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Abstract

Unconstrained numerical problems are common in solving practical applications that, due to its nature, are
usually devised by several design variables, narrowing the kind of technique or algorithm that can deal with them.
An interesting way of tackling this kind of issue is to use an evolutionary algorithm named Genetic Algorithm. In
this context, this work is a tutorial on using real-coded genetic algorithms for solving unconstrained numerical
optimization problems. We present the theory and the implementation in R language. Five benchmarks functions
(Rosenbrock, Griewank, Ackley, Schwefel, and Alpine) are used as a study case. Further, four different crossover
operators (simple, arithmetical, non-uniform arithmetical, and Linear), two selection mechanisms (roulette
wheel and tournament), and two mutation operators (uniform and non-uniform) are shown. Results indicate
that non-uniform mutation and tournament selection tend to present better outcomes.

Keywords: Benchmark Functions; Genetic Algorithms; Numerical Optimization; Real-Coded; Unconstrained.

Resumo

Problemas de otimizacdo sem restri¢des sdo comuns em aplica¢des praticas e sendo estes formados normalmente
por vdrias variaveis, limita-se o tipo de técnica ou algoritmo que pode ser utilizado para sua solucdo. Uma forma
interessante de lidar com esse tipo de problema é através do uso de um algoritmo evolutivo chamado Algoritmo
Genético. Nesse contexto, este trabalho é um tutorial sobre algoritmos genéticos em cédigo real para solucionar
problemas de otimizacdo sem restrigdes, apresentando tanto a teoria quanto sua implementacao em linguagem R.
Cinco fungdes de benchmark ((Rosenbrock, Griewank, Ackley, Schwefel, and Alpine) sdo utilizadas como estudo de
caso. Além disso, sdo também usados quatro diferentes operadores de cruzamento (simples, aritmético, aritmético
nao uniforme e linear), dois mecanismos de selecao (roleta e torneio) e dois operadores de muta¢do (uniforme e
ndo uniforme). Os resultados indicam que a mutacdo ndo uniforme e o operador torneio de muta¢dao apresentam
os melhores resultados.

Palavras-Chave: Funcdes de Benchmark; Algoritmos Genéticos; Otimizacdo Numérica; Codigo Real; Sem
Restricoes.

1 Introduction tool in decision science and the analysis of physical
systems (Nocedal and Wright, 2006). In other words,
it is a tool for solving practical problems devised by
many variables and no constraints, also known as
unconstrained problems. Its primary purpose is to

Numerical Optimization problems exist widely in
different areas of science research and engineering
practice (Zang et al., 2018), i.e., it is an essential
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discover the best values for design variables and/or
objective functions that are not known precisely (Muc
and Sanetra, 2017). In general, unconstrained problems
can be classified into two categories: test functions
and real-world problems. Test functions are artificial
problems and can be used to evaluate the behavior of
an algorithm in sometimes diverse and challenging
situations (Jamil and Yang, 2013). On the other hand,
real-world problems originate from different fields
such as physics, chemistry, engineering, mathematics,
etc. In this work, we will focus on five test functions,
also known as benchmark functions. A set of real-
world problems can be seen in Averick et al. (1992).
Those functions have been used to test different kind
of algorithms as we can see in Borges et al. (2018),
Maucec and Brest (2018), Karaboga and Kaya (2018),
Cavalca and Fernandes (2018), etc.

There are several optimization techniques for
solving unconstrained numerical problems. The
traditional ones aim to discover the optimum solutions
of continuous and differentiable functions, i.e., they
use analytical methods and calculus to locate the best
solutions. In fact, the classical methods are fast;
however, they are limited because they can only deal
with unconstrained function and a small number of
variables. Moreover, practical applications usually deal
with non-differentiable functions. Thus, evolutionary
algorithms (Eiben and Smith, 2007) appear as a
viable solution for optimizing constrained and non-
differentiable functions.

In this context, the idea of this work is to
present a tutorial on Genetic Algorithms in Numerical
Optimization using benchmark function with a study
case in R language (RStudio Team, 2018). Then a
question can appear: why not using an R package? The
main reason is that when we use a package, such as
genalg (Willighagen and Ballings, 2015), we are limited
to those features offered by the package. Particularly in
the genalg package, the user has no control on genetic
operators whatsoever. The only control provided by the
referred package is mostly concerning parameters, i.e.,
the user cannot choose different crossover or mutation
operators. Regarding the GA package (Scrucca, 2017),
which is a more generic and flexible package includes
other evolutionary algorithms such as Differential
Evolution, present an advantage of using different
genetic operators and parallel algorithms. However,
having the code made from scratch, the user can quickly
implement different operators or even create hybrid
algorithms that are fitter to the problem being solved.

Thus, this tutorial is divided as follows: Section 2
presents some basics on numerical optimization and
benchmark functions; Section 3 shows the theory of
real-coded genetic algorithms and their operators;
Section 4 explains important concepts in R that are
essential to understand the code; Section 5 implements
all GA concepts in R; Section 6 illustrates how the GA
works in five benchmark functions; finally, Section 7
draws the conclusions of this tutorial.

2 Numerical and

Benchmarks

Optimization

The unconstrained optimization aims to minimize
or maximize an objective function that depends on
real variables, with no restrictions at all on the
values of these variables (Nocedal and Wright, 2006).
Mathematically, it is min or maxf(x), where x ¢ R" and
n > 1. Thus, a solution xx is a global solution of a
minimization problem if f(xx) < f(x) V x; analogously,
it is a solution of a maximization problem if f(xx) >
f(x) v x.

Regardless of the kind of optimization, if we want
to use a GA for this kind of problem, it is mandatory
n > 1. Actually, n regards to the dimensionality of
the search space, which is an important factor in the
problem complexity, since the higher the dimension,
the higher the probability of getting trapped in a
local optima (Cortes et al., 2012). A study of the
dimensionality problem and its features was carried
out by Friedman (1994).

Two other properties are essential in numerical
optimization: separability and multi-modality. The
separability concerns the possibility of dividing f(x) into
two or more functions. Consequently, non-separable
functions are harder to optimize then separable ones.
Multi-modality regards to the existence of many local
optima. In this context, non-separable and multi-
modal functions are harder to solve than the other
ones.

We will test our code using four unconstrained
continuous numerical benchmarks functions:
Rosenbrock (1960), Griewank (1981), Ackley (1987),
Schwefel (1981), and Rahnamyan et al. (2007) as
presented in Table 1.

Table 2 presents the benchmarks properties
(Separability, Modality, and Differentiability), the
domain, and the global optima. The domain is a
constraint for each gene, i.e., the lower and upper
bounds. The optimal solution is the minimum value
that the benchmark can reach. The separability
represents if the function is separable, i.e., if the
function can be split into two or more functions. In
other words, a function of p variables is called separable,
if it can be written as a sum of p functions of just
one variable (Boyer et al., 2005). Finally, the modality
regards to the existence of many local optima. In this
context, non-separable and multi-modal functions are
harder to solve than the other ones.

3 Real-Coded Genetic Algorithms

Fig. 1 shows the pseudo code for a GA. Firstly, the GA
creates a random population, then evaluates it to select
individuals undergoing genetic operators. Usually,
methods such as the roulette wheel or tournament,
for example, select the new population. Afterward,
the crossover exchanges information (genes) between
two parents based on the probability of mutation
(pc), creating one or more offspring. Then, the
mutation operator can change zero or more genes on
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Table 1: Unconstrained Benchmark Functions

Name Function

Rosenbrock A() = 31, [100(Xi,, = X2)* + (x; - 1)*]

Griewank fZ(X) = 4()1% Z?:] Xiz - H?zl COS(%)

Ackley f3(x) = —zoexp(—o.z\/% S x?) - exp(+ 3oL, cos(27x;)) + 20 + exp(1)

Schwefel fi(x) =L, —X;sin \/m

Alpine f5(x) = ST, Tx;sin(x;) + 0.1x;]

Table 2: Benchmark functions properties

Name Domain Min Separable | Multimodal | Differentiable
Rosenbrock [-5,10] 0 No No Yes
Griewank [-600,600] 0 No Yes Yes
Ackley [-32,32] 0 No Yes Yes
Schwefel [-500,500] | -12569.49 Yes Yes Yes
Alpine [0,10] 0 No Yes No

each chromosome. Finally, if elitism is TRUE, the
algorithm guarantees that the best individual remains
in the population. Following subsections detail how to
represent individuals, also called chromosomes, and
how these operators work.

Pop = Initialize Population(LB,UB)
Fit = Evaluate(Pop)
While !(Stop Criterion)
Pop’ = Selection(Pop)
Pop’ = Crossover(Pop’)
Pop’ = Mutation(Pop’)
Fit’ = Evaluate(Pop’)
If (Elitism == FALSE)
Pop = Pop’
10 Else
1 If (best(fit) > best(fit’))
12 Swap()
13 End-1f
14 End-If
15 End-While

O OO WN =

Figure 1: The Genetic Algorithm Pseudo Code

3.1 Representation

There are two main representations of genetic
algorithms: binary-coded and real-coded. In
the binary-code representation, an individual or
chromosome, which is a possible solution to the
problem being solved, is represented by a vector of
{0,1}. On the other hand, as expected, real numbers

devise a real-coded chromosome as presented in Fig. 2.

Because we are dealing whit real numbers, each gene
requires a domain constraint represented by a lower
and an upper bound, respectively (LB and UB). In other
words, assuming that ; is a gene within a chromosome
i, we have LB; < ¢; < UB;.

| 35 | 10 | 24 | 72 | 80 | 125 | 78 |

Figure 2: Example of a Real Chromosome

3.2 Crossover

The main purpose of the crossover operator is
to exchange information (genes) between parents,
creating one or more offspring. In real-coded
representation, there are several ways of doing that.
A thorough list of operators can be seen in Herrera
et al. (1998). In this tutorial, we describe four of
them: simple, arithmetical, non-uniform arithmetical,
and Linear. In the simple crossover, a cut point
is randomly chosen, then the offspring are formed,
making a combination of parts. Considering that
pi=d,c,...,chand p2 = Z,¢c3,...,c2 are two parents,
and j is the cutting point, the first offspring is
01 = c,.. .,¢2, and the second one is 0, =
cf,.“cjz,c}ﬂ,...,ch.

Egs. (1) and (2) illustrates how to perform the

arithmetical crossover for two descendants, in which r
is a random number in the range [0, 1].

1 2
.Cj,C}'+1,..

2
oj =rx¢+1-r) (1)

07 =(1-r)xc +(r)c (2)
The difference between arithmetical and non-
uniform arithmetical crossover relies on the fact that
the variable r is not random anymore but computed
by dividing the current generation t by the maximum
number of generations (Tmax) as shown in Eq. (3).

t

Tmax

(3)

r =

Finally, the Linear Crossover creates three offspring
as presented in Egs. (4) to (6). The first one is similar
to the arithmetical crossover with r = 0.5. The other
ones explore the outer limits of ¢; and ¢}, respectively.

0] = 0.5%Cf +0.5%C

(4)
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07 =1.5%¢ - 0.5} (5)

0} = —0.5x%C +1.5%¢] (6)

It is essential to observe that not every individual
from the selected population undergoes mutation. Only
those whose probability is less than the probability of
crossover, pc, participate in the operation.

3.3 Mutation

The mutation operator changes genes from a
chromosome. Concerning real-coded individuals, the
uniform mutation, also known as a random mutation,
randomly replaces a gene inside its domain based on a
parameter known as probability of mutation pm.

Another well-known mutation in the literature is the
non-uniform mutation operator, in which the selected
genes are mutated according to Egs. (7) and (8), in
which s; is the gene being mutated, t represents the
current generation, LB and UB are the lower and the
upper bound of the variable i, respectively, r is a random
number between 0 and 1, T is the maximal number of
generations, and b is the degree of dependency (usually
b =5).

" _ Si+A(t,UBi—Si), ifo=o0
5i = {Si - A(t, Si— LBi), ifo=1 (7)
Alt,y) =y x (1= 101) 8)

The non-uniform mutation is one of the operators
responsible for the fine-tuning capabilities of the
system (Michalewicz, 1999).

4 Important Concepts in R

The purpose of this chapter is not to provide a thorough
vision of R programming but gives concepts that are
essential to understanding the code in the next sections.
Details of how to program in R can be found in Lander
(2015) and Crawley (2012) books.

The first essential concept is the notion of indirect
indexing. Programming languages, such as C and Java,
access elements in a matrix using a specific index
devised by row and column. If the programmer wants
to access a set of elements, it is necessary to use
a for loop and work on them element-by-element.
In R, the indexes of a matrix can also be a matrix.
For example, suppose that we have to replace some
elements obeys a condition by a random number in a
matrix Mat, Fig. 3 illustrates how to perform this task.
The which() function returns a matrix containing two
columns (row and column) of the elements that satisfy

the condition. Then, a vector operation (line 2) replaces
the corresponding elements. We have to note that the
number of elements created by the runif() function has
to be the same number of rows in idx, therefore, we
have to use the nrow() function. Fig. 4 illustrates how
the operation works.

1 idx <- which(condition, arr.ind = TRUE)
2 Mat[idx] <- runif(nrow(idx))

Figure 3: Indirect indexing example

The other concept we have to know how to deal with
is the logical indexing. The concept is quite similar
to the indirect indexing; however, in this case, all
indexes are logical values. Let us suppose that we have
a matrix Mat of integer numbers randomly created as
presented in Fig. 5. Then we want to replace all values
less than 10 with the lower bound 10. The instruction
idx < —Mat < 10 returns a matrix in which all positions
obeys the condition are true. Afterward, all values are
replaced. This operation makes things easier when the
domain is the same for all genes, which is common
in numerical optimization. On the other hand, if the
domain is different for each gene, then we have to use
the instruction which(idx, arr.ind = TRUE) to locate the
positions that fulfill the condition.

The third important concept we have to tackle is
called group operations or group functions. This kind
of instruction, as the name suggests, executes in a
group of data. Moreover, we preferably execute group
operations instead of for loops because the first one
is usually faster than loops. The first set of group
functions is: sum(), mean(), and sd(). These functions
receive a vector or a matrix as a parameter and return
the sum, the mean, and the standard deviation of
the entrance data, respectively. If the parameter is
a matrix and ones wants to perform row or column
based operations, we have to use, for example, the
functions rowSum() or colSum().

On the other hand, if we want to perform row or
column-based operations using a pre-existed function,
we have to use the function apply(), which the syntax
is apply(obj, margin, function, parameters), where obj is a
data structure, usually, a matrix, margin sets the kind of
operation (1 - row-based, 2 - column based), function
is an implemented function, and parameters are the
parameters required by the implemented function. An
indispensable extension of this function is the lapply()
function in which obj has to be a list. Next, we present
some general remarks about R that are important to
the correct implementation of GAs.

Remarks

- Vectors and matrices start with 1 instead of 0;

+ Operations between matrices are element-wise. If
a traditional multiplication matrix is required, we
have to use the symbol %*%;

- Avoid for loops;
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Mat

idx

1 |05 1 2 3

Condition: Replaces all zeros

Idx <- which(Mat == 0, arrind = TRUE) 3

4 - nrow(idx) returns 4
- runif(4) returns, for example, E> 4 7 g8 |06 | 3

4| (0.5,03,06,0.1)

Figure 4: Indirect indexing

1 Mat <- matrix(sample(25), nrow = 5)
2 idx <- Mat < 10
Mat[idx] <- 10

w

Figure 5: Logical indexing example

- The "not“ operator, represented by “!”, also works
with logical indexing;

- If indexes are numbers, Mat[!idx] for instance, does
not work. Instead, we have to use Mat[-idx];

+ Lists are data structures formed by different kind of
objects. A list can contain, for example, a matrix, a
vector, a function, and an integer value at the same
time in the same data structure;

+ If you do not name the elements of a list, you have
to use double brackets [[element]] to access them,;

- The symbol # precedes a comment;

+ If you receive a warning after the execution of
your code, probably you are assigning vectors with
different sizes. It is essential to correct all warning
to avoid wrong results.

5 GA Implementation
5.1 Initializing

Let us start implementing each function separately in
the following order: initialize population, selection,
crossover, and mutation. Thus, Fig. 6 shows the code
that initializes the population, in which each gene is
within the domain [Ib,ub]. Then, we evaluate the
population using the apply() function that receives
the objective function as a parameter. Finally, the
initialization function returns a list containing the
first population and the fitness for each chromosome,
corresponding to lines 1 and 2 from Fig. 1.

1 init.population <- function(func,lb,ub,pop.size,dimension){
2 pop <- matrix(runif(pop.size*dimension) ,nrow=pop.size)

3 fitness <- rep(NA,pop.size)

4 pop <- 1b + pop*(ub-1lb)

5 fitness <- apply(pop,1,func)

6 return(list(pop = pop, fit = fitness))

7 %

Figure 6: Function for initializing population

5.2 Selection

The next step is the selection method that chooses
which chromosomes will try to participate in the
crossover stage. Two selection mechanisms, roulette
wheel and tournament, are presented in Figs. 7 and 8,
respectively.

1 roulette.wheel <- function(pop, fitness, pop.size, dim){
2 new.pop <- matrix(rep(NA, pop.size*dim), nrow=pop.size)
3 mnew.fit <- rep(NA,pop.size)
4 F <- sum(fitness)
5 p <- -fitness/F
6 q <- cumsum(p)
7 1 <- runif(pop.size)
8 for (i in 1:pop.size){
9 if (r[i] < ql1]){
10 new.popli,] <- pop[1,]
}

12 else{
13 idx <- which.min(q < r[i])
14 new.pop[i,] <- poplidx,]

}

16 1}
17 return(mew.pop)

Figure 7: Roulette wheel function

In the roulette function, the variables new.pop and
new.fit will contain the new population and its fitness,
respectively. Then q will contain the cumulative
probability matrix that is the wheel. Afterward, the
vector r will contain one random number in the domain
[0,1] for each chromosome, and the for loop will
check which one will form the temporary population
undergoes the crossover process.

1 tournament <- function(pop, fitness ,pop.size,dim,t.size = 4){
2 new.pop <- matrix(rep(NA,pop.size*dim), nrow=pop.size)
for(i in 1:pop.size){

idx <- sample(1:pop.size, t.size)

pos <- which.min(fitness[idx])

}new.pop[i ,] <- poplidx[pos],]

return(new.pop)

O 00 T W

Figure 8: Tournament function

In the selection by tournament method, the variable
t.size is responsible for setting the tournament size, i.e.,
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how many individuals will participate in each round.
Then the winner of each round is chosen to undergo
mutation. It is a simple but effective form of selection.

5.3 Crossover

The next step in the GA algorithm is to apply the
crossover operation on the new population. Fig. 9
shows the code for this task. The main parameters
of this function are the selected population and pc
(probability of crossover). Why is pc so important?
Because not every single chromosome will undergo
crossover, only those ones which a random number r
is less than pc, i.e., r < pc. Lines 2 to 5 perform this
selection. Then the for loop produces two offspring
using the cross point as a divisor, returning only the
population because the evaluation is necessary only
after mutation.

arith.crossover <- function(lb,ub,pop.size,dimension,
pop, pc)i
new.pop <- matrix(rep(NA,pop.size*dimension),
nrow = pop.size)
r <- runif(pop.size)
idx <- (r < pc)
pop <- poplidx,]
tmp.pop. size <- nrow(pop)
for(i in seq(1,pop.size, by = 2)){
1 = runif(1)
indivs <- sample(1:tmp.pop.size,2,replace = FALSE)
new.pop[i,] <- I*pop(indivs([1],] + (1-1)*pop[indivs[2],]
new.pop[i+1,] <- (1-1)*pop[indivs([1],] + l*pop[indivs[2],]

return(pop = new.pop)

NS
QUM PAWNROOVEOEIAVIHAWN =

1

Figure 10: Arithmetical crossover

1 simple.cross <- function(lb,ub,pop.size,dimension,pop,pc){
2 new.pop <- matrix(rep(NA,pop.size*dimension),

3 nrow = pop.size)

4 1 <- runif(pop.size)

5 idx <- (r < pc)

6 pop <- poplidx,]

7 tmp.pop.size <- nrow(pop)

8 for(i in seq(1,pop.size, by = 2)){

9 indivs <- sample(1:tmp.pop.size,2,replace = FALSE)
10 cross.point <- sample(2:(dimension-1),1)

1 offspringt  <- c(popl[indivs[1],1:cross.point],

12 poplindivs[2],(cross.point+1):dimension])

13 offspring2 <- c(poplindivs[2],1:cross.point],

14 pop[indivs[1],(cross.point+1):dimension])

15 mnew.pop[i,] <- offspringi

16  new.pop[i+1,] <- offspring2

18 return(pop = new.pop)
}

1 n.arith.crossover <- function(lb,ub,pop.size ,dimension

2 pop,pc,max. it , t){

3  new.pop <- matrix(rep(NA,pop.size*dimension),

4 nrow = pop.size)

5 1 <- runif(pop.size)

6 idx <- (r < pc)

7 pop <- poplidx,]

8 tmp.pop.size <- nrow(pop)

9 1 = t/max.it

10 for(i in seq(1,pop.size, by = 2)){

1 r = runif(1)

12 indivs <- sample(1:tmp.pop.size,2,replace = FALSE)

13 new.pop[i,] <- l*pop[indivs[1],] + (1-1)*pop[indivs([2],]

14  new.pop[i+1,] <- (1-1)*pop[indivs[1],] + l*pop[indivs(2],]
}

16 return(pop = new.pop)

Figure 9: Simple crossover

The arithmetical crossover, also known as uniform
arithmetical crossover, is an interesting crossover
method because it explores the search space between
two genes and does not create invalid individuals, i.e.,
all genes are within their domain. Fig. 10 presents the
implementation in which we can see that [ controls
how further from a gene the crossover goes, i.e., closer
to the gene of the first or second parent.

The arithmetical crossover, also known as a uniform
arithmetical crossover, is an interesting crossover
method because it explores the search space between
two genes and does not create invalid individuals, i.e.,
all genes are within their domain. Fig. 10 presents the
implementation in which we can see that [ controls
how further from a gene the crossover goes, i.e., closer
to the gene of the first or second parent.

Finally, linear crossover generates three individuals
as previously explained; however, only the best two will
form the next population. Also, because of the Egs. (5)
and (6), we have to control the boundaries of the new
individuals. Thus, the instruction nrow(idx) > 0 means
that a gene is out of its limits. After correcting the
chromosome boundaries, the concern is how to select
the best two chromosomes elegantly. The answer is

Figure 11: Non-Uniform Arithmetical crossover

to sort out together the new fitness and the respective
chromosomes, choosing then the two smaller ones.

1 linear.crossover <- function(lb,ub,pop.size,dimension,

2 pop, pc, func){

3 new.indiv <- matrix(rep(NA, 3*dimension), nrow = 3)

4 new.fit <- rep(NA,3)

5 mnew.pop <- matrix(rep(NA,pop.size*dimension), nrow =

6 pop.size)

7 1 <- runif(pop.size)

8 idx <- (r < pc)

9 pop <- poplidx,]

10 tmp.pop.size <- nrow(pop)

11 for(i in seq(1,pop.size, by = 2)){

12 indivs <- sample(1:tmp.pop.size,2,replace = FALSE)

13 new.indiv([1,] <- o.5*pop[indivs[1],] + 0.5%pop[indivs[2],]
14 new.indiv[2,] <- 1.5%pop[indivs[1],] - o.5*pop[indivs([2],]
15 new.indiv[3,] <- -o0.5%pop[indivs[1],] + 1.5%pop[indivs[2],]
16 idx <- which(new.indiv < 1b, arr.ind = TRUE)

17 if (nrow(idx) > o)

18 new. indiv[idx] <- Ib[idx[,2]]

19 idx <- which(new.indiv > ub, arr.ind = TRUE)

RO if (nrow(idx) > 0)

21 new. indiv([idx] <- ub[idx[,2]]

22  new.fit <- apply(new.indiv,1,func)

23  tmp <- cbind(new. fit ,new.indiv)

R4  tmp <- tmp[order(tmp[,1]),]

25 new.pop[i,] <- tmp(1,2:(dimension+1)]

p6  mnew.pop[i+1,] <- tmp[2,2:(dimension+1)]

p8 return(pop = new.pop)
}

Figure 12: Linear crossover
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5.4 Mutation

Fig. 13 shows the listing for the mutation operator that
receives two essential parameters: the new population
and the probability of mutation pm. Then, line 4
identifies which genes, row, and column, will undergo
mutation in the whole population. Finally, line 7
evaluates the new population.

operators, we only need to use the respective functions
replacing the symbol “#”. Moreover, if someone wants
to test everything at once, it is trivial to add control
structures to execute all operators.

1 uniform.mut <- function(func,lb,ub,pop,pop.size,
2 dimension ,pm){

3 r <- matrix(runif(pop.size*dimension),nrow=pop.size)
4 fitness <- rep(NA,pop.size)

5 idx <- which(r < pm,arr.ind=TRUE)

6 poplidx] <- 1b[idx[,2]] + runif(nrow(idx)) *
7 (ublidx[,2]] - Ib[idx[,2]])

8 fitness <- apply(pop,1,func)

9

0

return(list (pop = pop, fit = fitness))
}

Figure 13: Uniform mutation

The next mutation operator is the non-uniform
mutation, which is based on the number of iterations
or generations since as iterations go on the mutation
size goes down. Fig. 14 shows the mutation operator
in R, in which we have to expand the boundaries using
the variables tmp.Ib and tmp.ub, because these vectors
can be larger than the domain vectors [b and ub. Then
we use the logical indexing to decide which equation
to use (¢ = 0 or ¢ =1 from Eq. (7)) in order to perform
the mutation.

1 n.uniform.mutation <- function(func,lb,ub,pop,pop.size,dimension,
2 pmymax. it ,it){

3 1 <- matrix(runif(pop.size*dimension),nrow=pop. size)

4 fitness <- rep(NA,pop.size)

5 idx <- which(r < pm,arr.ind=TRUE)

6 values <- pop[idx]

7 r <- sample(c(0,1), nrow(idx), replace = TRUE)

8 tmp.idx <- r == 0

9 tmp.lb <- 1b[idx[,2]]

10 tmp.ub <- ublidx[,2]]

11 values[tmp.idx] <- values[tmp.idx] + delta(it ,max.it,

12 tmp.ub[tmp. idx]-values[tmp.idx])
13 values[!tmp.idx] <- values[!tmp.idx] - delta(it,max.it,
14 values[ !tmp. idx]-tmp. 1b[ !tmp.idx])

15 pop[idx] <- values

16 fitness <- apply(pop,1,func)

17 return(list(pop = pop, fit = fitness))
}

20 delta <- function(it,
21 r <- runif(length(y))
22 y<-y* (1 - rA((1-it/max.it)Ab))
23 return(y)

}

max. it ,y, b=5){

GA <- function(func, lb, ub, pop.size =
dimension = 10, max. it =
pc = 0.6, pm = 0.005, sel,
elitism = TRUE){

tmp.pop <- matrix(rep(NA,pop.size*dimension),

nrow = pop.size)

init <- init.population(func,lb,ub,pop.size,dimension)

pop <- init$pop

fitness <- init$fit

for(it in 1:max.it){

tmp.pop <- selection(pop,pop.size,dimension,fitness,

10,
100
t.size = 4,

sel,t.size)
tmp.pop <- simple.crossover(lb, ub, pop.size, dimension,
tmp.pop, pc)
#tmp pop <- arith.crossover(lb, ub, pop.size, dimension,
tmp. pop, pc)

#tmp pop <- n.arith.crossover(lb, ub, pop.size, dimension,
tmp.pop, pc, max. 1t,i)
#tmp pop <- linear.crossover(lb, ub, pop.size, dimension,
tmp. pop, pc, func)
#tmp pop <- uniform.mutation(func,lb,ub,tmp.pop,pop.size,
# dlmensmn pm)
tmp.pop <- n.uniform.mutation(func,lb, ub ,tmp. pop,pop. size,
dlmensmn,pm,max it,it)
tmp. fitness <- tmp.popS$fit
tmp. pop <- tmp.popSpop
if (elitism == TRUE){
best.tmp <- min(tmp. fitness)
best.old <- min(fitness)

S S N T
OO ONARRNVNROVEIOANARURNRE OOV IO VHAWN -

30 if (best.old < best.tmp){

31 idx <- which.min(fitness)

32 idx.worst <- which.max(tmp. fitness)

33 tmp. pop[idx.worst,] <- pop[idx,]

B4 tmp. fitness[idx.worst] <- fitness[idx]
35

B6 1}

37 fitness <- tmp. fitness
38 }POP <- tmp.pop

Lo return(list(pop = pop, fit = fitness))
1

Figure 14: Non-Uniform mutation

5.5 Main Function and Elitism

Now, it is time to get all functions together as presented
in Fig. 15. As we can see, the code is pretty similar to the
algorithm presented previously in Fig. 1. To test other

Figure 15: Main function

Regarding the elitism, having the final population,
we have to identify whether the elitism is set or not.
If so, we have to check in which population the best
individual is. In case the best individual is in the
new population, the current one replaces the old one.
Otherwise, we swap the worst individual from the
current population by the best one from the previous
one; thus, we guarantee that the best individual will
always be in the population.

5.6 Benchmarks

Those benchmarks previously presented in Section 2 are
implemented in Fig. 16. It is important to remark that
we did not use any loop, as suggested in Section 4. Even
though some R packages implement these functions,
the main idea is to program everything from scratch.

6 Experiments

All experiments have been conducted in a Windows
10, 64 bits, 16 GB of RAM, 500 GB of SSD, R version
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Rosenbrock <- function(x){

x1 <- x[1:length(x)-1]

x2 <- x[2:length(x)]

return(sum(100 * (x1 — x2A2)A2 + (x1-1)A2))

Griewank <- function(x){
i <- sqrt(1:length(x))
return(1/4000 * sum(xA2)-prod(cos(x)/i))

O O AN WN =

12 Ackley <- function(x){

13 n <- length(x)

14 return(-20 * exp(-0.2 * sqrt(sum(xA2/n)))

15 - exp(1/n*sum(cos(2*pi*x))) + 20 + exp(1))
1

18 Schwefel <- function(x){
19 return(sum(xA2-10*cos(2*pi*x)+10))

22 Alpine <- function(x){
23 return(sum(abs(x*sin(x)+0.1*x)))

Figure 16: Benchmark functions

3.3.3 (Project, 2018), and RStudio 1.0.136 (RStudio
Team, 2018). The GA configuration is: pc = 0.6,
pm = 0.01, populatiosize = 50, and dimension = 30. In the
case of tournament selection, we use four individuals
in the competition. Further, we set a seed for random
numbers; thus, the result of the experiment will be
the same in all computers in terms of the quality of
solutions. Furthermore, all experiments have been
performed using 30 trials; then, we are able to present
the best result, the mean, and the standard deviation.

Fig. 17 presents the main script used for testing the
code. Firstly, we load all functions presented previously
utilizing the instruction source(). The file ‘crossover.R’,
for instance, contains all crossover operators. The
other R files follow the same principle. Either, we
automatized the test only for the benchmark functions,
which are stored in a vector of lists. Changing the code
for executing all operators or adding new operators will
be a trivial task.

Tables 3 to 6 show the results for 1000 iterations
with uniform mutation and roulette wheel, uniform
mutation and tournament, non-uniform mutation
and roulette wheel, and non-uniform mutation and
tournament, respectively. As we can see, the
best combinations for those parameters is the non-
uniform mutation and tournament selection, possibly
because of the fine-tuning capability of the non-
uniform mutation. On the other hand, Schwefel
function presented the best combination using uniform
mutation and tournament. Other combinations using
arithmetical crossover presented good results in
Griewank, Ackley, and Alpine functions; however, they
are not the best ones.

7 Conclusions

This tutorial presented how to implement Genetic
Algorithms to solve unconstrained numerical
optimization problems in R from scratch. As we
could see, the code is concise and straightforward,

source('GA.R’)
source(’init.population.R’)
source(’crossover.R’)
source ( ’mutation.R’)
source(’selection.R’)
source( 'Benchmarks.R’)

set.seed(123)

it <- 1000

10 pop.size <- 50

11 funcs <- c(Rosenbrock,Griewank,Ackley,Schwefel, Alpine)
12 bounds <- matrix(rep(NA,2*length(funcs)), nrow = 2)

13 res <- matrix(rep(NA,3*length(funcs)),nrow = 3)

14 bounds[1,] <- ¢(-5,-600,-32,-500,0)

15 bounds(2,] <- ¢(10,600,32,500,10)

16 dim <- 30

17 execs <- 30

OO AN WN =

19 result <- vector("list",execs)
R0 best <- rep(NA,execs)

22 cat("Running...\n")
23 for(f in 1:length(funcs)){
R4 1b <- rep(bounds[1,f],dim)
25 ub <- rep(bounds(2,f],dim)
p6 for(i in 1:execs){

27 result[[i]] <- GA(funcs[[f]], 1b, ub, pop.size = pop.size,
R8 dim = dim,
R9 max. it = it, pc = 0.6, pm = 0.01, sel = 1, elitism = TRUE)

0.6,
30 best[i] <- min(result[[i]]$fit)
1
32 res[1,f] <- min(best)
3 res[2,f] <- mean(best)
B4 res[3,f] <- sd(best)
1

B6 View(res)

Figure 17: Testing

allowing anyone to implement new GA variations or
even hybrid algorithms. We explore the ability to
perform vectorial operations and group functions in
R. Either, we implemented the GA code to be easily
extended to functions in which all genes have different
domains in the same individual. Implementing the
code using a single scalar to control the boundaries of
each gene could simplify parts of the code by using
logical indexing; however, extend it for multiples
domains in the same chromosome would be much
harder.

We expect that this tutorial is an incentive to
those who want to explore the numerical optimization
capability of GAs and/or to those who crave to enter
in the R language world. In this context, we also
incentive all interested people to implement different
operators or apply the presented code to different kind
of numerical problems, especially those involving the
optimization of real-world problems.
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