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Abstract
Delivering and collecting problems concern to situations where goods are delivered (or collected) in practicalcases. For example, solid waste collection, postal services and snow removing. They can be modelled as thewell-known Chinese Postman Problem on mixed graphs (MCPP). The MCPP is a fair model for delivering andcollecting problems because its goal is to cover all links of a mixed graph with minimal cost. The objective ofthis paper is to develop an algorithm based on Ant Colony Optimization (ACO) and apply it to MCPP solution.The MCPP is initially converted into an equivalent Travelling Salesman Problem (TSP) and then tackled on thissecond instance. According to our knowledge, this approach for MCPP solution is the �rst one in literature.
Keywords: Arc Routing Problems; Chinese Postman Problem; Metaheuristic; Asymmetric Traveling SalesmanProblem.
Resumo
Os problemas de entrega e coleta tratam das situações onde objetos são entregues (ou coletados) em casos práticos.Por exemplo, coleta de lixo sólido, serviços postais e remoção de neve. Eles podem ser modelados como o conhecidoProblema do Carteiro Chinês em grafos mistos (PCCM). O PCCM é um modelo justo para problemas de entregae coleta, pois seu objetivo é cobrir todos os links de um grafo misto com um custo mínimo. O objetivo desteartigo é desenvolver um algoritmo baseado na Otimização por Colônia de Formigas (OCF) e aplicá-lo para soluçãodo PCCM. O PCCM é inicialmente convertido em um Problema do Caixeiro Viajante (PCV) equivalente e entãoresolvido para esta segunda instância. Segundo o nosso conhecimento, essa abordagem para solução do PCCM é aprimeira na literatura.
Palavras-Chave: Problema de Roteamento de Arcos; Problema do Carteiro Chinês; Problema do Caixeiro ViajanteAssimétrico; Metaheurística.

1 Introduction

Several routing problems model practical problems forcost reduction, such as, garbage collection (Goldenet al., 2017), street cleaning planning (Bodin and Kursh,1979) and ice or snow removal (Eglese, 1994). Thisset of problems looks for circuits, paths or subsets ofcircuits where all of them are paths on street mesh.They are belong to set of problems known as ArcRouting Problems (ARP).
ARP is the set of models that deal with street routing

on urban networks. Mathematically, given a constraintset on the arcs, the problem concerns to �nd thefeasible optimal solution. The optimal solution meansan optimal sequence of covering on the arcs. Obligatorycovering over all arcs is a arc constraint, for instance.Delivering and collecting problems such as garbagecollection, production planning, postal services andaccessing mutual information channels, as shown byZhao et al. (2010), are ARP applications. For reader,Shafani and Haghani (2015) provide a brief introductionon ARP’s. They report the two classes of routing
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problems (Arc Routing Problems and Node RoutingProblems), as well as some applications.Within ARP, Chinese Postman Problem (CPP)translates some everyday problems into mathematicalenvironment. CPP is de�ned as a problem in whicha route must be created. It leaves from initial node,which must coincide with the end point of the route,passing through all the edges at a minimal cost. CPPvariations are diverse, but the focus of this study ison the mixed variation, called Mixed Chinese PostmanProblem (MCPP).The MCPP is a fair model for these problems,because the urban meshes present directed and notdirected streets, namely one-way and two-way streets.Regarding to MCPP, the literature does not show manysolution attempts to this problem. Other problems,like the Travelling Salesman Problem (TSP), it havemore attempts than MCPP. However, studies basedon MCPP problems have practical advantages. Forexample, Sherafat (2013) reaches a traveled distancereduction of 5.8km for a collecting vehicle responsibleby trash collecting in a neighborhood in Aracaju city.The problems mentioned above (MCPP and TSP) aresolvable in a non-polynomial way. That is, algorithmsthat guarantee the optimal solution are processed innon-polynomial time (the solution set grows in anon-polynomial way according to the increase of thevariables). So, depending on problem size, solve it isnot possible in a feasible processing time. Therefore,for many practical cases, the problem resolution shouldbe done through an approximate approach, such as themetaheuristics.We decided to solve the MCPP transforming itinto a TSP instance and applying the Ant ColonyOptimization (ACO) on this instance. Brie�y, theACO is a metaheuristic bio-inspired in ant behaviourfor food search. They use a biological factor calledpheromone for e�ciency improvement in this process.Namely, our goal is to solve the MCPP instances usinga polynomial transformation to TSP, through an ACOalgorithm. On the best of our knowledge, this approachis the �rst one in literature.This paper is structured as following: section2 explains the two problems that are treated inthis study and their variations. Section 3 showsthe metaheuristics for TSP and MCPP. Section 4formally presents the ACO and the proposed algorithmis explained in Section 5. Section 6 shows thecomputational results and �nally, section 7 shows thepaper conclusion.

2 Chinese Postman and Travelling
Salesman Problems

Chinese Postman Problem (CPP) was initially devisedby Mei-Ko (1962) when analyzing the work of mailmenin China. Its de�nition is described in a graphG=(V,E), where V is the set of vertices and E theset of edges. Each edge has a positive associatedcost. The goal is to �nd a closed circuit with lowercost, in which all edges must be visited only once.

From its idealization to nowadays, CPP gained somevariations. Eiselt et al. (1995) cites some of them, suchas Chinese Postman with Wind (CPW), Mixed ChinesePostman Problem (MCPP) and Chinese HierarchicalPostman (CHP). CPP and its variations have severalapplications in everyday problems, such as vehiclerouting problems, mailmen problems and the streetmaintenance planning (Thimbleby, 2003).Initially, the problem was formulated consideringonly edges (non-oriented case) and it was solvedby Edmonds and Johnson (1973) with a matchingalgorithm to solve the node parity of the problem.Whenmodeled only with arcs (oriented case), it also canbe solved with the same algorithm after making someadaptations that become it in a minimum �ow problem.Both totally versions (oriented and non-oriented) ofthe problem are of polynomial order. So, they are wellsolved. However, the variation corresponding to theMCPP is an NP-Hard problem (Papadimitriou, 1976).As previously explained, MCPP is a problem littleaddressed in the literature, when compared to otherproblems, such as TSP. Thus, it was decided touse an MCPP to TSP transformation, preserving thefeasibility and equivalence of solutions. This typeof transformation has been studied. In one briefreview, we can cite three works. First, Laporte (1997)creates a general transformation, translatingmany ARPproblems into equivalent TSP’s. Posteriorly, Sherafat(2004) makes a wide transformation based on fourphases. Lastly, Gordenko and Avdoshin (2017) proposea MCPP to Generalized TSP (GTSP) transformation.After this �rst transformation, the GTSP is transformedinto an correspondent Asymmetric TSP (ATSP). In fewwords, the ATSP is the TSP which the edge costs in bothdirections are not equals. All cited procedures generatea TSP with |A|+2|E| nodes, where A is the set of arcsand E the set of edges. Namely, an arc is denoted aslink that has only one direction. Otherwise, edges canbe traveled in two directions. Finally, note that theTSP is also NP-Hard (Laporte, 1992). Therefore, thischange just concerns computational implementation.Here we used the Sherafat (2004) transformation, butany transformation could be used.About TSP, it is a problem that belongs to NRP class.Its worry is to �nd out a closed path that must passon every node only once, with minimal cost. Themathematical formulation for TSP on directed graph isgiven as follows:

Min = ∑
i∈V,j∈V

xij.cij (1)

S.T. : |V|∑
i=1
xij = 1, ∀ j ∈ V (2)

|V|∑
j=1
xij = 1, ∀ i ∈ V (3)
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∑
i∈S,j∈S

xij ≤ |S| – 1, (S ⊂ V, |V| – 2 ≥ |S| ≥ 2) (4)

xij = {0, 1}, ∀ i, j ∈ V. (5)
Above, V is the set of nodes, S is a subset of V and(i,j) is an arc. The objective function of the linearproblem (Eq. (1)) is to minimize the total cost of theroute performed. Constraints (Eqs. (2) and (3)) forceall nodes to be visited only once. In addition, theyguarantee that the solution is a closed circuit (initialnode equal to �nal node), because when all nodesare visited, the returning to the initial node is occurs.Constraint (Eq. (4)) eliminates any subcircuit that canbe created. Finally, last constraint refers to trivialcondition to binary variables.Some algorithms (Grötschel and Win, 1992, Sherafat,1988, Nobert and Picard, 1996) try to solve CPPvariations and achieve satisfactory results in contrastto needed computational resources. They are exactalgorithms and has high computational demand forlarge instances, that is, the number of steps in theirexecution grows in a non-polynomial way. Namely,the increase of the problem variables increases thespace solution of the problem in non-polynomial way.Thus, the choice by attempting based on approximatealgorithms is valid, mainly for large instances. Onthe other hand, exact algorithms present an universeof formulations well explored and none signi�cantadvance for the reduction of computational time wasreached in recent years.Therefore, a good alternative today is the use ofapproximate methods, which present a good number ofalgorithms and approach possibilities. These methodsrequire less computational e�ort and could reach theoptimal solution.

3 Metaheuristics for TSP and MCPP
Approximate algorithms were very important forthe development of techniques in CombinatorialOptimization. There is a division into two groups forapproximate methods: heuristics and metaheuristics.Heuristics are methods based on the deterministicchoices for a set of possibilities in each step of theprocedure. So, they took the best decision for currentstep, regarding to some approximate rule. Someapplications of heuristic procedures for TSP (and someits variations) can be seen in Karabulut and Tasgetiren(2014), Mestria et al. (2013) and Monkman et al. (2008).On the other hand, metaheuristics are methodswhose decisions are made in a stochastic way, usingthe information of the faced problem. Furthermore,they are bio-inspired methods. The use of particularmechanisms by methods provides the possibility ofescape from local optimums. This premature “prision”is a factor limiting to the e�ciency of heuristics. So,metaheuristics have been the best choice for solution

of routing problems. Thus, several algorithms basedon metaheuristic classes have been proposed andpresented good results. We can cite Genetic Algorithmswith several types of crossover (Ahmed, 2010, Chengand Gen, 1994), Ant Colony algorithms (Prakasam andSavarimuthu, 2015) and Ant Colony Algorithms withimprovements to reach better location earlier, usingthe calculus concept (Saenphon et al., 2014).
Metaheuristics present a vast number of algorithms.For instance, Genetic Algorithm (H. Holland, 1984),Simulated Annealing (Kirkpatrick et al., 1983) andAnt Colony Optimization (Dorigo, 1992), Teaching-Learning-Based Optimization (Rao et al., 2011), ParticleSwarm Optimization (Kennedy and Eberhart, 1995),Bat Algorithm (Yang, 2010b), Harmony Search (Yang,2010a) and Social Network Optimization (Sherafat,2017). The state-of-art in metaheuristics for bothMCPP and ATSP problems are, for the bibliographicresearch done here, the GRASP method tested byCorberán et al. (2002) and Genetic Algorithm by Nagataand Soler (2012), respectively.
With respect to metaheuristics for the MCPP, welisted just two works. The �rst is the state-of-art commented previously (Corberán et al., 2002),which use a GRASP metaheuristic, based on two phase:construction phase and local search phase. The basicprocedure used by authors is to orient edges in onedirection (transforming it in one arc) and to solvethis oriented CPP optimally, since oriented CPP canbe optimally solved. So, each edge is oriented in turn,observing the �ow for the two nodes associated to edge.At end, with all edges oriented, the minimum cost �owproblem associated to this directed graph is solved. Inimprovement phase, the operation is based on deletionof any two copies in any edge that appears more thantwice in current solution with contrary orientation.With this path deletion, one new minimal cost path isperformed between these two nodes. Worth rememberthat just some pair nodes are selected in each phase.
Jiang et al. (2010) describe a Genetic Algorithmfor MCPP. They proposed mechanisms that alwaysgenerate a feasible solution. The authors use acrossover operator based on swaps of one link (arcor edge) copy, e�ecting other operations for themaintenance of feasibility. Concerning to the mutationare used two operators. The �rst one deletes onepath which contains only copies of links and �ndsanother better path. The other operator makes a changein direction of an edge and creates other two pathsbetween the nodes of edge to keep the �ow balancing.Finally, there is a redundancy elimination phase forcircles removing. The instances tested are small, butthe proposed algorithm presents better results than aheuristic used for comparison.
Di�erently from MCPP, the TSP has manymetaheuristics developed for its solution. For example,Osaba et al. (2016) propose a Improved Bat Algorithmfor ATSP and TSP resolutions. The authors testedinstances from TSPLIB (http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html) and reached resultsbetter than two basic Bat Algorithms implementedfor them. In addition, comparisons to �ve
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di�erent metaheuristics were done and the resultsare comparable. In a new metaheuristic introduced,the Discrete Bacterial Memetic Evolutionary Algorithm,it was tested the TSP and TSP with Time Windows(TSPTW) instances. In few words, the procedureare not able surpass the state-of-art of heuristicsfor the TSP, but achieves good and more predictableresults (Kóczy et al., 2017). A Discrete SymbioticOrganisms Search algorithm is proposed by Ezugwuand Adewumi (2017). Namely, this metaheurstic isbased on dependency-relations between organisms innature. It used three symbiosis phases: mutualism,commensalism and parasitism. In each one of them,one speci�c interrelation between organisms is made.Firstly, they made comparisons between the newalgorithm and a basic Symbiotic Organisms Searchalgorithm. Posteriorly, four metaheuristics werecompared. Instances from TSPLIB were used and theachieved results indicated that the algorithm is fairlycomparable to only one algorithm. It outperforms allothers methods.
Finally, Taillard and Helsgaun (2019) use thePOPMUSIC metaheuristic to handle large TSP’s (someinstances have 10 million of customers). Thismetaheuristic operates based on sub-parts of theoptimization problem. These optimizations arerepeated until that none improvement can be found.Choong et al. (2019) proposed an Arti�cial Bee Colonywith a Modi�ed Choice Function. Basically, theyproposed a hyper-heuristic inserted into the Arti�cialBee Colony. Hyper-heuristics are methods that selectother heuristics or create new heuristics for solutionspace searches. They use ten neighborhood searches,the majority based on inserting, reversing, swap andshu�e. The selection heuristic is updated alongalgorithm execution, such that intensi�cation anddiversi�cation are dynamically balanced through scoresfor every heuristic. The Modi�ed Choice Functionhas its e�ciency proven through comparisons with“standard” Arti�cial Bee procedures. Finally, thealgorithm is compared to ten state-of-art algorithms,the majority based on Arti�cial Bee and Ant Colonyoptimizations. The authors done Wilcoxon tests andprove that their algorithm surpass the majority of thecompared algorithms.

4 Ant Colony Optimization

Ant Colony Optimization (ACO) was formulated andtested by Dorigo (1992). It is based on the ant behaviourfor food search. Its di�erential mechanism is thecommunication among ants, which is done through asubstance called pheromone, deposited by themselveswhile walk. For food search, ants explore the spacearound the anthill and leave pheromone along theirpaths. Ants that coming out from anthill after someof them �nd food, tends to �nd food more easily.This happens because the succeeded ants “mapped”the path to the food through the largest deposit ofpheromone (departing and returning). This procedureis a reinforcement process over the time, until that

some better path is found, “beginning” a new process.In the �rst application of the ACO for the TSP, thegeneral procedure for tours generation, according toDorigo et al. (1996), followed the methodology below:
• Each ant decide its next step based on a probabilityfunction, which depends on the distance betweenthe current node and the possible nodes to be visitedand the pheromone quantity;• Each ant must create a feasible solution, in otherwords, every node must visited only once;• After all tours completing, the pheromone upgradeis done.
The decisions made by ants are according to apseudo-probabilistic decision rule. This rule is denotedby Eq. (6) below.

Pkij(t) =


τij(t)α.ηβ

ij∑
τij(t)α.ηβ

ij
, if j ∈ PossibleNodes

0, otherwise,
(6)

where, η is the inverse of distance between the twonodes, PossibleNodes set contains the nodes still notvisited and α and β are the weights for pheromone anddistance, respectively.With all tours generated, the next step is pheromoneupdating. This phase is denoted by Eqs. (7) to (9).Therefore, the pheromone updating follows theequation below.

τij(t) := ρ.τij(t – 1) +∆τij. (7)
Above, ρ is the value of evaporation rate betweeniterations t-1 and t, τij is the quantity of pheromone onstretch (i,j) and ∆τij is the value of deposit of chemicalsubstance. This term is calculated by Eq. (8), which is:

∆τij =
m∑
k=1

∆τkij, (8)

where m is the total number of ants and ∆τkij is thesum of all pheromones left on the stretch (i,j) by allm ants between the iterations t-1 and t. Finally, eachsingle deposit is calculated following the Equation 9.

∆τkij =
{ Q
Lk , ∀ (i, j) ∈ Tourk(t – 1, t)0, ∀ (i, j) /∈ Tourk(t – 1, t). (9)

In the Eq. (9), the term Q is the deposit constantand Lk is the tour size of ant k.There are many variations for ACO algorithms. Someof them are presented in Stüzle and Linke (2002).Among all variations, Elitist Strategy Ants Systemand Ranked Elitist Optimization deserve mention. Inboth, the best ants are encouraged to deposit more
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pheromone than those considered worse (Bullnheimeret al., 1997). In a new approach, Stüzle and Hoos(2000) propose that: just the best ant depositspheromone in each iteration; the pheromone obeystwo limits (maximum and minimum) and in algorithminitialization, pheromone for all paths has its valueequal to maximum limit.Alignments between metaheuristics and otherprocedures has been created. These new proceduresare called hybridizations. Euchi et al. (2015), forexample, used the ACO with an enhancement modulebased on the 2-opt heuristic applied to Vehicle RoutingProblem. For hybridization betweenmetaheuristics, wecan mention the work of Xiao and Jiang-qing (2012),which propose a hybridization with mutation, 2-optand a Nearest Neighbor. Finally, Dong et al. (2012)implements a hybridization between the ACO and theGenetic Algorithm. For more recent hybridization wecan cite Khan et al. (2017), Unold and Tarnawski (2016),Yan et al. (2017), Ismkhan (2017) and Mahi et al. (2015).Treating to TSP applications, some works can be
discussed. Eldem and Ülker (2017) made a Max-MinAnt System algorithm to tackle the Symmetric TSPdenoted on a 3D sphere, where the nodes are onshell. They use a Genetic Algorithm and Cuckoo SearchAlgorithm for comparisons and both are surpassedby the proposed algorithm. In other work, Zalilah(2015) ally an Ant Colony Algorithm with hyper-heuristics. The majority are based on 2-opt and arecomputationally cheapest. They tested small instances(between 30 and 100 nodes) and compared their resultswith others seven classic algorithms. The conclusionis that, indeed, the method is comparable.Speci�cally for ATSP we cited three works. Firstly,Gambardella and Dorigo (1996) present an Ant ColonySystem none locals searches. The instances used fortests are from TSPLIB and have up to 170 nodes. Inother Ant Colony System, Dorigo and Gambardella(1997) test Symmetric and Asymmetric TSP instances.Furthermore, they use some methods for comparison.Both works use the reduced candidate list, encouragedfor large instances. Finally, Bai et al. (2013) makea hybridization between exact methods and a Max-Min Ant Colony Optimization. The comparisons aredone with state-of-art of some algorithms. Theachieved results are clearly better than those providedby others methods, for both computational time and�nal solution.
4.1 Proposed algorithm

In this study we used a pure approach instead of somehybridization. This new algorithm is based on an elitiststrategy, following a variant of ACO methodology. Thegeneral procedure of the algorithm is as follows:
• Ant initial positions are drawn for the quantity mof ants. In each round of draws ants are putted indi�erent positions from the others ants until that,at round, all nodes have one ant. In this case a newround is started. For example: given G=(V,A) thegraph of the problem, where V=(1,2,3,4,5) and the

number of ants is equal to 10 ants, then a possiblepositioning order can be (1,4,5,3,2,2,4,3,1,5) and aninfeasible order would be (1,2,2,4,3,5,4,3,2,1). In theinfeasible positioning, the �rst round (5 �rst ants),contains two ants located in the same node (thesecond and third ants are located in node 2). Thismechanism avoids the biased decisions;• Routing probabilities are calculated for nodes stillnot visited. With the probabilities calculated, anumber between 0 and 1 is drawn and the interval ofthe cumulative probability is matched. This drawingscheme follows the logic of roulette wheel selection,where the draw spaces are not symmetrical;• At the end of each tour performed for all ants, oneiteration is counted and the pheromone is updated.This updating is made �rstly by evaporation phase,where all quantities for any arc is decreased to
ρ percentage of its quantity. With each ant costcomputed, the deposit constant Q is denoted as theaverage cost of all ants at iteration. The ant deposit isthen de�ned as σ.Q/Lk, where σ is the elitist constantand Lk is the route cost of the ant k. So, the best antdeposits σ times more pheromone than the worstant at iteration.
In third step of the procedure above, during theupdating, a rudimentary mechanism was imposed toincrease the initial diversity for the searches. Duringthe �rst ten iterations, the evaporation rate was setto 90%, whereas for remain iterations its value wasmaintained according to the selected value.
The pseudo-code of the proposed algorithm is shownbelow:

1 Read a l l parameters ;2 In i t ia l ize the adjacency matrix for the pheromone;3 In i t ia l ize PossibleNodes with a l l nodes of graph;4 For i :=1 to m do5 Drawn the ant k in PossibleNodes ;6 i f (PossibleNodes=EmptySet) then7 Ini t ia l ize PossibleNodes again ;8 While ( CurrentIteration<=T)9 For i :=1 to m do10 For j :=1 to N do //N is the nodes number of the TSP11 Calculate probabil it ies following the Equation 6;12 F i l l the roulette with these probabilit ies ;13 Turn roulette ;14 Go to the node drawn;15 Associate a number to EvaporationRate , following the rule :16 i f ( CurrentIteration <10) then17 EvaporationRate:=0.918 else19 EvaporationRate:=Desired Value ;20 Deposit pheromone according to the rank of the ants ;21 Count one iteration ;

Figure 1: Pseudocode of the new algorithm

5 Computational tests
Algorithm experiments were done in a personalcomputer with Intel Core i5 1.7GHz processor and 8GBof RAM desktop. Tested graphs were generated andclassi�ed into 5 groups, where each group is formed
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by 4 or 5 instances of pseudo-manhanttan type. Thegraphs were grouped according to the number of nodesin the initial problem (MCPP). Within each of thesegroups, the graph features are changed. In each one ofthem, the percentage of arcs is varied between 0% and100%. The average cost for these links ranged from20-30.Before the performance test, the algorithmunderwent a calibration process of the parameters(α, β, ρ, T and m) for two graphs of di�erent sizes.Table 1 shows the values for the �ve parameters, thenumber of nodes in the original problem and in thetransformed problem. These graphs are generals, suchthat, they were not used for the performance test.
Table 1: Results for parameters during calibration
Number of Number ofnodes in nodes in α β ρ(%) T mMCPP TSP

120 353 1 7 20 100 300300 890 2 7 25 200 300

The number of ants and iterations, in the calibrationinstances presented higher values. However, for theperformance tests, these parameters were decreased,because the computational time increased considerably.So, the computational time never exceeded 900s ofprocessing in our tests. For each instance, 3 testswere performed, given the stochastic character of thealgorithm. With the calibration of the parameters, testswere performed and the data are presented in Section 6.The values for the 3 executions and their respectiveaverage deviations are show in the paper Appendix.This table contains, from left to right, instance name(indicating the number of nodes and arcs percentage,respectively), number of nodes in TSP version, theoptimal solution, the average of solutions for the threeexecutions, the relative error between this averageand the optimal solution, the parameters α, β, ρ, thenumber of iterations and number of ants.The largest relative error was 10.46%. In Table 3 arepresented the results grouped for the percentage arcsof instances. It can be seen that the largest relativeerrors were found for the mixed instances. This istrivial because the two totally versions of the MCPP arewell solved, as commented earlier.The relative error also show a dependence with thesize of the graph. Concerning to the metaheuristicbehavior, it promotes a good “sweep” of the pathpossibilities, reducing its determinism, especially withthe variable evaporation module. However, to obtainthis range of solutions has a computational price to bepaid.
5.1 Comparisons with related works

We divided our comparisons into two, �rstly aboutworks that deal the MCCP and after that ones to TSP. Inour bibliography research were identi�ed two works inmetaheuristics for MCPP and none of them are an ACO

algorithm. Jiang et al. (2010) use very small instances,so comparisons with our results is unfeasible. AlreadyCorberán et al. (2002) use a set of problems similar toours. Table 4 contains their tests and ours.Observing Table 4, we can conclude that GRASP isbetter than our algorithm, reaching very good resultsin short time. However, Corberán et al. (2002) dealsmall problems and results cannot extended for largerinstances.Now, we compare our algorithm to others basedon Ant Colony Optimization. The work of Dorigoand Gambardella (1997) was selected for comparisons,because the used instances are similar to ours and itpresents an basic algorithm just like us, without bigincrements in basic framework of ACO. From Table 5below, we can make some conclusions.Observing Table 5, we can a�rm that our algorithmis not better than that one compared, but it producescomparable results.

6 Conclusion
This paper dealt with the Delivery/Collection Problem,mathematically translated through the ChinesePostman Problem modeled on a mixed graph. Theseproblems framed in this class are very important forvarious daily activities of the society. Therefore, theobjective of this study was to present a new algorithmbased on Ant Colony Optimization and to test it fordi�erent instances. It was adopted an approachbased on Chinese Postman Problem translation intoTraveling Salesman Problem. For the best of ourknowledge, this is the �rst ACO algorithm for thisproblem. Although the results are not better thanothers algorithms, for some instances results areclearly comparable.For future studies, the exponential decay rate andthe use of locals searches are pretensions, since thebehavior of the algorithm presents a good chanceof improvement in the implementation of thesemechanisms.
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Appendix

Appendix: General data
Instance Execution1 TimeExecution1 Execution2 TimeExecution2 Execution3 TimeExecution3 ExecutionDeviation TimeExecutionDeviation
N100A0 9145 121.985 9134 112.063 9186 122.094 27 5.760N100A25 10138 86.725 9926 86.860 10077 85.640 109 0.669N100A75 9374 43.625 9346 49.828 9541 49.610 105 3.520N100A100 9962 30.969 9975 32.250 9936 29.453 20 1.400N200A0 18995 418.110 19009 416.953 18920 410.297 48 4.217N200A25 19634 250.812 19723 243.250 19608 252.844 60 5.056N200A50 20019 177.953 19620 178.992 19813 178.812 200 0.556N200A75 20722 120.687 20850 125.719 20857 118.156 76 3.850N200A100 19855 100.890 19948 101.125 19932 104.203 50 1.849N300A0 28509 750.062 28501 748.641 28501 745.594 10 2.283N300A25 29613 429.156 29723 427.563 29627 425.797 60 1.680N300A50 30106 315.875 30183 313.688 30240 319.656 67 3.020N300A75 29906 365.781 29718 368.297 29838 366.219 95 1.344N300A100 30836 234.469 30654 234.047 30645 235.313 108 0.645N400A0 38905 750.281 39075 701.843 38905 700.094 90 28.484N400A25 40210 630.547 40420 630.438 40169 631.781 135 0.746N400A50 40960 742.937 40486 743.953 40486 744.063 254 0.621N400A75 41070 514.390 41133 524.656 41070 514.266 338 5.963N400A100 41280 328.359 41511 328.594 41008 330.765 252 1.326N500A0 48372 833.984 48865 858.922 48357 828.844 289 16.008N500A25 50257 803.375 50589 813.469 49932 792.328 329 10.574N500A50 51538 740.922 51684 748.156 51538 728.422 82 9.983N500A75 52035 807.000 51732 845.719 51732 822.360 152 19.497N500A100 51590 513.422 51278 513.964 51278 515.031 161 0.819
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