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Resumo: busca em grafos é uma das técnicas mais utilizadas para o projeto de algoritmos em gra-
fos. Em tais buscas, a ordem em que os vértices de um grafo são visitados definem uma enumeração
nos vértices do grafo e uma caracterização dessas enumerações que, de acordo com a estratégia
usada na busca, tem se mostrado importante nas aplicações de algoritmos em grafos. Neste trabalho
generalizamos o conceito de busca e as caracterizações, bem conhecidas no caso de grafos, para o
caso de hipergrafo.
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Abstract: graph search, or graph traversal, is possibly the most used tool in design of graph
algorithms. The order in which the vertices of a graph are visited during a search define a enumera-
tion of the vertices and the characterization of these enumerations which, according to the strategy
used in search, has been useful and important in some applications of graph algorithms. In this
manuscript we extend the known results of characterizations of graph searches to the more general
case of hypergraphs.
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1 Introdução

Um grafo é, formalmente, um par ordenado de conjuntos finitos (V,E) tal que cada elemento de E é
um subconjunto formado por dois elementos de V . Cada elemento de V é chamado de vértice do grafo e cada
elemento de E é chamado de aresta do grafo. SeG denota o grafo que é definido pelo par (V,E) então escrevemos
G = (V,E).

Chamamos genericamente de algoritmo de busca em grafo qualquer algoritmo que, quando recebe um grafo
G = (V,E) como entrada, visita sistematicamente todos os vértices e todas as arestas do grafo G. Nesse processo,
o algoritmo mantém um conjunto C dos elementos (vértices ou arestas) de um grafo que são candidatos a serem
visitados e em cada passo um elemento de C é escolhido. Quando C ⊆ V dizemos que a busca é guiada por vértice
e, nesse caso, estamos interessados na sequência v1, v2, . . . , v|V | em que os vértices de V são visitados; quando
C ⊆ E dizemos que a busca é guiada por aresta e estamos interessados na sequência e1, e2, . . . , e|E| em que as
arestas deE são visitadas. A política de gerenciamento de C define uma estratégia de busca. Em uma busca guiada
por vértice sobre um grafo o algoritmo visita, a partir de um vértice inicial, um novo vértice por iterativas travessias
em arestas incidentes a esse vértice. Os novos vértices descobertos são guardados em C, de onde um é escolhido
para que o processo se repita até que todos os vértices tenham sido visitados. As buscas tradicionais guiadas por
vértice, conhecidas por Busca em Largura (BFS, do inglês Breadth-First Search) e Busca em Profundidade (DFS,
do inglês Depth-First Search), são executadas quando C é gerenciado como uma fila e uma pilha, respectivamente
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[1]. Esses algoritmos são base para a solução de muitos algoritmos em grafos, como o algoritmo de Prim, para
árvore geradora mínima, e o algoritmo de Dijkstra, para caminhos mínimos e o algoritmo de Corneil e outros para
reconhecimento da classes de grafos de intervalos unitários [1][2].

Outras estratégias de busca são conhecidas na literatura. Rose, Tarjan e Lueker, introduziram, em 1976, a
Busca em Largura Lexicográfica (LexBFS, Lexicographic Breadth-first Search) que é uma variante da busca em
largura [3]. A estratégia utilizada por esse algoritmo foi usada para reconhecimento de grafos cordais. Posterior-
mente, essa estratégia foi utilizada para reconhecer grafos intervalares [4][5][6] e permutações bipartidas [7][6].
Mais recentemente, Corneil e Krueger [8] introduziram duas novas estratégias: Busca em Profundidade Lexico-
gráfica (LexDFS, Lexicographic Depth-first Search) e Busca pela Vizinhança Maximal (MNS, Maximal Neigh-
borhood Search), esse último usado para encontrar esquemas de eliminação perfeita e triangulações minimais em
grafos arbitrários [9][10].

Tais estratégias de busca guiada por vértice são caracterizadas pela ordem em que os elementos do grafo
da entrada são visitados, essa caracterização é crucial para as provas de correção dos algoritmos derivados nas
aplicações dos algoritmos de busca. Essas caracterizações têm o seguinte princípio: na execução de uma busca
num grafo dado, se para toda tripla de vértices a, b e c, em que a é visitado antes de b e b visitado antes de c, sendo
que {a, c} ∈ E e {a, b} 6∈ E (veja Figura 1), como pode o vértice b ter sido enumerado antes do vértice c? Para o
caso do algoritmo LexBFS isso ocorre se, e somente se, existe um vértice d visitado antes de a tal que {d, b} ∈ E
e {d, c} /∈ E [11]. Corneil e Krueger estenderam essa caracterização do LexBFS para outras buscas [8].

Figura 1: Uma tripla característica com respeito a uma enumeração σ.

a b c

Fonte: Corneil e Krueger (2008) [8].

O objetivo deste trabalho é estender o estudo de Corneil e Krueger sobre algoritmos de busca em grafos [8].
Neste artigo apresentamos versões dos algoritmos de [8] para o caso de buscas guiadas por aresta em hipergrafos
com arestas múltiplas e provarmos caracterizações das enumerações produzidas por tais algoritmos de busca. Tanto
os algoritmos de busca quanto as propriedades e teoremas são adaptações de [8] para o caso de hipergrafos com
arestas múltiplas.

2 Algoritmos de buscas e caracterizações em hipermultigrafos

Nesta seção serão apresentadas as notações utilizadas no restante do artigo, os algoritmos de busca para o
caso de hipergrafos com busca guiada por aresta e as caracterizações dessas buscas por propriedades da enumeração
das arestas que os algoritmos de buscas determinam.

Na próxima subseção introduzimos as notações e definições que serão utilizadas para as provas de correção
dos algoritmos de buscas aqui apresentados. Seguimos as notações tradicionais na área [12][13].

2.1 Notações e definições

Um hipermultigrafo H é definido por uma tripla (V,E, ι) em que V e E são conjuntos finitos e disjuntos
e ι:E → ℘(V ) é a função de incidência de H . Os elementos do conjunto V são chamados de vértices e os do
conjunto E de arestas do hipermultigrafo. A função de incidência ι associa a cada aresta e de H um subconjunto
de vértices de V , são os vértices que compõem a aresta. É um exemplo de hipermultigrafo:

V = {a, b, c, d, e, f, g, h}, E = {e1, e2, e3, e4, e5, e6, e7, e8} e (1)
E e1 e2 e3 e4 e5 e6 e7 e8
ι(E) {a, b, c} {b, d} {b, c} {c, d, e} {c, e} {e, f, g} {f, g} {f, h}.

Um representação gráfica desse exemplo é dada na Figura 2.
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Figura 2: Representação do hipergrafo definido na equação (1).
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Fonte: Elaborada pelos autores.

Notemos que a definição possibilita a existência de arestas diferentes com o mesmo conjunto de vértices,
isto é, e, f ∈ E com ι(e) = ι(f).

Para um hipermultigrafo (V,E, ι) qualquer, para u, v ∈ V e e, f ∈ E usamos as abreviações

• v ∈ e significa v ∈ ι(e) e v 6∈ e significa v 6∈ ι(e);

• {u, v} ⊂ e significa {u, v} ⊂ ι(e) e {u, v} 6⊂ e significa {u, v} 6⊂ ι(e).

• e ∩ f significa ι(e) ∩ ι(f) e e ∪ f significa ι(e) ∪ ι(f);

ou seja, toda relação e operação de conjuntos com respeito às arestas dizem, de fato, respeito aos subconjuntos
de vértices na imagem dessas arestas pela função ι. Com tais suposições, dizemos que dois vértices u e v são
adjacentes em H = (V,E, ι) se a {u, v} ⊂ e para algum e ∈ E, duas arestas g e f são adjacentes em H se
g ∩ f 6= ∅. Dizemos que a aresta e é incidente aos vértices em ι(e) ⊂ V .

Um hipermultigrafoH é dito conexo se para todo par de vértices u, v ∈ V existe uma sequência (e1, . . . , ek)
de arestas tais que: (i) u ∈ e1; (ii) v ∈ ek; (iii) ei ∩ ei+1 6= ∅ para todo 1 ≤ i < k.

O número de vértices num hipermultigrafo H é denotado, genericamente, por n (de modo que n = n(H))
e o número de arestas por m (de modo que m = m(H)).

Uma enumeração das arestas de um hipermultigrafo H = (V,E, ι) é uma sequência σ = (e1, . . . , em) em
que ei ∈ E para todo i e m = |E|. Se uma aresta e ∈ E aparece na i-ésima posição da enumeração σ, então
denotamos tal fato por σ(e) = i, de modo que e = eσ(e). Ademais, definimos a ordem ≺σ sobre E pondo e ≺σ f
se, e somente se, σ(e) < σ(f), isto é, se e ocorre antes de f na enumeração σ. Nesse caso, também dizemos que
a aresta e foi enumerada antes da aresta f , ou que e ocorre antes de f ou ainda que e está à esquerda de f em σ.

Para quaisquer três arestas a, b, c de um hipermultigrafo H com uma enumeração σ de suas arestas, dize-
mos que (a, b, c) é uma tripla característica de H com respeito a σ se:

(i) a ≺σ b ≺σ c,

(ii) a e c são adjacentes, isto é, a ∩ c 6= ∅ e

(iii) a e b não são adjacentes, isto é, a ∩ b = ∅.

2.2 Busca genérica

Os algoritmos descritos abaixo possuem como entrada dois parâmetros: um hipermultigrafo conexo e uma
aresta pelo qual se inicia a busca. A saída é uma enumeração σ das arestas da entrada, a qual representa a ordem
em que as arestas foram enumeradas.

A busca genérica é um algoritmo simples que se utiliza de uma estrutura de dados C para armazenar as
arestas candidatas a serem escolhidas. Tal algoritmo tem esse nome porque tem a liberdade de escolher qualquer
aresta que está em C, ou seja, inserção, consulta e remoção é feita sem uma política pré-definida. Assim, se e está
em C então será uma candidata a ser enumerada. O Algoritmo 1 descreve a busca genérica por aresta.
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Algoritmo 1: Busca genérica para hipermultigrafo
Entrada: um hipermultigrafo conexo H = (V,E, ι) e uma aresta inicial e0 ∈ E
Saída: uma enumeração σ de E

1 U ← {e0}
2 i← 1
3 para cada e adjacente a e0 faça
4 adicione a aresta e em C
5 enquanto C 6= ∅ faça
6 remova uma aresta e de C
7 σ(e)← i
8 se U 6= U ∪ e então
9 para cada aresta não enumerada f adjacente a e faça

10 se f não está em C então adicione f em C
11 U ← U ∪ e
12 i← i+ 1

Uma possível resposta do Algoritmo 1 com o hipergrafo apresentado na equação (1), representado pela
Figura 2, e com aresta inicial e1 como entradas é a enumeração σ = (e1, e5, e6, e4, e7, e8, e3, e2). Essa enumeração
não caracteriza nem BFS (dada na seção 2.3) nem DFS (dada na seção 2.4) sobre o hipergrafo, o que é permitido
pelo critério de escolha na linha 6 do Algoritmo 1. Neste contexto pode-se verificar que a escolha para uma aresta
é feita sem critério pré-definido pelo algoritmo. Isso ocorre pois neste trabalho não estamos considerando qualquer
função que atribua um peso as arestas, o que levaria a ter um critério previamente definido. Observe que esta
função poderia ser facilmente implementada nos algoritmos apresentados a seguir neste trabalho.

A Propriedade 1 e o Teorema 2, a seguir, caracterizam a busca genérica em hipermultigrafo.

Propriedade 1. Seja σ uma enumeração das arestas de um hipermultigrafo H . Dizemos que σ tem a propriedade
1 se para qualquer tripla característica (a, b, c) de H com respeito a σ, existe uma aresta f tal que f ≺σ b e
f ∩ b 6= ∅.

Figura 3: Exemplo para uma ordem de busca para a busca genérica.

a b c

f

Fonte: Corneil e Krueger (2008) [8].

Teorema 2. Dado um hipermultigrafo arbitrário H , uma enumeração σ das arestas de H é uma saída de busca
genérica sobre H se, e somente se, σ tem Propriedade 1.

Demonstração. Seja σ uma enumeração dada por uma busca genérica, de acordo com o Algoritmo 1. Se (a, b, c) é
uma tripla característica de arestas com respeito a σ então no momento em que a aresta b foi enumerada (linha 6 do
Algoritmo 1) ambas as arestas b e c deviam estar em C e alguma aresta adjacente a b já deve ter sido previamente
escolhida, aquela que causou a inserção de b em C. Denotemos essa aresta por f . Assim, f é uma aresta adjacente
a b enumerada antes de b, ou seja, tal que f ≺σ b e f ∩ b 6= ∅. Portanto, uma enumeração dada por uma busca
genérica tem a Propriedade 1.

A recíproca é provada por contradição. Suponhamos que σ = (e1, . . . , em) é uma enumeração das arestas
de H com a Propriedade 1. Dentre todas as enumerações das arestas de H que podem ser obtidas como resposta
de uma busca genérica com entradas H e e0, seja α = (a1, . . . , am) a que tem o maior número de coincidências
num segmento inicial da enumeração, isto é, para a qual existe um número i ∈ {2, . . . ,m+1} que é máximo com
respeito a propriedade:

aj = ej para todo 1 ≤ j ≤ i− 1. (2)
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Notemos i > 1 pois podemos considerar que qualquer busca em H com aresta inicial e0 pode começar visitando
e1.

Deve-se supor, para a contradição, que σ é uma enumeração que não possa ser obtida como resposta de uma
busca genérica no hipermultigrafo H . Então, pela escolha de α, i− 1 < m e

no momento da enumeração de ai pelo algoritmo vale que ei /∈ C (3)

caso contrário, ei poderia ser escolhida pelo algoritmo contrariando a maximalidade de i. Seja ak, para k < i, a
aresta adjacente a ai que causou sua inserção em C durante a execução do algoritmo com resposta α.

Se ak é adjacente a ei, então quando ak é enumerada ei é adicionada a C, contrariando (3).

Se ak não é adjacente a ei, então (ak, ei, ai) é uma tripla característica de arestas com respeito a σ donde
deduzimos, pela Propriedade 1, que existe uma aresta f tal que f ≺σ ei e f ∩ ei 6= ∅, ou seja, f = ak′ para algum
k′ < i e f é adjacente a ei, então quando ak′ é enumerada ei é adicionada a C, contrariando (3).

Portanto, σ é uma enumeração que pode ser obtida como resposta da execução de uma busca sobre o
hipermultigrafo H .

2.3 Busca em largura

A busca em largura é uma restrição da busca genérica, portanto tem a mesma descrição do Algoritmo 1
exceto pelo fato de que nas linhas 4 e 10 as arestas são inseridas no fim da fila C e na linha 6 a aresta é removida
do começo da fila C.

Propriedade 3. Seja σ uma enumeração das arestas de um hipermultigrafo H . Dizemos que σ tem a propriedade
3 se para qualquer tripla característica (a, b, c) de H com respeito a σ, existe uma aresta f tal que f ≺σ a e
f ∩ b 6= ∅.

Figura 4: Exemplo para uma ordem de busca em largura.

a b cf

Fonte: Corneil e Krueger (2008) [8].

Teorema 4. Dado um hipermultigrafo arbitrário H , uma enumeração σ das arestas de H é uma saída de busca
em largura se, e somente se, σ tem a Propriedade 3.

Demonstração. Seja σ uma enumeração dada por uma busca em largura, de acordo com o Algoritmo 1 conside-
rando que C é gerenciado como uma fila. Seja (a, b, c) uma tripla característica de arestas com respeito a σ. Disso
temos que a é adjacente a c e não a b; como a aresta b foi removida da fila antes da aresta c, deve existir uma aresta
f adjacente a b que foi inserida na fila antes que a, isto é f ≺σ a e f ∩ b 6= ∅, portanto, uma enumeração dada por
uma busca em largura tem a Propriedade 3.

A recíproca é provada por contradição. Seja σ = (e1, . . . , em) uma enumeração das arestas de H com a
Propriedade 3 e dentre todas as enumerações das arestas de H que podem ser obtidas como resposta de uma busca
em largura sobre H , seja α = (a1, . . . , am) a que tem o maior número de coincidências num segmento inicial:
aj = ej para todo 1 ≤ j ≤ i − 1. Para a contradição, suponhamos que i − 1 < m. Assim, ei é a primeira aresta
da enumeração σ que uma execução de busca em largura não pôde escolher no momento certo.

Seja ak, para k < i, a aresta adjacente a ai que causou sua inserção na fila C durante a execução do
algoritmo com resposta α, de modo que ak é a aresta mais a esquerda em α que é adjacente a ai. Temos ak ≺σ ei
e, também, ak ∩ ei = ∅ senão contrariaríamos a maximalidade de α. Claramente, ei ≺σ ai logo (ak, ei, ai) é uma
tripla característica de arestas com respeito a σ, a qual satisfaz a Propriedade 3. Portanto, existe uma aresta f tal
que f ≺σ ak e f ∩ ei 6= ∅, logo f ≺α ak e f ∩ ei 6= ∅, porém, tal f implicaria na ocorrência de ei antes que ai
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na fila C, uma contradição. Portanto, σ é uma enumeração que pode ser obtida como resposta da execução de uma
busca sobre o hipermultigrafo H .

2.4 Busca em profundidade (DFS)

A busca em profundidade também é uma restrição da busca genérica, logo tem essencialmente a mesma
descrição do Algoritmo 1, exceto pelo fato de que as arestas são inseridas e removidas no topo da pilha C. Um
ponto importante para termos o comportamento desejado é que uma aresta redescoberta é re-empilhada nas linhas
10 e 11 do Algoritmo 2.

Algoritmo 2: Busca em profundidade em hipermultigrafo
Entrada: um hipermultigrafo conexo H = (V,E, ι) e uma aresta inicial e0 ∈ E
Saída: uma enumeração σ de E

1 U ← {e0}
2 i← 1
3 para cada e adjacente a e0 faça
4 empilha a aresta e em C
5 enquanto C 6= ∅ faça
6 desempilha a aresta e no topo de C
7 σ(e)← i
8 se U 6= U ∪ e então
9 para cada aresta não enumerada f adjacente a e faça

10 se f já está na pilha então desempilha f
11 empilha f
12 U ← U ∪ e
13 i← i+ 1

A Propriedade 5 e o Teorema 6 caracterizam a busca em profundidade em hipermultigrafos.

Propriedade 5. Seja σ uma enumeração das arestas de um hipermultigrafo H . Dizemos que σ tem a propriedade
5 se para qualquer tripla característica (a, b, c) de H com respeito a σ, existe uma aresta f tal que a ≺σ f ≺σ b
e f ∩ b 6= ∅.

Figura 5: Exemplo para uma ordem de busca em profundidade.

a b cf

Fonte: Corneil e Krueger (2008) [8].

Teorema 6. Dado um hipermultigrafo arbitrário H , uma enumeração σ das arestas de H é uma saída de busca
em profundidade se, e somente se, σ tem a Propriedade 5.

Demonstração. Seja σ uma enumeração dada por uma busca em profundidade em H , de acordo com o Algoritmo
2. Suponhamos que a tripla de arestas (a, b, c) é característica com relação a σ. Quando a aresta b foi escolhida ela
estava no topo da pilha. Como b não foi a primeira aresta escolhida pela algoritmo, alguma aresta adjacente a b já
foi escolhida num momento anterior. Dentre todas as arestas adjacentes a b e a esquerda de b em σ denotemos por
f a aresta mais a direta em σ. Assim, f ≺σ b e f ∩ b 6= ∅. Agora, suponha que f ≺σ a. Se a foi escolhida depois
de f , então c deve aparecer na pilha acima de b e como não existe nenhuma aresta adjacente a b antes dela que
poderia ter sido escolhida, temos que c foi escolhida antes de b, pois está acima de b na pilha, uma contradição.

Revista Brasileira de Computação Aplicada (ISSN 2176-6649), Passo Fundo, v. 8, n. 2, p. 16-27, jul. 2016 21



A recíproca é provada por contradição. Suponhamos que σ = (e1, . . . , em) é uma enumeração das arestas
deH com a Propriedade 5, mas não é resultado de busca em profundidade emH . Dentre todas as enumerações das
arestas deH que podem ser obtidas como resposta de uma busca em profundidade sobreH , seja α = (a1, . . . , am)
a que tem o maior número de coincidências num segmento inicial: aj = ej para todo 1 ≤ j ≤ i − 1. Para a
contradição, suponhamos que i − 1 < m. Assim, ei é a primeira aresta da enumeração σ que uma execução de
busca em profundidade não pôde escolher no momento certo.

Seja ej a aresta mais a direita em σ com j < i e adjacente a ai. Claramente, ej ∩ ei = ∅ e mais
especificamente, ek ∩ ei = ∅, para todo k, j ≤ k < i. Aplicando a Propriedade 5 para a tripla característica de
arestas (ej , ei, ai) com respeito a σ, sabemos que existe uma aresta f entre as arestas ej e ei tal que, f ∩ ei 6= ∅,
tendo assim, uma contradição. Portanto, σ é uma enumeração que pode ser obtida como resposta da execução de
uma busca sobre o hipermultigrafo H .

2.5 Busca pela vizinhança maximal

O princípio para a estratégia de busca pela vizinhança maximal é que a cada passo no algoritmo escolhemos
uma aresta f na qual o conjunto de todas as arestas que incidem em f (a vizinhança) e que já estão enumeradas é
maximal com respeito a ordem parcial ⊆ de inclusão de conjuntos.

O Algoritmo 3 descreve a busca pela vizinhança maximal guiada por aresta.

Algoritmo 3: Busca pela vizinhança maximal para hipermultigrafo
Entrada: um hipermultigrafo conexo H = (V,E, ι) e uma aresta inicial e0 ∈ E
Saída: uma enumeração σ de E

1 Atribua o rótulo ∅ para todas as arestas de H
2 escolha uma aresta e adjacente a e0
3 rótulo(e)← rótulo(e) ∪ {m}
4 U ← {e0}
5 i← 1
6 para cada e adjacente a e0 faça
7 rótulo(e)← rótulo(e) ∪ {i}
8 para i de 1 até m faça
9 escolha aresta não enumerada f com rótulo maximal

10 σ(e)← i
11 se U 6= U ∪ e então
12 para cada aresta não enumerada f adjacente a e faça
13 rótulo(f)← rótulo(f) ∪ {i}
14 U ← U ∪ e

A Propriedade 7 e o Teorema 8 caracterizam a busca pela vizinhança maximal em hipermultigrafos.

Propriedade 7. Seja σ uma enumeração das arestas de um hipermultigrafo H . Dizemos que σ tem a propriedade
7 se para qualquer tripla característica (a, b, c) de arestas de H , com respeito a σ, existe uma aresta f ≺σ b tal
que f ∩ b 6= ∅ e f ∩ c = ∅.

Figura 6: Exemplo para uma ordem de busca pela vizinhança maximal.

a b cf

Fonte: Corneil e Krueger (2008) [8].
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Teorema 8. Dado um hipermultigrafo arbitrário H , uma enumeração σ das arestas de H é uma saída de busca
pela vizinhança maximal se, e somente se, σ tem a Propriedade 7.

Abaixo denotamos por rótuloa(b) o conjunto rótulo(b) na rodada do algoritmo em que a aresta a foi enu-
merada.

Demonstração. Seja σ uma enumeração das arestas do hipermultigrafo H dada por uma busca pela vizinhança
maximal, de acordo com o Algoritmo 3, e (a, b, c) uma tripla característica de arestas de H . Suponhamos, para
contradição, que a tripla viola a Propriedade 7, isto é, suponhamos que não exista f ≺σ b tal que f ∩ b 6= ∅ e
f ∩c = ∅. Se esse é o caso então rótulob(b) ( rótulob(c), assim b não poderia ter sido escolhida pela busca porque
não seria maximal, o que é uma contradição.

Para provarmos a recíproca, suponhamos que σ = (e1, . . . , em) é uma enumeração das arestas de H que
tem a Propriedade 7, mas não é uma enumeração que possa ser obtida como resposta da execução de uma busca pela
vizinhança maximal sobre o hipermultigrafo H . Como argumentamos antes, nas provas dos teoremas anteriores,
consideremos i tal que (e1, . . . , ei−1) uma subsequência máxima que pode ser obtida durante uma execução do
Algoritmo 3. Se ei não pode ser escolhida então devemos ter

rótuloh(ei) $ rótuloh(h) (4)

e para qualquer aresta x tal que σ(x) ∈ rótuloh(h) \ rótuloh(ei) temos x adjacente a h mas não a ei, logo a
tripla de arestas (x, ei, h) é característica com respeito a σ. Pela Propriedade 7, deduzimos uma aresta f ≺σ ei
adjacente a ei e não adjacente a h contrariando a inclusão (4). Portanto ei pode ser escolhida, mas isso contraria
o fato de (e1, . . . , ei−1) ser uma subsequência máxima que pode ser obtida durante uma execução do Algoritmo 3
com entrada H . Portanto, σ é uma enumeração que pode ser obtida como resposta da execução de uma busca pela
vizinhança maximal sobre o hipermultigrafo H .

Como casos particulares dessa busca temos as buscas lexicográficas descritas nas próximas seções. Elas
são obtidas quando especificamos como comparar duas vizinhanças que são incomparáveis com respeito a ordem
de inclusão de conjuntos. Na busca em profundidade damos preferência para as arestas adjacentes a mais arestas
antigas na enumeração e na busca em largura, a que tem mais adjacências com as arestas mais recentes.

2.6 Busca em largura lexicográfica

O Algoritmo 4 descreve a busca em largura lexicográfica guiada por aresta. Durante a execução, cada aresta
está rotulada com uma sequência numérica e a escolha de arestas é decidida comparando as sequências de acordo
com a ordem lexicográfica.

Algoritmo 4: Busca em largura lexicográfica para hipermultigrafo
Entrada: um hipermultigrafo conexo H = (V,E, ι) e uma aresta inicial e0 ∈ E
Saída: uma enumeração σ de E

1 atribua o rótulo 0 para todas as arestas de H
2 U ← {e0}
3 i← 1
4 para cada e adjacente a e0 faça
5 acrescente o sufixo m no rótulo da aresta e
6 para i de 1 até m faça
7 pegue uma aresta não enumerada e com maior rótulo lexicográfico
8 σ(e)← i
9 se U 6= U ∪ e então

10 para cada aresta não enumerada f adjacente a e faça
11 acrescente o sufixo (m− i) no rótulo da aresta f
12 U ← U ∪ e
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A Propriedade 9 e o Teorema 10 caracterizam a busca em largura lexicográfica em hipermultigrafo.

Propriedade 9. Seja σ uma enumeração das arestas de um hipermultigrafo H . Dizemos que σ tem a propriedade
9 se para qualquer tripla característica (a, b, c) deH com respeito a σ, existe uma aresta f ≺σ a tal que f∩b 6= ∅
e f ∩ c = ∅.

Figura 7: Exemplo para uma ordem de busca em largura lexicográfica.

a b cf

Fonte: Corneil e Krueger (2008) [8].

Teorema 10. Dado um hipermultigrafo arbitrário H , uma enumeração das arestas de H é uma saída de busca
em largura lexicográfica se, e somente se, vale a Propriedade 9.

Demonstração. Seja σ uma enumeração das arestas de H dada por uma busca em largura lexicográfica, de acordo
com o Algoritmo 4. Seja (a, b, c) uma tripla característica de arestas com respeito a σ. Quando a aresta a foi
enumerada acrescentou um rótulo a c e não a b e para que b seja enumerada antes de c deve haver uma aresta f
enumerada antes de a, i.e. f ≺σ a, adjacente a b e não a c, para que b tenha rótulo lexicograficamente maior que c.

Para a recíproca, suponhamos por contradição, que σ = (e1, . . . , em) é uma enumeração das arestas de H
que tem a Propriedade 9, mas que não pode ser obtida como resposta de uma busca em largura lexicográfica sobre
H . Como antes, supomos que, para algum 2 ≤ i ≤ m, (e1, . . . , ei−1) é a maior subsequência comum com σ que
pode ser obtida por uma execução do Algoritmo 4 com entrada H .

Se h 6= ei é a próxima aresta escolhida na execução, então deve existir uma aresta a esquerda de ei em
σ e adjacente a h mas não a ei. Tomemos g como tal aresta que está mais à direita em (e1, . . . , ei−1) e, desse
modo temos que (g, ei, h) é uma tripla característica com respeito a σ. Aplicando a Propriedade 9 para a tripla
concluímos que deve existir uma aresta f à esquerda de g e adjacente a ei mas não a h.

Quando f foi enumerada, acrescentou m − σ(f) como sufixo de ei e não o fez com h. Quando g foi
enumerada, depois de f , acrescentou m − σ(g) como sufixo de h e não o fez com ei. Ademais, g é a última
antes de h com essa característica, isto é, a partir de g até a visita a h, cada aresta enumerada sufixa ei mas não
h, ou sufixa ambas, ou não sufixa nenhuma. Também, notemos que m − σ(g) < m − σ(f). Desse modo, ei
deve ter um rótulo lexicograficamente maior que h. Portanto h = ei, uma contradição. Mas ei poder ser escolhida
contradiz o fato (e1, . . . , ei−1) ser a maior subsequência comum com σ que pode ser obtida por uma execução
do Algoritmo. Portanto, σ é uma enumeração que pode ser obtida como resposta da execução de uma busca em
largura lexicográfica sobre o hipermultigrafo H .

2.7 Busca em profundidade lexicográfica

O Algoritmo 5 descreve a busca em profundidade lexicográfica guiada por aresta.

A Propriedade 11 e o Teorema 12 caracterizam a busca em profundidade lexicográfica em hipermultigrafos.

Propriedade 11. Seja σ uma enumeração das arestas de um hipermultigrafoH . Dizemos que σ tem a propriedade
11 se para qualquer tripla característica (a, b, c) de arestasH com respeito σ, existe uma aresta f com a ≺σ f ≺σ
b tal que f ∩ b 6= ∅ e f ∩ c = ∅.

Teorema 12. Dado um hipermultigrafo arbitrário H , uma enumeração das arestas de H é uma saída de busca
em profundidade lexicográfica se, e somente se, vale a Propriedade 11.

Na demonstração a seguir, usar-se-á rótulob(a) para denotar a sequência numérica que rotula a aresta a
imediatamente antes da enumeração da aresta b durante uma execução da busca. Também, escreve-se 4L para
denotar a ordem lexicográfica.
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Algoritmo 5: Busca em profundidade lexicográfica para hipermultigrafo
Entrada: um hipermultigrafo conexo H = (V,E, ι) e uma aresta inicial e0 ∈ E
Saída: uma enumeração σ de E

1 atribua o rótulo 0 para todas as arestas de H
2 U ← {e0}
3 i← 1
4 para cada e adjacente a e0 faça
5 acrescente i com prefixo ao rótulo da aresta e
6 para i de 1 até m faça
7 escolha uma aresta não enumerada e com maior rótulo lexicográfico
8 σ(e)← i
9 se U 6= U ∪ e então

10 para cada aresta não enumerada f adjacente a e faça
11 acrescente i com prefixo ao rótulo da aresta f
12 U ← U ∪ e

Figura 8: Exemplo para uma ordem de busca em profundidade lexicográfica.

a b cf

Fonte: Corneil e Krueger (2008) [8].

Demonstração. Seja σ uma enumeração das arestas de H dada por uma busca em profundidade lexicográfica, de
acordo com o Algoritmo 5. Se (a, b, c) é uma tripla característica de arestas com respeito a σ então para que a
aresta b tenha sido escolhida antes de c deve valer rótulob(c) 4 Lrótulob(b).

Na rodada do algoritmo em que a foi enumerada, o rótulo de c ganhou o prefixo σ(a), o que não ocorre
com o rótulo de b pois essa aresta não é adjacente a a, então o rótulo de b deve conter algum outro prefixo i maior
que σ(a) e que não ocorre no rótulo de c. Seja f a aresta que atribuirá o valor i ao rótulo da aresta b, rótuloi(b).
Claramente, f ∩ b 6= ∅ e f ∩ c = ∅. Ademais, como a aresta f atribuirá um prefixo para b maior que aquele que
aresta a atribuiu para c, temos a ≺σ f . Assim verificamos que a Propriedade 11 é satisfeita.

Por contradição, suponha que σ = (e1, . . . , em) é uma enumeração das arestas de H que tem Propriedade
11, mas não é uma ordem de busca em profundidade lexicográfica de H . Então, por argumento idêntico aos
anteriormente dados, podemos assumir que existe algum 2 ≤ i ≤ m, tal na execução do Algoritmo 5 com entrada
H a subsequência (e1, . . . , ei−1) ocorre mas (e1, . . . , ei) não pode. Se h é a próxima aresta que a busca em
profundidade lexicográfica escolhe, então rótuloh(ei) 4L rótuloh(h). Seja j o maior valor no rótuloh(h) e que
não ocorre em rótulo(ei). Isso é, ej é a aresta mais à direita em (e1, . . . , ei−1) com ej ∩ h 6= ∅ e ej ∩ ei = ∅.
Com isso, (ej , ei, h) é uma tripla característica com respeito a σ e pela Propriedade 11 sabemos que existe uma
aresta f entre ej e ei tal que f ∩ ei 6= ∅ e f ∩ h = ∅. Desde que ej ≺σ f , rótuloh(h) 4L rótuloh(ei), então ei
deveria ter sido escolhida antes de h, uma contradição.

Foram exibidas seis estratégias de busca em hipergrafos, denotadas LexDFS, LexBFS, MNS, DFS, BFS e
BG, e para cada uma delas mostrou-se uma caracterização da ordem em que as arestas são visitadas. As carac-
terizações têm a seguinte formulação geral: a sequência de arestas S = (e1, . . . , en) é a sequência com que o
algoritmo X visita as arestas de um hipermultigrafo se, e somente se, a sequência S tem a propriedade P . Para
determinar P , responde-se à seguinte pergunta em cada caso: se na busca executada por X a aresta a é visitada
antes de b, e que é visitada antes de c, e a e c são adjacentes mas a e b não o são, então como pode o algoritmo X
ter enumerado b antes de c? Com essa questão, encontramos as propriedades que caracterizam a estratégia de X .

As propriedades que encontramos são equivalentes àquelas que caracterizam as buscas clássicas (guiadas
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por vértices) em grafos como em [8]. De fato, nossa apresentação segue de perto a apresentação de [8].

3 Conclusão

As caracterizações das enumerações produzidas por estratégias de busca em hipergrafos podem ser uma
ferramenta poderosa e útil para o estudo e melhor compreensão dos algoritmos, além de nos dar um melhor
entendimento de como uma determinada busca revela a estrutura de um hipergrafo. Também, quando da aplicação
desses algoritmos de busca em problemas computacionais, as caracterizações servem como ponto de partida nas
provas de corretude de tais aplicações.

No caso de busca em grafos são conhecidas várias aplicações que usam essas buscas e que se beneficiam
das respectivas caracterizações. Já no caso de hipergrafos, que acabamos de apresentar, até o momento, não iden-
tificamos aplicações. Uma possível direção nesse sentido de trabalho futuro é investigar estratégias para busca
em hipergrafos direcionados e suas implicações em bancos de dados baseados grafos, como é o caso do Hyper-
GraphDB [14].
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