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Abstract
This paper presents an approach that uses probabilistic logic reasoning to compute subjective interestingnessscores for classi�cation rules. In the proposed approach, domain knowledge is represented as a probabilisticlogic program that encodes information from experts and statistical reports. The computation ofinterestingness scores is performed by a procedure that applies linear programming to reasoning regardingthe probabilities of interest. It provides a mechanism to calculate probability-based subjective interestingnessscores. Further, a sample application illustrates the use of the described approach.
Key words: Interestingness analysis; KDD; Probabilistic inference.
Resumo
Este trabalho apresenta uma abordagem que utiliza a inferência em lógica probabilística para calcular escoresde interessabilidade subjetiva de regras de classi�cação. Na abordagem proposta, o conhecimento do domínio érepresentado como um programa em lógica probabilística que contém informações fornecidas por especialistasou extraídas de relatórios estatísticos. O cômputo dos escores de interessabilidade é executado por umprocedimento que emprega a programação linear para inferir o valor de probabilidades de interesse. Istofornece um mecanismo para calcular escores probabilísticos para a interessabiliadade subjetiva. Um exemplode aplicação ilustra a utilização da abordagem descrita.
Palavras-Chave: Análise de interessabilidade; KDD; Inferência probabilística.

1 Introduction

Knowledge discovery in databases (KDD) is a�eld of computer science that investigates thetheoretical basis of transforming raw data intouseful and comprehensive information, and developscomputational methods to achieve the same. Theaim is to identify patterns that encode informationthat could be useful for solving a target problem.Such a process is usually abstracted into a three-step procedure: data preprocessing, data mining, andevaluation and interpretation of discovered patterns.
A knowledge discovery task that is often addressedwith the use of KDD techniques is the developmentof classi�er systems. Here, KDD algorithms inspect

a data set to determine patterns that facilitate thebuilding of a function that relates the category of anobject to its characteristics/attributes. In this context,the classi�cation rule mining aims at discoveringimplication patterns where the antecedent representsa logical constraint on the values of attributes usedto describe an object, and the consequent speci�esa label that identi�es the class of the object. If thedescription of an object matches the condition in theleft side of a rule, it is classi�ed into the respectivecategory.
The success of rule mining is primarilyevaluated by identifying a set of rules thatallow the implementation of an accurate classi�er.Additionally, discovered rules may also be subject
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to an interestingness analysis. A KDD stepdetermines if the mined patterns are worthwhile,i.e., if they represent any novel, useful, valid,and understandable knowledge (Han; 2005). Theoutput of an interestingness analysis process thusassociates each discovered pattern with a number ofscores, which measure the relevance of a rule for theapplication targets.
In particular, subjective interestingness analysisestimates the relevance of a pattern given thedomain knowledge, user beliefs, and task goals.It generally requires the implementation of aknowledge base that stores information, allowingevaluation if mined patterns are pertinent. Domainknowledge is often uncertain, and hence, it isusually necessary to employ a reasoning schemeto address uncertainty during the interestingnessanalysis. Considering that, this work presents aprobabilistic approach for subjective analysis. Theproposed approach de�nes a scheme that allowsone to represent uncertain knowledge about someapplication domain propositions and provides aprocedure to execute the inferences and calculateprobability-based interestingness measures.
The rationale underlying the proposed approachis to use probabilistic logic to encode the domainknowledge into a knowledge base (KB), andan associated reasoning procedure to computeinterestingness measures. The assertions in theknowledge base are assumed to represent knowledgeelicited from expert beliefs, inferred from descriptivestatistics, or obtained from �tted models andcorrelation data. Imprecise probabilistic assignmentsare dealt with as interval-valued probabilities.The reasoning procedure makes use of linearprogramming.
A sample application illustrates the use ofthe proposed procedure for computing twointerestingness scores—self-information andlevel—for a set of rules generated by the JRIPalgorithm (Cohen; 1995) on the UCI Breast CancerData Set. The self-information evaluates whethera rule is unexpected (Bie; 2011), while the level ofinterest is a robust measure of predictive accuracy(Gay and Boullé; 2013).
This article is organized as follows: Section2 presents the background on probabilistic logic,classi�cation rule mining, interestingness analysisand interestingness measures. Section 3 presents theproposed approach. Section 4 illustrates the use ofthe proposed method through an application example.Section 5 discusses the main issues related to the useof the proposed approach in interestingness analysis.The last section presents the �nal remarks of thisstudy.

2 Background review

Classi�cation rule mining aims at discovering a setof implication patterns that relates certain objectfeatures (attributes) to a label representing thecategory of the object under analysis (Vashishthaet al.; 2011). Let X = {X1...,Xn} denote a set of

variables whose elements identify the attributes1 usedto describe the objects to be classi�ed. The samplespace of Xi is denoted by Ωi. Furthermore, let Cbe a categorical variable whose sample space, ΩC,enumerates every classi�cation hypothesis. Given adata set Dwithm instances of the form (X1...,Xn,C), aclassi�cation rule mining algorithm applies inductivelearning methods to identify a collection of logicalexpressions of the form F1∧F2 · · ·∧Ft → H (Fürnkranzet al.; 2014). Each Fi symbolizes an expressionde�ned on the elements of X, and H stands for aclass assignment C = c such that c ∈ ΩC. This workassumes that each Fi is an expression Xj � xj,k, where
xj,k ∈ Ωj, � is an relational operator from the set
{<, >,≤,≥, =}, and 1 ≤ t ≤ n.Classi�cation rule mining performance isprimarily assessed by the accuracy of the classi�erconstructed on the discovered rules. Additionally,sometimes it may be convenient to evaluate ifthe mined patterns are also valid, novel, useful,and understandable (Geng and Hamilton; 2006;McGarry; 2005). This type of investigation is calledinterestingness analysis, and it aims at computingmeasures that quantify how interesting a patternis from an objective or subjective point of view. Inobjective interestingness analysis, pattern evaluationis based on statistical measures that estimate thestrength that the data provides to the pattern.Subjective analysis, on the other hand, intends toappraise if the discovered rule meets user beliefsand objectives, as well as �ts to data (Leeuwenet al.; 2016). Generally, interestingness analysis is apost-processing step, and hence, the scores are usedto �lter or rank the rules.This work considers two subjective interestingnessmeasures: the self-information and theinterestingness level. Let R be a rule F1∧F2 · · ·∧Ft → H.The self-information of R is de�ned as (Bie; 2011):

I(R) = – log2(P(R)) (1)
Self-information, also known as surprisal, quanti�eshow expected a pattern is. A value approximatelyequal to zero indicates that R appears highly plausibleconsidering a probability distribution p, de�ned overthe sentences in a knowledge base. On the other hand,the higher I(R) is, the more surprising (unexpectedor improbable) R is.The level measure, denoted by level(R) is a Bayesianscore that weighs the posterior probability of R by the
posterior probability of a default rule R02 (Egho et al.;2015; Gay and Boullé; 2013). level(R) is expressed asfollows:

level(R) = 1 – c(R)c(R0) . (2)
In Expression (2), c(R) is the cost of R. It is thenegative logarithm of p(D ∧ R) which yields c(R) =– log2 p(D ∧ R) = – log2 P

(
D|R) – log2 P(R)). As

P
(
R|D) ∝ p(D ∧ R), c(R) is related to the posterior

probability of R given the data. c(R0) is the cost of a
1In this work, it is assumed that a variable can be categorical,discrete, or continuous.2A default rule R0 has no antecedents (its form is→ H).
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default rule, i.e., c(R0) = – log2(P(D|R0))– log2(P(R0)).The logic underlying the level score is that, byexploring the posterior probabilities, this measureprovides information that enables simultaneousevaluation of the data �tting and prior expectancy.In addition, it is a normalized score (upper boundedin 1), which allows comparison of the performanceof R with that of the default rule. Fundamentally, if:
• level(R) ≤ 0, the rule is not interesting because ithas equal or less probability than R0;• level(R) = 1, the rule exactly �ts the observationsand prior beliefs;• 0 < level(R) < 1, it indicates rules with a certaindegree of interestingness.
The level(·) measure assigns a higher score to arule if it is more likely than the default rule.

2.1 Propositional probabilistic logic

Propositional logic represents categorical facts bymeans of formulas de�ned on propositional variables(Russell and Norvig; 2010). Let true and false betwo constant values, and let V = {v1, ...vm} be aset of propositional variables. The elements of Vare named atomic formulas and can assume one ofthe two constant values. The compound formulasare denoted by S1, S2,and . . . Sm, and are constructedby connecting an atomic or a compound formula toanother by means of the logical operators ∧,∨,¬, and
→. A compound formula is also true or false, andits value is a function of the truth assignment toits variables and the semantics of the operators. A
truth assignment, w, is a vector that assigns either trueor false to each propositional variable in a formula.This work assumes the usual semantics for operators(Hamilton; 1988).
Probabilistic logic extends propositional logic inorder to allow the treatment of uncertain knowledge(Hansen and Perron; 2008). Probabilistic logic thusassigns a probability measure πi to every formula

Si such that the statement P(Si) = πi expresses thebelief of an agent on Si. If some agent’s beliefs areimprecise, they can be expressed by inequalities suchas P(Si) ≥ πi or P(Si) ≤ πi or by interval probabilitystatements such as πi ≤ P(Si) ≤ πi. Here, πi and πiare the lower and upper bounds of πi, respectively.The conditional statements expressing the belief on
Si given an event Sj can be written as P

(
Si|Sj

) = πi,j,
P
(
Si|Sj

)
≥ πi,j, P

(
Si|Sj

)
≤= πi,j, or πi,j ≤ P

(
Si|Sj

)
≤

πi,j.A probabilistic logic knowledge base K is acollection of probabilistic logic sentences on V. Itcan be considered as a pair (S,Π), where S is a set ofpropositional sentences {S1 . . . , Sm} associated withthe probability assignments Π. Π can be partitioned
as
 Π1

Π2
Π3

; Π1, Π2, and Π3 are column vectors
specifying the equality constraints (P(Si) = πi), lowerbounds (P(Si) ≥ πi), and upper bounds (P(Si) ≤ πi),respectively.
Let M be the set of all possible truth assignments

wj of V and pj be the probability of wj in the joint

distribution associated with V. It holds that (Hooker;1992):
P(Si) = ∑

w:wj∈M ∧ m(Si,wj)
pj = aᵀi p. (3)

Here, m(Si,wj) indicates that wj is a model for Si,
p = (p1 . . . , p2n)ᵀ is a vector on the joint probability of
V, and ai denotes a vector whose jth element is 1 if Siis true in wj and zero otherwise. A knowledge base Kis said to be consistent if its sentences are consistentwith the axioms of probability theory.
Equation 3 can be used to build a procedure forsolving the inferences (Hooker; 1992) about the lowerand upper probabilities of a target sentence. Let S be

the target, K be a knowledge base, and P(S) and P(S)be the lower and upper probabilities of S, respectively.
P(S) and P(S) can be de�ned as a linear function
aᵀp, which must be minimized or maximized fora given number of constraints derived from K. Thiswork assumes that the knowledge base constraintscan be grouped into three matrices, namely Am1×2N ,
Am2×2N , and Am3×2N . These matrices store the linearexpressions related to the equality, less than or equal,and greater than or equal constraints, respectively.It generates the following linear program:

min /max aTp
s.t

Al1×2N = Π1
Al2×2N ×p ≥ Π2
Al3×2N ≤ Π3.

Furthermore, p ≥ 0 and 1ᵀp = 1.
It must be noted that conditional statementscan also be represented in probabilistic logic. Forexample, let P(S1|S2) be the probability of a statement

S1 conditional to S2. The expressions P(S1|S2) =
π1,2, P(S1|S2) ≥= π1,2, and P(S1|S2) ≤= π1,2 expressconstraints on that belief. These expressions yield anumber of linear equations/inequalities as follows:
P(S1 ∧ S2) – P(S2) · π1,2 = 0, P(S1 ∧ S2) – P(S2) · π1,2 ≥ 0
P(S1 ∧ S2) – P(S2) · π1,2 ≤ 0, respectively.

3 A probabilistic logic approach for
interestingness analysis

This work assumes that the data mining team intendsto construct a knowledge-base, K, to analyze theinterestingness of certain classi�cation rules. Thispaper embraces such an approach by exploringprobabilistic logic to represent domain knowledgeand related reasoning procedures to support thecomputation of probability-based interestingnessmeasures. More speci�cally, let R be the sentencethat symbolizes a classi�cation rule to be analyzedsuch that R ≡ F1 ∧ F2 · · · ∧ Ft → H. Let it alsobe that P(S1) . . .P(Sm) are the sentences in K. Thepropositional components of those sentences denotefacts and associations relative to the terms thatappear in the rule.
After developing such a knowledge base, it ispossible to proceed as in section 2.1 and to state
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a problem of probabilistic logic inference whoseassignments represent the uncertainty about factsand relationships that the team believes to be relevantto the calculation of P(R). Equation 4 illustrates thestructure of the inference problem whose solutiongives the lower and upper bounds of P(R).

min /max P(R)
s.t. P(S1) = π1

. . .
P(Sm) = πt
P(H)

(4)

Example 1 is a simple straightforward applicationof the proposed approach.
Example 1: Let X1 and X2 be two normally distributed variablessuch that X1 ∼ N(1; 0.1) and X2 ∼ N(4; 1) andH ≡ (C = c1). Assumethat the prevalence of class c1 is higher than or equal to 0.8. Givena rule R ≡ (X1 ≤ 0.901∧X2 ≤ 5→ C = c1), it is possible to use theprevious information to construct a probabilistic logic program
for computing P(R) and P(R). Let P(S1) = P(X1 ≤ 0.901) = 0.16,
P(S2) = P(X2 ≤ 5→ C = c1) = 0, 84. Additionally, let P(S0) = 0.6be the marginal probability of H and P(S2|S0) = 0.7. The upperand lower bounds for P(R) are obtained by solving the following
linear program:

min /max aᵀp
s.t A× p = Π

1ᵀp
pi ≥ 0, i = 1..8

(5)

where, A = ( a0 a1 a2 a2|0
)T , p = ( p1 . . . p8

)T ,
and Π =


0.65
0.16
0.84
0

. The rows in A are de�ned as a0 =

(1, 0, 1, 0, 1, 0, 1, 0), a1 = (1, 1, 1, 1, 0, 0, 0, 0), a2 = (1, 1, 0, 0, 1, 1, 0, 0)and a2|0 = (0.3, 0, –0.7, 0, 0.3, 0, –0.7, 0). The objective functionis a = (1, 0, 1, 1, 1, 1, 1, 1).
The example above makes it evident that using theproposed approach relies on a knowledge engineeringstep that aims to acquire knowledge regarding logicalassociations among domain variables and to elicittheir respective probabilities. However, knowledgeacquisition is a hard task (Russell and Norvig; 2010).So, for the sake of simplicity, at �rst, it is supposed

that the density/distribution p(Xj) is known for each
Xj ∈ X.
Of course, the analysis team may have to consultseveral sources of information to get the probabilityof each sentence. The probabilities can be encodedinto statistical reports (Barbaros et al.; 2014; van derGaag et al.; 2013; Sivia and Skilling; 2006). Itselicitation may demand meta-analysis of scienti�cand technical literature (Garthwaite et al.; 2005)or knowledge acquisition from experts (O’Haganet al.; 2006). All of these strategies couple with thecondition stated above and the linear program inEquation 5.
If the available data and experts do not supportan exact probabilistic assignment for every sentence,the analysis team could extend the model by using aformalism based on the imprecise probability theory(Levi; 1980; Walley; 1991). Imprecise probabilitiesalso make possible to deal with situations where the

available information is in the form of comparativeprobability statements. For example, let Q1, Q2, and
Q3 be three composed sentences de�ned on S1 . . . , Stsuch that experts are aware that: (a) Q1 is as or moreprobable than Q2, and (b) Q3 is as probable or moreprobable than Q1. Thus, P(Q1) ≥ P(Q2) and P(Q3) ≥
P(Q1) can be added to the program.Similarly, if it is known that k1P(Q1) ≤ k2P(Q2),
k1P(Q1) ≥ k2P(Q2), or P(Q1) = P(Q2) for k1, k2 ∈ R,the expressions k1P(Q1) – k2P(Q2) ≤ 0, k1P(Q1) –
k2P(Q2) ≥ 0, or P(Q1) – P(Q2) = 0, respectively, couldbe added into the probabilistic program. As before,such constraints can be rewritten using a vectorialnotation as follows: b1,2 = k1b1 – k2b2 � 0, such that
b1 and b2 are the row vectors relative to P(Q1) and
P(Q2). Qualitative constraints can be grouped intoa system B × p � Π and further can be appended toprogram 5 as follows:

min /max cᵀp
s.t

[
A
B

]
× p�

[
Π
0

]
1ᵀp = 1
pi ≥ 0, i = 1..2t.

(6)

3.1 Integrating information about
correlation

There can exist a case wherein the correlation databetween Xi and Xj is handy. It could be useful toexplore that information in order to constrain theprobabilistic relationship between those variables.Berleant and Jianzhong (2004) and Berleant et al.(2007) present a procedure to calculate envelopes forthe joint probability distribution of two variables,
Xi and Xj, given their Pearson correlation. This
section describes the use of that procedure in orderto discover the lower and upper limits, πi∧j and πi∧j,
for a sentence P(Si ∧ Sj); here, Si and Sj indicate that
the values of Xi and Xj belong to a given interval in
Ωi and Ωj.Let Xi and Xj be two continuous attributes, p(Xi)
and p(Xj) their densities, and r the correlation
between them. Further, let Z and Y be two variableswhose values z1 . . . zn1 and y1 . . . yn2 , respectively, areobtained with the discretization of Xi and Xj into n1and n2 bins. The sample spaces of Z and Y are denotedby Ωz and Ωy. In addition, let p(Z) and p(Y) be themarginal distributions of those new variables. Theentries P(zk) and P(yl) can be calculated from p(Xi)and p(Xj) by doing

P(zk) = P
(
xi,k < Xi ≤ xi,k

)
and

P(yl) = P
(
xj,l < Xj ≤ xj,l

) .
Here xi,k and xi,k (xj,l and xj,l) are the limits of the kth
(lth) bin of Z (Y).
Let there be a case where Si and Sj appear in the
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antecedent of a classi�cation rule such that Si ≡ (Xi ≥
xi,a) and Sj ≡ (Xj ≥ xj,b). Without loss of generality,assume that xi,a and xj,b are the lower bounds of theintervals which de�ne the bins za and yb in ΩZ and
ΩY . Hence, P(Si) and P

(
Sj
) can be expressed in terms

of p(Z) and p(Y). Marginalization of p(Z,Y) allows tode�ne the next equations:
P(Si) =∑n1k=a∑n2l=1 P(Z = zk ∧ Y = yl) = πi
P
(
Sj
) =∑n2l=b∑n1k=1 P(Z = zk ∧ Y = yl) = πj (7)

Similarly, P(Si ∧ Sj) can be formulated in terms of
p(Z,Y) as follows:

P
(
Si ∧ Sj

) =∑
t∗∈t

P(Z = zt∗ ∧ Y = yt∗) = πi∧j. (8)

In this expression, πi∧j denotes the unknown value
P
(
Si ∧ Sj

), and t is a vector of pairs of indexes such
that for all t∗ = (k, l) ∈ t, the intervals representedby zk and yl are consistent with the sentence Si ∧ Sj.
Equations 7 and 8 relate the joint p(Xi,Xj) to the
sentences P(Si ∧ Sj), P(Si), and P(Sj) through P(Z,Y).
As before, those equations can be represented in avector form and appended to the Program (6).
However, the usability of those constraintsdepends on an estimate or bounds for πi∧j. FollowingBerleant et al. (2007) and Berleant and Jianzhong(2004) that bounds can be computed from r and p(Xi)and p(Xj), with equations 9 and 10 :
n1,n2∑
k,l
zkylP(Z = zk ∧ Y = yl) ≥ µiµj + r

√
σ2i σ2j (9)

n1,n2∑
k,l
zkylP(Z = zk ∧ Y = yl) ≤ µiµj + r

√
σ2i σ2j (10)

The equations presented by Berleant andJianzhong (2004) allow to obtain an outer envelopefor p(Z,Y) given the correlation data along with theupper and lower bounds for the mean and varianceof X and Y. Moreover, equations 7, 8, 9, and 10can be grouped in the form of a linear system D.If appended to program (6), D de�nes additionalconstraints in the optimization program and hence,can contribute to obtaining tighter intervals for P(R).
In particular, the utilization of correlation data

demands the acquisition of µj, µj, σ2i , σ2j , σ2i , and σ2j .As proposed by Berleant and Jianzhong (2004) andBerleant et al. (2007), this work assumes that theselimits are entered by the analysis team or calculatedby interval optimization upon P(Z) and P(Y).

3.2 Evaluating interestingness

The described approach assumes that interestingnessanalysis is performed after the data mining step (i.e.,a post-processing step) and aims at sorting the rulesby surprisal or level of interest scores. The self-information of a rule R can be obtained by solvingthe linear programs described in section 3. Theyproduces lower and upper probability estimates for
P(R) and a respective interval [I(R), I(R)] for the self-information of R. Here

I(R) = – log2(P(R)) I(R) = – log2(P(R)) (11)
If P(R) is an interval-valued probability, c(R), thenumerator of level(R) is also an interval [c(R), c(R)]whose extremes are:

c(R) = –log(P(R)) – log(P(D|R)) (12)
c(R) = –log(P(R)) – log(P(D|R)) (13)

Again, it induces an interval on the level score
whose limits level(R) and level(R)] are

level(R) = 1 – c(S)c(S0) level(S) = 1 – c(S)c(S0) (14)
After obtaining the interval for level(R), theinterestingness analysis continues by inspecting itslower and upper bounds. If level(R) is greater than 0,it implies that the rule appears to be interesting givenprior knowledge as well as e�ective in describing dataeven if it was computed on the lower bound for P(S).

On the other hand, level(R) < 0 indicates that in thelight of the background information, the rule is notinteresting even if the analysis considers an upper
bound for P(S). Finally, if 0 ∈ [level(S), level(S)], noconclusion can be drawn about the robustness of therule.

4 An example
In this section, the proposed approach is used to carryout interestingness analysis on three classi�cationrules learned by the JRIP algorithm (Cohen; 1995)from the Breast Cancer Wisconsin Data Set (Wolberg.et al.; 1994). Before the learning step, the data setwas split into two partitions: a training data set with379 cases and a test data set with 190 cases. JRIPgenerated the next three rules:
• rule (a): (concave points n1 ≥ 0.05182) and(perimeter n3 ≥ 113.9) → Diagnosis=malign;• rule (b): (concave points n1 ≥ 0.05839) and(texture n3 ≥ 23.75) → Diagnosis=malign;• rule (c): (radius n3 ≥ 15.65) and (texture n3
≥ 28.06) and (smoothness n3 ≥ 0.1094) →Diagnosis=malign.
The left side of those rules refers to certain featuresof a cellular nucleus and the right side shows a classlabel. The propositions that constitute the rules weredenoted as: S0 ≡ (Diagnosis=malign), S1 ≡ (concavepoints n1 ≥ 0.05182), S2 ≡ (perimeter n3 ≥ 113.9),

S3 ≡ (radius n3 ≥ 15.65), S4 ≡ (texture n3 ≥ 28.06),



64 | Rocha et al./ Revista Brasileira de Computação Aplicada (2019), v.11, n.1, pp.59–66

S5 ≡ (radius n3 ≥ 15.65), S6 ≡ (texture n3 ≥ 28.06),and S7 ≡ (smoothness n3 ≥ 0.1094). The rules (a),(b), and (c) were associated to the sentences Ra, Rb,and Rc so that Ra ≡ S1 ∧ S2 → S0, Rb ≡ S3 ∧ S4 → S0,and Rc ≡ S5 ∧ S6 ∧ S7 → S0.The following sentences was entered into theknowledge base: P(S1) ≥ 0.4, P(S2) ≥ 0.33, P(S3) =0.34, P(S4) = 0.58, P(S5) = 0.499, P(S6) = 0.34,and P(S7) = 0.845. P(R0) was set to 0.0008, theprevalence of breast cancer in the US3. The marginalsentences were followed by the next conditionalprobability sentences: P(S1|S0) ≥ 0.51, P(S2|S0) ≥0.82, P(S4|S0) = 0.85, and P(S6|S0) = 0.44. Thesentences in KB were elicited from an hypothetical
expert4.The knowledge base also had a number ofqualitative constraints on the joint probabilitiesof S1 and S2: P(S1 ∧ S2) ≥ P(S1 ∧ ¬S2), P(S1 ∧ S2) ≥
P(¬S1 ∧ S2), P(S1 ∧ S2) ≤ P(¬S1 ∧ ¬S2), P(S1 ∧ ¬S2) ≥
P(¬S1 ∧ S2), P(S1 ∧ ¬S2) ≤ P(¬S1 ∧ ¬S2) and
P(¬S1 ∧ S2) ≤ P(¬S1 ∧ ¬S2).The probabilistic logic program for computing
P(Sa) was write as:

min /max P(Ra)
s.t
P(¬S1 ∧ S2) ≤ P(¬S1 ∧ ¬S2) P

(
S2|S0) ≥ 0.82

P(S1 ∧ S2) ≥ P(S1 ∧ ¬S2) P
(
S1|S0) ≥ 0.51

P(S1 ∧ S2) ≥ P(¬S1 ∧ S2) P(S0) = 0.0008
P(S1 ∧ ¬S2) ≥ P(¬S1 ∧ S2) P(S1) ≥ 0.4
P(S1 ∧ ¬S2) ≥ P(¬S1 ∧ ¬S2) P(S2) ≥ 0.33
P(¬S1 ∧ S2) ≥ P(¬S1 ∧ ¬S2) (15)Program 15 was converted into a linear programand solved with the revised simplex algorithm. Itresulted in P(Ra) ∈ [0.5, 0.8] and self-information

I(Ra) ∈ [0.32, 1]. The obtained probability intervalwas combined with the likelihoods (see Gay andBoullé (2013)) of Ra to calculate the interestingnesslevel: level(Ra) ∈ [0.523, 0.527]. For Rb and
Rc, an analogous procedure resulted in P(Rb) =[0.66, 1], P(Rc) = [0.66, 1], I(Rb) ∈ [0, 0.59], I(Rc) ∈[0, 0.59], level(Rb) ∈ [0.511, 0.514], and level(Rc) ∈[0.384, 0.387].The results show that, given the knowledgebase, rules Rb and Rc are relatively expected (self-information upper bound less than 1). For the rule
Ra, self-information is not too revealing about itsagreement (expectedness) with the prior knowledge.The lower bound of the self-information of Ra, 1,indicates that knowledge base does not allow to saythat is un/expected. The level measure indicates thatthe rules Ra, Rb and Rc explain data with at a lowercost than the default rule (scores were greater thanzero).Continuing with the example, the data analystobtained information that could in�uence theexpectations with respect to the �rst rule. Astatistical report states that the mean values of
concave points n1 and perimeter n3 are bounded bythe intervals [75.22, 138.8] and [0.05; 0.08], and
3See http://www.cdc.gov/mmwr/preview/mmwrhtml/00043942.htm.4For practical reasons, all the probabilities were estimated froma random sample extracted from the original data set.

their variances pertain to the intervals [28, 34] and[0.032, 0.044]. The observed correlation was 0.85.After entering that information in Program 15, theprobability interval of Ra is updated to P(Ra) ∈[0.64, 0.8]. The updating of self-information andlevel produces the intervals I(Ra) ∈ [0.32, 0.64] and
level(Ra) = [0.526, 0.527]. The new value of I(Ra)provides evidence that suggests that Ra is in linewith the domain knowledge.

5 Discussion
Probabilistic reasoning has been widely used in thedevelopment of tools for interestingness analysis(Bie; 2011)(Hahsler and Hornik; 2008)(McGarry;2005)(Silberschatz and Tuzhilin; 1996). In thiscontext, the approach presented here bearssimilarities to those described by Jaroszewicz et al.(2009) and Malhas and Aghbari (2009). Thoseauthors proposed two approaches for subjectiveinterestingness analysis of association rules. To doso, they used the formalism of Bayesian networksto represent the domain knowledge and exploredBayesian networks inference facilities to implementprocedures that allow to compute interestingnessscores based on entropy.
Apart from addressing classi�cation rules, theproposed approach di�ers from the works ofJaroszewicz et al. (2009) and Malhas and Aghbari(2009) by its use of probabilistic logic programmingto reason about domain knowledge. It organizesthe knowledge base as a set of sentences de�nedon propositions built on the domain objects. Thesentences express local relationships involvingmarginal, conditional, and bivariate probabilisticstatements (although it is possible to formulate morecomplex statements).
By exploring a probabilistic logic-based schema,the proposed approach can be used even ifthe information elicited from experts, reports,descriptive statistics, or correlation data is notsu�cient to specify a complete probabilistic model.As observed by Barbaros et al. (2014), Berleant andJianzhong (2004) and Nitti et al. (2016), it is often thecase. Additionally, the inference procedure enablesreasoning with uncertain and incomplete knowledge(Haenni et al.; 2013) (Kern-Isberner et al.; 2011),qualitative probabilities (Ognjanovi et al.; 2008), andimprecise beliefs (Hansen et al.; 2000).
Finally, it must be noted that: (a) probabilisticlogic inference is a time-consuming task (Cozmanand Maua; 2017) (Hansen and Perron; 2008); (b)depending on the application, rule miners cangenerate excessive patterns (Balaji and Rao; 2013);and (c) it is desirable that interestingness analysisalgorithms run rapidly. It is likely that theserequirements will cause di�culties when applyingthe proposed approach in complex domains, mainlyif it is necessary to process on a very large knowledgebase. However, a further scrutiny demonstrates thatrule mining algorithms generally implement a rulepruning strategy. Therefore, generally, the minedrules will not have numerous terms and, in thismanner, the related inference problems are likely tohave few terms and could be solved quickly (Hansenand Perron; 2008) (Cozman et al.; 2006) (Desrosiers
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and Lubbecke; 2005) (Hansen et al.; 2000).

6 Conclusion
This work presented an approach for subjectiveinterestingness analysis of classi�cation rules. Byusing propositional probabilistic logic as a knowledgerepresentation scheme, it allows the codi�cation ofthe domain knowledge acquired from experts andinformation extracted from statistical reports in auni�ed way. It also allows the exploration of thecommonly used inference algorithms in order tocompute probability-based interestingness measures.Another advantage is that it is possible to carry outvalid computations even if the available knowledgeis uncertain or incomplete and the elicited beliefs areimprecise.In the near future, we intend to extend theproposed approach in order to integrate independenceassumptions into the reasoning. We also intend toemploy the described approach for interestingnessanalysis of the association rules.
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