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Resumo: busca em grafos € uma das técnicas mais utilizadas para o projeto de algoritmos em gra-
fos. Em tais buscas, a ordem em que os vértices de um grafo sio visitados definem uma enumeragéo
nos vértices do grafo e uma caracterizacdo dessas enumeracdes que, de acordo com a estratégia
usada na busca, tem se mostrado importante nas aplicagdes de algoritmos em grafos. Neste trabalho
generalizamos o conceito de busca e as caracteriza¢des, bem conhecidas no caso de grafos, para o
caso de hipergrafo.

Palavras-chave: Algoritmos de buscas. Hipergrafos. Teoria dos grafos.

Abstract:  graph search, or graph traversal, is possibly the most used tool in design of graph
algorithms. The order in which the vertices of a graph are visited during a search define a enumera-
tion of the vertices and the characterization of these enumerations which, according to the strategy
used in search, has been useful and important in some applications of graph algorithms. In this
manuscript we extend the known results of characterizations of graph searches to the more general
case of hypergraphs.
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1 Introducao

Um grafo é, formalmente, um par ordenado de conjuntos finitos (V, E) tal que cada elemento de E é
um subconjunto formado por dois elementos de V. Cada elemento de V' é chamado de vértice do grafo e cada
elemento de F é chamado de aresta do grafo. Se GG denota o grafo que é definido pelo par (V, E') entdo escrevemos

G = (V,E).

Chamamos genericamente de algoritmo de busca em grafo qualquer algoritmo que, quando recebe um grafo
G = (V, E) como entrada, visita sistematicamente todos os vértices e todas as arestas do grafo G. Nesse processo,
o algoritmo mantém um conjunto C dos elementos (vértices ou arestas) de um grafo que sdo candidatos a serem
visitados e em cada passo um elemento de C é escolhido. Quando C C V dizemos que a busca é guiada por vértice
e, nesse caso, estamos interessados na sequéncia vy, vz, ..., vy em que os vértices de V' sdo visitados; quando
C C E dizemos que a busca € guiada por aresta e estamos interessados na sequéncia ey, €2, . . ., €| €m que as
arestas de F sdo visitadas. A politica de gerenciamento de C define uma estratégia de busca. Em uma busca guiada
por vértice sobre um grafo o algoritmo visita, a partir de um vértice inicial, um novo vértice por iterativas travessias
em arestas incidentes a esse vértice. Os novos vértices descobertos sdo guardados em C, de onde um € escolhido
para que o processo se repita até que todos os vértices tenham sido visitados. As buscas tradicionais guiadas por
vértice, conhecidas por Busca em Largura (BFS, do inglés Breadth-First Search) e Busca em Profundidade (DFS,
do inglés Depth-First Search), sdo executadas quando C € gerenciado como uma fila e uma pilha, respectivamente

1Departamento Académico de Informética, Universidade Tecnoldgica Federal do Parand, Pato Branco, Parana
{silvioboss@utfpr.edu.br}

2Centro de Matematica, Computagdo e Cognicao, Universidade Federal do ABC, Santo André, Sao Paulo
{jair.donadelli@ufabc.edu.br}

3Departamento de Informatica, Universidade Federal do Parand, Curitiba, Parana

{andre@inf.ufpr.br}

http://dx.doi.org/10.5335/rbca.v8i2.5602

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. §, n. 2, p. 16-27, jul. 2016 16



[1]. Esses algoritmos sdo base para a solu¢do de muitos algoritmos em grafos, como o algoritmo de Prim, para
arvore geradora minima, e o algoritmo de Dijkstra, para caminhos minimos e o algoritmo de Corneil e outros para
reconhecimento da classes de grafos de intervalos unitarios [1][2].

Outras estratégias de busca sdo conhecidas na literatura. Rose, Tarjan e Lueker, introduziram, em 1976, a
Busca em Largura Lexicogréfica (LexBFS, Lexicographic Breadth-first Search) que € uma variante da busca em
largura [3]. A estratégia utilizada por esse algoritmo foi usada para reconhecimento de grafos cordais. Posterior-
mente, essa estratégia foi utilizada para reconhecer grafos intervalares [4][5][6] e permutagdes bipartidas [7][6].
Mais recentemente, Corneil e Krueger [8] introduziram duas novas estratégias: Busca em Profundidade Lexico-
grafica (LexDFS, Lexicographic Depth-first Search) e Busca pela Vizinhanca Maximal (MNS, Maximal Neigh-
borhood Search), esse ultimo usado para encontrar esquemas de eliminagdo perfeita e triangulacdes minimais em
grafos arbitrarios [9][10].

Tais estratégias de busca guiada por vértice sdo caracterizadas pela ordem em que os elementos do grafo
da entrada sdo visitados, essa caracterizacdo € crucial para as provas de correcdio dos algoritmos derivados nas
aplicacdes dos algoritmos de busca. Essas caracterizagdes tém o seguinte principio: na execucdo de uma busca
num grafo dado, se para toda tripla de vértices a, b e ¢, em que a € visitado antes de b e b visitado antes de ¢, sendo
que {a,c} € Ee{a,b} ¢ FE (veja Figura 1), como pode o vértice b ter sido enumerado antes do vértice ¢? Para o
caso do algoritmo LexBFS isso ocorre se, e somente se, existe um vértice d visitado antes de a tal que {d,b} € E
e {d,c} ¢ E [11]. Corneil e Krueger estenderam essa caracteriza¢do do LexBFS para outras buscas [8].

Figura 1: Uma tripla caracteristica com respeito a uma enumeragio o.

Fonte: Corneil e Krueger (2008) [8].

O objetivo deste trabalho € estender o estudo de Corneil e Krueger sobre algoritmos de busca em grafos [8].
Neste artigo apresentamos versdes dos algoritmos de [8] para o caso de buscas guiadas por aresta em hipergrafos
com arestas multiplas e provarmos caracterizacdes das enumeragdes produzidas por tais algoritmos de busca. Tanto
os algoritmos de busca quanto as propriedades e teoremas s@o adaptacdes de [8] para o caso de hipergrafos com
arestas multiplas.

2 Algoritmos de buscas e caracterizacoes em hipermultigrafos

Nesta secdo serdo apresentadas as notagdes utilizadas no restante do artigo, os algoritmos de busca para o
caso de hipergrafos com busca guiada por aresta e as caracterizagcdes dessas buscas por propriedades da enumeracao
das arestas que os algoritmos de buscas determinam.

Na préxima subsecdo introduzimos as notagdes e defini¢des que serdo utilizadas para as provas de corregéo
dos algoritmos de buscas aqui apresentados. Seguimos as nota¢des tradicionais na area [12][13].

2.1 Notacoes e definicoes

Um hipermultigrafo H é definido por uma tripla (V, E,¢) em que V e E séo conjuntos finitos e disjuntos
e E — (V) é a fungdo de incidéncia de H. Os elementos do conjunto V' sdo chamados de vértices e os do
conjunto E' de arestas do hipermultigrafo. A fun¢do de incidéncia ¢ associa a cada aresta e de H um subconjunto
de vértices de V, sdo os vértices que compdem a aresta. E um exemplo de hipermultigrafo:

V:{a7b,c,d,e, fagvh}v E:{61362763764;65766367768} € (D
FE H e1 e es es er e

WE) H {a’bvc} {b7 d} {b’ C} {Cvdv 6} {Cv 6} {e,f,g} {f7g} {fa h}

Um representacdo gréfica desse exemplo é dada na Figura 2.
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Figura 2: Representacdo do hipergrafo definido na equagio (1).

Fonte: Elaborada pelos autores.

Notemos que a defini¢do possibilita a existéncia de arestas diferentes com o mesmo conjunto de vértices,
istoé, e, f € Ecom(e) = 1(f).

Para um hipermultigrafo (V, F, 1) qualquer, para u, v € V e e, f € F usamos as abreviagoes

e v € esignificav € t(e) e v € e significav & v(e);
o {u,v} C esignifica {u,v} C t(e) e {u,v} ¢ esignifica {u,v}  t(e).
e e f significa c(e) Ne(f) e eU f significa c(e) U e(f);

ou seja, foda relagdo e operacdo de conjuntos com respeito as arestas dizem, de fato, respeito aos subconjuntos
de vértices na imagem dessas arestas pela fungdo t. Com tais suposicdes, dizemos que dois vértices u e v s@o
adjacentes em H = (V,E,.) se a {u,v} C e para algum e € FE, duas arestas g e f sdo adjacentes em H se
g N f # (. Dizemos que a aresta e é incidente aos vértices em 1(e) C V.

Um hipermultigrafo H é dito conexo se para todo par de vértices u, v € V existe uma sequéncia (e, . . ., ex)
de arestas tais que: (i) u € ey; (i) v € eg; (i4i) e; Nej41 # D paratodo 1 < i < k.

O niimero de vértices num hipermultigrafo H é denotado, genericamente, por n (de modo que n = n(H))
e o nimero de arestas por m (de modo que m = m(H)).

Uma enumeragdo das arestas de um hipermultigrafo H = (V, E, ¢) é uma sequéncia o = (eq, ..., em) em
que e; € E paratodoiem = |E|. Se uma aresta e € E aparece na i-ésima posi¢do da enumeracéo o, entio
denotamos tal fato por o(e) = i, de modo que e = e, (). Ademais, definimos a ordem <, sobre E pondo e <, f
se, e somente se, o(e) < o(f), isto é, se e ocorre antes de f na enumeragéo o. Nesse caso, também dizemos que
a aresta e foi enumerada antes da aresta f, ou que e ocorre antes de f ou ainda que e estd a esquerda de f em o.

Para quaisquer trés arestas a, b, ¢ de um hipermultigrafo H com uma enumeragdo o de suas arestas, dize-
mos que (a, b, ¢) é uma tripla caracteristica de H com respeito a o se:

(1) a <, b <4 c,
(i1) a e csdo adjacentes, isto é,aNc # T e

(iii) a e b ndo sdo adjacentes, isto é,aNb = @.

2.2 Busca genérica

Os algoritmos descritos abaixo possuem como entrada dois parametros: um hipermultigrafo conexo e uma
aresta pelo qual se inicia a busca. A saida € uma enumeracdo o das arestas da entrada, a qual representa a ordem
em que as arestas foram enumeradas.

A busca genérica é um algoritmo simples que se utiliza de uma estrutura de dados C para armazenar as
arestas candidatas a serem escolhidas. Tal algoritmo tem esse nome porque tem a liberdade de escolher qualquer
aresta que estd em C, ou seja, insercdo, consulta e remogdo € feita sem uma politica pré-definida. Assim, se e esta
em C entdo serd uma candidata a ser enumerada. O Algoritmo 1 descreve a busca genérica por aresta.
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Algoritmo 1: Busca genérica para hipermultigrafo

Entrada: um hipermultigrafo conexo H = (V, E, 1) e uma aresta inicial eg € E
Saida: uma enumeracéo o de E

1 U+ {60}

24+ 1

3 para cada e adjacente a e faca
4 adicione a aresta e em C

5 enquanto C # () faca

6 remova uma aresta e de C

7 oe) «i

8 se U # U U e entido

9 para cada aresta ndo enumerada f adjacente a e faca
10 se f ndo estd em C entdo adicione f em C

11 U+~UUe

12 14 1+1

Uma possivel resposta do Algoritmo 1 com o hipergrafo apresentado na equagdo (1), representado pela
Figura 2, e com aresta inicial e; como entradas é a enumeracdo o = (e, e, €g, €4, €7, €3, €3, €2 ). Essa enumeracdo
ndo caracteriza nem BFS (dada na se¢@o 2.3) nem DFS (dada na secdo 2.4) sobre o hipergrafo, o que € permitido
pelo critério de escolha na linha 6 do Algoritmo 1. Neste contexto pode-se verificar que a escolha para uma aresta
é feita sem critério pré-definido pelo algoritmo. Isso ocorre pois neste trabalho ndo estamos considerando qualquer
funcdo que atribua um peso as arestas, o que levaria a ter um critério previamente definido. Observe que esta
funcdo poderia ser facilmente implementada nos algoritmos apresentados a seguir neste trabalho.

A Propriedade 1 e o Teorema 2, a seguir, caracterizam a busca genérica em hipermultigrafo.

Propriedade 1. Seja o uma enumeragdo das arestas de um hipermultigrafo H. Dizemos que o tem a propriedade
1 se para qualquer tripla caracteristica (a,b,c) de H com respeito a o, existe uma aresta f tal que f <, be

fnb+o.

Figura 3: Exemplo para uma ordem de busca para a busca genérica.

a b c

Fonte: Corneil e Krueger (2008) [8].

Teorema 2. Dado um hipermultigrafo arbitrdrio H, uma enumeracdo o das arestas de H é uma saida de busca
genérica sobre H se, e somente se, o tem Propriedade 1.

Demonstragdo. Seja o uma enumeragio dada por uma busca genérica, de acordo com o Algoritmo 1. Se (a, b, ¢) é
uma tripla caracteristica de arestas com respeito a o entdo no momento em que a aresta b foi enumerada (linha 6 do
Algoritmo 1) ambas as arestas b e ¢ deviam estar em C e alguma aresta adjacente a b ja deve ter sido previamente
escolhida, aquela que causou a inser¢do de b em C. Denotemos essa aresta por f. Assim, f é uma aresta adjacente
a b enumerada antes de b, ou seja, tal que f <, be f Nb # &. Portanto, uma enumeragio dada por uma busca
genérica tem a Propriedade 1.

A reciproca é provada por contradi¢do. Suponhamos que o = (ey, ..., e,,) é uma enumeragio das arestas
de H com a Propriedade 1. Dentre todas as enumeracdes das arestas de H que podem ser obtidas como resposta
de uma busca genérica com entradas H e e, seja a = (ay,...,a) a que tem o maior nimero de coincidéncias
num segmento inicial da enumeragdo, isto é, para a qual existe um nimero i € {2, ..., m + 1} que é mdximo com
respeito a propriedade:

aj =ejparatodol < j <i— 1. 2
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Notemos 7 > 1 pois podemos considerar que qualquer busca em H com aresta inicial ey pode comegar visitando
e1.

Deve-se supor, para a contradi¢cdo, que o € uma enumeragdo que nao possa ser obtida como resposta de uma
busca genérica no hipermultigrafo H. Entao, pela escolhade a, i — 1 <me

no momento da enumeragéo de a; pelo algoritmo vale que e; ¢ C 3)

caso contrario, e; poderia ser escolhida pelo algoritmo contrariando a maximalidade de i. Seja ay, para k < i, a
aresta adjacente a a,; que causou sua inser¢do em C durante a execugdo do algoritmo com resposta c.

Se ay, é adjacente a e;, entdo quando ay, é enumerada e; € adicionada a C, contrariando (3).

Se ay ndo é adjacente a e;, entdo (ag, e;, a;) é uma tripla caracteristica de arestas com respeito a o donde
deduzimos, pela Propriedade 1, que existe uma aresta f tal que f <, e; e fNe; # &, ou seja, f = ap’ para algum
k' <ie f é adjacente a ¢;, entdo quando ays é enumerada ¢; € adicionada a C, contrariando (3).

Portanto, ¢ é uma enumeracdo que pode ser obtida como resposta da execucdo de uma busca sobre o
hipermultigrafo H. U

2.3 Busca em largura

A busca em largura é uma restricdo da busca genérica, portanto tem a mesma descri¢do do Algoritmo 1
exceto pelo fato de que nas linhas 4 e 10 as arestas sao inseridas no fim da fila C e na linha 6 a aresta é removida
do comego da fila C.

Propriedade 3. Seja o uma enumeragdo das arestas de um hipermultigrafo H. Dizemos que o tem a propriedade
3 se para qualquer tripla caracteristica (a,b, c) de H com respeito a o, existe uma aresta f tal que [ <, a e

fOb+o.

Figura 4: Exemplo para uma ordem de busca em largura.

f a b c

Fonte: Corneil e Krueger (2008) [8].

Teorema 4. Dado um hipermultigrafo arbitrdrio H, uma enumeracdo o das arestas de H é uma saida de busca
em largura se, e somente se, o tem a Propriedade 3.

Demonstragdo. Seja o uma enumeracio dada por uma busca em largura, de acordo com o Algoritmo 1 conside-
rando que C é gerenciado como uma fila. Seja (a, b, ¢) uma tripla caracteristica de arestas com respeito a . Disso
temos que a € adjacente a c e ndo a b; como a aresta b foi removida da fila antes da aresta c, deve existir uma aresta
f adjacente a b que foi inserida na fila antes que a, isto € f <, a e f Nb # @, portanto, uma enumeragio dada por
uma busca em largura tem a Propriedade 3.

A reciproca é provada por contradi¢do. Seja o = (eq,...,e,,) uma enumeragdo das arestas de H com a
Propriedade 3 e dentre todas as enumeragdes das arestas de H que podem ser obtidas como resposta de uma busca
em largura sobre H, seja @ = (aq,...,a,,) a que tem o maior nimero de coincidéncias num segmento inicial:
aj = ej paratodo 1 < j <7 — 1. Para a contradi¢do, suponhamos que i — 1 < m. Assim, e¢; € a primeira aresta
da enumeragdo o que uma execucdo de busca em largura ndo pdde escolher no momento certo.

Seja ax, para k < i, a aresta adjacente a a; que causou sua insercéio na fila C durante a execucdo do
algoritmo com resposta «, de modo que ay, € a aresta mais a esquerda em o que € adjacente a a;. Temos ar <, €;
e, também, aj; Ne; = & sendo contrariarfamos a maximalidade de «.. Claramente, e; <, a; logo (ag, e;, a;) é uma
tripla caracteristica de arestas com respeito a o, a qual satisfaz a Propriedade 3. Portanto, existe uma aresta f tal
que f <, are fNe; # @, logo f <, ar e fNe; # <, porém, tal f implicaria na ocorréncia de e; antes que a;
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na fila C, uma contradi¢do. Portanto, o € uma enumeragdo que pode ser obtida como resposta da execugdo de uma
busca sobre o hipermultigrafo H. O

2.4 Busca em profundidade (DFS)

A busca em profundidade também € uma restri¢do da busca genérica, logo tem essencialmente a mesma
descrigcdo do Algoritmo 1, exceto pelo fato de que as arestas sdo inseridas e removidas no topo da pilha C. Um
ponto importante para termos o comportamento desejado € que uma aresta redescoberta € re-empilhada nas linhas
10 e 11 do Algoritmo 2.

Algoritmo 2: Busca em profundidade em hipermultigrafo

Entrada: um hipermultigrafo conexo H = (V, E, t) e uma aresta inicial eg € F
Saida: uma enumeragéo o de £

1 U <+ {60}

249+ 1

3 para cada e adjacente a e, faca

4 empilha a aresta e em C

5 enquanto C # () faca

6 desempilha a aresta e no topo de C

7 o(e) « i

8 se U # U U e entdo

9 para cada aresta ndo enumerada f adjacente a e faca

10 se f jd estd na pilha entdao desempilha f
11 empilha f
12 U+~UuUe

13 11+ 1

A Propriedade 5 e o Teorema 6 caracterizam a busca em profundidade em hipermultigrafos.

Propriedade 5. Seja o uma enumeragdo das arestas de um hipermultigrafo H. Dizemos que o tem a propriedade
5 se para qualquer tripla caracteristica (a,b, c) de H com respeito a o, existe uma aresta f tal que a <, f <, b
efNb+#w.

Figura 5: Exemplo para uma ordem de busca em profundidade.

Fonte: Corneil e Krueger (2008) [8].

Teorema 6. Dado um hipermultigrafo arbitrdrio H, uma enumeracdo o das arestas de H é uma saida de busca
em profundidade se, e somente se, o tem a Propriedade 5.

Demonstracdo. Seja o uma enumeracdo dada por uma busca em profundidade em H, de acordo com o Algoritmo
2. Suponhamos que a tripla de arestas (a, b, ¢) é caracteristica com relacdo a o. Quando a aresta b foi escolhida ela
estava no topo da pilha. Como b ndo foi a primeira aresta escolhida pela algoritmo, alguma aresta adjacente a b ja
foi escolhida num momento anterior. Dentre todas as arestas adjacentes a b e a esquerda de b em o denotemos por
f aaresta mais a direta em 0. Assim, f <, be f Nb# &. Agora, suponha que f <, a. Se a foi escolhida depois
de f, entdo c deve aparecer na pilha acima de b e como ndo existe nenhuma aresta adjacente a b antes dela que
poderia ter sido escolhida, temos que c¢ foi escolhida antes de b, pois estd acima de b na pilha, uma contradigfo.
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A reciproca é provada por contradi¢do. Suponhamos que o = (e, ..., e,,) é uma enumeragio das arestas
de H com a Propriedade 5, mas néo € resultado de busca em profundidade em H. Dentre todas as enumeragdes das
arestas de H que podem ser obtidas como resposta de uma busca em profundidade sobre H, seja o = (ay, ..., am)
a que tem o maior nimero de coincidéncias num segmento inicial: a; = e; paratodol < j < ¢ — 1. Paraa
contradi¢do, suponhamos que ¢ — 1 < m. Assim, e; é a primeira aresta da enumeracdo ¢ que uma execucao de
busca em profundidade nao pdde escolher no momento certo.

Seja e; a aresta mais a direita em o com j < ¢ e adjacente a a;. Claramente, e; N e; = & e mais
especificamente, e, Ne; = &, paratodo k, 7 < k < 4. Aplicando a Propriedade 5 para a tripla caracteristica de
arestas (e;, e;, a;) com respeito a o, sabemos que existe uma aresta f entre as arestas e; e e; tal que, f Ne; # &,
tendo assim, uma contradi¢do. Portanto, ¢ € uma enumeracdo que pode ser obtida como resposta da execugdo de
uma busca sobre o hipermultigrafo . O

2.5 Busca pela vizinhanca maximal

O principio para a estratégia de busca pela vizinhanca maximal € que a cada passo no algoritmo escolhemos
uma aresta f na qual o conjunto de todas as arestas que incidem em f (a vizinhanga) e que ja estdo enumeradas é
maximal com respeito a ordem parcial C de inclusdo de conjuntos.

O Algoritmo 3 descreve a busca pela vizinhanga maximal guiada por aresta.

Algoritmo 3: Busca pela vizinhanga maximal para hipermultigrafo

Entrada: um hipermultigrafo conexo H = (V, E, ¢) e uma aresta inicial ey € E
Saida: uma enumeragdo o de

1 Atribua o rétulo & para todas as arestas de H
2 escolha uma aresta e adjacente a eg

3 rétulo(e) « rétulo(e) U {m}

4 U+ {60}

59+1

6 para cada e adjacente a e, faca

7 rétulo(e) < rétulo(e) U {i}

8 parat de 1 até m faca

9 escolha aresta ndo enumerada f com rétulo maximal
10 o(e) « i
11 se U # U U e entao

12 para cada aresta ndo enumerada f adjacente a e faca
13 rétulo( f) < rétulo(f) U {i}
14 U«+UuUe

A Propriedade 7 e o Teorema 8 caracterizam a busca pela vizinhan¢a maximal em hipermultigrafos.

Propriedade 7. Seja o uma enumeracdo das arestas de um hipermultigrafo H. Dizemos que o tem a propriedade
7 se para qualquer tripla caracteristica (a,b,c) de arestas de H, com respeito a o, existe uma aresta | <, b tal
que fNb#TefNc=0a.

Figura 6: Exemplo para uma ordem de busca pela vizinhanga maximal.

Fonte: Corneil e Krueger (2008) [8].
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Teorema 8. Dado um hipermultigrafo arbitrdrio H, uma enumeragdo o das arestas de H é uma saida de busca
pela vizinhanga maximal se, e somente se, o tem a Propriedade 7.

Abaixo denotamos por rétulo, (b) o conjunto rétulo(b) na rodada do algoritmo em que a aresta a foi enu-
merada.

Demonstragcdo. Seja o uma enumeracio das arestas do hipermultigrafo H dada por uma busca pela vizinhanca
maximal, de acordo com o Algoritmo 3, e (a, b, ¢) uma tripla caracteristica de arestas de H. Suponhamos, para
contradi¢@o, que a tripla viola a Propriedade 7, isto é, suponhamos que ndo exista f <, btal que fNb # T e
fNe=@. Seesse é o caso entdo rétulo, (b) C rétulo,(c), assim b ndo poderia ter sido escolhida pela busca porque
ndo seria maximal, o que é uma contradicdo.

Para provarmos a reciproca, suponhamos que ¢ = (eq, ..., €,;,) é uma enumeracdo das arestas de H que
tem a Propriedade 7, mas ndo € uma enumeracio que possa ser obtida como resposta da execugao de uma busca pela
vizinhanga maximal sobre o hipermultigrafo H. Como argumentamos antes, nas provas dos teoremas anteriores,
consideremos ¢ tal que (eq,...,e;—1) uma subsequéncia mixima que pode ser obtida durante uma execucéo do
Algoritmo 3. Se e; ndo pode ser escolhida entdo devemos ter

rétuloy, (e;) & rétuloy, (h) “4)

e para qualquer aresta x tal que o(x) € rétuloy(h) \ rétuloy(e;) temos x adjacente a h mas ndo a e;, logo a
tripla de arestas (x, e;, h) é caracteristica com respeito a o. Pela Propriedade 7, deduzimos uma aresta f <, e;
adjacente a e; e ndo adjacente a h contrariando a inclusdo (4). Portanto e; pode ser escolhida, mas isso contraria
o fato de (eq, ..., e;—1) ser uma subsequéncia maxima que pode ser obtida durante uma execugio do Algoritmo 3
com entrada H. Portanto, ¢ € uma enumeragdo que pode ser obtida como resposta da execucdo de uma busca pela
vizinhanga maximal sobre o hipermultigrafo . U

Como casos particulares dessa busca temos as buscas lexicogrificas descritas nas proximas secdes. Elas
sdo obtidas quando especificamos como comparar duas vizinhangas que sdo incomparaveis com respeito a ordem
de inclus@o de conjuntos. Na busca em profundidade damos preferéncia para as arestas adjacentes a mais arestas
antigas na enumeracdo e na busca em largura, a que tem mais adjacéncias com as arestas mais recentes.

2.6 Busca em largura lexicografica

O Algoritmo 4 descreve a busca em largura lexicografica guiada por aresta. Durante a execug@o, cada aresta
estd rotulada com uma sequéncia numérica e a escolha de arestas € decidida comparando as sequéncias de acordo
com a ordem lexicografica.

Algoritmo 4: Busca em largura lexicografica para hipermultigrafo

Entrada: um hipermultigrafo conexo H = (V, E, 1) e uma aresta inicial ey € F
Saida: uma enumeragio o de E

1 atribua o rétulo O para todas as arestas de 1

2 U+ {60}

341

4 para cada e adjacente a e, faca

5 acrescente o sufixo m no rétulo da aresta e

6 para i de 1 até m faca

7 pegue uma aresta ndo enumerada e com maior rétulo lexicografico
8 ole) «i

9 se U # U U e entdo

10 para cada aresta ndo enumerada f adjacente a e faca
1 acrescente o sufixo (m — i) no rétulo da aresta f
12 U«+~UUe
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A Propriedade 9 e o Teorema 10 caracterizam a busca em largura lexicografica em hipermultigrafo.

Propriedade 9. Seja o uma enumeragdo das arestas de um hipermultigrafo H. Dizemos que o tem a propriedade
9 se para qualquer tripla caracteristica (a, b, ¢) de H com respeito a o, existe uma aresta f <, atal que fNb # &
efNec=w.

Figura 7: Exemplo para uma ordem de busca em largura lexicografica.

f a b c
Fonte: Corneil e Krueger (2008) [8].

Teorema 10. Dado um hipermultigrafo arbitrdrio H, uma enumeragdo das arestas de H é uma saida de busca
em largura lexicogrdfica se, e somente se, vale a Propriedade 9.

Demonstragcdo. Seja o uma enumeragdo das arestas de H dada por uma busca em largura lexicografica, de acordo
com o Algoritmo 4. Seja (a, b, c) uma tripla caracteristica de arestas com respeito a 0. Quando a aresta a foi
enumerada acrescentou um rétulo a ¢ e ndo a b e para que b seja enumerada antes de ¢ deve haver uma aresta f
enumerada antes de a, i.e. f <, a, adjacente a b e ndo a ¢, para que b tenha rétulo lexicograficamente maior que c.

Para a reciproca, suponhamos por contradigdo, que o = (eq, ..., €,,) é uma enumeragéo das arestas de H
que tem a Propriedade 9, mas que ndo pode ser obtida como resposta de uma busca em largura lexicogréfica sobre
H. Como antes, supomos que, para algum 2 < ¢ < m, (eq,...,e;—1) é a maior subsequéncia comum com o que

pode ser obtida por uma execugdo do Algoritmo 4 com entrada H.

Se h # e; é a proxima aresta escolhida na execucio, entdo deve existir uma aresta a esquerda de e; em
o e adjacente a h mas néo a e;. Tomemos g como tal aresta que estd mais a direita em (e1,...,e;-1) e, desse
modo temos que (g, e;, h) é uma tripla caracteristica com respeito a o. Aplicando a Propriedade 9 para a tripla
concluimos que deve existir uma aresta f a esquerda de g e adjacente a e; mas nao a h.

Quando f foi enumerada, acrescentou m — o(f) como sufixo de e; e ndo o fez com h. Quando g foi
enumerada, depois de f, acrescentou m — o(g) como sufixo de h e ndo o fez com e;. Ademais, g é a dltima
antes de h com essa caracteristica, isto €, a partir de g até a visita a h, cada aresta enumerada sufixa e; mas nao
h, ou sufixa ambas, ou néo sufixa nenhuma. Também, notemos que m — o(g) < m — o(f). Desse modo, e;
deve ter um rétulo lexicograficamente maior que h. Portanto h = e;, uma contradi¢do. Mas e; poder ser escolhida
contradiz o fato (ey,...,e;—1) ser a maior subsequéncia comum com o que pode ser obtida por uma execugido
do Algoritmo. Portanto, o é uma enumeragdo que pode ser obtida como resposta da execu¢do de uma busca em
largura lexicografica sobre o hipermultigrafo H. O

2.7 Busca em profundidade lexicografica

O Algoritmo 5 descreve a busca em profundidade lexicografica guiada por aresta.
A Propriedade 11 e o Teorema 12 caracterizam a busca em profundidade lexicografica em hipermultigrafos.

Propriedade 11. Seja o uma enumeragdo das arestas de um hipermultigrafo H. Dizemos que o tem a propriedade
11 se para qualquer tripla caracteristica (a, b, ¢) de arestas H com respeito o, existe uma aresta f coma <, f <,
btalque fNb# Je fNc= 2.

Teorema 12. Dado um hipermultigrafo arbitrdrio H, uma enumeragdo das arestas de H é uma saida de busca
em profundidade lexicogrdfica se, e somente se, vale a Propriedade 11.

Na demonstra¢@o a seguir, usar-se-d rétulo,(a) para denotar a sequéncia numérica que rotula a aresta a
imediatamente antes da enumerac@o da aresta b durante uma execucio da busca. Também, escreve-se <, para
denotar a ordem lexicografica.
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Algoritmo 5: Busca em profundidade lexicografica para hipermultigrafo

Entrada: um hipermultigrafo conexo H = (V, E, 1) e uma aresta inicial eg € E
Saida: uma enumeracéo o de E

1 atribua o rétulo O para todas as arestas de H

2 U+ {60}

391

4 para cada e adjacente a e faca

5 acrescente ¢ com prefixo ao rétulo da aresta e

6 paraide 1 até m faca

7 escolha uma aresta nao enumerada e com maior rétulo lexicografico
8 ole) + i

9 se U # U U e entdo

10 para cada aresta ndo enumerada f adjacente a e faca
11 acrescente 4 com prefixo ao rétulo da aresta f
12 U+~UUe

Figura 8: Exemplo para uma ordem de busca em profundidade lexicogréfica.

a f b c

Fonte: Corneil e Krueger (2008) [8].

Demonstragdo. Seja o uma enumeracao das arestas de H dada por uma busca em profundidade lexicografica, de
acordo com o Algoritmo 5. Se (a,b, ) é uma tripla caracteristica de arestas com respeito a ¢ entdo para que a
aresta b tenha sido escolhida antes de ¢ deve valer rétuloy(c) < prétuloy(b).

Na rodada do algoritmo em que a foi enumerada, o rétulo de ¢ ganhou o prefixo o(a), o que ndo ocorre
com o rétulo de b pois essa aresta ndo ¢ adjacente a a, entdo o rétulo de b deve conter algum outro prefixo ¢ maior
que o(a) e que ndo ocorre no rétulo de c. Seja f a aresta que atribuird o valor 7 ao rétulo da aresta b, rétulo; (b).
Claramente, f Nb # @ e f Nc = @. Ademais, como a aresta f atribuird um prefixo para b maior que aquele que
aresta ¢ atribuiu para c, temos a <, f. Assim verificamos que a Propriedade 11 ¢ satisfeita.

Por contradigdo, suponha que o = (eq, ..., €,,) é uma enumeragdo das arestas de H que tem Propriedade
11, mas ndo € uma ordem de busca em profundidade lexicogrifica de H. Entdo, por argumento idéntico aos
anteriormente dados, podemos assumir que existe algum 2 < ¢ < m, tal na execu¢do do Algoritmo 5 com entrada

H a subsequéncia (eq,...,e;—1) ocorre mas (eq,...,e;) ndo pode. Se h é a préxima aresta que a busca em
profundidade lexicografica escolhe, entdo rétulo,(e;) <1, rétulos(h). Seja j o maior valor no rétulo, (h) e que
néo ocorre em rétulo(e;). Isso &, e; é a aresta mais a direita em (e1,...,e,—1) come; Nh # See; Ne; = .

Com isso, (ej, e;, h) é uma tripla caracteristica com respeito a o e pela Propriedade 11 sabemos que existe uma
aresta f entre e; e e; tal que f Ne; # P e fNh = @. Desde que e; <, f, rétuloy, (k) <1, r6tulo, (e;), entdo e;
deveria ter sido escolhida antes de h, uma contradicéo. O

Foram exibidas seis estratégias de busca em hipergrafos, denotadas LexDFS, LexBFS, MNS, DFS, BFS e
BG, e para cada uma delas mostrou-se uma caracterizacdo da ordem em que as arestas sdo visitadas. As carac-
terizagdes tém a seguinte formulagdo geral: a sequéncia de arestas S = (e1,...,e,) é a sequéncia com que o
algoritmo X visita as arestas de um hipermultigrafo se, e somente se, a sequéncia .S tem a propriedade P. Para
determinar P, responde-se a seguinte pergunta em cada caso: se na busca executada por X a aresta a € visitada
antes de b, e que € visitada antes de ¢, e a e ¢ sdo adjacentes mas a e b ndo o sdo, entdo como pode o algoritmo X
ter enumerado b antes de ¢? Com essa questdo, encontramos as propriedades que caracterizam a estratégia de X.

As propriedades que encontramos sdo equivalentes aquelas que caracterizam as buscas cldssicas (guiadas
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por vértices) em grafos como em [8]. De fato, nossa apresentacio segue de perto a apresentacio de [8].

3 Conclusao

As caracterizagdes das enumeragdes produzidas por estratégias de busca em hipergrafos podem ser uma
ferramenta poderosa e util para o estudo e melhor compreensdo dos algoritmos, além de nos dar um melhor
entendimento de como uma determinada busca revela a estrutura de um hipergrafo. Também, quando da aplicagio
desses algoritmos de busca em problemas computacionais, as caracteriza¢des servem como ponto de partida nas
provas de corretude de tais aplicagdes.

No caso de busca em grafos sdo conhecidas vdrias aplicacdes que usam essas buscas e que se beneficiam
das respectivas caracterizag¢des. Ja no caso de hipergrafos, que acabamos de apresentar, até o momento, nio iden-
tificamos aplicagdes. Uma possivel dire¢do nesse sentido de trabalho futuro é investigar estratégias para busca
em hipergrafos direcionados e suas implicacdes em bancos de dados baseados grafos, como € o caso do Hyper-
GraphDB [14].
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