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Abstract
A Geodetic Network is a network of point interconnected by direction and/or distance measurements orby using Global Navigation Satellite System receivers. Such networks are essential for the most geodeticengineering projects, such as monitoring the position and deformation of man-made structures (bridges,dams, power plants, tunnels, ports, etc.), to monitor the crustal deformation of the Earth, to implement anurban and rural cadastre, and others. One of the most important criteria that a geodetic network must meet isreliability. In this context, the reliability concerns the network’s ability to detect and identify outliers. Here,we apply the Monte Carlo Method (MMC) to investigate the reliability of a geodetic network. The key of theMMC is the random number generator. Results for simulated closed levelling network reveal that identifyingan outlier is more di�cult than detecting it. In general, considering the simulated network, the relationshipbetween the outlier detection and identi�cation depends on the level of signi�cance of the outlier statisticaltest.
Key words: Computational Simulation; Geodetic Network; Hypothesis Testing; Monte Carlo Method; OutlierDetection; Quality Control.
Resumo
Uma rede geodésica consiste de pontos devidamente materializados no terreno, cujas coordenadas sãoestimadas por meio de medidas angulares e de distâncias entre os vértices, e/ou por meio de técnicasde posicionamento por Sistema Global de Navegação por Satélite. Estas redes são essenciais para os diversosramos da Ciências e Engenharia, como por exemplo, no monitoramento de estruturas (barragens, pontes,usinas hidrelétricas, portos, túneis, portos, etc), no monitoramento da deformação da crosta terrestre, naimplantação de um cadastro urbano e/ou rural georreferenciado, entre outros. Um dos critérios que umarede geodésicas deve atender é a con�abilidade. Neste contexto, a con�abilidade pode ser entendida como acapacidade da rede em detectar e identi�car outliers à um certo nível de probabilidade. Aqui, usamos o MétodoMonte Carlo (MMC) para investigar a con�abilidade de uma rede geodésica. O elemento chave do MMC é ogerador de números aleatórios. Os resultados de uma rede de nivelamento simulada revelam que identi�carum outlier é mais difícil que detectá-lo. De modo geral, a relação entre a detecção e a identi�cação de umoutlier depende do nível de signi�cância do teste estatístico empregado para tratar os outliers.
Palavras-Chave: Método Monte Carlo; Outliers; Redes Geodésicas; Simulação Computacional; Teste deHipóteses; Controle de Qualidade.
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1 Introduction
The foundation of the Monte Carlo Method (MMC)was Bu�on’s needle problem by Georges Louis Leclercin the eighteenth century. Later, in the nineteenthcentury, William Sealy Gosset, otherwise known as‘Student’, Fisher’s disciple, discovered the form of the
‘t-distribution’ by a combination of mathematical andempirical work with random numbers, which is nowknown as an early application of the MMC. However,the MMC became well known in the 1940s, whenStanisław Ulam, Nicholas Metropolis, and John vonNeumann worked on the atomic bomb project. Thatmethod was used to solve the problem of di�usionand absorption of neutrons, which was di�cult toconsider in any analytical approaches (Stigler; 2002).Despite advances in science and technology tosolve highly complex systems, one of the majorobstacles to run a MMC up until the 1980swas the analysis time and computing resources(run time and memory). However, the adventof personal computers with powerful processorshas rendered MMC a particularly attractive andcost-e�ective approach to performance analysis ofcomplex systems. Therefore, the MMC emerged asa solution to help analysts understand how well asystem performs under a given regime or a set ofparameters.The key of the MMC is the random numbergenerator. A random number generator is analgorithm that generates a deterministic sequence ofnumbers, which simulates a sequence of independentand identically distributed (i.i.d.) numbers chosenuniformly between 0 and 1. It is random in the sensethat the sequence of numbers generated passes thestatistical tests for randomness. For this reason,random number generators are typically referredto as pseudo-random number generators (PRNGs).PRNGs are part of many machine learning anddata mining techniques. In simulation, a PRNGis implemented as a computer algorithm in someprogramming language, and is made available to theuser via procedure calls or icons (Altiok and Melamed;2007). A good generator produces numbers that arenot distinguishable from truly random numbers in alimited computation time. This is, in particular, truefor Mersenne Twister (Matsumoto and Nishimura;1998), a popular generator with a long period length
of 219937 – 1.In essence, the MMC replaces random variablesby computer PRNGs, probabilities by relativefrequencies, and expectations by arithmetic meansover large sets of such numbers. A computationwith one set of PRNG is a Monte Carlo experiment(Lehmann and Sche�er; 2011), also referred to asthe number of Monte Carlo simulations (Altiok andMelamed; 2007; Gamerman and Lopes; 2006).It is evident that in the last decades, the useof MMC for quality control proposals in geodesyhas been increasing. Hekimoglu and Koch (1999)pioneered the idea of using MMC to geodesy forevaluating some probabilities as simple ratios fromsimulated experiments. Aydin (2012) used 5,000MMC simulations to investigate the global testprocedure in structure deformation analysis. Yanget al. (2013) used MMC to analyze the probabilitylevels of data snooping. Koch (2015) investigated the

non-centrality parameter of the F-distribution byusing 100,000 simulated random variables. Kleinet al. (2017) ran 1000 experiments to verify theperformance of sequential likelihood ratio tests formultiple outliers. Rofatto et al. (2018a) used MMCfor designing a geodetic network.
In this work, we seek to investigate the reliabilityof a geodetic network. One of the frequently usedreliability measures is the Minimal Detectable Bias- MDB, see e.g. Teunissen (2006) and Teunissen(1998). The MDB is a diagnostic tool which allowsanalyzing the network’s ability to detect outliers.However, not the MDB, but the Minimal Identi�ableBias (MIB) should be used as the proper diagnostictool for outlier identi�cation purposes (Imparatoet al.; 2018). Unlike the MDB, the MIB is too complexand even practically impossible to obtain in a closedform. On the other hand, today we have fast andpowerful computers, large data storage systems andmodern software, which paves the way for the useof numerical simulation. In this sense, therefore, wepropose the use of the MMC in order to analyze thereliability of a geodetic network in terms of the MIB.
The rest of the article is organized as follows: �rst,we provide a brief explanation on what an outlier isand explain the di�erence between outlier detectionand outlier identi�cation. Second, we present a MMCapproach as a computational analysis tool of thereliability of a geodetic network. Third, a numericalexample of the proposed method is given for aleveling network. Finally, the concluding remarksare summarized at the end of this article.

2 Outlier Detection and Identi�cation

The most often quoted de�nition of outliers is thatof Hawkins (1980): "An outlier is an observationthat deviates so much from other observations as toarouse suspicions that it was generated by a di�erentmechanism". In geodesy, the term outlier is de�nedbased on a statistical hypothesis test for the presenceof gross measurement errors in the observations(Baarda; 1968). Observations that are rejected bysuch an outlier test are called outliers. Therefore,an observation that is not grossly erroneous but isrejected by an outlier test can also be called outlier. Inthis context, outliers are most often caused by grosserrors and gross errors most often cause outliers. Buton the one hand outliers may rarely be the resultof fully correct measurements, and on the otherhand, mistakes or malfunctioning instruments maynot always lead to large deviations, e.g., a smallcorrection wrongly applied (Lehmann; 2013).
Since Hawkin’s and most of the other de�nitionsof outliers restrict themselves to samples (repeatedobservations), we follow the Lehmann (2013)de�nition: "An outlier is an observation that is soprobably caused by a gross error that it is better notused or not used as it is".
In this section we provide the elements related tohypothesis testing for the detection and identi�cationof a single outlier in linear(ised) models.
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2.1 Outlier Detection and Minimal Detectable
Bias - MDB

Baarda (1968) proposed a procedure based onhypothesis testing for the detection of a singleoutlier in linear(ized) models, which he called data
snooping. Although data snooping was introduced asa testing procedure for use in geodetic networks,it is a generally applicable method (Lehmann;2012). Baarda’s data snooping consists of screeningeach individual observation for a possible outlier(Teunissen; 2006). Baarda’s w-test statistic for his
data snooping is given by a normalised least-squaresresidual. This test, which is based on a linear mean-shift model, can also be derived as a particular caseof the generalised likelihood ratio test.In principle, Baarda’s w-test only makes adecision between the null H0 and a single alternativehypothesis Hi. The null hypothesis, which is alsocalled the working hypothesis, corresponds to asupposedly valid model describing the physical realityof the observations without the presence of an outlier.When it is assumed to be ‘true’, this model is usedto estimate the unknown parameters, typically in aleast-squares approach. Thus, the null hypothesisof the standard Gauss–Markov model in linear orlinearised form is given by equation (1) (Koch; 1999).

H0 : E(y) = Ax,D(y) = Σyy (1)
Where:

• E(.) is the expectation operator;• y ∈ Rn is the vector of measurements;• A ∈ Rn×u is the Jacobian matrix (also called designmatrix) of full rank u;• x ∈ Ru is the unknown parameter vector;• D(.) is the dispersion operator; and• Σyy ∈ Rn×n is the known positive de�nite co-variance matrix of the measurements.
The redundancy (or freedom degrees) of themodel in (1) is r=n-u, where n is the number ofmeasurements and u the number of parameters.Instead of H0, Baarda (1968) proposed a mean shiftalternative hypothesis Hi, also referred to as modelmisspeci�cation by Teunissen (2006), as follows:

Hi : E(y) = Ax + ci∇i,D(y) = Σyy (2)
In the equation (2), ci is a canonical unit vector,which consists exclusively of elements with values of0 and 1, where 1 means that an outlier of magnitude

∇i a�ects an i-th measurement and 0 otherwise, e.g.
ci= [0 0 . . . 1i 0 0 . . . 0]. Therefore, the purpose of thedata snooping procedure is to screen each individualobservation for an outlier.To verify if there are su�cient evidences to rejector not the null hypothesis, the test for binary caseshould be performed as (3):

Accept H0 if |wi| ≤
√
χ2α0(r = 1, 0) = √k (3)

Where:

|wi| = c>i Σ
–1
yy ê0

c>i Σ
–1
yyΣê0Σ

–1
yy

(4)

In the equations 3 and 4, |wi| is the Baarda’s w-test statistic for the data snooping, which representsthe normalised least-squares residual for eachmeasurement; Σê0 is the co-variance matrix of thebest linear unbiased estimator of ê0 under H0; and
ê0 is the least-squares residuals vector of H0 whichhas this distribution under H0. The critical value√
k=√χ2α0(r = 1, 0) is computed from the central chi-
squared distribution with r = 1 degree of freedomand type I error, also known as false alarm or levelof signi�cance,α0 (note: the index ‘0’ representsthe case of a single alternative hypothesis testing).
The second argument of √χ2α0(r = 1, 0) is the non-centrality parameter λr=1, that in this case is λr=1 = 0.In the case of accepting in favour of Hi, there is anoutlier that causes the expectation of |wi| to become
λr=1. The non-centrality parameter (λr=1) describesthe discrepancy between H0 of equation (1) and Hi ofequation (4), and it is given by (5):

λr=1 = c>i Σ–1yyΣê0Σ–1yy∇2
i (5)

Because Baarda’s w-test in its essence is basedon binary hypothesis testing, in which one decidesbetween the null hypothesis H0 of equation (1) anda unique alternative hypothesis Hi of equation (2),it may lead to type I error α0 and type II error β0.The probability of type I error α0 is the probability ofrejecting the null hypothesis when it is true, whereasthe type II error β0 is the probability of failing toreject the null hypothesis when it is false.Instead of α0 and β0, there is the con�dence level(CL = 1 – α0) and power of the test γ0 = 1 – β0,respectively. The �rst deals with the probability ofaccepting a true null hypothesis; the second, withthe probability of correctly accepting the alternativehypothesis. The Fig. 1 shows an example of therelationship between these variables.Note in (5) that the non-centrality parameter λr=1requires knowledge of the outlier size ∇i, which inpractice is unknown. On the other hand, λr=1 can becomputed as a function of α0, γ0, and for r = 1. Insuch case, the term c>i Σ–1yyΣê0Σ–1yy∇2
i becomes a scalarand the solution of the quadratic equation (5) is givenby (6) (Teunissen; 2006):

|∇i| = MDBi =
√

λr=1(α0, γ0)
c>i Σ

–1
yyΣê0Σ

–1
yyci

(6)

In the equation 6, |∇i| is the Minimal DetectableBias (MDBi), which is computed for each of the nalternative hypotheses according to equation (2). Formore details about MDB see e.g. (Rofatto et al.;2018b).Although Baarda’s w-test belongs to the class ofgeneralised likelihood ratio tests and has the propertyof being a uniformly most powerful invariant (UMPI)
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Figure 1: A non centrality parameter of λr=1 = 3.147 with α0 = 0.01(√k = 2.576) lead to γ0 = 0.8 (or β0 = 0.2)(Adapted from Rofatto et al. (2018b)).

test when the null hypotheses is tested against asingle alternative (Arnold; 1981; Teunissen; 2006),this test may not necessarily be a UMPI when morethan one alternative hypothesis are considered, asis the case of the data snooping procedure (Kargoll;2007). In the next section, we will brie�y review themultiple alternative hypotheses case and the MinimalIdenti�able Bias (MIB).
2.2 Outlier identi�cation and Minimal

Identi�able Bias

The sizes of type I and II errors are given for a singlealternative hypothesis Hi of equation (2). Under thisassumption, the MDB can be obtained as a lowerbound of the outlier that can be successfully detected(Yang et al.; 2013). In practice, however, we do nothave a single alternative hypothesis during the datasnooping procedure, but we have multiple alternativehypotheses. Therefore, the data snooping procedurehas an e�ect when it returns the largest absolutevalue among the wi, i.e. (Teunissen; 2006):

w = max |wi|, i ∈ {1, . . . ,n} (7)
The concept of multiple testing says that if H0 isrejected, among all Hi’s the one should be accepted,which would have rejected H0 with the least α. In thecase that all critical values are identical, it is mostsimple: Hi with the maximum test statistic shouldbe accepted. In order to check its signi�cance, themaximum value w should be compared with a critical

value (√k) (Rofatto et al.; 2018b). In that case, thedata snooping procedure is therefore given as:

Accept H0 if w ≤
√
k (8)

Otherwise,

Accept Hi if w > √k (9)

According to the inequalities (8) and (9), If noneof the n w-tests gets rejected, then we accept thenull hypothesis H0.For the test with multiples alternative hypotheses,apart from type I and type II errors, there is athird type of wrong decision when Baarda’s datasnooping is performed. Baarda’s data snoopingcan also �ag a non-outlying observation whilethe ‘true’ outlier remains in the dataset. We arereferring to the type III error (Hawkins; 1980). Thedetermination of the type III error (here denotedby κij) involves a separability analysis between thealternative hypotheses (Förstner; 1983). Therefore,we are now interested in the identi�cation ofthe correct alternative hypothesis. In this case,rejection of H0 does not necessarily imply the correctidenti�cation of a particular alternative hypothesis.
Under multiple alternative hypotheses, theprobabilities of type I errors in the data snoopingprocedure for outlier identi�cation, when there areno outliers, are given by (10):

α0i =
∫
|wi|>|wj|∀æ, |wi|>√k

f
′

0dw1 . . .dwn (10)

In the equation (10), f ′0 is the probability densityfunction when the expectation of the multivariateBaarda’s w-test statistics is zero (i.e. µn=0).Based on the assumption that one outlier is in the
ith position of the dataset, the probability of a correctidenti�cation is given by (11):

1 – βii =
∫
|wi|>|wj|∀æ, |wi|>√k

f
′

i dw1 . . .dwn (11)

Where f ′i is the probability density function whenthe expectation of the multivariate Baarda’s w-teststatistics is not equal to zero (µn 6= 0).The probability of type II error for multiple testingis given by (12):
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βi0 = P
[⋂n

i=1|wi| ≤
√
k
∣∣∣ Hi : true

]
(12)

In that case, the probability of type III error isgiven by (13):
n∑
i=1
P[|wj| > |wi|∀i, |wj| > √k (i 6= j) | Hi : true]

= n∑
i=1

κij (i 6= j)

(13)

Testing H0 against H1, H2, H3, . . ., Hn is not a trivialtask for identi�cation purposes, because the higherthe dimensionality of the alternative hypotheses, themore complicated the level probabilities associatedwith the data snooping procedure.Teunissen (2018) recently introduced the conceptof Minimal Identi�able Bias (MIB) as the smallestoutlier that leads to its identi�cation for a givencorrect identi�cation rate. The detection andidenti�cation are equal in the case where we onlyhave the one alternative hypothesis. However, under
n alternative hypotheses (multiple testing), we havefrom equations (11), (12) and (13):

βii = βi0 +
n∑
i=1

n∑
i=1

κij (i 6= j) (14)

or

1 – βii = γ0 –
n∑
i=1

κij (i 6= j) ∴ γ0 = 1– βii +
n∑
i=1

κij (i 6= j) (15)

The probability of correct detection γ0 (powerof the test for a single alternative hypothesis) isthe sum of the probability of correct identi�cation1 – βii (selecting a correct alternative hypothesis)and the probability of misidenti�cation∑ni=1 κij (i 6= j)(selecting one of the n-1 other hypotheses). Thus,we have the follow inequality (Imparato et al.; 2018):

1 – βii ≤ γ0 (16)
As a consequence of that inequality (16), the MIBwill be larger than MDB, i.e. MIB ≥ MDB.Because the acceptance region (as well asthe critical region) for the multiple alternativehypotheses case is analytically intractable, thecomputation of MIB should be based on MonteCarlo integration method (MMC). In this respect,Imparato et al. (2018); Teunissen (2018) showedhow to compute the MIB. They found that thelarger the size of the outlier and/or more precisely,the estimated outlier, the higher the probability ofbeing correctly identi�ed. In addition, increasingthe type I error (i.e. reducing the acceptance region)leads to higher probabilities of correct identi�cation.

Furthermore, increasing the number of alternativehypotheses leads to a lower probability of correctidenti�cation.
There is no di�erence between MDB and MIB inthe case of a single alternative hypothesis. As thenumber of alternative hypotheses increases, however,

MDB’s become smaller, whereas MIB’s become larger.
The theory presented so far is for a single roundof data snooping. In practice, however, the datasnooping is applied iteratively in the process ofestimation, identi�cation, and adaptation. First,the least-squares residual vector is estimated andBaarda’s w-test statistics are computed by (4). Then,the detector given by (7) is applied to identifythe most likely outlier. The identi�ed outlieris then excluded from the dataset and the least-squares estimation adjustment is restarted withoutthe rejected observation. Then, Baarda’s w-test(4) as well as the detector (7) are again computed.Obviously, if redundancy permits, this procedure isrepeated until no more (possible) outliers can beidenti�ed. This procedure is called iterative datasnooping procedure - IDS (Teunissen; 2006).
In the case of IDS, a reliability measure cannotbe easily computed for quality control purposes.Consequently, MIB is valid only for the case wheredata snooping is run once, and they cannot be usedas a diagnostic tool for IDS. Because an analyticalformula is not easy to compute, a MMC should berun to obtain the MIB for IDS. The MMC allowsinsights into these cases where analytical solutionsare extremely complex to fully understand, aredoubted for one reason or another, or are not available(Rofatto et al.; 2018b).
Recent studies by Rofatto et al. (2017) showedhow to extract the probability levels associated withBaarda’s IDS procedure by MMC. Furthermore, theyintroduced two new classes of wrong decisions for

IDS, which they called over-identi�cation. One is theprobability of IDS �agging simultaneously the outlierand good observations. Second is the probability of
IDS �agging only the good observations as outliers(more than one) while the outlier remains in thedataset. Obviously, these two new false decisionscould occur during the iterative process of estimation,identi�cation, and exclusion, as is the case of IDS.

3 MIB based on Monte Carlo Method
The probability levels associated with IDS are noteasy to study using analytical models owing to thepaucity or lack of practically computable solutions(closed form or numerical). Therefore, identifying anoutlier is still a bottleneck in geodesy. On the otherhand, a MMC method can almost always be run togenerate system histories that yield useful statisticalinformation on system operation and performancemeasures as pointed out by Altiok and Melamed(2007).
A geodetic network are typically composed bydistances and angles measurements. Generally, therandom errors of good measurements are normallydistributed with expectation zero. In order to havenormal random errors, uniformly distributed randomnumber sequences (produced by the MersenneTwister algorithm, for example) are transformed
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into a normal distribution by using the Box–Mullertransformation (Box and Muller; 1958). Box–Mullerhas been used in geodesy for MMC (Lehmann; 2012).A procedure based on the MMC is applied tocompute the probability levels of IDS as follows(summarised as a �owchart in Fig. 2).
In the �rst step, the design matrix A ∈ Rn×u andthe co-variance matrix of the measurements Σyy ∈

Rn×n are entered; then, the signi�cance level α andthe magnitude intervals of simulated outliers arede�ned.The magnitude intervals of outliers are based on astandard deviation of measurements (e.g. |3σ to 9σ|,where σ is the standard deviation of measurement.The random error vectors are arti�cially generatedbased on a multivariate normal distribution, becausethe assumed stochastic model for random errors isbased on a matrix co-variance of the measurements.In this work, we use the Mersenne Twister algorithmto generate a sequence of PRNG and Box–Muller totransform it into a normal distribution. On the otherhand, the magnitude of the outlier (one outlier at atime, r = 1) is selected based on magnitude intervalsof the outliers for each Monte Carlo experiment. Weuse the continuous uniform distribution to selectthe outlier magnitude. The uniform distribution isa rectangular distribution with constant probabilityand implies the fact that each range of values thathas the same length on the distributions supporthas equal probability of occurrence. Thus, the totalerror ε is a combination of the random errors and itscorresponding outlier, which is given as as follows:

ε = e + ci∇i (17)
Where: e ∈ Rn is the PRNG from normaldistribution, i.e. e ∼ N (0, Σyy), ci consists exclusivelyof elements with values of 0 and 1, where 1 meansthat an outlier of magnitude ∇i a�ects an i-thmeasurement, and 0 otherwise.After the total error has been generated, theleast-squares residuals vector ê0 is computed usingequation (18):

ê0 = Rε, with R = I – A(A>WA)–1A>W (18)
In the equation (18), we have R ∈ Rn×n asthe redundancy matrix, W = σ02Σ–1yy ∈ Rn×n the

weight matrix of the measurements, where σ02 isthe variance scalar factor, and I ∈ Rn×n the identitymatrix (Koch; 1999).For IDS, the hypothesis of (2) for one outlieris assumed and the corresponding test statistic iscomputed according to (4). Then, the maximum teststatistic value is computed according to (7). Afteridentifying the observation suspected as the mostlikely outlier, it is typically excluded from the model,and least-squares estimation and data snooping areapplied iteratively until there are no further outliersidenti�ed in the dataset. The procedure should beperformed form experiments of random error vectorswith each experiment contaminated by an outlier.If m is the total number of MMC experiments, wecount the number of times that the outlier is correctly

identi�ed (denoted as nCI), i.e. max |wiν| > √k for
ν = {1, . . . ,m}. Then, the probability of correctidenti�cation (PCI) can be approximated as follows(Rofatto et al.; 2018b):

PCI ≈
nCI
m (19)

The error probabilities are also approximated asfollow:

PMD ≈
nMD
m (20)

PWE ≈
nWE
m (21)

Pover+ ≈ nover+m (22)

Pover– ≈ nover–m (23)
Where:

• nMD is the number of experiments in which the
IDS does not detect the outlier;• PMD represents the type II error, also referred toas missed detection probability;• nWE is the number of experiments in which the IDSprocedure �ags a non-outlying observation whilethe ‘true’ outlier remains in the dataset;• PWE represents the type III error, also referred toas wrong exclusion probability;• nover+ is the number of experiments where the IDSidenti�es correctly the outlying observation andothers;• Pover+ corresponds to the probability of over+;• nover– represents the number of experimentswhere the IDS identi�es more than one non-outlying observation, whereas the ‘true outlier’remains in the dataset;• Pover– corresponds to the probability of over– class;
In practice, as the magnitudes of outliers areunknown, one can de�ne the probability of thecorrect identi�cation in order to �nd the MIB for agiven application. In the next section, the procedurebased on MMC for the computation of MIB is appliedin a geodetic network. The relationship betweendetection by MDB and identi�cation by MIB is alsostudied.

4 An example of the Monte Carlo Method
applied to the reliability analysis of
geodetic networks

As an example, the procedure based on MMCexperiments for the computation of probabilitylevels of IDS is applied to the simulated closed-levelling network given by Rofatto et al. (2018b),with one control (�xed) point (A) and three points
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Figure 2: Flowchart of the procedure based on MMC for computation of the probability levels of IDS for eachmeasurement (Rofatto et al.; 2018b).
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Table 1: MDB and MIB for each signi�cance level α(%) and for a power of γ = 0.8(80.0%)
Measurement α0.1% α1% α5% α10%

1 MDB 5.3σ 4.4σ 3.6σ 3.2σMIB 5.5σ 4.8σ 4.7σ 6.5σ
2 MDB 6.6σ 5.4σ 4.4σ 4.0σMIB 6.8σ 6.0σ 5.8σ > 9σ
3 MDB 6.6σ 5.4σ 4.4σ 4.0σMIB 6.8σ 6.0σ 5.8σ 6.5σ
4 MDB 5.3σ 4.4σ 3.6σ 3.2σMIB 5.5σ 4.8σ 4.7σ > 9.0σ
5 MDB 6.6σ 5.4σ 4.4σ 4.0σMIB 6.8σ 6.0σ 5.8σ 7.0σ
6 MDB 5.3σ 4.4σ 3.6σ 3.2σMIB 5.5σ 4.8σ 4.7σ 6.0σ

Figure 3: Simulated geodetic levelling network

with unknown heights (B, C, and D), totalling fourminimally constrained points (Fig. 3). The simulatedgeodetic network has aminimal number of redundantmeasurements that lead the identi�cation of a singleoutlier.
It is important to mention that geodetic networkpresents a minimum con�guration to identify atleast one single outlier. As mentioned by Xu (2005)that: "in order to identify outliers, one also has tofurther assume that for each model parameter, theremust, at least, exist two good data that contain theinformation on such a parameter". For example,consider the one unknown height into a levelingnetwork (one-dimensional - 1D). Two observationswould lead to di�erent solutions and allow thedetection of an inconsistency between them. Threeobservations would lead to di�erent solutions andthe identi�cation of one outlying observation, and soon. Thus, in a general case, the number of possibleidenti�able outliers should be equal to the minimalnumber of redundant measurements across each andevery point, minus one.
There are n = 6 measurements, u = 3 unknowns,and n – u = 3 redundant measurements in thisnetwork. Therefore, the geodetic network would beable to identify one outlier. The measurements 1,2, 3, 4, 5, and 6 are assumed normally distributed,uncorrelated, and with nominal precision (a prior

standard deviation σ) of ±8mm, ±5.6mm, ±5.6mm,
±8mm, ±5.6mm, and ±8mm, respectively. Themagnitude interval of outlier is from the minimum 3σto maximum 9σ, with an interval rate of 0.1σ. Here,positive and negative outliers are considered for eachmeasurement. Four values were considered for thesigni�cance level: α = 0.001(0.1%), α = 0.01(1%),
α = 0.05(5%) and α = 0.1(10%). We ran 10,000 MMCexperiments for each measure and for each outliermagnitude interval, totalling 12,960,000 numericalexperiments.
Figure 4) shows the power of the test, type II andIII errors of IDS, and (Figure 5) the over-identi�cationprobabilities, for the case where there is a singleoutlier contaminating the measurements. In general,the larger magnitude of the outlier, the higher thesuccess rate (i.e. power of the test). It can be notedthat the type III error is the smallest for α = 0.001and largest for the type II error. Furthermore, it israre for an outlier of small magnitude, say 3σ to 4σ,to be identi�ed on that network.
In general, for the simulated network, the smaller

α, the larger is the β. On the other hand, the smaller α,the smaller type III error (κ). For two classes of over-identi�cation probabilities, in general, the in�uenceof committing the over-identi�cation+ and over-identi�cation– is directly related to probability level
α: the larger α, the larger the over-identi�cationscase. Note that for α = 0.001, the over-identi�cationcases are practically absent.
Besides that, the MDB were computed for eachmeasurement and for the four signi�cance leveldescribed above. The relationship between MDBand MIB is showed in the Tab. 1. The higher thelevel of signi�cance α, the higher is the probabilityof detecting it, i. e. the smaller the MDB. Thisrelationship, however, does not work for MIB. TheMIB is slightly larger than the MDB for that geodeticnetwork, except for the signi�cance level of 10%,for which the MIB is approximately two timeslarger than the MDB. Therefore, due to the lowredundancy of measurements in the network, it isnot recommended to use a signi�cance level of 10%for outlier identi�cation proposals.
This example shows how to compute for theIDS case based on the MMC. Obviously, shouldbe computed for a given probability of correctidenti�cation (γ) and signi�cance level (α).
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Figure 4: Power of the test, type II and type III error for each signi�cance level α.
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Figure 5: Over-identi�cation probabilities for each signi�cance level α
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5 Final Remarks
In this study, we highlighted that Monte Carlomethod (MMC) is a primary tool for derivingsolutions to complex problems. We used theMonte Carlo method as a key tool for studyingthe IDS procedure. We emphasized that, themethod discards the use of real measurements.Actually, it is assumed that the random errors ofthe good measurements are normally distributed,and therefore can be arti�cially generated by meansof a PRNG. Thus, in fact, the only needs are thegeometrical network con�guration (given by designmatrix); the uncertainty of the observations (whichcan be given by nominal standard deviation of theequipment); and the magnitude intervals of theoutliers.We also highlighted that in contrast to the well-de�ned theories of reliability, the IDS procedureis a heuristic method, and therefore, there is notheoretical reliability measure for it. Hence, ananalytical model with tractable solution is unknown,and therefore, one needs to resort to MMC. Based onthe work by Rofatto et al. (2018b), we showed howto �nd the probability levels associated with IDS andhow to obtain its for each observation by means ofthe MMC for a given correct identi�cation probabilityand signi�cance level.
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