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Abstract

This paper presents an approach that uses probabilistic logic reasoning to compute subjective interestingness
scores for classification rules. In the proposed approach, domain knowledge is represented as a probabilistic
logic program that encodes information from experts and statistical reports. The computation of
interestingness scores is performed by a procedure that applies linear programming to reasoning regarding
the probabilities of interest. It provides a mechanism to calculate probability-based subjective interestingness
scores. Further, a sample application illustrates the use of the described approach.

Key words: Interestingness analysis; KDD; Probabilistic inference.

Resumo

Este trabalho apresenta uma abordagem que utiliza a inferéncia em 1dgica probabilistica para calcular escores
de interessabilidade subjetiva de regras de classificacdo. Na abordagem proposta, o conhecimento do dominio é
representado como um programa em légica probabilistica que contém informagdes fornecidas por especialistas
ou extraidas de relatérios estatisticos. O computo dos escores de interessabilidade é executado por um
procedimento que emprega a programacao linear para inferir o valor de probabilidades de interesse. Isto
fornece um mecanismo para calcular escores probabilisticos para a interessabiliadade subjetiva. Um exemplo
de aplicacdo ilustra a utilizacdo da abordagem descrita.

Palavras-Chave: Analise de interessabilidade; KDD; Inferéncia probabilistica.

1 Introduction

Knowledge discovery in databases (KDD) is a
field of computer science that investigates the
theoretical basis of transforming raw data into
useful and comprehensive information, and develops
computational methods to achieve the same. The
aim is to identify patterns that encode information
that could be useful for solving a target problem.
Such a process is usually abstracted into a three-
step procedure: data preprocessing, data mining, and
evaluation and interpretation of discovered patterns.

A knowledge discovery task that is often addressed
with the use of KDD techniques is the development
of classifier systems. Here, KDD algorithms inspect

a data set to determine patterns that facilitate the
building of a function that relates the category of an
object to its characteristics/attributes. In this context,
the classification rule mining aims at discovering
implication patterns where the antecedent represents
a logical constraint on the values of attributes used
to describe an object, and the consequent specifies
a label that identifies the class of the object. If the
description of an object matches the condition in the
left side of a rule, it is classified into the respective
category.

The success of rule mining is primarily
evaluated by identifying a set of rules that
allow the implementation of an accurate classifier.
Additionally, discovered rules may also be subject
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to an interestingness analysis. @A KDD step
determines if the mined patterns are worthwhile,
i.e., if they represent any novel, useful, valid,
and understandable knowledge (Han; 2005). The
output of an interestingness analysis process thus
associates each discovered pattern with a number of
scores, which measure the relevance of a rule for the
application targets.

In particular, subjective interestingness analysis
estimates the relevance of a pattern given the

domain knowledge, user beliefs, and task goals.

It generally requires the implementation of a
knowledge base that stores information, allowing
evaluation if mined patterns are pertinent. Domain
knowledge is often uncertain, and hence, it is
usually necessary to employ a reasoning scheme
to address uncertainty during the interestingness
analysis. Considering that, this work presents a
probabilistic approach for subjective analysis. The
proposed approach defines a scheme that allows
one to represent uncertain knowledge about some
application domain propositions and provides a
procedure to execute the inferences and calculate
probability-based interestingness measures.

The rationale underlying the proposed approach
is to use probabilistic logic to encode the domain
knowledge into a knowledge base (KB), and
an associated reasoning procedure to compute
interestingness measures. The assertions in the
knowledge base are assumed to represent knowledge
elicited from expert beliefs, inferred from descriptive
statistics, or obtained from fitted models and
correlation data. Imprecise probabilistic assignments

are dealt with as interval-valued probabilities.

The reasoning procedure makes use of linear
programming.

A sample application illustrates the use of
the proposed procedure for computing two
interestingness  scores—self-information and
level —for a set of rules generated by the JRIP
algorithm (Cohen; 1995) on the UCI Breast Cancer
Data Set. The self-information evaluates whether
a rule is unexpected (Bie; 2011), while the level of
interest is a robust measure of predictive accuracy
(Gay and Boullé; 2013).

This article is organized as follows: Section
2 presents the background on probabilistic logic,
classification rule mining, interestingness analysis
and interestingness measures. Section 3 presents the
proposed approach. Section 4 illustrates the use of
the proposed method through an application example.
Section 5 discusses the main issues related to the use
of the proposed approach in interestingness analysis.
The last section presents the final remarks of this
study.

2 Background review

Classification rule mining aims at discovering a set
of implication patterns that relates certain object
features (attributes) to a label representing the
category of the object under analysis (Vashishtha
et al.; 2011). Let X = {Xj...,Xn} denote a set of

variables whose elements identify the attributes’ used
to describe the objects to be classified. The sample
space of X; is denoted by ;. Furthermore, let C
be a categorical variable whose sample space, Qc,
enumerates every classification hypothesis. Given a
data set D with m instances of the form (X;...,Xn,C), a
classification rule mining algorithm applies inductive
learning methods to identify a collection of logical
expressions of the form FyAF; - - - AF; — H (Filirnkranz
et al.; 2014). Each F; symbolizes an expression
defined on the elements of X, and H stands for a
class assignment C = ¢ such that ¢ € Q¢. This work
assumes that each F; is an expression X; © x; ;, where
Xjx € Qj, © is an relational operator from the set
{$,><,>=}hand1<t<n.

Classification rule mining performance is
primarily assessed by the accuracy of the classifier
constructed on the discovered rules. Additionally,
sometimes it may be convenient to evaluate if
the mined patterns are also valid, novel, useful,
and understandable (Geng and Hamilton; 2006;
McGarry; 2005). This type of investigation is called
interestingness analysis, and it aims at computing
measures that quantify how interesting a pattern
is from an objective or subjective point of view. In
objective interestingness analysis, pattern evaluation
is based on statistical measures that estimate the
strength that the data provides to the pattern.
Subjective analysis, on the other hand, intends to
appraise if the discovered rule meets user beliefs
and objectives, as well as fits to data (Leeuwen
et al.; 2016). Generally, interestingness analysis is a
post-processing step, and hence, the scores are used
to filter or rank the rules.

This work considers two subjective interestingness
measures: the self-information and the
interestingness level. Let R be a rule F;AF, - --AF; — H.
The self-information of R is defined as (Bie; 2011):

I(R) = - log,(P(R)) (1)

Self-information, also known as surprisal, quantifies
how expected a pattern is. A value approximately
equal to zero indicates that R appears highly plausible
considering a probability distribution p, defined over
the sentences in a knowledge base. On the other hand,
the higher I(R) is, the more surprising (unexpected
or improbable) R is.

The level measure, denoted by level(R) is a Bayesian
score that weighs the posterior probability of R by the
posterior probability of a default rule Ry (Egho et al.;
2015; Gay and Boullé; 2013). level(R) is expressed as
follows:

c¢(R)
c(Ro)”

In Expression (2), ¢(R) is the cost of R. It is the
negative logarithm of p(D A R) which yields c¢(R) =
-log, p(DAR) = -log, P(DIR) - log, P(R)). As
P(RID) « p(D A R), c(R) is related to the posterior
probability of R given the data. ¢(Ro) is the cost of a

level(R) =1 - (2)

In this work, it is assumed that a variable can be categorical,
discrete, or continuous.
2A default rule Ry has no antecedents (its form is — H).
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default rule, i.e., c(Ro) = - log,(P(DIRo)) - log,(P(Ro)).

The logic underlying the level score is that, by
exploring the posterior probabilities, this measure
provides information that enables simultaneous

evaluation of the data fitting and prior expectancy.

In addition, it is a normalized score (upper bounded
in 1), which allows comparison of the performance
of R with that of the default rule. Fundamentally, if:

« level(R) < 0, the rule is not interesting because it
has equal or less probability than Ro;

+ level(R) = 1, the rule exactly fits the observations
and prior beliefs;

+ 0 < level(R) < 1, it indicates rules with a certain
degree of interestingness.

The level(-) measure assigns a higher score to a
rule if it is more likely than the default rule.

2.1 Propositional probabilistic logic

Propositional logic represents categorical facts by
means of formulas defined on propositional variables
(Russell and Norvig; 2010). Let true and false be
two constant values, and let V = {vq,...vm} be a
set of propositional variables. The elements of V
are named atomic formulas and can assume one of
the two constant values. The compound formulas
are denoted by S;, S,,and. .. Sm, and are constructed
by connecting an atomic or a compound formula to
another by means of the logical operators A, v, -, and
—. A compound formula is also true or false, and
its value is a function of the truth assignment to
its variables and the semantics of the operators. A
truth assignment, w, is a vector that assigns either true

or false to each propositional variable in a formula.

This work assumes the usual semantics for operators
(Hamilton; 1988).

Probabilistic logic extends propositional logic in
order to allow the treatment of uncertain knowledge
(Hansen and Perron; 2008). Probabilistic logic thus
assigns a probability measure r; to every formula
S; such that the statement P(S;) = r; expresses the
belief of an agent on S;. If some agent’s beliefs are
imprecise, they can be expressed by inequalities such
as P(S;) > m; or P(S;) < m; or by interval probability
statements such as &; < P(S;) < 7;. Here, 7; and 7;

are the lower and upper bounds of r;, respectively.

The conditional statements expressing the belief on
S; given an event §; can be written as P(Silsj) = T js
P(S,lS)) > i jy P(Sllsj) <= i jy OF mj; < P(S,lS}) <
ﬁi,j'

A probabilistic logic knowledge base K is a
collection of probabilistic logic sentences on V. It
can be considered as a pair (S, IT), where S is a set of
propositional sentences {S;...,Sm} associated with
the probability assignments II. IT can be partitioned

In
as II,
( 113
specifying the equality constraints (P(S;) = =;), lower
bounds (P(S;) > w;), and upper bounds (P(S;) < 7;),
respectively.

Let M be the set of all possible truth assignments
wj of V and p; be the probability of w; in the joint

; TI;, I, and II3 are column vectors

distribution associated with V. It holds that (Hooker;
1992):

P(S;) = > pj =ajp. (3)

w:w;eM A m(S;,w;)

Here, m(Si,wj) indicates that wj is a model for S;,
P =(p1...,pan)7T is a vector on the joint probability of

V, and a; denotes a vector whose j element is 1 if S;
is true in w; and zero otherwise. A knowledge base K

is said to be consistent if its sentences are consistent
with the axioms of probability theory.

Equation 3 can be used to build a procedure for
solving the inferences (Hooker; 1992) about the lower
and upper probabilities of a target sentence. Let S be
the target, K be a knowledge base, and P(S) and P(S)
be the lower and upper probabilities of S, respectively.
P(S) and P(S) can be defined as a linear function
a’p, which must be minimized or maximized for
a given number of constraints derived from K. This
work assumes that the knowledge base constraints
can be grouped into three matrices, namely A, . ,v,
Am,wony and Ay, ov. These matrices store the linear

expressions related to the equality, less than or equal,
and greater than or equal constraints, respectively.
It generates the following linear program:

min/max a'p

s.t
All><2N =11,
ALon xp >1Iz
I3 x2N <13

Furthermore, p >0and17p =1.

It must be noted that conditional statements
can also be represented in probabilistic logic. For
example, let P(S;1S,) be the probability of a statement
S; conditional to S,. The expressions P(51S;) =
1,2 P(Sll.Sz) >= 1,2, and P(Sll.Sz) <= 71,2 €Xpress
constraints on that belief. These expressions yield a
number of linear equations/inequalities as follows:
P(S1 A S3) = P(S3) - m,2 =0, P(S4 AS3) — P(S2) - m1,2 >0
P(S1 A S3) = P(S2) - m,2 < 0, respectively.

3 A probabilistic logic approach for
interestingness analysis

This work assumes that the data mining team intends
to construct a knowledge-base, K, to analyze the
interestingness of certain classification rules. This
paper embraces such an approach by exploring
probabilistic logic to represent domain knowledge
and related reasoning procedures to support the
computation of probability-based interestingness
measures. More specifically, let R be the sentence
that symbolizes a classification rule to be analyzed
such that R = F; AF,--- A F; — H. Let it also
be that P(S;)...P(Sm) are the sentences in K. The
propositional components of those sentences denote
facts and associations relative to the terms that
appear in the rule.

After developing such a knowledge base, it is
possible to proceed as in section 2.1 and to state
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a problem of probabilistic logic inference whose
assignments represent the uncertainty about facts
and relationships that the team believes to be relevant
to the calculation of P(R). Equation 4 illustrates the
structure of the inference problem whose solution
gives the lower and upper bounds of P(R).

min /max P(R)

s.t. P(Sl) =m
(4)
P(Sm) = m
P(H)

Example 1 is a simple straightforward application
of the proposed approach.

Example 1: Let X; and X, be two normally distributed variables
such thatX; ~ N(1;0.1)and X, ~ N(4;1)andH = (C = ¢;). Assume
that the prevalence of class ¢; is higher than or equal to 0.8. Given
aruleR = (X; < 0.901AX; < 5 — C = ¢y), it is possible to use the
previous information to construct a probabilistic logic program
for computing P(R) and P(R). Let P(S;) = P(X; < 0.901) = 0.16,
P(S,) = P(X5 < 5 — C=¢) = 0,84. Additionally, let P(Sy) = 0.6
be the marginal probability of H and P(S,|So) = 0.7. The upper
and lower bounds for P(R) are obtained by solving the following
linear program:

min/max aTp
s.t Axp=11
1Tp
p; >0,i=1.8

(5)

T T
where,A:( a a a a,, ) ,p:( P1 pg ) ,
0.65
0.16 . "
and 11 = 0.8 The rows in A are defined as a, =

0
(,0,1,0,1,0,1,0), = (1,1,1,1,0,0,0,0), 3, =(1,1,0,0,1,1,0,0)
and a,, = (0.3,0,-0.7,0,0.3,0,-0.7,0). The objective function
isa=(10,1,1,1,1,1,1).

The example above makes it evident that using the
proposed approach relies on a knowledge engineering
step that aims to acquire knowledge regarding logical
associations among domain variables and to elicit
their respective probabilities. However, knowledge

acquisition is a hard task (Russell and Norvig; 2010).

So, for the sake of simplicity, at first, it is supposed
that the density/distribution p(X}-) is known for each
X)' € X.

Of course, the analysis team may have to consult
several sources of information to get the probability
of each sentence. The probabilities can be encoded
into statistical reports (Barbaros et al.; 2014; van der
Gaag et al.; 2013; Sivia and Skilling; 2006). Its
elicitation may demand meta-analysis of scientific
and technical literature (Garthwaite et al.; 2005)
or knowledge acquisition from experts (O’Hagan
et al.; 2006). All of these strategies couple with the
condition stated above and the linear program in
Equation 5.

If the available data and experts do not support
an exact probabilistic assignment for every sentence,
the analysis team could extend the model by using a
formalism based on the imprecise probability theory
(Levi; 1980; Walley; 1991). Imprecise probabilities
also make possible to deal with situations where the

available information is in the form of comparative
probability statements. For example, let Q;, Q2, and
Q3 be three composed sentences definedon S; ..., S;
such that experts are aware that: (a) Q, is as or more
probable than Q,, and (b) Q3 is as probable or more
probable than Q,. Thus, P(Q;) > P(Q2) and P(Q3) >
P(Q1) can be added to the program.

Similarly, if it is known that k;P(Q:) < k,P(Q5),
kiP(Q1) > kyP(Q3), or P(Q1) = P(Q2) for ki, k> € R,
the expressions kiP(Q;) — k2P(Q2) < 0, kP(Q;) -
k2P(Q2) > 0, or P(Q:) - P(Q2) = 0, respectively, could
be added into the probabilistic program. As before,
such constraints can be rewritten using a vectorial
notation as follows: by > = kib; - kb, ® 0, such that
b; and b, are the row vectors relative to P(Q,) and
P(Q2). Qualitative constraints can be grouped into
a system B x p ® II and further can be appended to
program 5 as follows:

min/max CcTp

. LE jlx po | | (6)

p; > 0,i=1.2%

3.1 Integrating information about

correlation

There can exist a case wherein the correlation data
between X; and X; is handy. It could be useful to
explore that information in order to constrain the
probabilistic relationship between those variables.
Berleant and Jianzhong (2004) and Berleant et al.
(2007) present a procedure to calculate envelopes for
the joint probability distribution of two variables,
X; and X;, given their Pearson correlation. This
section describes the use of that procedure in order
to discover the lower and upper limits, ;,; and 7; ,j,

for a sentence P(S,- A Sj); here, S; and §; indicate that
the values of X; and X; belong to a given interval in
Q; and ;.

Let X; and X; be two continuous attributes, p(X;)
and p(Xj)
between them. Further, let Z and Y be two variables

whose values z; ...zn, and y; ... yn,, respectively, are
obtained with the discretization of X; and X; into n,

and n, bins. The sample spaces of Z and Y are denoted
by Qz and Qy. In addition, let p(Z) and p(Y) be the
marginal distributions of those new variables. The
entries P(z,) and P(y;) can be calculated from p(X;)

and p(Xj) by doing

their densities, and r the correlation

P(z) = P(li,k <Xi< Yi,k)
and
P(y)) = P(lj,l <X < Yj,l) .

Here x; , and X; ; (x;; and x; ;) are the limits of the kth

(I'") bin of Z (V).
Let there be a case where S; and S; appear in the
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antecedent of a classification rule such that S; = (X; >
Xj o) and S; = (X; > x; ). Without loss of generality,
assume that x; , and x; , are the lower bounds of the
intervals which define the bins zq and y;, in Q7 and
Qy. Hence, P(S;) and P(Sj) can be expressed in terms

of p(Z) and p(Y). Marginalization of p(Z,Y) allows to
define the next equations:

P(S) = Sl a S P(Z =g AY = ) = 7
n —n (7)
P(S)) = S SR, PE =2 AY = yy) = 7

Similarly, P(S,- A Sj) can be formulated in terms of
p(Z,Y) as follows:

P(s,- A sj) =S PZ=z AY =y )=mip.  (8)

t.ct
In this expression, m;,; denotes the unknown value
P(S; A Sj), and t is a vector of pairs of indexes such

that for all t. = (k,I) € t, the intervals represented
by z; and y, are consistent with the sentence S; A S;.

Equations 7 and 8 relate the joint p(X,-,X}-) to the
sentences P(S,- A Sj), P(S;), and P(Sj) through P(Z,Y).
As before, those equations can be represented in a
vector form and appended to the Program (6).
However, the usability of those constraints
depends on an estimate or bounds for m;,;. Following
Berleant et al. (2007) and Berleant and Jianzhong
(2004) that bounds can be computed from r and p(X;)

and p(Xj), with equations 9 and 10 :

ny,Ny

> ZIPZ =z AY = Y)) > i + T CACANC)
k1 - —

ny, Ny

> ZWPZ =z AY = yy) < T + Ty [o2o?  (10)

k1

The equations presented by Berleant and
Jianzhong (2004) allow to obtain an outer envelope
for p(Z,Y) given the correlation data along with the
upper and lower bounds for the mean and variance
of X and Y. Moreover, equations 7, 8, 9, and 10

can be grouped in the form of a linear system D.

If appended to program (6), D defines additional
constraints in the optimization program and hence,

can contribute to obtaining tighter intervals for P(R).

In particular, the utilization of correlation data

demands the acquisition of ot ci, sz, o?, and sz.

As proposed by Berleant and Jianzhong (2004) and
Berleant et al. (2007), this work assumes that these
limits are entered by the analysis team or calculated
by interval optimization upon P(Z) and P(Y).

3.2 Evaluating interestingness

The described approach assumes that interestingness
analysis is performed after the data mining step (i.e.,
a post-processing step) and aims at sorting the rules
by surprisal or level of interest scores. The self-
information of a rule R can be obtained by solving
the linear programs described in section 3. They
produces lower and upper probability estimates for
P(R) and a respective interval [I(R),I(R)] for the self-
information of R. Here

I(R) = - log,(P(R)) I(R) = - log;(P(R))  (11)

If P(R) is an interval-valued probability, c(R), the
numerator of level(R) is also an interval [c(R), ¢c(R)]
whose extremes are:

o(R) = -log(P(R)) - log(P(DIR)) (12)
&(R) = ~log(P(R)) - log(P(DIR)) (13)

Again, it induces an interval on the level score
whose limits level(R) and level(R)] are

c(S)
c(So)

After obtaining the interval for level(R), the
interestingness analysis continues by inspecting its
lower and upper bounds. If level(R) is greater than o,
it implies that the rule appears to be interesting given
prior knowledge as well as effective in describing data
even if it was computed on the lower bound for P(S).
On the other hand, level(R) < 0 indicates that in the
light of the background information, the rule is not
interesting even if the analysis considers an upper
bound for P(S). Finally, if 0 e [level(S), level(S)], no
conclusion can be drawn about the robustness of the
rule.

level(R) = 1 - <)

) level(S) =1 -

(14)

4 An example

In this section, the proposed approach is used to carry
out interestingness analysis on three classification
rules learned by the JRIP algorithm (Cohen; 1995)
from the Breast Cancer Wisconsin Data Set (Wolberg.
et al.; 1994). Before the learning step, the data set
was split into two partitions: a training data set with
379 cases and a test data set with 190 cases. JRIP
generated the next three rules:

- rule (a): (concave points n1 > 0.05182) and
(perimeter n3 > 113.9) — Diagnosis=malign;

- rule (b): (concave points n1 > 0.05839) and
(texture n3 > 23.75) — Diagnosis=malign;

- rule (c): (radius n3 > 15.65) and (texture n3
> 28.06) and (smoothness n3 > 0.1094) —
Diagnosis=malign.

The left side of those rules refers to certain features
of a cellular nucleus and the right side shows a class
label. The propositions that constitute the rules were
denoted as: Sp = (Diagnosis=malign), S; = (concave
points n1 > 0.05182), S, = (perimeter n3 > 113.9),
S3 = (radius n3 > 15.65), S, = (texture n3 > 28.06),
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S5 = (radius n3 > 15.65), S¢ = (texture n3 > 28.06),
and S; = (smoothness n3 > 0.1094). The rules (a),
(b), and (c) were associated to the sentences Rq, R},
and R¢ so that Rq = SiANSy — So, Rb = 53 /\84 — So,
and RCES5/\56/\S7 — So.

The following sentences was entered into the
knowledge base: P(S;) > 0.4, P(Sz) > 0.33, P(S3) =
0.34, P(S;) = 0.58, P(S5) = 0.499, P(Sg) = 0.34,
and P(S7) = 0.845. P(Ro) was set to 0.0008, the
prevalence of breast cancer in the US3. The marginal
sentences were followed by the next conditional
probability sentences: P(S;ISo) > 0.51, P(S31S0) >
0.82, P(S4|So) = 0.85, and P(SélSo) = 0.44. The
sentences in KB were elicited from an hypothetical
expert4,

The knowledge base also had a number of
qualitative constraints on the joint probabilities
of Sy and S,: P(Sl /\Sz) > P(SlA—\Sz), P(Sl/\52) >
P(—‘Sl A Sz), P(Sl A Sz) < P(“Sl N —\Sz), P(Sl N —‘Sz) >
P(=S1AS3), P(S11A—S3) < P(=S1A =S;) and
P(—\Sl A Sz) < P(—\Sl A —‘Sz).

The probabilistic logic program for computing
P(Sq) was write as:

min /max P(Rq)
s.t

P(=S; A S3) < P(=S1 A —S5)
P(Sl A Sz) > P(Sl A —|52)
P(Sl A Sz) > P(ﬁsl VAN Sz)
P(Sl A —‘52) > P(—\Sl A Sz)
P(S1 A —S5) > P(=S1 A ~S2)
P(—‘Sl N Sz) > P(—\Sl A —‘Sz)

P(S21S0) > 0.82
P(511S0) > 0.51
P(So) = 0.0008
P(S;) > 0.4
P(S2) > 0.33

(15)

Program 15 was converted into a linear program
and solved with the revised simplex algorithm. It
resulted in P(Rq) € [0.5,0.8] and self-information
I(Rq) € [0.32,1]. The obtained probability interval
was combined with the likelihoods (see Gay and
Boullé (2013)) of Rq to calculate the interestingness
level: level(Rq) € [0.523,0.527]. For R, and
Rc, an analogous procedure resulted in P(Rp) =
[0.66,1], P(Rc) = [0.66,1], I(Rp) € [0,0.59], I(R) €
[0,0.59], level(R,) € [0.511,0.514], and level(R¢) €
[0.384,0.387].

The results show that, given the knowledge
base, rules R, and R are relatively expected (self-
information upper bound less than 1). For the rule
Rq, self-information is not too revealing about its
agreement (expectedness) with the prior knowledge.
The lower bound of the self-information of Rq, 1,
indicates that knowledge base does not allow to say
that is un/expected. The level measure indicates that
the rules Rq, Rj, and R¢ explain data with at a lower
cost than the default rule (scores were greater than
Zero).

Continuing with the example, the data analyst
obtained information that could influence the
expectations with respect to the first rule. A
statistical report states that the mean values of
concave points n1 and perimeter n3 are bounded by
the intervals [75.22,138.8] and [0.05;0.08], and

their variances pertain to the intervals [28,34] and
[0.032,0.044]. The observed correlation was 0.85.
After entering that information in Program 15, the
probability interval of Rq is updated to P(Rq) €
[0.64,0.8]. The updating of self-information and
level produces the intervals I(Rq) € [0.32,0.64] and
level(Rq) = [0.526,0.527]. The new value of I(Rq)
provides evidence that suggests that Rq is in line
with the domain knowledge.

5 Discussion

Probabilistic reasoning has been widely used in the
development of tools for interestingness analysis
(Bie; 2011)(Hahsler and Hornik; 2008)(McGarry;
2005)(Silberschatz and Tuzhilin; 1996). In this
context, the approach presented here bears
similarities to those described by Jaroszewicz et al.
(2009) and Malhas and Aghbari (2009). Those
authors proposed two approaches for subjective
interestingness analysis of association rules. To do
so, they used the formalism of Bayesian networks
to represent the domain knowledge and explored
Bayesian networks inference facilities to implement
procedures that allow to compute interestingness
scores based on entropy.

Apart from addressing classification rules, the
proposed approach differs from the works of
Jaroszewicz et al. (2009) and Malhas and Aghbari
(2009) by its use of probabilistic logic programming
to reason about domain knowledge. It organizes
the knowledge base as a set of sentences defined
on propositions built on the domain objects. The
sentences express local relationships involving
marginal, conditional, and bivariate probabilistic
statements (although it is possible to formulate more
complex statements).

By exploring a probabilistic logic-based schema,
the proposed approach can be used even if
the information elicited from experts, reports,
descriptive statistics, or correlation data is not
sufficient to specify a complete probabilistic model.
As observed by Barbaros et al. (2014), Berleant and
Jianzhong (2004) and Nitti et al. (2016), it is often the
case. Additionally, the inference procedure enables
reasoning with uncertain and incomplete knowledge
(Haenni et al.; 2013) (Kern-Isberner et al.; 2011),
qualitative probabilities (Ognjanovi et al.; 2008), and
imprecise beliefs (Hansen et al.; 2000).

Finally, it must be noted that: (a) probabilistic
logic inference is a time-consuming task (Cozman
and Maua; 2017) (Hansen and Perron; 2008); (b)
depending on the application, rule miners can
generate excessive patterns (Balaji and Rao; 2013);
and (c) it is desirable that interestingness analysis
algorithms run rapidly. It is likely that these
requirements will cause difficulties when applying
the proposed approach in complex domains, mainly
if it is necessary to process on a very large knowledge
base. However, a further scrutiny demonstrates that
rule mining algorithms generally implement a rule
pruning strategy. Therefore, generally, the mined
rules will not have numerous terms and, in this

3See http://www.cdc.gov/mmwr/preview/mmwrhtml/00043942.htnjl1alIer, the related inference problems are likely to

4For practical reasons, all the probabilities were estimated from
a random sample extracted from the original data set.

have few terms and could be solved quickly (Hansen
and Perron; 2008) (Cozman et al.; 2006) (Desrosiers
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and Lubbecke; 2005) (Hansen et al.; 2000).

6 Conclusion

This work presented an approach for subjective
interestingness analysis of classification rules. By
using propositional probabilistic logic as a knowledge
representation scheme, it allows the codification of
the domain knowledge acquired from experts and
information extracted from statistical reports in a
unified way. It also allows the exploration of the
commonly used inference algorithms in order to
compute probability-based interestingness measures.
Another advantage is that it is possible to carry out
valid computations even if the available knowledge
is uncertain or incomplete and the elicited beliefs are
imprecise.

In the near future, we intend to extend the
proposed approach in order to integrate independence
assumptions into the reasoning. We also intend to
employ the described approach for interestingness
analysis of the association rules.
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