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Abstract

Delivering and collecting problems concern to situations where goods are delivered (or collected) in practical
cases. For example, solid waste collection, postal services and snow removing. They can be modelled as the
well-known Chinese Postman Problem on mixed graphs (MCPP). The MCPP is a fair model for delivering and
collecting problems because its goal is to cover all links of a mixed graph with minimal cost. The objective of
this paper is to develop an algorithm based on Ant Colony Optimization (ACO) and apply it to MCPP solution.
The MCPP is initially converted into an equivalent Travelling Salesman Problem (TSP) and then tackled on this
second instance. According to our knowledge, this approach for MCPP solution is the first one in literature.

Keywords: Arc Routing Problems; Chinese Postman Problem; Metaheuristic; Asymmetric Traveling Salesman
Problem.

Resumo

Os problemas de entrega e coleta tratam das situagdes onde objetos sdo entregues (ou coletados) em casos praticos.
Por exemplo, coleta de lixo sdlido, servigos postais e remocdo de neve. Eles podem ser modelados como o conhecido
Problema do Carteiro Chinés em grafos mistos (PCCM). O PCCM é um modelo justo para problemas de entrega
e coleta, pois seu objetivo é cobrir todos os links de um grafo misto com um custo minimo. O objetivo deste
artigo é desenvolver um algoritmo baseado na Otimizagdo por Colénia de Formigas (OCF) e aplica-lo para solugdo
do PCCM. O PCCM ¢ inicialmente convertido em um Problema do Caixeiro Viajante (PCV) equivalente e entdo
resolvido para esta segunda instancia. Segundo o nosso conhecimento, essa abordagem para solu¢do do PCCM é a
primeira na literatura.

Palavras-Chave: Problema de Roteamento de Arcos; Problema do Carteiro Chinés; Problema do Caixeiro Viajante
Assimétrico; Metaheuristica.

1 Introduction on urban networks. Mathematically, given a constraint

set on the arcs, the problem concerns to find the

Several routing problems model practical problems for
cost reduction, such as, garbage collection (Golden
etal., 2017), street cleaning planning (Bodin and Kursh,
1979) and ice or snow removal (Eglese, 1994). This
set of problems looks for circuits, paths or subsets of

circuits where all of them are paths on street mesh.

They are belong to set of problems known as Arc
Routing Problems (ARP).

ARP is the set of models that deal with street routing

feasible optimal solution. The optimal solution means
an optimal sequence of covering on the arcs. Obligatory
covering over all arcs is a arc constraint, for instance.
Delivering and collecting problems such as garbage
collection, production planning, postal services and
accessing mutual information channels, as shown by
Zhao et al. (2010), are ARP applications. For reader,
Shafani and Haghani (2015) provide a brief introduction
on ARP’s. They report the two classes of routing


http://dx.doi.org/10.5335/rbca.v12i1.9317
http://seer.upf.br/index.php/rbca/index
https://orcid.org/0000-0002-1186-8740

Limaetal. |

Revista Brasileira de Computagdo Aplicada (2020), v.12, n.1, pp.44-53 45

problems (Arc Routing Problems and Node Routing
Problems), as well as some applications.

Within ARP, Chinese Postman Problem (CPP)
translates some everyday problems into mathematical
environment. CPP is defined as a problem in which
a route must be created. It leaves from initial node,
which must coincide with the end point of the route,
passing through all the edges at a minimal cost. CPP
variations are diverse, but the focus of this study is
on the mixed variation, called Mixed Chinese Postman
Problem (MCPP).

The MCPP is a fair model for these problems,
because the urban meshes present directed and not

directed streets, namely one-way and two-way streets.

Regarding to MCPP, the literature does not show many
solution attempts to this problem. Other problems,
like the Travelling Salesman Problem (TSP), it have
more attempts than MCPP. However, studies based
on MCPP problems have practical advantages. For
example, Sherafat (2013) reaches a traveled distance
reduction of 5.8km for a collecting vehicle responsible
by trash collecting in a neighborhood in Aracaju city.

The problems mentioned above (MCPP and TSP) are
solvable in a non-polynomial way. That is, algorithms
that guarantee the optimal solution are processed in
non-polynomial time (the solution set grows in a
non-polynomial way according to the increase of the
variables). So, depending on problem size, solve it is
not possible in a feasible processing time. Therefore,
for many practical cases, the problem resolution should
be done through an approximate approach, such as the
metaheuristics.

We decided to solve the MCPP transforming it
into a TSP instance and applying the Ant Colony
Optimization (ACO) on this instance. Briefly, the
ACO is a metaheuristic bio-inspired in ant behaviour
for food search. They use a biological factor called

pheromone for efficiency improvement in this process.

Namely, our goal is to solve the MCPP instances using
a polynomial transformation to TSP, through an ACO
algorithm. On the best of our knowledge, this approach
is the first one in literature.

This paper is structured as following: section
2 explains the two problems that are treated in
this study and their variations. Section 3 shows
the metaheuristics for TSP and MCPP. Section 4
formally presents the ACO and the proposed algorithm
is explained in Section 5. Section 6 shows the
computational results and finally, section 7 shows the
paper conclusion.

2 Chinese Postman
Salesman Problems

and Travelling

Chinese Postman Problem (CPP) was initially devised
by Mei-Ko (1962) when analyzing the work of mailmen
in China. Its definition is described in a graph
G=(V,E), where V is the set of vertices and E the
set of edges. Each edge has a positive associated
cost. The goal is to find a closed circuit with lower

cost, in which all edges must be visited only once.

From its idealization to nowadays, CPP gained some
variations. Eiselt et al. (1995) cites some of them, such
as Chinese Postman with Wind (CPW), Mixed Chinese
Postman Problem (MCPP) and Chinese Hierarchical
Postman (CHP). CPP and its variations have several
applications in everyday problems, such as vehicle
routing problems, mailmen problems and the street
maintenance planning (Thimbleby, 2003).

Initially, the problem was formulated considering
only edges (non-oriented case) and it was solved
by Edmonds and Johnson (1973) with a matching
algorithm to solve the node parity of the problem.
When modeled only with arcs (oriented case), it also can
be solved with the same algorithm after making some
adaptations that become it in a minimum flow problem.
Both totally versions (oriented and non-oriented) of
the problem are of polynomial order. So, they are well
solved. However, the variation corresponding to the
MCPP is an NP-Hard problem (Papadimitriou, 1976).

As previously explained, MCPP is a problem little
addressed in the literature, when compared to other
problems, such as TSP. Thus, it was decided to
use an MCPP to TSP transformation, preserving the
feasibility and equivalence of solutions. This type
of transformation has been studied. In one brief
review, we can cite three works. First, Laporte (1997)
creates a general transformation, translating many ARP
problems into equivalent TSP’s. Posteriorly, Sherafat
(2004) makes a wide transformation based on four
phases. Lastly, Gordenko and Avdoshin (2017) propose
a MCPP to Generalized TSP (GTSP) transformation.
After this first transformation, the GTSP is transformed
into an correspondent Asymmetric TSP (ATSP). In few
words, the ATSP is the TSP which the edge costs in both
directions are not equals. All cited procedures generate
a TSP with |A|+2|E| nodes, where A is the set of arcs
and E the set of edges. Namely, an arc is denoted as
link that has only one direction. Otherwise, edges can
be traveled in two directions. Finally, note that the
TSP is also NP-Hard (Laporte, 1992). Therefore, this
change just concerns computational implementation.
Here we used the Sherafat (2004) transformation, but
any transformation could be used.

About TSP, it is a problem that belongs to NRP class.
Its worry is to find out a closed path that must pass
on every node only once, with minimal cost. The
mathematical formulation for TSP on directed graph is
given as follows:

Min = Z Xij'cij (1)
ieV,jev
4
S.T.:injzl, Vjev (2)
i=1
VI
injZI,ViEV (3)

j=1
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> oxi<Isl-1, (Scv,lvl-2>1sl>2)  (4)
ieS,jes

x;j = 10,13, Vi,je V. (5)

Above, V is the set of nodes, S is a subset of V and
(i,j) is an arc. The objective function of the linear
problem (Eq. (1)) is to minimize the total cost of the
route performed. Constraints (Egs. (2) and (3)) force
all nodes to be visited only once. In addition, they
guarantee that the solution is a closed circuit (initial
node equal to final node), because when all nodes

are visited, the returning to the initial node is occurs.

Constraint (Eq. (4)) eliminates any subcircuit that can
be created. Finally, last constraint refers to trivial
condition to binary variables.

Some algorithms (Grotschel and Win, 1992, Sherafat,
1988, Nobert and Picard, 1996) try to solve CPP
variations and achieve satisfactory results in contrast
to needed computational resources. They are exact
algorithms and has high computational demand for
large instances, that is, the number of steps in their
execution grows in a non-polynomial way. Namely,
the increase of the problem variables increases the

space solution of the problem in non-polynomial way.

Thus, the choice by attempting based on approximate
algorithms is valid, mainly for large instances. On
the other hand, exact algorithms present an universe
of formulations well explored and none significant
advance for the reduction of computational time was
reached in recent years.

Therefore, a good alternative today is the use of
approximate methods, which present a good number of
algorithms and approach possibilities. These methods
require less computational effort and could reach the
optimal solution.

3 Metaheuristics for TSP and MCPP

Approximate algorithms were very important for
the development of techniques in Combinatorial
Optimization. There is a division into two groups for
approximate methods: heuristics and metaheuristics.

Heuristics are methods based on the deterministic
choices for a set of possibilities in each step of the
procedure. So, they took the best decision for current
step, regarding to some approximate rule. Some
applications of heuristic procedures for TSP (and some
its variations) can be seen in Karabulut and Tasgetiren

(2014), Mestria et al. (2013) and Monkman et al. (2008).

On the other hand, metaheuristics are methods
whose decisions are made in a stochastic way, using
the information of the faced problem. Furthermore,
they are bio-inspired methods. The use of particular
mechanisms by methods provides the possibility of
escape from local optimums. This premature “prision”
is a factor limiting to the efficiency of heuristics. So,
metaheuristics have been the best choice for solution

of routing problems. Thus, several algorithms based
on metaheuristic classes have been proposed and
presented good results. We can cite Genetic Algorithms
with several types of crossover (Ahmed, 2010, Cheng
and Gen, 1994), Ant Colony algorithms (Prakasam and
Savarimuthu, 2015) and Ant Colony Algorithms with
improvements to reach better location earlier, using
the calculus concept (Saenphon et al., 2014).

Metaheuristics present a vast number of algorithms.
For instance, Genetic Algorithm (H. Holland, 1984),
Simulated Annealing (Kirkpatrick et al., 1983) and
Ant Colony Optimization (Dorigo, 1992), Teaching-
Learning-Based Optimization (Rao et al., 2011), Particle
Swarm Optimization (Kennedy and Eberhart, 1995),
Bat Algorithm (Yang, 2010b), Harmony Search (Yang,
2010a) and Social Network Optimization (Sherafat,
2017). The state-of-art in metaheuristics for both
MCPP and ATSP problems are, for the bibliographic
research done here, the GRASP method tested by
Corberan et al. (2002) and Genetic Algorithm by Nagata
and Soler (2012), respectively.

With respect to metaheuristics for the MCPP, we
listed just two works. The first is the state-of-
art commented previously (Corberan et al., 2002),
which use a GRASP metaheuristic, based on two phase:
construction phase and local search phase. The basic
procedure used by authors is to orient edges in one
direction (transforming it in one arc) and to solve
this oriented CPP optimally, since oriented CPP can
be optimally solved. So, each edge is oriented in turn,
observing the flow for the two nodes associated to edge.
At end, with all edges oriented, the minimum cost flow
problem associated to this directed graph is solved. In
improvement phase, the operation is based on deletion
of any two copies in any edge that appears more than
twice in current solution with contrary orientation.
With this path deletion, one new minimal cost path is
performed between these two nodes. Worth remember
that just some pair nodes are selected in each phase.

Jiang et al. (2010) describe a Genetic Algorithm
for MCPP. They proposed mechanisms that always
generate a feasible solution. The authors use a
crossover operator based on swaps of one link (arc
or edge) copy, effecting other operations for the
maintenance of feasibility. Concerning to the mutation
are used two operators. The first one deletes one
path which contains only copies of links and finds
another better path. The other operator makes a change
in direction of an edge and creates other two paths
between the nodes of edge to keep the flow balancing.
Finally, there is a redundancy elimination phase for
circles removing. The instances tested are small, but
the proposed algorithm presents better results than a
heuristic used for comparison.

Differently from MCPP, the TSP has many
metaheuristics developed for its solution. For example,
Osaba et al. (2016) propose a Improved Bat Algorithm
for ATSP and TSP resolutions. The authors tested
instances from TSPLIB (http://elib.zib.de/pub/mp-
testdata/tsp/tsplib/tsplib.html) and reached results
better than two basic Bat Algorithms implemented
for them. In addition, comparisons to five
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different metaheuristics were done and the results
are comparable. In a new metaheuristic introduced,
the Discrete Bacterial Memetic Evolutionary Algorithm,
it was tested the TSP and TSP with Time Windows
(TSPTW) instances. In few words, the procedure
are not able surpass the state-of-art of heuristics
for the TSP, but achieves good and more predictable
results (Koczy et al., 2017). A Discrete Symbiotic
Organisms Search algorithm is proposed by Ezugwu
and Adewumi (2017). Namely, this metaheurstic is
based on dependency-relations between organisms in
nature. It used three symbiosis phases: mutualism,
commensalism and parasitism. In each one of them,
one specific interrelation between organisms is made.
Firstly, they made comparisons between the new
algorithm and a basic Symbiotic Organisms Search
algorithm. Posteriorly, four metaheuristics were
compared. Instances from TSPLIB were used and the
achieved results indicated that the algorithm is fairly
comparable to only one algorithm. It outperforms all
others methods.

Finally, Taillard and Helsgaun (2019) use the
POPMUSIC metaheuristic to handle large TSP’s (some
instances have 10 million of customers). This
metaheuristic operates based on sub-parts of the
optimization problem. These optimizations are
repeated until that none improvement can be found.
Choong et al. (2019) proposed an Artificial Bee Colony
with a Modified Choice Function. Basically, they
proposed a hyper-heuristic inserted into the Artificial
Bee Colony. Hyper-heuristics are methods that select
other heuristics or create new heuristics for solution
space searches. They use ten neighborhood searches,
the majority based on inserting, reversing, swap and
shuffle. The selection heuristic is updated along
algorithm execution, such that intensification and
diversification are dynamically balanced through scores
for every heuristic. The Modified Choice Function
has its efficiency proven through comparisons with
“standard” Artificial Bee procedures. Finally, the
algorithm is compared to ten state-of-art algorithms,
the majority based on Artificial Bee and Ant Colony
optimizations. The authors done Wilcoxon tests and
prove that their algorithm surpass the majority of the
compared algorithms.

4 Ant Colony Optimization

Ant Colony Optimization (ACO) was formulated and
tested by Dorigo (1992). It is based on the ant behaviour
for food search. Its differential mechanism is the
communication among ants, which is done through a
substance called pheromone, deposited by themselves
while walk. For food search, ants explore the space
around the anthill and leave pheromone along their
paths. Ants that coming out from anthill after some
of them find food, tends to find food more easily.
This happens because the succeeded ants “mapped”
the path to the food through the largest deposit of
pheromone (departing and returning). This procedure
is a reinforcement process over the time, until that

some better path is found, “beginning” a new process.

In the first application of the ACO for the TSP, the
general procedure for tours generation, according to
Dorigo et al. (1996), followed the methodology below:

- Each ant decide its next step based on a probability
function, which depends on the distance between
the current node and the possible nodes to be visited
and the pheromone quantity;

- Each ant must create a feasible solution, in other
words, every node must visited only once;

- After all tours completing, the pheromone upgrade
is done.

The decisions made by ants are according to a
pseudo-probabilistic decision rule. This rule is denoted
by Eq. (6) below.

Tij(f)“-n,:? . .

Sy PossibleNod

Pg‘(t) = {Zfij(t)a.n,?’lf} € rossiblelNodes (6)
0, otherwise,

where, 7, is the inverse of distance between the two
nodes, PossibleNodes set contains the nodes still not
visited and « and g are the weights for pheromone and
distance, respectively.

With all tours generated, the next step is pheromone
updating. This phase is denoted by Egs. (7) to (9).
Therefore, the pheromone updating follows the
equation below.

Ti)'(t) o= p.Tij(t - 1) + ATU‘. (7)

Above, p is the value of evaporation rate between
iterations t-1and t, 7; is the quantity of pheromone on

stretch (i,j) and A7;; is the value of deposit of chemical
substance. This term is calculated by Eq. (8), which is:

m
ATU':ZAT!;, (8)
k=1

where m is the total number of ants and Ari'; is the

sum of all pheromones left on the stretch (i,j) by all
m ants between the iterations t-1 and t. Finally, each
single deposit is calculated following the Equation 9.

Yo, v (i,j) ¢ Tour(t - 1,1). 9)

K {LQk, v (i,j) € Tour(t - 1,t)

In the Eq. (9), the term Q is the deposit constant
and L, is the tour size of ant k.

There are many variations for ACO algorithms. Some
of them are presented in Stiizle and Linke (2002).
Among all variations, Elitist Strategy Ants System
and Ranked Elitist Optimization deserve mention. In
both, the best ants are encouraged to deposit more
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pheromone than those considered worse (Bullnheimer
et al., 1997). In a new approach, Stiizle and Hoos
(2000) propose that: just the best ant deposits
pheromone in each iteration; the pheromone obeys
two limits (maximum and minimum) and in algorithm
initialization, pheromone for all paths has its value
equal to maximum limit.

Alignments between metaheuristics and other
procedures has been created. These new procedures
are called hybridizations. Euchi et al. (2015), for
example, used the ACO with an enhancement module
based on the 2-opt heuristic applied to Vehicle Routing
Problem. For hybridization between metaheuristics, we
can mention the work of Xiao and Jiang-qing (2012),
which propose a hybridization with mutation, 2-opt
and a Nearest Neighbor. Finally, Dong et al. (2012)
implements a hybridization between the ACO and the
Genetic Algorithm. For more recent hybridization we
can cite Khan et al. (2017), Unold and Tarnawski (2016),
Yan et al. (2017), Ismkhan (2017) and Mahi et al. (2015).

Treating to TSP applications, some works can be

discussed. Eldem and Ulker (2017) made a Max-Min
Ant System algorithm to tackle the Symmetric TSP
denoted on a 3D sphere, where the nodes are on
shell. They use a Genetic Algorithm and Cuckoo Search
Algorithm for comparisons and both are surpassed
by the proposed algorithm. In other work, Zalilah
(2015) ally an Ant Colony Algorithm with hyper-
heuristics. The majority are based on 2-opt and are
computationally cheapest. They tested small instances
(between 30 and 100 nodes) and compared their results
with others seven classic algorithms. The conclusion
is that, indeed, the method is comparable.

Specifically for ATSP we cited three works. Firstly,
Gambardella and Dorigo (1996) present an Ant Colony
System none locals searches. The instances used for
tests are from TSPLIB and have up to 170 nodes. In
other Ant Colony System, Dorigo and Gambardella
(1997) test Symmetric and Asymmetric TSP instances.
Furthermore, they use some methods for comparison.
Both works use the reduced candidate list, encouraged
for large instances. Finally, Bai et al. (2013) make
a hybridization between exact methods and a Max-
Min Ant Colony Optimization. The comparisons are
done with state-of-art of some algorithms. The
achieved results are clearly better than those provided
by others methods, for both computational time and
final solution.

4.1 Proposed algorithm

In this study we used a pure approach instead of some
hybridization. This new algorithm is based on an elitist
strategy, following a variant of ACO methodology. The
general procedure of the algorithm is as follows:

- Ant initial positions are drawn for the quantity m
of ants. In each round of draws ants are putted in
different positions from the others ants until that,
at round, all nodes have one ant. In this case a new
round is started. For example: given G=(V,A) the
graph of the problem, where V=(1,2,3,4,5) and the

number of ants is equal to 10 ants, then a possible
positioning order can be (1,4,5,3,2,2,4,3,1,5) and an
infeasible order would be (1,2,2,4,3,5,4,3,2,1). In the
infeasible positioning, the first round (5 first ants),
contains two ants located in the same node (the
second and third ants are located in node 2). This
mechanism avoids the biased decisions;

Routing probabilities are calculated for nodes still

not visited. With the probabilities calculated, a

number between 0 and 1 is drawn and the interval of

the cumulative probability is matched. This drawing
scheme follows the logic of roulette wheel selection,
where the draw spaces are not symmetrical;

- At the end of each tour performed for all ants, one
iteration is counted and the pheromone is updated.
This updating is made firstly by evaporation phase,
where all quantities for any arc is decreased to
p percentage of its quantity. With each ant cost
computed, the deposit constant Q is denoted as the
average cost of all ants at iteration. The ant deposit is
then defined as 0.Q/Ly, where o is the elitist constant
and L; is the route cost of the ant k. So, the best ant
deposits o times more pheromone than the worst
ant at iteration.

In third step of the procedure above, during the
updating, a rudimentary mechanism was imposed to
increase the initial diversity for the searches. During
the first ten iterations, the evaporation rate was set
to 90%, whereas for remain iterations its value was
maintained according to the selected value.

The pseudo-code of the proposed algorithm is shown
below:

1 Read all parameters;

2 Initialize the adjacency matrix for the pheromone;

3 Initialize PossibleNodes with all nodes of graph;

4 For i:=1 to m do

5 Drawn the ant k in PossibleNodes;

6 if (PossibleNodes=EmptySet) then

7 Initialize PossibleNodes again;

8 While (Currentlteration<=T)

9 For i:=1 to m do

10 For j:=1 to N do //N is the nodes number of the TSP
1 Calculate probabilities following the Equation 6;
12 Fill the roulette with these probabilities;

13 Turn roulette;

14 Go to the node drawn;

15 Associate a number to EvaporationRate, following the rule:
16 if (Currentlteration<10) then

17 EvaporationRate:=0.9

18 else

19 EvaporationRate:=Desired Value;
20 Deposit pheromone according to the rank of the ants;
21 Count one iteration;

Figure 1: Pseudocode of the new algorithm

5 Computational tests

Algorithm experiments were done in a personal
computer with Intel Core i5 1.7GHz processor and 8GB
of RAM desktop. Tested graphs were generated and
classified into 5 groups, where each group is formed
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by 4 or 5 instances of pseudo-manhanttan type. The
graphs were grouped according to the number of nodes
in the initial problem (MCPP). Within each of these
groups, the graph features are changed. In each one of
them, the percentage of arcs is varied between 0% and
100%. The average cost for these links ranged from
20-30.

Before the performance test, the algorithm
underwent a calibration process of the parameters
(a, B, p, T and m) for two graphs of different sizes.
Table 1 shows the values for the five parameters, the
number of nodes in the original problem and in the
transformed problem. These graphs are generals, such
that, they were not used for the performance test.

Table 1: Results for parameters during calibration

Number of Number of
nodes in nodes in a B p(%) T m
MCPP TSP
120 353 1 7 20 100 300
300 890 2 7 25 200 300

The number of ants and iterations, in the calibration
instances presented higher values. However, for the
performance tests, these parameters were decreased,

because the computational time increased considerably.

So, the computational time never exceeded 900s of
processing in our tests. For each instance, 3 tests
were performed, given the stochastic character of the
algorithm. With the calibration of the parameters, tests

were performed and the data are presented in Section 6.

The values for the 3 executions and their respective

average deviations are show in the paper Appendix.

This table contains, from left to right, instance name
(indicating the number of nodes and arcs percentage,
respectively), number of nodes in TSP version, the
optimal solution, the average of solutions for the three
executions, the relative error between this average
and the optimal solution, the parameters «, 3, p, the
number of iterations and number of ants.

The largest relative error was 10.46%. In Table 3 are
presented the results grouped for the percentage arcs
of instances. It can be seen that the largest relative
errors were found for the mixed instances. This is
trivial because the two totally versions of the MCPP are
well solved, as commented earlier.

The relative error also show a dependence with the
size of the graph. Concerning to the metaheuristic
behavior, it promotes a good “sweep” of the path
possibilities, reducing its determinism, especially with
the variable evaporation module. However, to obtain
this range of solutions has a computational price to be
paid.

5.1 Comparisons with related works

We divided our comparisons into two, firstly about
works that deal the MCCP and after that ones to TSP. In
our bibliography research were identified two works in
metaheuristics for MCPP and none of them are an ACO

algorithm. Jiang et al. (2010) use very small instances,
so comparisons with our results is unfeasible. Already
Corberan et al. (2002) use a set of problems similar to
ours. Table 4 contains their tests and ours.

Observing Table 4, we can conclude that GRASP is
better than our algorithm, reaching very good results
in short time. However, Corberan et al. (2002) deal
small problems and results cannot extended for larger
instances.

Now, we compare our algorithm to others based
on Ant Colony Optimization. The work of Dorigo
and Gambardella (1997) was selected for comparisons,
because the used instances are similar to ours and it
presents an basic algorithm just like us, without big
increments in basic framework of ACO. From Table 5
below, we can make some conclusions.

Observing Table 5, we can affirm that our algorithm
is not better than that one compared, but it produces
comparable results.

6 Conclusion

This paper dealt with the Delivery/Collection Problem,
mathematically translated through the Chinese
Postman Problem modeled on a mixed graph. These
problems framed in this class are very important for
various daily activities of the society. Therefore, the
objective of this study was to present a new algorithm
based on Ant Colony Optimization and to test it for
different instances. It was adopted an approach
based on Chinese Postman Problem translation into
Traveling Salesman Problem. For the best of our
knowledge, this is the first ACO algorithm for this
problem. Although the results are not better than
others algorithms, for some instances results are
clearly comparable.

For future studies, the exponential decay rate and
the use of locals searches are pretensions, since the
behavior of the algorithm presents a good chance
of improvement in the implementation of these
mechanisms.
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Appendix
Appendix: General data
Instance Execution1 Time Execution2 Time Execution3 Time Execution Time
Execution1 Execution2 Execution3 Deviation Execution
Deviation

N100AO0 9145 121.985 9134 112.063 9186 122.094 27 5.760
N100A25 10138 86.725 9926 86.860 10077 85.640 109 0.669
N100A75 9374 43.625 9346 49.828 9541 49.610 105 3.520
N100A100 9962 30.969 9975 32.250 9936 29.453 20 1.400
N200AO 18995 418.110 19009 416.953 18920 410.297 48 4.217
N200A25 19634 250.812 19723 243.250 19608 252.844 60 5.056
N200A50 20019 177.953 19620 178.992 19813 178.812 200 0.556
N200A75 20722 120.687 20850 125.719 20857 118.156 76 3.850
N200A100 19855 100.890 19948 101.125 19932 104.203 50 1.849
N300A0 28509 750.062 28501 748.641 28501 745.594 10 2.283
N300A25 29613 429.156 29723 427.563 290627 425.797 60 1.680
N300A50 30106 315.875 30183 313.688 30240 319.656 67 3.020
N300A75 29906 365.781 29718 368.297 29838 366.219 95 1.344
N300A100 30836 234.469 30654 234.047 30645 235.313 108 0.645
N400A0 38905 750.281 39075 701.843 38905 700.094 90 28.484
N400A25 40210 630.547 40420 630.438 40169 631.781 135 0.746
NZ400A50 40960 742.937 40486 743.953 40486 744.063 254 0.621
N400A75 41070 514.390 41133 524.656 41070 514.266 338 5.963
N400A100 41280 328.359 41511 328.594 41008 330.765 252 1.326
N500A0 48372 833.984 48865 858.922 48357 828.844 289 16.008
N500A25 50257 803.375 50589 813.469 49932 792.328 329 10.574
N500A50 51538 740.922 51684 748.156 51538 728.422 82 9.983
N500A75 52035 807.000 51732 845.719 51732 822.360 152 19.497
N500A100 51590 513.422 51278 513.964 51278 515.031 161 0.819
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