
Revista Brasileira de Computação Aplicada, November, 2019
DOI: 10.5335/rbca.v11i3.9047Vol. 11, No 3, pp. 1–11Homepage: seer.upf.br/index.php/rbca/index

TUTOR I A L

Unconstrained numerical optimization using real-coded
genetic algorithms: a study case using benchmark functions

in R from Scratch
Omar Andres Carmona Cortes ,1 and Josenildo Costa da Silva1

1Departamento de Computação (DComp) – Instituto Federal do Maranhão (IFMA)
*omar@ifma.edu.br; jcsilva@ifma.edu.br

Received: 2019-01-17. Revised: 2019-06-14. Accepted: 2019-08-14.

Abstract
Unconstrained numerical problems are common in solving practical applications that, due to its nature, areusually devised by several design variables, narrowing the kind of technique or algorithm that can deal with them.An interesting way of tackling this kind of issue is to use an evolutionary algorithm named Genetic Algorithm. Inthis context, this work is a tutorial on using real-coded genetic algorithms for solving unconstrained numericaloptimization problems. We present the theory and the implementation in R language. Five benchmarks functions(Rosenbrock, Griewank, Ackley, Schwefel, and Alpine) are used as a study case. Further, four di�erent crossoveroperators (simple, arithmetical, non-uniform arithmetical, and Linear), two selection mechanisms (roulettewheel and tournament), and two mutation operators (uniform and non-uniform) are shown. Results indicatethat non-uniform mutation and tournament selection tend to present better outcomes.
Keywords: Benchmark Functions; Genetic Algorithms; Numerical Optimization; Real-Coded; Unconstrained.
Resumo
Problemas de otimização sem restrições são comuns em aplicações práticas e sendo estes formados normalmentepor várias variáveis, limita-se o tipo de técnica ou algoritmo que pode ser utilizado para sua solução. Uma formainteressante de lidar com esse tipo de problema é através do uso de um algoritmo evolutivo chamado AlgoritmoGenético. Nesse contexto, este trabalho é um tutorial sobre algoritmos genéticos em código real para solucionarproblemas de otimização sem restrições, apresentando tanto a teoria quanto sua implementação em linguagem R.Cinco funções de benchmark ((Rosenbrock, Griewank, Ackley, Schwefel, and Alpine) são utilizadas como estudo decaso. Além disso, são também usados quatro diferentes operadores de cruzamento (simples, aritmético, aritméticonão uniforme e linear), dois mecanismos de seleção (roleta e torneio) e dois operadores de mutação (uniforme enão uniforme). Os resultados indicam que a mutação não uniforme e o operador torneio de mutação apresentamos melhores resultados.
Palavras-Chave: Funções de Benchmark; Algoritmos Genéticos; Otimização Numérica; Código Real; SemRestrições.

1 Introduction
Numerical Optimization problems exist widely indi�erent areas of science research and engineeringpractice (Zang et al., 2018), i.e., it is an essential

tool in decision science and the analysis of physicalsystems (Nocedal and Wright, 2006). In other words,it is a tool for solving practical problems devised bymany variables and no constraints, also known asunconstrained problems. Its primary purpose is to

http://dx.doi.org/10.5335/rbca.v11i3.9047
http://seer.upf.br/index.php/rbca/index
https://orcid.org/0000-0002-5805-2490

2 O.A.C. Cortes, J.C. Silva | Revista Brasileira de Computação Aplicada (2019), v.11, n.3, pp.1–11

discover the best values for design variables and/orobjective functions that are not known precisely (Mucand Sanetra, 2017). In general, unconstrained problemscan be classi�ed into two categories: test functionsand real-world problems. Test functions are arti�cialproblems and can be used to evaluate the behavior ofan algorithm in sometimes diverse and challengingsituations (Jamil and Yang, 2013). On the other hand,real-world problems originate from di�erent �eldssuch as physics, chemistry, engineering, mathematics,etc. In this work, we will focus on �ve test functions,also known as benchmark functions. A set of real-world problems can be seen in Averick et al. (1992).Those functions have been used to test di�erent kindof algorithms as we can see in Borges et al. (2018),Maucec and Brest (2018), Karaboğa and Kaya (2018),Cavalca and Fernandes (2018), etc.
There are several optimization techniques forsolving unconstrained numerical problems. Thetraditional ones aim to discover the optimum solutionsof continuous and di�erentiable functions, i.e., theyuse analytical methods and calculus to locate the bestsolutions. In fact, the classical methods are fast;however, they are limited because they can only dealwith unconstrained function and a small number ofvariables. Moreover, practical applications usually dealwith non-di�erentiable functions. Thus, evolutionaryalgorithms (Eiben and Smith, 2007) appear as aviable solution for optimizing constrained and non-di�erentiable functions.
In this context, the idea of this work is topresent a tutorial on Genetic Algorithms in NumericalOptimization using benchmark function with a studycase in R language (RStudio Team, 2018). Then aquestion can appear: why not using an R package? Themain reason is that when we use a package, such asgenalg (Willighagen and Ballings, 2015), we are limitedto those features o�ered by the package. Particularly inthe genalg package, the user has no control on geneticoperators whatsoever. The only control provided by thereferred package is mostly concerning parameters, i.e.,the user cannot choose di�erent crossover or mutationoperators. Regarding the GA package (Scrucca, 2017),which is a more generic and �exible package includesother evolutionary algorithms such as Di�erentialEvolution, present an advantage of using di�erentgenetic operators and parallel algorithms. However,having the codemade from scratch, the user can quicklyimplement di�erent operators or even create hybridalgorithms that are �tter to the problem being solved.
Thus, this tutorial is divided as follows: Section 2presents some basics on numerical optimization andbenchmark functions; Section 3 shows the theory ofreal-coded genetic algorithms and their operators;Section 4 explains important concepts in R that areessential to understand the code; Section 5 implementsall GA concepts in R; Section 6 illustrates how the GAworks in �ve benchmark functions; �nally, Section 7draws the conclusions of this tutorial.

2 Numerical Optimization andBenchmarks
The unconstrained optimization aims to minimizeor maximize an objective function that depends onreal variables, with no restrictions at all on thevalues of these variables (Nocedal and Wright, 2006).Mathematically, it is min or maxf(x), where x ∈ Rn and
n ≥ 1. Thus, a solution x∗ is a global solution of aminimization problem if f(x∗) < f(x) ∀ x; analogously,it is a solution of a maximization problem if f(x∗) >
f(x) ∀ x.
Regardless of the kind of optimization, if we wantto use a GA for this kind of problem, it is mandatory

n > 1. Actually, n regards to the dimensionality ofthe search space, which is an important factor in theproblem complexity, since the higher the dimension,the higher the probability of getting trapped in alocal optima (Cortes et al., 2012). A study of thedimensionality problem and its features was carriedout by Friedman (1994).
Two other properties are essential in numericaloptimization: separability and multi-modality. Theseparability concerns the possibility of dividing f(x) intotwo or more functions. Consequently, non-separablefunctions are harder to optimize then separable ones.Multi-modality regards to the existence of many localoptima. In this context, non-separable and multi-modal functions are harder to solve than the otherones.
We will test our code using four unconstrainedcontinuous numerical benchmarks functions:Rosenbrock (1960), Griewank (1981), Ackley (1987),Schwefel (1981), and Rahnamyan et al. (2007) aspresented in Table 1.
Table 2 presents the benchmarks properties(Separability, Modality, and Di�erentiability), thedomain, and the global optima. The domain is aconstraint for each gene, i.e., the lower and upperbounds. The optimal solution is the minimum valuethat the benchmark can reach. The separabilityrepresents if the function is separable, i.e., if thefunction can be split into two or more functions. Inother words, a function of p variables is called separable,if it can be written as a sum of p functions of justone variable (Boyer et al., 2005). Finally, the modalityregards to the existence of many local optima. In thiscontext, non-separable and multi-modal functions areharder to solve than the other ones.

3 Real-Coded Genetic Algorithms
Fig. 1 shows the pseudo code for a GA. Firstly, the GAcreates a random population, then evaluates it to selectindividuals undergoing genetic operators. Usually,methods such as the roulette wheel or tournament,for example, select the new population. Afterward,the crossover exchanges information (genes) betweentwo parents based on the probability of mutation(pc), creating one or more o�spring. Then, themutation operator can change zero or more genes on

O.A.C. Cortes, J.C. Silva | Revista Brasileira de Computação Aplicada (2019), v.11, n.3, pp.1–11 3

Table 1: Unconstrained Benchmark Functions
Name Function
Rosenbrock f1(x) =∑n

i=1 [100(xi+1 – x2i)2 + (xi – 1)2]Griewank f2(x) = 14000
∑n
i=1 x2i –∏n

i=1 cos(xi√i)
Ackley f3(x) = –20exp(–0.2√ 1

n
∑n
i=1 x2i) – exp(1n ∑n

i=1 cos(2πxi)) + 20 + exp(1)
Schwefel f4(x) =∑n

i=1 –xi sin
√|xi|Alpine f5(x) =∑n

i=1 |xi sin(xi) + 0.1xi|
Table 2: Benchmark functions properties

Name Domain Min Separable Multimodal Di�erentiable
Rosenbrock [-5,10] 0 No No Yes
Griewank [-600,600] 0 No Yes Yes
Ackley [-32,32] 0 No Yes Yes
Schwefel [-500,500] -12569.49 Yes Yes Yes
Alpine [0,10] 0 No Yes No

each chromosome. Finally, if elitism is TRUE, thealgorithm guarantees that the best individual remainsin the population. Following subsections detail how torepresent individuals, also called chromosomes, andhow these operators work.

1 Pop = Ini t ia l ize Population(LB,UB)2 Fit = Evaluate (Pop)3 While ! (Stop Criterion)4 Pop’ = Selection (Pop)5 Pop’ = Crossover(Pop’)6 Pop’ = Mutation(Pop’)7 Fit ’ = Evaluate (Pop’)8 If (Elitism == FALSE)9 Pop = Pop’10 Else11 I f (best (f i t) > best (f i t ’))12 Swap()13 End–If14 End–If15 End–While

Figure 1: The Genetic Algorithm Pseudo Code

3.1 Representation

There are two main representations of geneticalgorithms: binary-coded and real-coded. Inthe binary-code representation, an individual orchromosome, which is a possible solution to theproblem being solved, is represented by a vector of{0, 1}. On the other hand, as expected, real numbersdevise a real-coded chromosome as presented in Fig. 2.Because we are dealing whit real numbers, each generequires a domain constraint represented by a lowerand an upper bound, respectively (LB and UB). In otherwords, assuming that ci is a gene within a chromosome
i, we have LBi ≤ ci ≤ UBi.

Figure 2: Example of a Real Chromosome

3.2 Crossover
The main purpose of the crossover operator isto exchange information (genes) between parents,creating one or more o�spring. In real-codedrepresentation, there are several ways of doing that.A thorough list of operators can be seen in Herreraet al. (1998). In this tutorial, we describe four ofthem: simple, arithmetical, non-uniform arithmetical,and Linear. In the simple crossover, a cut pointis randomly chosen, then the o�spring are formed,making a combination of parts. Considering that
p1 = c11, c12, . . . , c1n and p2 = c21 , c22, . . . , c2n are two parents,and j is the cutting point, the �rst o�spring is
o1 = c11, . . . c1j , c2j+1, . . . , c2n, and the second one is o2 =
c21 , . . . c2j , c1j+1, . . . , c1n.Eqs. (1) and (2) illustrates how to perform thearithmetical crossover for two descendants, in which ris a random number in the range [0, 1].

o1i = r × c1i + (1 – r)c2i (1)

o2i = (1 – r)× c1i + (r)c2i (2)
The di�erence between arithmetical and non-uniform arithmetical crossover relies on the fact thatthe variable r is not random anymore but computedby dividing the current generation t by the maximumnumber of generations (Tmax) as shown in Eq. (3).

r = t
Tmax

(3)
Finally, the Linear Crossover creates three o�springas presented in Eqs. (4) to (6). The �rst one is similarto the arithmetical crossover with r = 0.5. The otherones explore the outer limits of c1i and c2i , respectively.

o1i = 0.5 ∗ c1i + 0.5 ∗ c2i (4)

4 O.A.C. Cortes, J.C. Silva | Revista Brasileira de Computação Aplicada (2019), v.11, n.3, pp.1–11

o2i = 1.5 ∗ c1i – 0.5 ∗ c2i (5)

o3i = –0.5 ∗ c1i + 1.5 ∗ c2i (6)
It is essential to observe that not every individualfrom the selected population undergoes mutation. Onlythose whose probability is less than the probability ofcrossover, pc, participate in the operation.

3.3 Mutation
The mutation operator changes genes from achromosome. Concerning real-coded individuals, theuniform mutation, also known as a random mutation,randomly replaces a gene inside its domain based on aparameter known as probability of mutation pm.Another well-knownmutation in the literature is thenon-uniform mutation operator, in which the selectedgenes are mutated according to Eqs. (7) and (8), inwhich si is the gene being mutated, t represents thecurrent generation, LB and UB are the lower and theupper bound of the variable i, respectively, r is a randomnumber between 0 and 1, T is the maximal number ofgenerations, and b is the degree of dependency (usually
b = 5).

s
′

i =
{
si +∆(t,UBi – si), if θ = 0
si –∆(t, si – LBi), if θ = 1 (7)

∆(t, y) = y× (1 – r(1– tT)b) (8)
The non-uniform mutation is one of the operatorsresponsible for the �ne-tuning capabilities of thesystem (Michalewicz, 1999).

4 Important Concepts in R
The purpose of this chapter is not to provide a thoroughvision of R programming but gives concepts that areessential to understanding the code in the next sections.Details of how to program in R can be found in Lander(2015) and Crawley (2012) books.The �rst essential concept is the notion of indirectindexing. Programming languages, such as C and Java,access elements in a matrix using a speci�c indexdevised by row and column. If the programmer wantsto access a set of elements, it is necessary to usea for loop and work on them element-by-element.In R, the indexes of a matrix can also be a matrix.For example, suppose that we have to replace someelements obeys a condition by a random number in amatrix Mat, Fig. 3 illustrates how to perform this task.The which() function returns a matrix containing twocolumns (row and column) of the elements that satisfy

the condition. Then, a vector operation (line 2) replacesthe corresponding elements. We have to note that thenumber of elements created by the runif() function hasto be the same number of rows in idx, therefore, wehave to use the nrow() function. Fig. 4 illustrates howthe operation works.

1 idx <– which(condition , arr . ind = TRUE)2 Mat[idx] <– runif (nrow(idx))

Figure 3: Indirect indexing example

The other concept we have to know how to deal withis the logical indexing. The concept is quite similarto the indirect indexing; however, in this case, allindexes are logical values. Let us suppose that we havea matrix Mat of integer numbers randomly created aspresented in Fig. 5. Then we want to replace all valuesless than 10 with the lower bound 10. The instruction
idx < –Mat < 10 returns a matrix in which all positionsobeys the condition are true. Afterward, all values arereplaced. This operation makes things easier when thedomain is the same for all genes, which is commonin numerical optimization. On the other hand, if thedomain is di�erent for each gene, then we have to usethe instruction which(idx,arr.ind = TRUE) to locate thepositions that ful�ll the condition.The third important concept we have to tackle iscalled group operations or group functions. This kindof instruction, as the name suggests, executes in agroup of data. Moreover, we preferably execute groupoperations instead of for loops because the �rst oneis usually faster than loops. The �rst set of groupfunctions is: sum(), mean(), and sd(). These functionsreceive a vector or a matrix as a parameter and returnthe sum, the mean, and the standard deviation ofthe entrance data, respectively. If the parameter isa matrix and ones wants to perform row or columnbased operations, we have to use, for example, thefunctions rowSum() or colSum().On the other hand, if we want to perform row orcolumn-based operations using a pre-existed function,we have to use the function apply(), which the syntaxis apply(obj,margin, function, parameters), where obj is adata structure, usually, a matrix,margin sets the kind ofoperation (1 - row-based, 2 - column based), functionis an implemented function, and parameters are theparameters required by the implemented function. Anindispensable extension of this function is the lapply()function in which obj has to be a list. Next, we presentsome general remarks about R that are important tothe correct implementation of GAs.
Remarks
• Vectors and matrices start with 1 instead of 0;• Operations between matrices are element-wise. Ifa traditional multiplication matrix is required, wehave to use the symbol %*%;• Avoid for loops;

O.A.C. Cortes, J.C. Silva | Revista Brasileira de Computação Aplicada (2019), v.11, n.3, pp.1–11 5

Figure 4: Indirect indexing

1 Mat <– matrix(sample(25) , nrow = 5)2 idx <– Mat < 103 Mat[idx] <– 10

Figure 5: Logical indexing example

• The ”not“ operator, represented by “!”, also workswith logical indexing;• If indexes are numbers, Mat[!idx] for instance, doesnot work. Instead, we have to use Mat[–idx];• Lists are data structures formed by di�erent kind ofobjects. A list can contain, for example, a matrix, avector, a function, and an integer value at the sametime in the same data structure;• If you do not name the elements of a list, you haveto use double brackets [[element]] to access them;• The symbol # precedes a comment;• If you receive a warning after the execution ofyour code, probably you are assigning vectors withdi�erent sizes. It is essential to correct all warningto avoid wrong results.

5 GA Implementation
5.1 Initializing
Let us start implementing each function separately inthe following order: initialize population, selection,crossover, and mutation. Thus, Fig. 6 shows the codethat initializes the population, in which each gene iswithin the domain [lb,ub]. Then, we evaluate thepopulation using the apply() function that receivesthe objective function as a parameter. Finally, theinitialization function returns a list containing the�rst population and the �tness for each chromosome,corresponding to lines 1 and 2 from Fig. 1.

1 ini t . population <– function (func , lb ,ub,pop. size ,dimension){2 pop <– matrix(runif (pop. size*dimension) ,nrow=pop. size)3 fitness <– rep(NA,pop. size)4 pop <– lb + pop*(ub–lb)5 fitness <– apply(pop, 1 , func)6 return (l i s t (pop = pop, f i t = fitness))7 }

Figure 6: Function for initializing population

5.2 Selection
The next step is the selection method that chooseswhich chromosomes will try to participate in thecrossover stage. Two selection mechanisms, roulettewheel and tournament, are presented in Figs. 7 and 8,respectively.

1 roulette .wheel <– function (pop, fitness , pop. size , dim){2 new.pop <– matrix(rep(NA, pop. size*dim) , nrow=pop. size)3 new. f i t <– rep(NA,pop. size)4 F <– sum(fitness)5 p <– –fitness /F6 q <– cumsum(p)7 r <– runif (pop. size)8 for (i in 1 :pop. size){9 i f (r [i] < q[1]){10 new.pop[i ,] <– pop[1 ,]11 }12 else{13 idx <– which .min(q < r [i])14 new.pop[i ,] <– pop[idx ,]15 }16 }17 return (new.pop)18 }

Figure 7: Roulette wheel function

In the roulette function, the variables new.pop and
new.�t will contain the new population and its �tness,respectively. Then q will contain the cumulativeprobability matrix that is the wheel. Afterward, thevector r will contain one random number in the domain[0, 1] for each chromosome, and the for loop willcheck which one will form the temporary populationundergoes the crossover process.

1 tournament <– function (pop, fitness ,pop. size ,dim, t . size = 4){2 new.pop <– matrix(rep(NA,pop. size*dim) , nrow=pop. size)3 for (i in 1 :pop. size){4 idx <– sample (1 :pop. size , t . size)5 pos <– which .min(fitness [idx])6 new.pop[i ,] <– pop[idx [pos] ,]7 }8 return (new.pop)9 }

Figure 8: Tournament function
In the selection by tournament method, the variable

t.size is responsible for setting the tournament size, i.e.,

6 O.A.C. Cortes, J.C. Silva | Revista Brasileira de Computação Aplicada (2019), v.11, n.3, pp.1–11

how many individuals will participate in each round.Then the winner of each round is chosen to undergomutation. It is a simple but e�ective form of selection.
5.3 Crossover
The next step in the GA algorithm is to apply thecrossover operation on the new population. Fig. 9shows the code for this task. The main parametersof this function are the selected population and pc(probability of crossover). Why is pc so important?Because not every single chromosome will undergocrossover, only those ones which a random number ris less than pc, i.e., r < pc. Lines 2 to 5 perform thisselection. Then the for loop produces two o�springusing the cross point as a divisor, returning only thepopulation because the evaluation is necessary onlyafter mutation.

1 simple . cross <– function (lb ,ub,pop. size ,dimension ,pop,pc){2 new.pop <– matrix(rep(NA,pop. size*dimension) ,3 nrow = pop. size)4 r <– runif (pop. size)5 idx <– (r < pc)6 pop <– pop[idx ,]7 tmp.pop. size <– nrow(pop)8 for (i in seq (1 ,pop. size , by = 2)){9 indivs <– sample (1 :tmp.pop. size ,2 , replace = FALSE)10 cross . point <– sample(2:(dimension–1) ,1)11 offspring1 <– c(pop[indivs [1] , 1 : cross . point] ,12 pop[indivs [2] ,(cross . point+1):dimension])13 offspring2 <– c(pop[indivs [2] , 1 : cross . point] ,14 pop[indivs [1] , (cross . point+1):dimension])15 new.pop[i ,] <– offspring116 new.pop[i +1 ,] <– offspring217 }18 return (pop = new.pop)19 }

Figure 9: Simple crossover

The arithmetical crossover, also known as uniformarithmetical crossover, is an interesting crossovermethod because it explores the search space betweentwo genes and does not create invalid individuals, i.e.,all genes are within their domain. Fig. 10 presents theimplementation in which we can see that l controlshow further from a gene the crossover goes, i.e., closerto the gene of the �rst or second parent.The arithmetical crossover, also known as a uniformarithmetical crossover, is an interesting crossovermethod because it explores the search space betweentwo genes and does not create invalid individuals, i.e.,all genes are within their domain. Fig. 10 presents theimplementation in which we can see that l controlshow further from a gene the crossover goes, i.e., closerto the gene of the �rst or second parent.Finally, linear crossover generates three individualsas previously explained; however, only the best two willform the next population. Also, because of the Eqs. (5)and (6), we have to control the boundaries of the newindividuals. Thus, the instruction nrow(idx) > 0 meansthat a gene is out of its limits. After correcting thechromosome boundaries, the concern is how to selectthe best two chromosomes elegantly. The answer is

1 arith . crossover <– function (lb ,ub,pop. size ,dimension ,2 pop,pc){3 new.pop <– matrix(rep(NA,pop. size*dimension) ,4 nrow = pop. size)5 r <– runif (pop. size)6 idx <– (r < pc)7 pop <– pop[idx ,]8 tmp.pop. size <– nrow(pop)9 for (i in seq (1 ,pop. size , by = 2)){10 l = runif (1)11 indivs <– sample (1 :tmp.pop. size ,2 , replace = FALSE)12 new.pop[i ,] <– l*pop[indivs [1] ,] + (1– l)*pop[indivs [2] ,]13 new.pop[i +1 ,] <– (l –1)*pop[indivs [1] ,] + l*pop[indivs [2] ,]14 }15 return (pop = new.pop)16 }

Figure 10: Arithmetical crossover

1 n. arith . crossover <– function (lb ,ub,pop. size ,dimension2 pop,pc ,max. it , t){3 new.pop <– matrix(rep(NA,pop. size*dimension) ,4 nrow = pop. size)5 r <– runif (pop. size)6 idx <– (r < pc)7 pop <– pop[idx ,]8 tmp.pop. size <– nrow(pop)9 l = t /max. i t10 for (i in seq (1 ,pop. size , by = 2)){11 r = runif (1)12 indivs <– sample (1 :tmp.pop. size ,2 , replace = FALSE)13 new.pop[i ,] <– l*pop[indivs [1] ,] + (1– l)*pop[indivs [2] ,]14 new.pop[i +1 ,] <– (l –1)*pop[indivs [1] ,] + l*pop[indivs [2] ,]15 }16 return (pop = new.pop)17 }

Figure 11: Non-Uniform Arithmetical crossover

to sort out together the new �tness and the respectivechromosomes, choosing then the two smaller ones.

1 linear . crossover <– function (lb ,ub,pop. size ,dimension ,2 pop,pc , func){3 new. indiv <– matrix(rep(NA, 3*dimension) , nrow = 3)4 new. f i t <– rep(NA,3)5 new.pop <– matrix(rep(NA,pop. size*dimension) , nrow =6 pop. size)7 r <– runif (pop. size)8 idx <– (r < pc)9 pop <– pop[idx ,]10 tmp.pop. size <– nrow(pop)11 for (i in seq (1 ,pop. size , by = 2)){12 indivs <– sample (1 :tmp.pop. size ,2 , replace = FALSE)13 new. indiv [1 ,] <– 0.5*pop[indivs [1] ,] + 0.5*pop[indivs [2] ,]14 new. indiv [2 ,] <– 1.5*pop[indivs [1] ,] – 0.5*pop[indivs [2] ,]15 new. indiv [3 ,] <– –0.5*pop[indivs [1] ,] + 1.5*pop[indivs [2] ,]16 idx <– which(new. indiv < lb , arr . ind = TRUE)17 i f (nrow(idx) > 0)18 new. indiv [idx] <– lb [idx [,2]]19 idx <– which(new. indiv > ub, arr . ind = TRUE)20 i f (nrow(idx) > 0)21 new. indiv [idx] <– ub[idx [,2]]22 new. f i t <– apply(new. indiv , 1 , func)23 tmp <– cbind(new. f i t ,new. indiv)24 tmp <– tmp[order (tmp[, 1]) ,]25 new.pop[i ,] <– tmp[1 ,2 : (dimension+1)]26 new.pop[i +1 ,] <– tmp[2 ,2:(dimension+1)]27 }28 return (pop = new.pop)29 }

Figure 12: Linear crossover

O.A.C. Cortes, J.C. Silva | Revista Brasileira de Computação Aplicada (2019), v.11, n.3, pp.1–11 7

5.4 Mutation
Fig. 13 shows the listing for the mutation operator thatreceives two essential parameters: the new populationand the probability of mutation pm. Then, line 4identi�es which genes, row, and column, will undergomutation in the whole population. Finally, line 7evaluates the new population.

1 uniform.mut <– function (func , lb ,ub,pop,pop. size ,2 dimension ,pm){3 r <– matrix(runif (pop. size*dimension) ,nrow=pop. size)4 fitness <– rep(NA,pop. size)5 idx <– which(r < pm, arr . ind=TRUE)6 pop[idx] <– lb [idx [,2]] + runif (nrow(idx)) *7 (ub[idx [,2]] – lb [idx [,2]])8 fitness <– apply(pop, 1 , func)9 return (l i s t (pop = pop, f i t = fitness))10 }

Figure 13: Uniform mutation

The next mutation operator is the non-uniformmutation, which is based on the number of iterationsor generations since as iterations go on the mutationsize goes down. Fig. 14 shows the mutation operatorin R, in which we have to expand the boundaries usingthe variables tmp.lb and tmp.ub, because these vectorscan be larger than the domain vectors lb and ub. Thenwe use the logical indexing to decide which equationto use (θ = 0 or θ = 1 from Eq. (7)) in order to performthe mutation.

1 n.uniform.mutation <– function (func , lb ,ub,pop,pop. size ,dimension ,2 pm,max. it , i t){3 r <– matrix(runif (pop. size*dimension) ,nrow=pop. size)4 fitness <– rep(NA,pop. size)5 idx <– which(r < pm, arr . ind=TRUE)6 values <– pop[idx]7 r <– sample(c (0 ,1) , nrow(idx) , replace = TRUE)8 tmp. idx <– r == 09 tmp. lb <– lb [idx [,2]]10 tmp.ub <– ub[idx [,2]]11 values [tmp. idx] <– values [tmp. idx] + delta (it ,max. it ,12 tmp.ub[tmp. idx]–values [tmp. idx])13 values [!tmp. idx] <– values [!tmp. idx] – delta (it ,max. it ,14 values [!tmp. idx]–tmp. lb [!tmp. idx])15 pop[idx] <– values16 fitness <– apply(pop, 1 , func)17 return (l i s t (pop = pop, f i t = fitness))18 }1920 delta <– function (it , max. it ,y , b=5){21 r <– runif (length (y))22 y <– y * (1 – r^((1– i t /max. i t)^b))23 return (y)24 }

Figure 14: Non-Uniform mutation

5.5 Main Function and Elitism
Now, it is time to get all functions together as presentedin Fig. 15. As we can see, the code is pretty similar to thealgorithm presented previously in Fig. 1. To test other

operators, we only need to use the respective functionsreplacing the symbol “#”. Moreover, if someone wantsto test everything at once, it is trivial to add controlstructures to execute all operators.

1 GA <– function (func , lb , ub, pop. size = 10 ,2 dimension = 10 , max. i t = 100,3 pc = 0.6 , pm = 0.005, sel , t . size = 4,4 elitism = TRUE){5 tmp.pop <– matrix(rep(NA,pop. size*dimension) ,6 nrow = pop. size)7 init <– init . population(func , lb ,ub,pop. size ,dimension)8 pop <– init$pop9 fitness <– init$ f i t10 for (i t in 1 :max. i t){11 tmp.pop <– selection (pop,pop. size ,dimension , fitness ,12 sel , t . size)13 tmp.pop <– simple . crossover (lb , ub, pop. size , dimension ,14 tmp.pop, pc)15 #tmp.pop <– arith . crossover (lb , ub, pop. size , dimension ,16 # tmp.pop, pc)17 #tmp.pop <– n. arith . crossover (lb , ub, pop. size , dimension ,18 # tmp.pop, pc , max. it , i)19 #tmp.pop <– linear . crossover (lb , ub, pop. size , dimension ,20 # tmp.pop, pc , func)21 #tmp.pop <– uniform.mutation(func , lb ,ub,tmp.pop,pop. size ,22 # dimension , pm)23 tmp.pop <– n.uniform.mutation(func , lb ,ub,tmp.pop,pop. size ,24 dimension ,pm,max. it , i t)25 tmp. fitness <– tmp.pop$ f i t26 tmp.pop <– tmp.pop$pop27 i f (elitism == TRUE){28 best .tmp <– min(tmp. fitness)29 best . old <– min(fitness)30 i f (best . old < best .tmp){31 idx <– which .min(fitness)32 idx .worst <– which .max(tmp. fitness)33 tmp.pop[idx .worst ,] <– pop[idx ,]34 tmp. fitness [idx .worst] <– fitness [idx]35 }36 }37 fitness <– tmp. fitness38 pop <– tmp.pop39 }40 return (l i s t (pop = pop, f i t = fitness))41 }

Figure 15: Main function

Regarding the elitism, having the �nal population,we have to identify whether the elitism is set or not.If so, we have to check in which population the bestindividual is. In case the best individual is in thenew population, the current one replaces the old one.Otherwise, we swap the worst individual from thecurrent population by the best one from the previousone; thus, we guarantee that the best individual willalways be in the population.
5.6 Benchmarks
Those benchmarks previously presented in Section 2 areimplemented in Fig. 16. It is important to remark thatwe did not use any loop, as suggested in Section 4. Eventhough some R packages implement these functions,the main idea is to program everything from scratch.

6 Experiments
All experiments have been conducted in a Windows10, 64 bits, 16 GB of RAM, 500 GB of SSD, R version

8 O.A.C. Cortes, J.C. Silva | Revista Brasileira de Computação Aplicada (2019), v.11, n.3, pp.1–11

1 Rosenbrock <– function (x){2 x1 <– x[1 : length (x)–1]3 x2 <– x[2: length (x)]4 return (sum(100 * (x1 – x2^2)^2 + (x1–1)^2))5 }67 Griewank <– function (x){8 i <– sqrt (1 : length (x))9 return (1 /4000 * sum(x^2)–prod(cos(x) / i))10 }1112 Ackley <– function (x){13 n <– length (x)14 return(–20 * exp(–0.2 * sqrt (sum(x^2/n)))15 – exp(1 /n*sum(cos(2*pi*x))) + 20 + exp (1))16 }1718 Schwefel <– function (x){19 return (sum(x^2–10*cos(2*pi*x)+10))20 }2122 Alpine <– function (x){23 return (sum(abs(x*sin (x)+0.1*x)))24 }

Figure 16: Benchmark functions

3.3.3 (Project, 2018), and RStudio 1.0.136 (RStudioTeam, 2018). The GA con�guration is: pc = 0.6,
pm = 0.01, populatiosize = 50, and dimension = 30. In thecase of tournament selection, we use four individualsin the competition. Further, we set a seed for randomnumbers; thus, the result of the experiment will bethe same in all computers in terms of the quality ofsolutions. Furthermore, all experiments have beenperformed using 30 trials; then, we are able to presentthe best result, the mean, and the standard deviation.Fig. 17 presents the main script used for testing thecode. Firstly, we load all functions presented previouslyutilizing the instruction source(). The �le ‘crossover.R’,for instance, contains all crossover operators. Theother R �les follow the same principle. Either, weautomatized the test only for the benchmark functions,which are stored in a vector of lists. Changing the codefor executing all operators or adding new operators willbe a trivial task.Tables 3 to 6 show the results for 1000 iterationswith uniform mutation and roulette wheel, uniformmutation and tournament, non-uniform mutationand roulette wheel, and non-uniform mutation andtournament, respectively. As we can see, thebest combinations for those parameters is the non-uniform mutation and tournament selection, possiblybecause of the �ne-tuning capability of the non-uniform mutation. On the other hand, Schwefelfunction presented the best combination using uniformmutation and tournament. Other combinations usingarithmetical crossover presented good results inGriewank, Ackley, and Alpine functions; however, theyare not the best ones.

7 Conclusions
This tutorial presented how to implement GeneticAlgorithms to solve unconstrained numericaloptimization problems in R from scratch. As wecould see, the code is concise and straightforward,

1 source(’GA.R’)2 source(’ ini t . population .R’)3 source(’ crossover .R’)4 source(’mutation .R’)5 source(’ selection .R’)6 source(’Benchmarks.R’)78 set . seed(123)9 i t <– 100010 pop. size <– 5011 funcs <– c(Rosenbrock ,Griewank,Ackley , Schwefel , Alpine)12 bounds <– matrix(rep(NA,2*length (funcs)) , nrow = 2)13 res <– matrix(rep(NA,3*length(funcs)) ,nrow = 3)14 bounds[1 ,] <– c(–5,–600,–32,–500,0)15 bounds[2 ,] <– c(10 ,600,32 ,500,10)16 dim <– 3017 execs <– 301819 result <– vector (" l i s t" ,execs)20 best <– rep(NA, execs)2122 cat ("Running . . . \n")23 for (f in 1 : length (funcs)){24 lb <– rep(bounds[1 , f] ,dim)25 ub <– rep(bounds[2 , f] ,dim)26 for (i in 1 : execs){27 result [[i]] <– GA(funcs [[f]] , lb , ub, pop. size = pop. size ,28 dim = dim,29 max. i t = it , pc = 0.6 , pm = 0.01 , sel = 1 , elitism = TRUE)30 best [i] <– min(result [[i]]$ f i t)31 }32 res [1 , f] <– min(best)33 res [2 , f] <– mean(best)34 res [3 , f] <– sd(best)35 }36 View(res)

Figure 17: Testing

allowing anyone to implement new GA variations oreven hybrid algorithms. We explore the ability toperform vectorial operations and group functions inR. Either, we implemented the GA code to be easilyextended to functions in which all genes have di�erentdomains in the same individual. Implementing thecode using a single scalar to control the boundaries ofeach gene could simplify parts of the code by usinglogical indexing; however, extend it for multiplesdomains in the same chromosome would be muchharder.We expect that this tutorial is an incentive tothose who want to explore the numerical optimizationcapability of GAs and/or to those who crave to enterin the R language world. In this context, we alsoincentive all interested people to implement di�erentoperators or apply the presented code to di�erent kindof numerical problems, especially those involving theoptimization of real-world problems.

Acknowledgment
All codes are available on GitLab in theaddress https://gitlab.com/omar.carmona/
real-coded-genetic-algorithm.

References
Ackley, D. H. (1987). A connectionist machine for genetic
hillclimbing, PhD thesis, Kluwer Academic Publishers,Boston - MA - USA.

https://gitlab.com/omar.carmona/real-coded-genetic-algorithm
https://gitlab.com/omar.carmona/real-coded-genetic-algorithm

O.A.C. Cortes, J.C. Silva | Revista Brasileira de Computação Aplicada (2019), v.11, n.3, pp.1–11 9

Table 3: Results of the optimization of the �ve benchmarks functions using the following parameters: it = 1000,uniform mutation, roulette wheel
Simple Arithmetical NU-Arithmetical Linear

Rosenbrock Best 2451.071 28.8555 1799.662 1981.851Mean 24845.126 28.9317 62775.681 20396.216Std.Dev 24138.263 0.0277 108947.817 19196.078
Griewank Best 17.7753 0.0000 1.3368 15.7905Mean 51.5129 0.0000 14.2834 57.9918Std.Dev 21.3925 0.0000 12.7659 36.948
Ackley Best 11.3481 0.0000 6.1106 10.5472Mean 13.9118 0.0000 12.1561 13.2214Std.Dev 1.6119 0.0000 3.9350 1.3538
Schwefel Best -10466.583 -6595.6807 -10990.016 -10514.9026Mean -9300.963 -5299.0428 -6991.304 -9332.6928Std.Dev 814.062 718.9849 1673.484 715.1635
Alpine Best 6.0369 0.0000 14.629 5.9545Mean 12.4687 0.0000 21.7172 11.0664Std.Dev 4.1682 0.0000 4.3794 3.4686

Table 4: Results of the optimization of the �ve benchmarks functions using the following parameters: it = 1000,uniform mutation,tournament
Simple Arithmetical NU-Arithmetical Linear

Rosenbrock Best 29.9325 28.7685 28.8501 14.3187Mean 114.5754 28.8765 29.6603 71.867Std.Dev 53.6304 0.0369 2.9696 47.0512
Griewank Best 0.0196 0.0000 0.0000 0.0008Mean 0.0613 0.0000 0.0004 0.0068Std.Dev 0.0247 0.0000 0.0023 0.0052
Ackley Best 0.6155 0.0000 0.0000 0.0521Mean 1.2127 0.0000 0.0243 0.2132Std.Dev 0.3100 0.0000 0.1115 0.1280
Schwefel Best -12561.7277 -11405.9518 -12517.9301 -12493.683Mean -12549.7999 -10630.1371 -12375.2697 -11776.073Std.Dev 7.0971 462.8211 127.6128 295.952
Alpine Best 0.0652 0.0000 0.0000 0.0000Mean 0.1221 3.02924e-316 0.5505 0.0000Std.Dev 0.0354 0.0000 0.3037 0.0001

Table 5: Results of the optimization of the �ve benchmarks functions using the following parameters: it = 1000,non-uniform mutation, roulette wheel
Simple Arithmetical NU-Arithmetical Linear

Rosenbrock Best 7328.555 28.7887 189.7441 23308.46Mean 99065.147 28.8885 522987.7591 97250.44Std.Dev 80313.989 0.0409 647674.0747 64585.29
Griewank Best 39.1963 0.0000 0.1928 42.0673Mean 115.8443 0.0000 15.9252 128.9577Std.Dev 54.6358 0.0000 35.3703 58.9478
Ackley Best 10.8985 0.0000 1.9198 12.9310Mean 16.1601 0.0000 15.8141 16.3923Std.Dev 1.9112 0.0000 5.7599 1.6873
Schwefel Best -8711.5960 -4844.5211 -9238.946 -8424.8316Mean -6873.0373 -3817.1849 -5272.697 -6758.1992Std.Dev 737.8165 579.3688 1393.787 951.6584
Alpine Best 10.0562 0.0000 19.4486 11.5562Mean 20.6185 0.0000 30.9157 21.3603Std.Dev 6.4831 0.0002 8.6855 5.0837

Averick, B. M., Carter, R. G., Moré, J. J. andXue, G. L. (1992). The minipack-2 test problemcollection. Available at http://ftp.mcs.anl.gov/pub/
tech_reports/reports/P153.pdf.

Borges, H. P., Cortes, O. A. C. and Vieira, D. (2018). An

adaptivemetaheuristic for unconstrainedmultimodalnumerical optimization, in P. Korošec, N. Melaband E.-G. Talbi (eds), Bioinspired Optimization
Methods and Their Applications, Springer InternationalPublishing, Cham, pp. 26–37. https://doi.org/10.
1007/978-3-319-91641-5_3.

http://ftp.mcs.anl.gov/pub/tech_reports/reports/P153.pdf
http://ftp.mcs.anl.gov/pub/tech_reports/reports/P153.pdf
https://doi.org/10.1007/978-3-319-91641-5_3
https://doi.org/10.1007/978-3-319-91641-5_3

10 O.A.C. Cortes, J.C. Silva | Revista Brasileira de Computação Aplicada (2019), v.11, n.3, pp.1–11

Table 6: Results of the optimization of the �ve benchmarks functions using the following parameters: it = 1000,non-uniform mutation, tournament
Simple Arithmetical NU-Arithmetical Linear

Rosenbrock Best 17.2019 28.6645 27.7665 0.0559Mean 95.5899 28.6951 34.0667 39.5028Std.Dev 63.1179 0.0114 20.3872 45.8229
Griewank Best 0.0000 0.0000 0.0000 0.0000Mean 0.0000 0.0000 0.0000 0.0000Std.Dev 0.0000 0.0000 0.0000 0.0000
Ackley Best 0.0001 0.0000 0.0000 0.0000Mean 0.0002 0.0000 0.0000 0.0000Std.Dev 0.0001 0.0000 0.0001 0.0000
Schwefel Best -12451.0483 -10073.945 -11621.6337 -10551.4837Mean -11914.1278 -9036.5918 -10910.802 -9576.9437Std.Dev 272.4585 669.6221 341.0773 644.8203
Alpine Best 0.0011 0.0000 0.0000 0.0000Mean 0.0024 0.0000 0.4728 0.0000Std.Dev 0.0012 0.0000 0.4105 0.0000

Boyer, D. O., Martfnez, C. H. and Pedrajas, N. G.(2005). Cixl2: A crossover operator for evolutionaryalgorithms based on population features, Journal of
Arti�cial Intelligence Research 24: 1–48. https://doi.
org/10.1613/jair.1660.

Cavalca, D. L. and Fernandes, R. A. S. (2018). Gradient-based mechanism for pso algorithm: A comparativestudy on numerical benchmarks, 2018 IEEE Congress
on Evolutionary Computation (CEC), pp. 1–7. https://
doi.org/10.1109/CEC.2018.8477798.

Cortes, O. A. C., Rau-Chaplin, A. and Lopes, R. F.(2012). A pso-based algorithm with local searchfor multimodal optimization without constraints,
XXXVIII Conferencia Latinoamericana En Informatica
(CLEI), pp. 1–7.

Crawley, M. J. (ed.) (2012). The R Book, 2 edn, Wiley.
Eiben, A. E. and Smith, J. E. (eds) (2007). Introduction
to Evolutionary Computing, 2nd printing edn, Springer,New York.

Friedman, J. H. (1994). An overview of predictivelearning and function approximation, inV. Cherkassky, J. H. Friedman and H. Wechsler(eds), From Statistics to Neural Networks, SpringerBerlin Heidelberg, Berlin, Heidelberg, pp. 1–61.
https://doi.org/10.1007/978-3-642-79119-2_1.

Griewank, A. O. (1981). Generalized descent for globaloptimization, Journal of Optimization 34(1): 11–39.
https://doi.org/10.1007/BF00933356.

Herrera, F., Lozano, M. and Verdegay, J. L.(1998). Tackling real-coded genetic algorithms:Operators and tools for behavioural analysis, Arti�cial
Intelligence Review 12(4): 265–319. https://doi.org/
10.1023/A:1006504901164.

Jamil, M. and Yang, X.-S. (2013). A literature surveyof benchmark functions for global optimisationproblems, International Journal of Mathematical
Modelling and Numerical Optimisation 4(2): 1–47.
https://doi.org/10.1504/IJMMNO.2013.055204.

Karaboğa, D. and Kaya, E. (2018). Evaluation ofperformance of adaptive and hybrid abc (aabc)algorithm in solution of numerical optimizationproblems, 2018 Innovations in Intelligent Systems and
Applications Conference (ASYU), pp. 1–5. https://doi.
org/10.1109/ASYU.2018.8554009.

Lander, J. P. (ed.) (2015). R for Everyone: Advanced
Analytics and Graphics, Addison-Wesley Professional.

Maucec, M. S. and Brest, J. (2018). A review ofthe recent use of di�erential evolution for large-scale global optimization: An analysis of selectedalgorithms on the cec 2013 lsgo benchmark suite,
Swarm and Evolutionary Computation . https://doi.
org/10.1016/j.swevo.2018.08.005.

Michalewicz, Z. (ed.) (1999). Genetic Algorithms + Data
Structures = Evolution Programs, 3 edn, Springer, NewYork.

Muc, A. and Sanetra, I. (2017). The e�ectivenessof optimization algorithms in shape and topologydiscrete optimisation of 2-d composite structures,
2017 7th International Conference on Modeling,
Simulation, and Applied Optimization (ICMSAO), pp. 1–5.
https://doi.org/10.1109/ICMSAO.2017.7934871.

Nocedal, J. and Wright, S. (eds) (2006). Numerical
Optimization, Springer, New York - USA.

Project, R. (2018). The R project for statisticalcomputing. Available at http://www.r-project.org/.
Rahnamyan, S., Tizhoosh, H. R. and Salama, N. M. M.(2007). A novel population initialization methodfor accelerating evolutionary algorithms, Computers
and Mathematics with Applications 53(10): 1605–1614.
https://doi.org/10.1016/j.camwa.2006.07.013.

Rosenbrock, H. H. (1960). An automatic method for�nding the greatest or least value of a function,
Computer Journal 3(3): 175–184. https://doi.org/10.
1093/comjnl/3.3.175.

https://doi.org/10.1613/jair.1660
https://doi.org/10.1613/jair.1660
https://doi.org/10.1109/CEC.2018.8477798
https://doi.org/10.1109/CEC.2018.8477798
https://doi.org/10.1007/978-3-642-79119-2_1
https://doi.org/10.1007/BF00933356
https://doi.org/10.1023/A:1006504901164
https://doi.org/10.1023/A:1006504901164
https://doi.org/10.1504/IJMMNO.2013.055204
https://doi.org/10.1109/ASYU.2018.8554009
https://doi.org/10.1109/ASYU.2018.8554009
https://doi.org/10.1016/j.swevo.2018.08.005
https://doi.org/10.1016/j.swevo.2018.08.005
https://doi.org/10.1109/ICMSAO.2017.7934871
http://www.r-project.org/
https://doi.org/10.1016/j.camwa.2006.07.013
https://doi.org/10.1093/comjnl/3.3.175
https://doi.org/10.1093/comjnl/3.3.175

O.A.C. Cortes, J.C. Silva | Revista Brasileira de Computação Aplicada (2019), v.11, n.3, pp.1–11 11

RStudio Team (2018). Rstudio: Integrated developmentenvironment for R. Available at http://www.rstudio.
com/.

Schwefel, H.-P. (ed.) (1981). Numerical optimization of
computer models, Wiley.

Scrucca, L. (2017). On some extensions to gapackage: hybrid optimisation, parallelisation andislands evolution., The R Journal 1(9): 187–206.Available at https://journal.r-project.org/archive/
2017/RJ-2017-008.

Willighagen, E. and Ballings, M. (2015). genalg: R Based
Genetic Algorithm. R package version 0.2.0. Available at
https://CRAN.R-project.org/package=genalg.

Zang, W., Ren, L., Zhang, W. and Liu, X. (2018). A cloudmodel based dna genetic algorithm for numericaloptimization problems, Future Generation Computer
Systems 81: 465–477. https://doi.org/10.1016/j.
future.2017.07.036.

http://www.rstudio.com/
http://www.rstudio.com/
https://journal.r-project.org/archive/2017/RJ-2017-008
https://journal.r-project.org/archive/2017/RJ-2017-008
https://CRAN.R-project.org/package=genalg
https://doi.org/10.1016/j.future.2017.07.036
https://doi.org/10.1016/j.future.2017.07.036

	1 Introduction
	2 Numerical Optimization and Benchmarks
	3 Real-Coded Genetic Algorithms
	3.1 Representation
	3.2 Crossover
	3.3 Mutation

	4 Important Concepts in R
	5 GA Implementation
	5.1 Initializing
	5.2 Selection
	5.3 Crossover
	5.4 Mutation
	5.5 Main Function and Elitism
	5.6 Benchmarks

	6 Experiments
	7 Conclusions

