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Abstract

A Geodetic Network is a network of point interconnected by direction and/or distance measurements or
by using Global Navigation Satellite System receivers. Such networks are essential for the most geodetic
engineering projects, such as monitoring the position and deformation of man-made structures (bridges,
dams, power plants, tunnels, ports, etc.), to monitor the crustal deformation of the Earth, to implement an
urban and rural cadastre, and others. One of the most important criteria that a geodetic network must meet is
reliability. In this context, the reliability concerns the network’s ability to detect and identify outliers. Here,
we apply the Monte Carlo Method (MMC) to investigate the reliability of a geodetic network. The key of the
MMC is the random number generator. Results for simulated closed levelling network reveal that identifying
an outlier is more difficult than detecting it. In general, considering the simulated network, the relationship
between the outlier detection and identification depends on the level of significance of the outlier statistical
test.

Key words: Computational Simulation; Geodetic Network; Hypothesis Testing; Monte Carlo Method; Outlier
Detection; Quality Control.

Resumo

Uma rede geodésica consiste de pontos devidamente materializados no terreno, cujas coordenadas sdo
estimadas por meio de medidas angulares e de distancias entre os vértices, e/ou por meio de técnicas
de posicionamento por Sistema Global de Navegacdo por Satélite. Estas redes sdo essenciais para os diversos
ramos da Ciéncias e Engenharia, como por exemplo, no monitoramento de estruturas (barragens, pontes,
usinas hidrelétricas, portos, tlineis, portos, etc), no monitoramento da deformacdo da crosta terrestre, na
implanta¢do de um cadastro urbano e/ou rural georreferenciado, entre outros. Um dos critérios que uma
rede geodésicas deve atender é a confiabilidade. Neste contexto, a confiabilidade pode ser entendida como a
capacidade da rede em detectar e identificar outliers a um certo nivel de probabilidade. Aqui, usamos o Método
Monte Carlo (MMC) para investigar a confiabilidade de uma rede geodésica. O elemento chave do MMC é o
gerador de niimeros aleatdrios. Os resultados de uma rede de nivelamento simulada revelam que identificar
um outlier é mais dificil que detecta-lo. De modo geral, a relacdo entre a detec¢do e a identificagdo de um
outlier depende do nivel de significincia do teste estatistico empregado para tratar os outliers.

Palavras-Chave: Método Monte Carlo; Outliers; Redes Geodésicas; Simula¢do Computacional; Teste de
Hipoéteses; Controle de Qualidade.
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1 Introduction

The foundation of the Monte Carlo Method (IMMC)
was Buffon’s needle problem by Georges Louis Leclerc
in the eighteenth century. Later, in the nineteenth
century, William Sealy Gosset, otherwise known as
‘Student’, Fisher’s disciple, discovered the form of the
‘t-distribution’ by a combination of mathematical and
empirical work with random numbers, which is now
known as an early application of the MMC. However,
the MMC became well known in the 1940s, when
Stanistaw Ulam, Nicholas Metropolis, and John von
Neumann worked on the atomic bomb project. That
method was used to solve the problem of diffusion
and absorption of neutrons, which was difficult to

consider in any analytical approaches (Stigler; 2002).

Despite advances in science and technology to
solve highly complex systems, one of the major
obstacles to run a MMC up until the 1980s
was the analysis time and computing resources
(run time and memory). However, the advent
of personal computers with powerful processors
has rendered MMC a particularly attractive and
cost-effective approach to performance analysis of
complex systems. Therefore, the MMC emerged as
a solution to help analysts understand how well a
system performs under a given regime or a set of
parameters.

The key of the MMC is the random number
generator. A random number generator is an
algorithm that generates a deterministic sequence of
numbers, which simulates a sequence of independent
and identically distributed (i.i.d.) numbers chosen
uniformly between 0 and 1. It is random in the sense
that the sequence of numbers generated passes the
statistical tests for randomness. For this reason,
random number generators are typically referred

to as pseudo-random number generators (PRNGS).

PRNGs are part of many machine learning and
data mining techniques. In simulation, a PRNG
is implemented as a computer algorithm in some
programming language, and is made available to the
user via procedure calls or icons (Altiok and Melamed,
2007). A good generator produces numbers that are
not distinguishable from truly random numbers in a
limited computation time. This is, in particular, true
for Mersenne Twister (Matsumoto and Nishimura;
1998), a popular generator with a long period length
of 219937 — 1,

In essence, the MMC replaces random variables
by computer PRNGs, probabilities by relative
frequencies, and expectations by arithmetic means
over large sets of such numbers. A computation
with one set of PRNG is a Monte Carlo experiment
(Lehmann and Scheffler; 2011), also referred to as
the number of Monte Carlo simulations (Altiok and
Melamed; 2007; Gamerman and Lopes; 2006).

It is evident that in the last decades, the use
of MMC for quality control proposals in geodesy
has been increasing. Hekimoglu and Koch (1999)
pioneered the idea of using MMC to geodesy for
evaluating some probabilities as simple ratios from
simulated experiments. Aydin (2012) used 5,000
MMC simulations to investigate the global test
procedure in structure deformation analysis. Yang
et al. (2013) used MMC to analyze the probability
levels of data snooping. Koch (2015) investigated the

non-centrality parameter of the F-distribution by
using 100,000 simulated random variables. Klein
et al. (2017) ran 1000 experiments to verify the
performance of sequential likelihood ratio tests for
multiple outliers. Rofatto et al. (2018a) used MMC
for designing a geodetic network.

In this work, we seek to investigate the reliability
of a geodetic network. One of the frequently used
reliability measures is the Minimal Detectable Bias
- MDB, see e.g. Teunissen (2006) and Teunissen
(1998). The MDB is a diagnostic tool which allows
analyzing the network’s ability to detect outliers.
However, not the MDB, but the Minimal Identifiable
Bias (MIB) should be used as the proper diagnostic
tool for outlier identification purposes (Imparato
et al.; 2018). Unlike the MDB, the MIB is too complex
and even practically impossible to obtain in a closed
form. On the other hand, today we have fast and
powerful computers, large data storage systems and
modern software, which paves the way for the use
of numerical simulation. In this sense, therefore, we
propose the use of the MMC in order to analyze the
reliability of a geodetic network in terms of the MIB.

The rest of the article is organized as follows: first,
we provide a brief explanation on what an outlier is
and explain the difference between outlier detection
and outlier identification. Second, we present a MMC
approach as a computational analysis tool of the
reliability of a geodetic network. Third, a numerical
example of the proposed method is given for a
leveling network. Finally, the concluding remarks
are summarized at the end of this article.

2 Outlier Detection and Identification

The most often quoted definition of outliers is that
of Hawkins (1980): "An outlier is an observation
that deviates so much from other observations as to
arouse suspicions that it was generated by a different
mechanism". In geodesy, the term outlier is defined
based on a statistical hypothesis test for the presence
of gross measurement errors in the observations
(Baarda; 1968). Observations that are rejected by
such an outlier test are called outliers. Therefore,
an observation that is not grossly erroneous but is
rejected by an outlier test can also be called outlier. In
this context, outliers are most often caused by gross
errors and gross errors most often cause outliers. But
on the one hand outliers may rarely be the result
of fully correct measurements, and on the other
hand, mistakes or malfunctioning instruments may
not always lead to large deviations, e.g., a small
correction wrongly applied (Lehmann; 2013).

Since Hawkin’s and most of the other definitions
of outliers restrict themselves to samples (repeated
observations), we follow the Lehmann (2013)
definition: "An outlier is an observation that is so
probably caused by a gross error that it is better not
used or not used as it is".

In this section we provide the elements related to
hypothesis testing for the detection and identification
of a single outlier in linear(ised) models.
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2.1 Outlier Detection and Minimal Detectable
Bias - MDB

Baarda (1968) proposed a procedure based on
hypothesis testing for the detection of a single
outlier in linear(ized) models, which he called data
snooping. Although data snooping was introduced as
a testing procedure for use in geodetic networks,
it is a generally applicable method (Lehmann;
2012). Baarda’s data snooping consists of screening
each individual observation for a possible outlier
(Teunissen; 2006). Baarda’s w-test statistic for his
data snooping is given by a normalised least-squares
residual. This test, which is based on a linear mean-
shift model, can also be derived as a particular case
of the generalised likelihood ratio test.

In principle, Baarda's w-test only makes a
decision between the null Hy and a single alternative
hypothesis H;. The null hypothesis, which is also
called the working hypothesis, corresponds to a
supposedly valid model describing the physical reality
of the observations without the presence of an outlier.
When it is assumed to be ‘true’, this model is used
to estimate the unknown parameters, typically in a
least-squares approach. Thus, the null hypothesis
of the standard Gauss-Markov model in linear or
linearised form is given by equation (1) (Koch; 1999).

Hp : E(y) = Ax, D(y) = Syy (1)
Where:

+ E(.) is the expectation operator;

- y € R" is the vector of measurements;

« A ¢ R™! is the Jacobian matrix (also called design
matrix) of full rank u;

+ x € R" is the unknown parameter vector;

+ D(.) is the dispersion operator; and

+ Zyy € R™" is the known positive definite co-
variance matrix of the measurements.

The redundancy (or freedom degrees) of the
model in (1) is r=n-u, where n is the number of
measurements and u the number of parameters.

Instead of Hy, Baarda (1968) proposed a mean shift
alternative hypothesis H;, also referred to as model
misspecification by Teunissen (2006), as follows:

H; : E(y) = Ax + ¢;V;, D(y) = Sy (2)

In the equation (2), ¢; is a canonical unit vector,
which consists exclusively of elements with values of
0 and 1, where 1 means that an outlier of magnitude
Vv, affects an i-th measurement and 0 otherwise, e.g.

¢;=[00...1 00... 0]. Therefore, the purpose of the
data snooping procedure is to screen each individual
observation for an outlier.

To verify if there are sufficient evidences to reject
or not the null hypothesis, the test for binary case
should be performed as (3):

Accept Ho if lw;l < 1/x2,(r=1,0)=vk  (3)

Where:

(4)

In the equations 3 and 4, |w;l| is the Baarda’s w-
test statistic for the data snooping, which represents
the normalised least-squares residual for each
measurement; X; is the co-variance matrix of the

best linear unbiased estimator of €, under Hy; and
€ is the least-squares residuals vector of Hy which
has this distribution under Hy. The critical value

Vk=4/x3,(r = 1,0) is computed from the central chi-

squared distribution with r = 1 degree of freedom
and type I error, also known as false alarm or level
of significance,ap (note: the index ‘0’ represents
the case of a single alternative hypothesis testing).

The second argument of /x3,(r =1,0) is the non-

centrality parameter \;-;, that in this case is A\;=; = 0.

In the case of accepting in favour of H;, there is an
outlier that causes the expectation of |w;| to become
Ar=1. The non-centrality parameter (\r=;) describes
the discrepancy between H, of equation (1) and H; of
equation (4), and it is given by (5):

et = € B3, B2 (5)

Because Baarda’s w-test in its essence is based
on binary hypothesis testing, in which one decides
between the null hypothesis H, of equation (1) and
a unique alternative hypothesis H; of equation (2),
it may lead to type I error oo and type II error 3o.
The probability of type I error ay is the probability of
rejecting the null hypothesis when it is true, whereas
the type II error o is the probability of failing to
reject the null hypothesis when it is false.

Instead of ap and fy, there is the confidence level
(CL = 1 - ap) and power of the test 7o = 1 - fo,
respectively. The first deals with the probability of
accepting a true null hypothesis; the second, with
the probability of correctly accepting the alternative
hypothesis. The Fig. 1 shows an example of the
relationship between these variables.

Note in (5) that the non-centrality parameter A=,
requires knowledge of the outlier size v;, which in
practice is unknown. On the other hand, );-; can be
computed as a function of a9, 0, and for r = 1. In
such case, the term ¢;' £yy 55 Xy V7 becomes a scalar

and the solution of the quadratic equation (5) is given
by (6) (Teunissen; 2006):

Ar=1(a0,70)

|v;l = MDB; = , | S=L20 JO°_
T -1 -1
¢ Sy g, Ty

(6)

In the equation 6, | V;| is the Minimal Detectable
Bias (MDB;), which is computed for each of the n
alternative hypotheses according to equation (2). For
more details about MDB see e.g. (Rofatto et al.;
2018b).

Although Baarda’s w-test belongs to the class of
generalised likelihood ratio tests and has the property
of being a uniformly most powerful invariant (UMPI)
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Figure 1: A non centrality parameter of \r=; = 3.147 with ao = 0.01(v'k = 2.576) lead to o = 0.8 (or 5o = 0.2)
(Adapted from Rofatto et al. (2018b)).

test when the null hypotheses is tested against a
single alternative (Arnold; 1981; Teunissen; 2006),
this test may not necessarily be a UMPI when more
than one alternative hypothesis are considered, as
is the case of the data snooping procedure (Kargoll;
2007). In the next section, we will briefly review the
multiple alternative hypotheses case and the Minimal
Identifiable Bias (MIB).

2.2 Outlier identification and Minimal

Identifiable Bias

The sizes of type I and II errors are given for a single
alternative hypothesis H; of equation (2). Under this
assumption, the MDB can be obtained as a lower
bound of the outlier that can be successfully detected
(Yang et al.; 2013). In practice, however, we do not
have a single alternative hypothesis during the data
snooping procedure, but we have multiple alternative
hypotheses. Therefore, the data snooping procedure
has an effect when it returns the largest absolute
value among the w;, i.e. (Teunissen; 2006):

w = max |w;l, iefl1,...,n} (7

The concept of multiple testing says that if Hy is
rejected, among all H;’s the one should be accepted,
which would have rejected Ho with the least «. In the
case that all critical values are identical, it is most
simple: H; with the maximum test statistic should
be accepted. In order to check its significance, the
maximum value w should be compared with a critical
value (Vk) (Rofatto et al.; 2018b). In that case, the
data snooping procedure is therefore given as:

Accept Ho if w < vk (8)

Otherwise,

Accept H; if w> vk (9)

According to the inequalities (8) and (9), If none
of the n w-tests gets rejected, then we accept the
null hypothesis Hp.

For the test with multiples alternative hypotheses,
apart from type I and type II errors, there is a
third type of wrong decision when Baarda’s data
snooping is performed. Baarda’s data snooping
can also flag a non-outlying observation while
the ‘true’ outlier remains in the dataset. We are
referring to the type III error (Hawkins; 1980). The
determination of the type III error (here denoted
by x;;) involves a separability analysis between the
alternative hypotheses (Forstner; 1983). Therefore,
we are now interested in the identification of
the correct alternative hypothesis. In this case,
rejection of Hyp does not necessarily imply the correct
identification of a particular alternative hypothesis.

Under multiple alternative hypotheses, the
probabilities of type I errors in the data snooping
procedure for outlier identification, when there are
no outliers, are given by (10):

a0~:/ fodwy...dwn  (10)
l Iwil>IwjIVee, lw;l>vk

In the equation (10), f, is the probability density
function when the expectation of the multivariate
Baarda’s w-test statistics is zero (i.e. un=0).

Based on the assumption that one outlier is in the
ith position of the dataset, the probability of a correct
identification is given by (11):

1- ;i = (dw ... dw (1)
i /|wi|>|wj|v&, oAV AW

Where f,-’ is the probability density function when
the expectation of the multivariate Baarda’s w-test
statistics is not equal to zero (un # 0).

The probability of type II error for multiple testing
is given by (12):
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Big = P{ﬂ?ﬂlwil < vk ’ H;: true] (12)

In that case, the probability of type III error is
given by (13):

n
> PUw;l > [wilv;, lwjl > vk (i %) | H; : true)
i=1

n
=D iy,
i=1

(13)

Testing Ho against Hy, Hy, Hs, ..., Hp is not a trivial
task for identification purposes, because the higher
the dimensionality of the alternative hypotheses, the
more complicated the level probabilities associated
with the data snooping procedure.

Teunissen (2018) recently introduced the concept
of Minimal Identifiable Bias (MIB) as the smallest
outlier that leads to its identification for a given
correct identification rate. The detection and
identification are equal in the case where we only
have the one alternative hypothesis. However, under
n alternative hypotheses (multiple testing), we have
from equations (11), (12) and (13):

n n
Bii = Bio + D D Kij 2h (14)

i=1 i=1

or

n

n
1—5;',':%—2&1‘}‘“7).) ~'~70:1_5ii+zf<0ij(i;/j) (15)
i=1

i=1

The probability of correct detection ~, (power
of the test for a single alternative hypothesis) is
the sum of the probability of correct identification
1 - B;; (selecting a correct alternative hypothesis)
and the probability of misidentification 31, x;; i h

(selecting one of the n-1 other hypotheses). Thus,
we have the follow inequality (Imparato et al.; 2018):

1- 8 <7 (16)

As a consequence of that inequality (16), the MIB
will be larger than MDB, i.e. MIB > MDB.

Because the acceptance region (as well as
the critical region) for the multiple alternative
hypotheses case is analytically intractable, the
computation of MIB should be based on Monte
Carlo integration method (MMC). In this respect,
Imparato et al. (2018); Teunissen (2018) showed
how to compute the MIB. They found that the
larger the size of the outlier and/or more precisely,
the estimated outlier, the higher the probability of
being correctly identified. In addition, increasing
the type I error (i.e. reducing the acceptance region)
leads to higher probabilities of correct identification.

Furthermore, increasing the number of alternative
hypotheses leads to a lower probability of correct
identification.

There is no difference between MDB and MIB in
the case of a single alternative hypothesis. As the
number of alternative hypotheses increases, however,
MDB’s become smaller, whereas MIB’s become larger.

The theory presented so far is for a single round
of data snooping. In practice, however, the data
snooping is applied iteratively in the process of
estimation, identification, and adaptation. First,
the least-squares residual vector is estimated and
Baarda’s w-test statistics are computed by (4). Then,
the detector given by (7) is applied to identify
the most likely outlier. The identified outlier
is then excluded from the dataset and the least-
squares estimation adjustment is restarted without
the rejected observation. Then, Baarda’s w-test
(4) as well as the detector (7) are again computed.
Obviously, if redundancy permits, this procedure is
repeated until no more (possible) outliers can be
identified. This procedure is called iterative data
snooping procedure - IDS (Teunissen; 2006).

In the case of IDS, a reliability measure cannot
be easily computed for quality control purposes.
Consequently, MIB is valid only for the case where
data snooping is run once, and they cannot be used
as a diagnostic tool for IDS. Because an analytical
formula is not easy to compute, a MMC should be
run to obtain the MIB for IDS. The MMC allows
insights into these cases where analytical solutions
are extremely complex to fully understand, are
doubted for one reason or another, or are not available
(Rofatto et al.; 2018b).

Recent studies by Rofatto et al. (2017) showed
how to extract the probability levels associated with
Baarda’s IDS procedure by MMC. Furthermore, they
introduced two new classes of wrong decisions for
IDS, which they called over-identification. One is the
probability of IDS flagging simultaneously the outlier
and good observations. Second is the probability of
IDS flagging only the good observations as outliers
(more than one) while the outlier remains in the
dataset. Obviously, these two new false decisions
could occur during the iterative process of estimation,
identification, and exclusion, as is the case of IDS.

3 MIB based on Monte Carlo Method

The probability levels associated with IDS are not
easy to study using analytical models owing to the
paucity or lack of practically computable solutions
(closed form or numerical). Therefore, identifying an
outlier is still a bottleneck in geodesy. On the other
hand, a MMC method can almost always be run to
generate system histories that yield useful statistical
information on system operation and performance
measures as pointed out by Altiok and Melamed
(2007).

A geodetic network are typically composed by
distances and angles measurements. Generally, the
random errors of good measurements are normally
distributed with expectation zero. In order to have
normal random errors, uniformly distributed random
number sequences (produced by the Mersenne
Twister algorithm, for example) are transformed
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into a normal distribution by using the Box-Muller
transformation (Box and Muller; 1958). Box—Muller
has been used in geodesy for MMC (Lehmann; 2012).

A procedure based on the MMC is applied to
compute the probability levels of IDS as follows
(summarised as a flowchart in Fig. 2).

In the first step, the design matrix A ¢ R"*" and
the co-variance matrix of the measurements Syy €
R™ M are entered; then, the significance level « and
the magnitude intervals of simulated outliers are
defined.

The magnitude intervals of outliers are based on a
standard deviation of measurements (e.g. |30 to 901,
where ¢ is the standard deviation of measurement.
The random error vectors are artificially generated
based on a multivariate normal distribution, because
the assumed stochastic model for random errors is
based on a matrix co-variance of the measurements.
In this work, we use the Mersenne Twister algorithm
to generate a sequence of PRNG and Box-Muller to
transform it into a normal distribution. On the other
hand, the magnitude of the outlier (one outlier at a
time, r = 1) is selected based on magnitude intervals
of the outliers for each Monte Carlo experiment. We
use the continuous uniform distribution to select
the outlier magnitude. The uniform distribution is
a rectangular distribution with constant probability
and implies the fact that each range of values that
has the same length on the distributions support
has equal probability of occurrence. Thus, the total
error e is a combination of the random errors and its
corresponding outlier, which is given as as follows:

e=e+V; (17)

Where: e ¢ R" is the PRNG from normal
distribution, i.e. e ~ A/(0, Zyy), ¢; consists exclusively
of elements with values of 0 and 1, where 1 means
that an outlier of magnitude Vv; affects an i-th
measurement, and 0 otherwise.

After the total error has been generated, the
least-squares residuals vector €, is computed using
equation (18):

€0 =Re, withR=1-AA"WA)'ATW  (18)

In the equation (18), we have R ¢ R™" as
the redundancy matrix, W = 00°Syy € R"™" the
weight matrix of the measurements, where o2 is
the variance scalar factor, and I € R"™*" the identity
matrix (Koch; 1999).

For IDS, the hypothesis of (2) for one outlier
is assumed and the corresponding test statistic is
computed according to (4). Then, the maximum test
statistic value is computed according to (7). After
identifying the observation suspected as the most
likely outlier, it is typically excluded from the model,
and least-squares estimation and data snooping are
applied iteratively until there are no further outliers
identified in the dataset. The procedure should be
performed for m experiments of random error vectors
with each experiment contaminated by an outlier.

If m is the total number of MMC experiments, we
count the number of times that the outlier is correctly

identified (denoted as ng), i.e. max|w;”| > vk for
v = {1,...,m}. Then, the probability of correct
identification (P¢;) can be approximated as follows
(Rofatto et al.; 2018b):

n
Po ~ # (19)

The error probabilities are also approximated as
follow:

Pyp ~ ”% (20)
Pyg ~ HWWE (21)
Pover+ ~ Mover+ (22)
Pover- ~ nov% (23)

Where:

+ nyp is the number of experiments in which the
IDS does not detect the outlier;

« Pyp represents the type II error, also referred to
as missed detection probability;

+ nyg is the number of experiments in which the IDS
procedure flags a non-outlying observation while
the ‘true’ outlier remains in the dataset;

- Pyg represents the type III error, also referred to
as wrong exclusion probability;

* Nover+ is the number of experiments where the IDS
identifies correctly the outlying observation and
others;

+ Pover+ corresponds to the probability of over+;

* nover- represents the number of experiments
where the IDS identifies more than one non-
outlying observation, whereas the ‘true outlier’
remains in the dataset;

+ Pover- corresponds to the probability of over- class;

In practice, as the magnitudes of outliers are
unknown, one can define the probability of the
correct identification in order to find the MIB for a
given application. In the next section, the procedure
based on MMC for the computation of MIB is applied
in a geodetic network. The relationship between
detection by MDB and identification by MIB is also
studied.

4 An example of the Monte Carlo Method

applied to the reliability analysis of
geodetic networks

As an example, the procedure based on MMC
experiments for the computation of probability
levels of IDS is applied to the simulated closed-
levelling network given by Rofatto et al. (2018b),
with one control (fixed) point (A) and three points
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Enter the matrices A and £,

Define the significance level (a)

Define the magnitude interval of outlier (forr =1)

y

Generate asample of randomerrors e~N(0,Z,,)

Add an outlier of magnitude Vi

v

Compute the total error £ = e + ¢iVi

Compute the least-s quares residual vector & = Re

y

Compute Baarda’s w-test wi (vi= 1,...,n)

Identify the maximum test statistic value w = max;c(y _ plwil

No
End of IDS ]

Yes

Remove the observation from the dataset

(Reduce A, X, e, ¢i, and R to n — 1 observations

yy?

Compute and store ng;, Myp, Nyyp, Noper» AN Ngypey

Yes

Ifv={1,.m}l<m

Compute the probabilities Pgp, Pyp. Py Povers and Pyper—

Figure 2: Flowchart of the procedure based on MMC for computation of the probability levels of IDS for each
measurement (Rofatto et al.; 2018b).
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Table 1: MDB and MIB for each significance level o,y and for a power of v = 0.8 g, g00)

Measurement

@0.1% Q1% Q50 X10%
1 MDB 5.30 4L.bo 3.60 3.20
MIB 5.50 4.80 L. 70 6.50
2 MDB 6.60 5.40 4L.bo 4.00
MIB 6.80 6.00 5.80 > 90
MDB 6.60 5.40 L.l 4.00
3 MIB 6.80 6.00 5.80 6.50
MDB 5.30 L.bo 3.60 3.20
4 MIB 5.50 4.8¢c L. 70 > 9.00
MDB 6.60 5.40 4L.bo 4.00
5 MIB 6.80 6.00 5.80 7.00
6 MDB 5.30 4L.bo 3.60 3.20
MIB 5.50 4.8c L. 7o 6.00
D standard deviation ¢) of 8mm, +5.6mm, +5.6mm,
+8mm, 4+5.6mm, and +8mm, respectively. The
magnitude interval of outlier is from the minimum 3¢
to maximum 9o, with an interval rate of 0.10. Here,
positive and negative outliers are considered for each
measurement. Four values were considered for the
significance level: a = 0.001(0.1%), o = 0.01(1%),
o = 0.05(5%) and o = 0.1(10%). We ran 10,000 MMC
4 6 experiments for each measure and for each outlier
magnitude interval, totalling 12,960,000 numerical
c experiments.
Figure 4) shows the power of the test, type II and
Il errors of IDS, and (Figure 5) the over-identification
probabilities, for the case where there is a single
outlier contaminating the measurements. In general,
A E the larger magnitude of the outlier, the higher the
] success rate (i.e. power of the test). It can be noted

Figure 3: Simulated geodetic levelling network

with unknown heights (B, C, and D), totalling four
minimally constrained points (Fig. 3). The simulated
geodetic network has a minimal number of redundant
measurements that lead the identification of a single
outlier.

It is important to mention that geodetic network
presents a minimum configuration to identify at
least one single outlier. As mentioned by Xu (2005)
that: "in order to identify outliers, one also has to
further assume that for each model parameter, there
must, at least, exist two good data that contain the
information on such a parameter". For example,
consider the one unknown height into a leveling
network (one-dimensional - 1D). Two observations
would lead to different solutions and allow the
detection of an inconsistency between them. Three
observations would lead to different solutions and
the identification of one outlying observation, and so
on. Thus, in a general case, the number of possible
identifiable outliers should be equal to the minimal
number of redundant measurements across each and
every point, minus one.

There are n = 6 measurements, u = 3 unknowns,
and n - u = 3 redundant measurements in this
network. Therefore, the geodetic network would be
able to identify one outlier. The measurements 1,
2, 3, 4, 5, and 6 are assumed normally distributed,
uncorrelated, and with nominal precision (a prior

that the type III error is the smallest for a = 0.001
and largest for the type II error. Furthermore, it is
rare for an outlier of small magnitude, say 3o to 4o,
to be identified on that network.

In general, for the simulated network, the smaller
a, the larger is the 3. On the other hand, the smaller «,
the smaller type III error (). For two classes of over-
identification probabilities, in general, the influence
of committing the over-identification+ and over-
identification- is directly related to probability level
a: the larger «, the larger the over-identifications
case. Note that for o = 0.001, the over-identification
cases are practically absent.

Besides that, the MDB were computed for each
measurement and for the four significance level
described above. The relationship between MDB
and MIB is showed in the Tab. 1. The higher the
level of significance «, the higher is the probability
of detecting it, i. e. the smaller the MDB. This
relationship, however, does not work for MIB. The
MIB is slightly larger than the MDB for that geodetic
network, except for the significance level of 10%,
for which the MIB is approximately two times
larger than the MDB. Therefore, due to the low
redundancy of measurements in the network, it is
not recommended to use a significance level of 10%
for outlier identification proposals.

This example shows how to compute for the
IDS case based on the MMC. Obviously, should
be computed for a given probability of correct
identification () and significance level («).
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5 Final Remarks

In this study, we highlighted that Monte Carlo
method (MMC) is a primary tool for deriving
solutions to complex problems. We used the
Monte Carlo method as a key tool for studying
the IDS procedure. We emphasized that, the
method discards the use of real measurements.
Actually, it is assumed that the random errors of
the good measurements are normally distributed,
and therefore can be artificially generated by means
of a PRNG. Thus, in fact, the only needs are the
geometrical network configuration (given by design
matrix); the uncertainty of the observations (which
can be given by nominal standard deviation of the
equipment); and the magnitude intervals of the
outliers.

We also highlighted that in contrast to the well-
defined theories of reliability, the IDS procedure
is a heuristic method, and therefore, there is no
theoretical reliability measure for it. Hence, an
analytical model with tractable solution is unknown,
and therefore, one needs to resort to MMC. Based on
the work by Rofatto et al. (2018b), we showed how
to find the probability levels associated with IDS and
how to obtain its for each observation by means of
the MMLC for a given correct identification probability
and significance level.
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