 2, enquanto o crescimento da I'V eléstica é
limitado por um valor maximo, representado pelo parametro elasticity.

Algorithm 1: findCloudletsToMigrate: pseudocddigo para encontrar as cloudlets que podem ser
migradas.

1 cloudlets: servigos que podem ser migrados;

2 for mv € IV do

3 for cl € cloudlets(mv) do

4 if cl is sending or waiting for a packet then
5 L continue;

if cl is finished then
7 L continue;

=)

if cl is almost finished then
L continue;

10 add ¢l to cloudlets;

1 return cloudlets;

-

5 Analise Experimental

Para estudar a aplicabilidade da solu¢d@o proposta, uma andlise experimental foi conduzida com o simulador
de nuvens computacionais CloudSim. Os experimentos foram realizados em um computador AMD Phenom II
com 4 GB de RAM e Linux Ubuntu 12.04.02. O simulador foi executado com o Java versao 1.7.0_09. Seguindo
trabalhos anteriores [21], cada hospedeiro fisico foi modelado de forma padronizada com 16 GB de RAM e 16
CPUgs, interconectados em uma topologia fat-tree [1] com largura de banda de 1 Gbps entre os switches de borda
e agregacdo, e 10 Gbps entre os switches de agregacdo e de nicleo. A topologia fat-tree foi selecionada devido
a ampla ado¢@o em provedores de nuvens computacionais [24]. A Figura 4 apresenta a simplificacdo de uma

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 8

Algorithm 2: elasticProvisioning: Pseudocodigo para determinar a criacio ou destruicdo de MVs a
partir do tempo de processamento das requisicoes.

1
2

3
4

12
13
14
15
16

elasticity: percentual maximo de MVs elasticas;
runningV M s: MVs ativas;

deltaAverageTime = updateRuntimeAverage();
cloudletsToMigrate = findCloudletsToMigrate();

if cloudletsToMigrate is () then
L return;

if (delta AverageTime > loreate) and (runningVMs < runningVMs + elasticity) then
src = overloadedVM();
dst = createVMs();
migrateCloudlets(cloudletsToMigrate, src, dst);
runningV M s = updateRunningVMs(dst);

else if (delta AverageTime < ljestroy) then
src = vmToDestroy();
dst = underloadedVM();
migrateCloudlets(cloudletsToMigrate, src, dst);
destroyVM(src);

topologia fat-tree. No presente trabalho, a topologia foi definida com 8 pods.

Figura 4: Simplificacdo de uma topologia fat-tree composta por 4 pods. O exemplo descreve a organizacdo dos

Core

....................................

Aggregation

Edge

switches de borda (edge), agregacdo (aggregation) e nicleo (core) [1].

As configuracdes das maquinas virtuais reservadas para hospedar a aplicacdo com arquitetura n-camadas
seguiram uma distribui¢do uniforme entre configuracdes pré-determinadas. Em suma, a configuracio de RAM foi
selecionada entre 1, 2 e 4 GB, enquanto as CPUs virtuais foram selecionadas entre 1, 2, 4 e 8 nicleos alocados
por MV. Quanto aos enlaces de comunicagdo, a capacidade requisitada foi selecionada entre 50%, 25% e 12,5%
da menor capacidade ponto-a-ponto (a saber, 1 Gbps) da topologia fisica. A alocacio inicial da IV foi realizada
seguindo o algoritmo de Alocacdo Orientada por Distancia (AOD) [21], que busca a diminui¢do da distincia entre

0s recursos provisionados.

Para cada cendrio, a IV foi inicialmente composta por 5 maquinas virtuais seguindo a distribuicdo de servi-
cos discutida na Se¢do 3 (resultando em 1 balanceador de carga, 3 servidores web e um banco de dados). Optamos
pelo algoritmo round-robin como padrao para distribui¢do das requisi¢des recebidas pelo balanceador de carga. O
uso de carga sintética contempla uma variada gama de situacdes de configuracdo de M Vs, analisando a aplicabili-

dade da solugdo proposta com diferentes configuracdes de aplica¢des n-camadas hospedadas na IV.

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016

Os parametros de entrada dos cendrios de teste representam servicos web n-camadas usualmente hospeda-
dos em provedores de nuvem. Trés cendrios de testes, com cargas sintéticas, foram analisados variando o nimero
maximo de recursos eldsticos: i) sem elasticidade (identificado nos graficos pela legenda 0%); ii) 100% de elas-
ticidade; e iii) e o terceiro com 200% de elasticidade permitida. Cada cendrio representa um possivel acordo de
nivel de servigo estabelecido entre o usudrio contratante e o provedor de servigo. O percentual de elasticidade (0,
100 ou 200) indica o crescimento maximo acordado do nimero de maquinas virtuais (pardmetro elasticity do
Algoritmo 2). A escolha dos percentuais maximos de elasticidade foi baseada na configurag¢@o padrdo do provedor
de nuvem publica Amazon EC2. Neste provedor, cada usudrio pode solicitar no maximo 20 instancias de MVs, ou
seja, um crescimento maximo de 200% sobre a configuragdo inicial indicada (5 MVs).

Inicialmente, 100 requisi¢cdes foram submetidas para colocar o sistema em regime estdvel. Uma requisi-
¢do representa um acesso ao servico hospedado na nuvem computacional, sendo que seu processamento segue
o percurso apresentado na Figura 2. O tempo de processamento de uma cloudlet foi selecionado de forma uni-
forme entre 0,1 a 4 segundos (o tempo de processamento dos estdgios representados na Figura 2). J4 o tempo de
comunicagdo entre os recursos é guiado pelo volume de trafego atual.

Buscando a simulagado de picos de execugdo, foram adicionadas aleatoriamente entre 100 e 500 requisi¢des.
Para o cendrio sem elasticidade, as MVs ndo podem ser destruidas e novas MVs ndo podem ser criadas. Entretanto,
nos cendrios com 100% e 200% de provisionamento eldstico, as MVs sdo removidas (quando ociosas) ou dinami-
camente criadas até um limite de 100% (ou 200%) da quantidade inicialmente informada pelo usudrio, aplicando
os Algoritmos 1 e 2. A definicdo dos limiares indicativos de saturacdo e ociosidade de um sistema ndo € uma
tarefa trivial. A quantificacdo da qualidade observada pelo usudrio final requer um mecanismo de monitoracao
na camada do usudrio, sendo dependente da aplicagdo em questdo. Baseado em observagdes experimentais, 0s
limiares lcrcate € ldestroy foram definidos como 20% e 50%, respectivamente, para a aplica¢do analisada. Ou seja,
os limiares representam o melhor caso de configuracao possivel para a carga submetida.

A andlise experimental quantificou duas métricas: o custo total de provisionamento e o tempo médio de
processamento das requisi¢des. A primeira representa o investimento necessdrio para o provisionamento completo
da IV enquanto a segunda representa a visdo dos usudrios do servico hospedado. O custo de provisionamento
foi definido como o somatdrio da capacidade de processamento reservado durante o periodo de provisionamento.
Para realizar uma andlise comparativa, o custo de provisionamento sem elasticidade foi considerado como linha
de base, sendo comparado com as demais configuragdes. Em cada cendrio foram realizadas 100 execugdes, e as
barras de erros nos graficos representam o intervalo de confianca de 95%.

5.1 Custo Total de Provisionamento

A Figura 5 apresenta o custo total de provisionamento para os cendrios avaliados. Para o cendrio sem elasti-
cidade (0%), o custo referente ao tempo de processamento realizado pelas 5 MVs inicialmente provisionadas para
atender as requisi¢des € utilizado como base para comparagdes. Segundo os resultados apresentados na Figura 5,
as configuragdes elasticas obtiveram custo menor ou similar em todos os cendrios avaliados. Especificamente, a
configuracdo com 100% de elasticidade maxima obteve o menor custo total de provisionamento. Essa situacdo
reflete um cendrio real vivenciado em nuvens computacionais: o aumento dos recursos computacionais alocados
nem sempre resulta um uma melhora no servigo disponibilizado. Nesse caso, acrescentar mais MVs a IV repre-
senta uma maior distribui¢cdo dos processos. Ou seja, a ocorréncia de gargalos de comunicag@o nos servidores ou
equipamentos comunicantes pode depreciar o servico.

Quanto ao percentual de redug@o de custos, a configuracdo com 200% de elasticidade reduziu entre apro-
ximadamente 5% e 20% nos cendrios analisados, enquanto uma configuragdo com 100% de elasticidade maxima
obteve uma redug@o de custos com valores entre 18% e 42%. Especificamente, no cendrio com maior nimero de
requisicdes submetidas (Figura 5(e)) o uso do algoritmo elastico de reduziu aproximadamente 1,7 vezes o custo
total de provisionamento.

5.2 Tempo Médio de Processamento de Requisicoes

O tempo médio de processamento das requisi¢des submetidas € apresentado na Figura 6 para os cendrios
avaliados. Para 100 requisicdes (Figura 6(a)) a aceleragdo obtida no tempo médio de processamento com uso de

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 10

140%
140%
0,
120% T _ 120%
100% - 100%
‘E 80% m0% ° 80% o
3 2 m 0%
3 60% W100% | O 0% = 100%
W 200%
40% ’ 20% m200%
20% -
0 20%
0% -
0% 100% 200% 0%
Elasticidade 0% 100% 200%
Elasticidade
(a) Cendrio com 100 requisi¢des. (b) Cendrio com 200 requisicdes.
140% 140%
120% 120%
100% - -+ T 100%
o 80% o 80%
2 = 0% 2 0%
© 60% m100% | = 60% = 100%
40% 200% 40% 200%
20% 20%
0% 0%
0% 100% 200% 0% 100% 200%
Elasticidade Elasticidade
(c) Cendrio com 300 requisigdes. (d) Cendrio com 400 requisicoes.
140%
120%
100%
o 80% -|_
I3 -|_ 0%
< 60% = 100%
20% = 200%
20%
0%
0% 100% 200%
Elasticidade

(e) Cendrio com 500 requisicoes.

Figura 5: Custo total de provisionamento das MV alocadas para o usudrio.

provisionamento eldstico € baixa. Entretanto, para os demais cendrios, a configuracdo com 100% de elasticidade
madxima acelerou o tempo médio de processamento em 1,3, 1,6, 1,77 e 5 vezes para 200, 300, 400 e 500 requisigdes,
respectivamente. Comparando o provisionamento estédtico (0%) com os modelos eldsticos € evidente a reducio do
tempo de processamento oriundo da aplicac¢do do algoritmo de elasticidade.

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 11

10 35 ==
9 30 _—
8 T -
= 7 = 25
° 2
3 6 520
€ 5 m0% £ m0%
;n 4 m 100% é. 15 m 100%
g 3 W 200% € 10 m200%
2
1 5
0 0
0% 100% 200% 0% 100% 200%
Elasticidade Elasticidade
(a) Cendrio com 100 requisigdes. (b) Cenario com 200 requisi¢des.
80 100
70 90
80
60
z z 70
o 50 o
3 39 T
€ 40 0% £ 50 m 0%
=] o)
g- 30 W 100% g- 40 H 100%
& 20 W 200% & 30 W 200%
20
10 10
0 T 0
0% 100% 200% 0% 100% 200%
Elasticidade Elasticidade
(c) Cendrio com 300 requisigdes. (d) Cendrio com 400 requisi¢des.
160
140
120
=
© 100
i
o
£ 80 - m 0%
o
g— 60 m 100%
K3 W 200%
40
20
0
0% 100% 200%
Elasticidade

(e) Cendrio com 500 requisigdes.
Figura 6: Tempo médio de processamento das requisi¢do submetidas.

5.3 Discussao e Consideracoes

Analisando conjuntamente as métricas, é possivel visualizar que um provisionamento com 100% de elasti-
cidade méaxima € superior aos cendrios sem elasticidade e com elasticidade méaxima de 200%, tanto em relagéo ao
custo total (recursos provisionados durante o periodo de execug¢do), quanto em relacdo ao tempo médio de resposta
das requisi¢des. Ou seja, nem sempre um maior investimento em recursos computacionais (configuragdes com
200% de elasticidade maxima) resultard na melhora do servigo ofertado.

A configuragdo de ambientes eldsticos ndo € uma tarefa trivial. Existem situagdes em que as métricas de uso

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 12

de recursos disponibilizadas pelos provedores ndo sao suficientes para representar a visao do usudrio do sistema
hospedado. Por exemplo, a aplicagdo do algoritmo proposto neste trabalho em um ambiente de producédo requer o
monitoramento constante do servi¢co hospedado. Atualmente, provedores de nuvem disponibilizam métricas refe-
rentes ao consumo das maquinas virtuais e de rede, deixando a monitorac¢do da aplicacdo sob responsabilidade do
usudrio contratante. A instrumenta¢do de uma aplicacdo n-camadas para experimentacdo em um cendrio de produ-
c¢do é apontada como perspectiva de continuacdo. Por fim, o provisionamento eldstico de recursos de comunica¢io
(e.g., reserva de largura de banda, reconfiguragcdo de caminhos) € uma linha futura promissora, ja que a topologia
de rede pode ser um fator limitado para o desempenho da aplicagio hospedada.

6 Trabalhos Relacionados

A literatura especializada compreende trabalhos atrelados ao provisionamento eldstico de recursos e a si-
mulac@o de nuvens computacionais.

Trabalhos relacionados com a elasticidade de infraestruturas virtuais vem sendo desenvolvidos com o obje-
tivo de minimizar os custos para hospedagem de aplicacdes em nuvem tanto para clientes quanto para provedores,
mantendo em paralelo, a qualidade do servico ofertado [8]. Esses trabalhos focam no monitoramento de métricas
como carga de processamento, volume de dados transferidos e capacidade da memdria, delimitadas por limiares
para prover a elasticidade [17] [18] [19] [16]. Ainda, a predi¢do do uso futuro de recursos virtuais tem sido utilizada
para tomada de decis@o em ambientes eldsticos [10] [20]. Complementarmente, provedores de nuvens computacio-
nais definem APIs e modelos para configuracio de elasticidade, como por exemplo AWS CloudFormation, Google
Compute Engine Autoscaler e Amazon Auto Scaling.

Em suma, os trabalhos revisados objetivam o redimensionamento dos recursos computacionais guiado por
métricas tradicionais, referentes ao consumo computacional (utilizagdo de CPU, volume de dados transferido,
entre outros). Embora eficientes, essas métricas ndo representam a visdo do usudrio utilizador do servi¢o hospe-
dado. Assim, o presente trabalho complementa o estudo introduzindo um algoritmo elastico guiado pelo tempo de
processamento da aplicac@o, ou seja, o tempo de resposta aguardado pelo usudrio solicitante. Essa métrica repre-
senta uma visdo combinada do uso dos recursos computacionais. A elasticidade ndo € guiada apenas por valores
absolutos de consumo de recursos, mas pelo seu impacto no tempo de processamento da aplicagao.

Quanto a simulagdo, as pesquisam buscam a experimentacdo de novas tecnologias voltadas para tais am-
bientes e a identificagdo de novas oportunidades de pesquisa. Dentre os simuladores de nuvens computacionais
identificados, o CloudSim [5] € um simulador gratuito, que facilita o estudo de algoritmos e metodologias atra-
vés da extensdo de classes desenvolvidas em Java. Por apresentar tais oportunidades, o framework vem sendo
incrementado ao longo dos anos [2] , permitindo simula¢gdes cada vez mais elaboradas e representativas. Em [9]
foi introduzida uma representagdo inicial da topologia de rede de um provedor de nuvem. Essa implementacao
foi adaptada para representar a topologia fat-tree discutida na andlise experimental. Recentemente, o Cloud-
SimSDN [23] foi proposto para simular no CloudSim ambientes com redes definidas por software, apresentando
um novo modelo de representacdo da infraestrutura, bem como incluindo ferramentas para testes e controle de poli-
ticas de alocac@o baseadas em fluxo. Uma possivel combinacio da reconfiguracio introduzida por CloudSimSDN
com o algoritmo de elasticidade proposto nesse trabalho € indicada como perspectiva de continuidade do estudo
para investigar o provisionamento eldstico dos recursos de comunica¢do em uma nuvens computacionais.

7 Conclusao

O conceito de nuvens computacionais foi amplamente difundido na comunidade académica e comercial.
Dentre os fatores motivadores, destaca-se a elasticidade dos recursos computacionais. Melhorar a eficiéncia dos
servicos disponibilizados é um requisito crucial para diversas empresas e organizacdes que pretendem atingir um
grande publico. Através da elasticidade, MVs podem ser destruidas quando poucas requisi¢cdes sdo enviadas a
aplicacdo, ou agregadas ao servico quando houver picos de utilizacdo da aplicagdo. Entretanto, dificilmente os
mecanismos para provisionamento de elasticidade consideram a visdo dos usudrios solicitantes do servico.

Nesse contexto, este trabalho propds um mecanismo baseado no tempo médio de resposta das requisicdes
recebidas por uma aplicagdo distribuida e organizada em camadas. Quando o tempo médio de resposta ultrapassa

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 13

um limiar representativo da qualidade percebida pelo usudrio, o0 mecanismo acrescenta maquinas virtuais a in-
fraestrutura virtual, posteriormente migrando tarefas criticas (com elevado tempo de processamento). De forma
similar, quando um limiar de ociosidade ¢ identificado, tarefas sdo consolidadas em maquinas virtuais, permitindo
a desativacdo de instancias ocioasas.

Para andlise do mecanismo, o framework CloudSim foi estendido, acrescentando a heuristica proposta e
modelando cendrios representativos de provedores de nuvem e aplicacdes web n-camadas. A andlise experimental
indicou a diminui¢do do custo de provisionamento combinado com um menor tempo de resposta quando a apli-
cacdo € hospedada em uma infraestrutura eldstica. Em relacdo a trabalhos futuros, as heuristicas podem levar em
considera¢@o a utilizacdo dos recursos de comunica¢do, bem como a origem das requisi¢cdes recebidas.

Agradecimentos

Os autores gostariam de agradecer a UDESC pelo auxilio financeiro e ao Laboratério de Processamento
Paralelo e Distribuido (LabP2D) pela disponibiliza¢do dos recursos computacionais para a realizagao do trabalho.

Referéncias

[1] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, commodity data center network
architecture. SIGCOMM Comput. Commun. Rev., 38(4):63-74, August 2008.

[2] Cassio P. Alkmin and Daniel Cordeiro. SimMyCloud, simulando o gerenciamento de recursos virtualizados
em plataformas de computacdo em nuvem. In Saldo de Ferramentas - SBRC 2014, Maio 2014.

[3] Peter Bodik, Ishai Menache, Mosharaf Chowdhury, Pradeepkumar Mani, David A Maltz, and Ion Stoica.
Surviving Failures in Bandwidth-Constrained Datacenters. In Proc. ACM SIGCOMM, pages 431-442, 2012.

[4] Rajkumar Buyya, Chee Shin Yeo, and Srikumar Venugopal. Market-oriented cloud computing: Vision, hype,
and reality for delivering it services as computing utilities. In Proc. of the 10th IEEE Int. Conf. on High
Performance Computing and Communications, HPCC ’08, pages 5—13, Washington, DC, USA, 2008. IEEE
Computer Society.

[5] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F. De Rose, and Rajkumar Buyya. Cloud-
sim: A toolkit for modeling and simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Softw. Pract. Exper., 41(1):23-50, January 2011.

[6] Rodrigo da Rosa Righi. Elasticidade em cloud computing: conceito, estado da arte e novos desafios. Revista
Brasileira de Computacdo Aplicada (RBCA), 5(2):2-17, 2013.

[7] G.A. De S Cavalcanti, R.R. Obelheiro, and G. Koslovski. Optimal resource allocation for survivable virtual
infrastructures. In /0th International Conference on the Design of Reliable Communication Networks, 2014.

[8] G. Galante and L.C.E. de Bona. A survey on cloud computing elasticity. In Utility and Cloud Computing
(UCC), 2012 IEEE Fifth International Conference on, pages 263270, Nov 2012.

[9] S.K. Garg and R. Buyya. Networkcloudsim: Modelling parallel applications in cloud simulations. In Utility
and Cloud Computing (UCC), 2011 Fourth IEEFE International Conference on, pages 105-113, Dec 2011.

[10] Zhenhuan Gong, Xiaohui Gu, and J. Wilkes. Press: Predictive elastic resource scaling for cloud systems. In
Network and Service Management (CNSM), 2010 International Conference on, pages 9—16, Oct 2010.

[11] Rui Han, Moustafa M. Ghanem, Li Guo, Yike Guo, and Michelle Osmond. Enabling cost-aware and adaptive
elasticity of multi-tier cloud applications. Future Gener. Comput. Syst., 32:82-98, March 2014.

[12] Brendan Jennings and Rolf Stadler. Resource management in clouds: Survey and research challenges. Jour-
nal of Network and Systems Management, pages 1-53, 2014.

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 14

[13] G. Koslovski, S. Soudan, P. Goncalves, and P. Vicat-Blanc. Locating virtual infrastructures: Users and inp
perspectives. In Integrated Network Management (IM), 2011 IFIP/IEEE International Symposium on, pages
153-160, May 2011.

[14] Claudia Ferreira Gonzalez Llana and Marcio Francisco Campos. Identificando atividades para apoiar o de-
senvolvimento de sistemas para a web. Anais do Curso de Ciéncia da Computagdo. Volume 111, 22230:5,
2003.

[15] Peter M. Mell and Timothy Grance. Sp 800-145. the nist definition of cloud computing. Technical report,
NIST, Gaithersburg, MD, United States, 2011.

[16] Fabio Morais, Francisco Brasileiro, Raquel Lopes, Ricardo Araujo, Augusto Macedo, Wade Satterfield, and
Leandro Rosa. Um arcabougo para provisionamento automdtica de recursos em provedores de iaas inde-
pendente do tipo de aplicacdo. In Simpdsio Brasileiro de Redes de Computadores e Sistemas Distribuidos -
SBRC, Brasilia, Brasil, May 2013.

[17] R.J.; PFITSCHER, M. A. PILLON, and R. R. OBELHEIRO. Diagnéstico do provisionamento de recursos
para maquinas virtuais em nuvens iaas. In 370 Simposio Brasileiro de Redes de Computadores e Sistemas
Distribuidos - SBRC, Brasilia, Brasil, May 2013.

[18] Ricardo J. Pfitscher, Mauricio A. Pillon, and Rafael R. Obelheiro. Customer-oriented diagnosis of memory
provisioning for iaas clouds. SIGOPS Oper. Syst. Rev., 48(1):2-10, May 2014.

[19] R. Righi, V. Rodrigues, C. Andre daCosta, G. Galante, L. Bona, and T. Ferreto. Autoelastic: Automatic
resource elasticity for high performance applications in the cloud. Cloud Computing, IEEE Transactions on,
PP(99):1-1, 2015.

[20] N. Roy, A. Dubey, and A. Gokhale. Efficient autoscaling in the cloud using predictive models for workload
forecasting. In Cloud Computing (CLOUD), 2011 IEEE International Conference on, pages 500-507, July
2011.

[21] Denivy B Ruck, Ramon Oliveira, and Guilherme P Koslovski. Comparacdo de algoritmos para alocacdo de
Infraestruturas Virtuais. Revista Brasileira de Computagdo Aplicada, Oct 2014.

[22] Rhodney Simdes and Carlos Kamienski. Gerenciamento de elasticidade em nuvens privadas e hibridas. In
XII Workshop de Computagédo em Clouds e Aplicagcées - WCGA, Florianépolis, Brasil, May 2014.

[23] Jungmin Son, A.V. Dastjerdi, R.N. Calheiros, Xiaohui Ji, Young Yoon, and R. Buyya. Cloudsimsdn: Mode-
ling and simulation of software-defined cloud data centers. In Cluster, Cloud and Grid Computing (CCGrid),
2015 15th IEEE/ACM International Symposium on, pages 475—484, May 2015.

[24] William Stallings. Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud. Addison-Wesley
Professional, 1st edition, 2015.

[25] Tram Truong Huu, Guilherme Koslovski, Fabienne Anhalt, Johan Montagnat, and Pascale Vicat-Blanc Pri-
met. Joint elastic cloud and virtual network framework for application performance-cost optimization. Jour-
nal of Grid Computing, 9(1):27-47, 2011.

[26] William Voorsluys, James Broberg, Srikumar Venugopal, and Rajkumar Buyya. Cost of virtual machine live
migration in clouds: A performance evaluation. In Proceedings of the Ist International Conference on Cloud
Computing, CloudCom ’09, pages 254-265, Berlin, Heidelberg, 2009. Springer-Verlag.

[27] L. Wu, S. K. Garg, and R. Buyya. Sla-based resource allocation for software as a service provider (saas)
in cloud computing environments. In Cluster, Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM
International Symposium on, pages 195-204, May 2011.

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 2-15, jul. 2016 15

	Introdução
	A Elasticidade de Recursos em Nuvens Computacionais
	Estratégias para Provisionamento de Elasticidade
	Elasticidade em Serviços n-Camadas

	Mecanismo para Provisionamento de Aplicações n-Camadas Elásticas
	Implementação do Mecanismo no Simulador CloudSim
	Análise Experimental
	Custo Total de Provisionamento
	Tempo Médio de Processamento de Requisições
	Discussão e Considerações

	Trabalhos Relacionados
	Conclusão

