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Abstract
Visually impaired (VI) people face a set of challenges when trying to orient and contextualize themselves. Computervision and mobile devices can be valuable tools to help them improve their quality of life. This work presentsa tool based on computer vision and image recognition to assist VI people to better contextualize themselvesindoors. The tool works as follows: user takes a picture ρ using a mobile application; ρ is sent to the server; ρ iscompared to a database of previously taken pictures; server returns metadata of the database image that is mostsimilar to ρ; �nally the mobile application gives an audio feedback based on the received metadata. Similaritytest among database images and ρ is based on the search of nearest neighbors in key points extracted from theimages by SIFT descriptors. Three experiments are presented to support the feasibility of the tool. We believe oursolution is a low cost, convenient approach that can leverage existing IT infrastructure, e.g. wireless networks,and does not require any physical adaptation in the environment where it will be used.
Keywords: Android system; computer vision; SIFT; Visually impaired
Resumo
Os portadores de de�ciência visual enfrentam inúmeros obstáculos em seu processo de inclusão na sociedade.A visão computacional pode ser usada para uma maior qualidade de vida aos portadores de de�ciência visual,contribuindo com a acessibilidade dos locais onde eles frequentam, além de auxiliar na resolução de di�culdadesencontradas em seu cotidiano. Este trabalho apresenta uma ferramenta baseada em visão computacional ereconhecimento de imagem para assistir pessoas com de�ciência visual na contextualização em ambientesfechados. A ferramenta funciona da seguinte maneira: o usuário tira uma foto ρ utilizando uma aplicação móvel; ρé enviada para o servidor; ρ é comparada com imagens previamente cadastradas; o servidor retorna os metadadosda foto mais parecida com ρ; �nalmente, a aplicação móvel retorna o áudio para o usuário baseado nos metadados.O teste de similaridade entre as imagens do banco de dados e ρ é baseado na busca do vizinho mais próximosnos pontos chaves extraídos das imagens através de descritores SIFT. Três experimentos foram realizados paraidenti�car a utilidade da ferramenta. Acredita-se que a solução proposta é de baixo custo e uma abordagemconveniente que pode utilizar a infraestrutura de TI existente, e.g., redes sem �os, e não exige nenhuma adaptaçãofísica no ambiente onde a aplicação será utilizada.
Palavras-Chave: Android; de�ciência visual; SIFT; visão computacional

1 Introduction

Visually impaired (VI) people face a set of challengeswhen trying to orient and contextualize themselves.

Sighted people use an in�ux of visual informationto obtain contextualization; however, VI people areprevented from using that information. Instead, theymust rely on di�erent sensorial cues, e.g., sound, touch,
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and smell, to contextualize the surrounding elementsand properly navigate the environment. Contextinformation is essential for VI people to navigateboth familiar and unfamiliar environments (Loomiset al., 1998, Bradley and Dunlop, 2005). Sight isalso considered an important promoter of di�erentactivities, including motor, perceptive and mental ones,so visual impairment might reduce or limit the capacityof social inclusion (Bittencourt and Hoehne, 2006).Initiatives that aim to help VI people are essential toallow those individuals to be more independent, whichimprove their quality of life and participation in society.Two of those initiatives are tactile paving surfacesand Braille labels. Environments present di�erentcon�guration and constraints that can prevent the useof such technologies, including the lack of space, theexistence of obstacles, and the impossibility of applyingchanges to the place, e.g., historical site. Additionally,logistical and �nancial investments are required toproperly and fully equip large environments. All thoseelements directly a�ect VI people, which compromisetheir navigation and contextualization capabilities.
Technological advancements in di�erent �elds,such as computer vision, introduced e�cient andcost-e�ective solutions to help the VI community.Mobile devices equipped with cameras can be usedto help VI people without the costs and logistics ofinstalling tactile paving surfaces or Braille labels inexisting environments, for instance. Mobile devicesare particularly powerful because they can be used inplaces where the previously mentioned aiding methodscould not be installed, e.g. old or historical sites.Solutions based on mobile devices and computer visioncan provide accessibility for such places, requiringrelatively simpler or no adaptations when compared toother solutions that require the installation of physicalequipment (Helal et al., 2001). Software solutions areoften based on the acquisition and processing of photosto provide aid, which is signi�cantly less costly anddemanding than actually applying physical changesto a given place. Mobile solutions have also beenreported as a way of promoting social inclusion forVI people (Lima et al., 2017). Research conductedon that front have shown the use of wearable audioassistance and obstacle detection based on lasers, shoesand smart glasses (Walimbe et al., 2017). It is clearthat a computational system running on hardware at areasonable cost, e.g., smartphone, can allow VI usersto navigate better and contextualize themselves. Thisinitiative is an essential step towards social inclusionof VI people. In that light, we propose a tool named

Indoor Navigation for viSually ImpaireD (INSIDe), whichaims to help VI people to contextualize themselves inindoor environments. It uses computer vision for therecognition of images containingmeta information thatwere previously added during a mapping phase. Users,who can be partially or wholly visually impaired, usea smartphone to analyze the environment, receivingaudio feedback regarding objects ahead, e.g., doors,news panel, among others. The tool has beendesigned to work indoors, making use of existing ITinfrastructure available in the place, e.g., wireless

network. Those characteristics allow our solution tobe low cost and easily integrated into a wide variety ofplaces, including those unable to be physically adaptedto follow accessibility guidelines.
Di�erently from previous work, INSIDe does notrequire marker tags to be placed in the environment,e.g., QR codes, to provide feedback to users. The onlyrequirements regarding hardware are a smartphone,a server, and a wireless network to connect them.Recognition of objects is performed on the serverusing feature extraction, i.e., Scale Invariant FeatureTransform (SIFT) descriptors (Lowe, 1999), to checkfor similarity between images. As a consequence, highprocessing power is not needed on the smartphone usedby the VI person. We believe INSIDe is a convenient,low cost and easy to use solution that does not requirephysical changes to be applied to the environmentwhere it will be used. We highlight the followingcontribution of the present work: (i) an empiricalevaluation of the use of SIFT descriptors in the contextof image detection aimed for contextualization ofindoor environments; (ii) our solution is non-obtrusiveand does not require changes to the environment whereit is deployed; and (iii) it uses ordinary, low costhardware and is able to use already existing resourcesavailable in the place, e.g., wi� network, as well asbeing highly adaptable, since changes that eventuallyhappen in the place can be easily updated in thedatabase. Finally, the proposed tool and its architectureare not limited to VI users; it can also help sightedpeople to contextualize unfamiliar places or possiblyenhance the visual experience with contextualizedaudio feedback in places like museums.
The rest of this paper is organized as follows: section2 presents the related work, and the following sectionpresents the INSIDe tool, detailing its architecture andmodules. Section 4 presents the description and resultsobtained with three experiments that were conductedto validate our proposed tool. Sections 5 and 6 present adiscussion and the limitations of our tool, respectively.Finally Section 7 presents a conclusion and futurework.

2 Related work

Use of computer vision for object recognition with theaim of helping visually impaired people navigate is arecurrent research topic (Jafri et al., 2014). Chaccourand Badr (2015) propose a system to aid VI people tonavigate indoor environments by using a network ofcameras mounted in the ceiling. Images are sent to aremote processing unit, which uses computer vision todetect the user location. Navigation information is thensent and read aloud in a mobile application being usedby the individual. Croce et al. (2014) also presentsa solution based on mobile devices to inform a VIindividual if the current navigation direction is correct.The ideal navigation path is marked on the �oorusing painted/printed tags. The mobile applicationinforms the user about the navigation by vibrating,i.e., vibration intensi�es when the user navigates away
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from the marked tags on the �oor. Elloumi et al.(2013) present a similar approachwhich provides indoornavigation based on a pre-de�ned and marked route.During a learning phase, images of the environmentcaptured at speci�c points of a pre-de�ned route areadded to a database. During the usage phase, theimages captured by the user’s smartphone (suspendedin the user’s chest) are compared in real-time to thepreviously added images in the database. The matcheddatabase image is used to calculate the current angulardeviation of the user related to the pre-de�ned route.That information is provided to the user to aid thenavigation. The guidance the user receives is not basedon the objects in the surroundings, but on the anglesand the deviation from the pre-de�ned route.
Solutions based on custom hardware mounted onVI users are also found in the literature. Limnaet al. (2009) present a stereo vision system that usescomputer vision to provide users with informationregarding the distance of objects. Two camerasmounted on the user’s shoulders provide a video feedthat is processed to detect objects and their position tothe user. A sound alert is emitted when a possiblecollision is imminent. A downside mentioned bythe authors is the high computational cost of thesolution, which requires parallel processing to befeasible. Similarly Wenqin et al. (2011) propose atool that provides users with audio feedback regardinginformation about planar surfaces and obstacles ahead.Two cameras are mounted on each of the user’sshoulders, whose images are analyzed by computervision techniques to �nd relevant information to theuser. Tian et al. (2010) use a single, small cameraattached to a hat or pair of glasses to provide userswith information about doors. The procedure to detectdoors uses a geometric door model that contains onlylines and corners. Consequentially the method doesnot rely on appearance features of the doors, e.g., colorand texture, but on its shape instead.
Other approaches found in the literature focuson using computer vision or human help to extracttextual information from the environment. Ezakiet al. (2004) propose the extraction of text foundin scenes to help VI people. The process relies onimage segmentation and letter recognition based ontwo classi�ers, namely Naive Bayes and Support VectorMachine (SVM). Bigham et al. (2010) propose theVizWiz system, which allows VI users to recruit helpfrom crowd-sourcing websites where humans quicklyperform the recognition. Using the camera of a mobiledevice, the user takes a picture of an object, asks aquestion about it, and within a short time intervalreceives an audio answer. Dapper Vision (n.d.) alsopropose a solution that uses crowd-sourced help andthe Google Glass. Users take a picture of an objectand make a question about, which is then analyzedand replied by humans from websites like Twitter orAmazon Mechanical Turk Platform.
Solutions based on geographical informationwithout image recognition are also reported in theliterature. Helal et al. (2001) present an outdoorsnavigation system based on entirely automated analysis

of geographical data. The VI user must use a portablecomputer, which continually receives information fromsurrounding sensors and systems, such as wirelessnetworks, geographic information systems (GIS), andGPS data. Similarly, Loomis et al. (1998) present anavigation approach based on GPS and a databaseof objects and their locations. The system providesinformation regarding the surrounding elements basedon the data available in the database and the currentgeographical position of the user. Authors highlightthe challenges and costs of using a GPS-based systemfor navigation.
Finally, approaches based on object recognition tryto overcome the limitations of previously mentionedworks. Deb et al. (2013) proposes a low-cost solutionthat guides VI people to detour obstacle in outdoorenvironments. However, any further informationabout the objects is not given to the user. Patelet al. (2018) propose a similar solution based onmachine learning techniques to detect obstacles whichrelies on a multisensor system composed of a infraredsensor, a web camera, a ultrasonic sensor, and aRaspberry pi. All those sensors, however, increasethe equipment requirements for such a solution towork, demanding a more specialized setup associatedwith more expensive hardware. Bagwan and Sankpal(2015) propose a solution called VisualPal that doesnot require environment adaptations, being able torecognize colors, brightness, and objects. VisualPaluses an arti�cial neural network running on Androidsystems to recognize objects, however its performanceis not discussed by the authors since processing timefor object recognition is not reported. Lastly, Matusiaket al. (2013) also rely on object recognition to aid in VIpeople navigation. In such approach, SIFT descriptorsare used to recognize objects, but it is not clear how thedescriptors are compared since previous images mustbe stored for comparison.
Our solution di�ers from previous work in severalaspects. Firstly, we do not require physical changesor adaptations to the environment where it will beused, di�erently from approaches that rely on ceilingcameras (Chaccour and Badr, 2015) or marks on the�oor (Croce et al., 2014). Secondly, our solution usesthe camera of an ordinary smartphone and a wi�network to operate. No special setup or hardware isrequired, such as additional mounted cameras (Limnaet al., 2009, Wenqin et al., 2011), multisensors (Patelet al., 2018), antennas (Helal et al., 2001), �uxgatecompass and batteries (Loomis et al., 1998), or crowd-sourced help from real people (Bigham et al., 2010).Finally, previous work focuses on the angular deviationof users concerning a pre-de�ned route (Elloumi et al.,2013), while our approach focuses on the identi�cationof objects in the environment based on their uniquefeatures. As a consequence, our solution is still ableto identify objects even if they are moved from oneposition to another in the environment. Similarly toother approaches based on object recognition (Debet al., 2013, Bagwan and Sankpal, 2015, Matusiak et al.,2013), our solution uses SIFT descriptors, the alreadyexisting network infrastructure of an environment,
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1. Take picture

3. Check similarity of images using computer vision4. Read data from 
database

5. Fetch metadata of most similar image

6. Send metadata to mobile client

2. Send image to server

Figure 1: The overall architecture of our proposed tool. 1) Mobile client captures image; 2) Client image sent toserver; 3 and 4) Check similarity of client image against images in database; 5) Fetch metadata of database imagethat is most similar to client image; 6) Send metadata back to mobile client, which will provide the user with anaudio feedback

and a smartphone to provide a low-cost contextualguidance to visually impaired users. In that light, weclearly present the processing time and limitationsregarding the use of SIFT descriptors in our approach,which is not clearly discussed by previous authors.

3 Tool overview
Our proposed tool, named INSIDe1, aims at helping VIpeople to contextualize themselves better indoors. Theprocess is composed of two main phases: environmentmapping and object contextualization. In the mappingphase, the environment where the tool will be usedhas its objects mapped from pictures and metadata,e.g., the name of the object. All mapping data isuploaded to a web server to be accessed later by themobile client in the contextualization phase. In thecontextualization phase, shown in Fig. 1, a VI personuses a mobile application and the smartphone camerato contextualize him/herself with the environment.The contextualization process starts when the mobileapplication acquires a picture of the area in front ofthe user (step 1). The picture is sent to the serverthrough the network (step 2), where computer visiontechniques are used to search for a similar imagestored in the database (steps 3 and 4). All imagesstored in the database were previously added duringthe mapping phase. When a similar image is foundin the database, its associated metadata is retrieved(step 5), which includes a textual description of theimage, e.g., door to room 20. Finally, the metadata issent back to the mobile application, which reads thetextual information aloud to the user (step 6). Thecontextualization process is repeated for each picturecaptured by the user, which allows him/her to obtaincontextual information about the environment fromthe audio cues (based on the metadata returned by theserver).The following sections present in details the overallarchitecture and components of the mapping and the
1Source code available at https://github.com/inside-project

Figure 2: Mobile application INSIDe client. Left:application running in user mode. Right: applicationrunning in administrative mode.

contextualization phase.
3.1 Overall architecture

INSIDe uses a client-server architecture based onthe HTTP protocol for communication. It allowsthe tool to leverage existing IT infrastructure and beeasily deployed to environments with already workingnetworks. The INSIDe client is a mobile applicationdeveloped for Android 3.0 and above, featuring twoworking modes: user (default) and administrative,as illustrated in Fig. 2. When in user mode, theapplication contains a single screen that shows whatis being captured by the device’s camera. Whenthe user taps any part of the screen, a picture iscaptured and sent to the server for analysis (seesection 3.3). The administrative mode is intended tobe used by a sighted individual who is responsiblefor providing the functionalities of the INSIDe toolin a given environment, including the process ofupdating any existing metadata when changes happento the place. Finally, the INSIDe server has been
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developed using PHP and the database managementsystem MariaDB. The role of the server module is toprovide mobile clients with contextual informationupon receiving images and having them processed bythe image recognition module (detailed in section 3.3).
3.2 Environment mapping

Environment mapping is a critical component of thetool. It is responsible for acquiring and curatingall data required to allow our proposed solution toproperly work, i.e., recognize objects and help VIusers contextualize their navigation. The mappingprocess is based on two elements: the INSIDe clientrunning in administrative mode, and the servermodule. The mapping begins with a sighted user,i.e., administrator, operating the mobile client inadministrative mode while navigating the environment.The administrator must judge which objects are criticalto the environment and whose contextualization willhelp VI users. For a given object of interest, theadministrator maps it by taking a picture of the objectand inputting information about it, namely: latitude,
longitude2, name, description, and name of the placewhere it is. Latitude and longitude are used to geo-reference the object, which narrows down the possiblecandidates during the search performed by the imagerecognition module. The name of the place is aimedexclusively to the administrator, so one can keeptrack of mapped objects and their locations whenmaintaining the database of images up to date.When the server receives a new mapped entry,i.e., object picture and its metadata, the image isprocessed. Firstly, it is converted to grayscale andsized to have a maximum width or height of 500px(keeping the proportion among them). Next, a set ofSIFT descriptors, i.e., key points, are extracted fromthe image, which are illustrated by the yellow circlesin Fig. 3. Finally, the image, its SIFT descriptors,and metadata are stored in the database. The SIFTdescriptors for any given mapped object are calculatedjust once, which optimizes the process of the imagerecognition module (section 3.3) when searchingfor similar images since stored descriptors can beused instead of recalculating them. The capacity to�nd similar images in the contextualization phase isdirectly related to the quality of mapping images. Amapping image is said to be of good quality whenthe administrator can adequately frame the mappedobject while capturing the least amount of informationsurrounding such object, e.g., adjacent elements. Ifthe mapping image of an object contains artifacts,e.g., a superposition with other objects, re�ections,or occlusion, then extracted key points might not beunique enough to di�erentiate the mapped object. Itcauses wrongmatches in the image recognition process,resulting in false-positive feedback to the user.Ideally, the administrator should map the same

2Latitude and longitude can be automatically collected dependingon the device used.

object from di�erent angles and distances. The searchfor images performed in the contextualization phaserelies on the similarities of the images, so a picturetaken by the mobile client is more likely to be foundif it mimics the con�guration (position and angle)of an image in the database. As an example, if theVI user is positioned to the left and 2m away froma mapped object, the recognition of the picture ofthat object is more likely to be found in the case theadministrator captured a mapping image relativelyclose to the position where the VI user is, i.e., similardistance and angle.
3.3 Object recognition and contextualization

Object recognition is performed with the interactionamong the mobile application, the server, and theimage recognition module. The mobile applicationstarts the process by capturing an image and sending itto the server over the network. The server receivesthe image and forwards it to the computer visionmodule, which performs the recognition. As previouslyexplained, during the environment mapping phaseseveral objects are pictured and added to the databasealong with their associated metadata. The recognitionprocess is based on a similarity test performed on theimage received from the mobile client and the objectimages stored in the database.The similarity test among the image sent from themobile client and the images stored in the databaseis based on the search of nearest neighbors in setsof key points extracted by SIFT descriptors. Given
Ic as the image captured and sent to the server bythe mobile client, and M = {I0, I1, ..., In} as the setof images stored in the database, created duringthe environment mapping phase. Firstly the SIFTalgorithm is applied to Ic, which extracts a set of keypoints, named Fc. Next, each image Ii ∈ M has itsSIFT-extracted key points retrieved, which build theset Fi. As previously mentioned, the key points ofimages in M are extracted via SIFT once when theimage is added to the database. Following that step,a kd-trees matcher with �ve trees is used to calculatethe similarity among the key points of Fc and Fi. Weused the SIFT and kd-trees implementations providedby OpenCV and FLANN (Muja and Lowe, 2014) libraries,respectively. A coe�cient pi is calculated for eachimage Ii based on the percentage of matches foundbetween Fi and Fc according to the FANN kd-treescomparison, as described by Eq. (1):

pi = kdtrees(Fi, Fc)|Fi| (1)
where kdtrees(a,b) represents the number ofmatches between the sets of key points a and b, and|Fi| represents the cardinality of set Fi. As a result, pihas a value within the range [0, 1], where 0 indicatesno match found, while 1 indicates a 100% match. Aftertesting the similarity of Ic and the images in M, theimage associated with the highest pi value is selected
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as the most similar one.The INSIDe mobile client was designed to run ona wide range of devices. In some cases, however,the device’s camera might capture images with alower resolution compared to the images stored inthe database. Consequentially, the image sent by themobile client, i.e., Ic, produces fewer extracted keypoints, i.e., Fc, compared to the set of key pointsextracted from images stored in the database, i.e., Fi. Inorder to account for such problem and ensure the toolwould work even with low-end smartphones, Eq. (1)was modi�ed to account for the number of key pointsof Ic in the similarity test. Eq. (2) presents the adaptedcalculation:

pi = kdtrees(Fi, Fc)|Fi|× 0.7 + |Fc|× 0.3 (2)

In Eq. (2), matching key points are divided by aweighted mean derived from the number of key pointsavailable in both images being compared. For example,assuming Ii has 10000 key points, i.e., |Fi| = 10000,
Ic (image to be compared) has 7000 key points, i.e.,|Fc| = 7000, and kdtrees(Ii, Ic) = 5500, then the resultof Eq. (1) would be 0.55, while the result of Eq. (2)would be 0.60. In our initial similarity tests withEq. (1), a signi�cant number of images that shouldbe considered similar among each other produced lowvalues for pi due to small variations in the resolution ofthe images involved. Empirical tests have shown thatEq. (2) presented satisfying results for the similaritytest compared to those of Eq. (1). Additionally, it betteraccounted for di�erences in resolution when the weightof Ii and Ic was 30% and 70%, respectively, producingfewer false-positives.Fig. 3 shows a visual representation of the matchingperformed among the key points of Ii and Ic of twoobjects in the similarity test. On the left of Fig. 3is the image sent by the mobile client, i.e., Ic, whenperforming a contextualization, which in this case isthe identi�cation of a �re extinguisher. On the right ofFig. 3 is an image stored in the database, i.e., Ii, whichhas been selected as the most similar, i.e., presentedthe highest number of matches among their key pointsand the key points extracted from the image sent bythe mobile device. The blue lines highlight the matchesamong the key points of both images.The similarity test has a signi�cant computationalcost, so the number of images to be tested in thesearch impact the overall time the process takesto complete. Consequently, the search for similarimages has been optimized by geo-�ltering the setof images M before performing any similarity test.As explained in section 3.2, images stored in thedatabase during the environment mapping containmetadata with its physical location, i.e., latitude andlongitude. The geographic position of the mobile clientand the images in M is taken into account to reduce thenumber of images to be compared. Instead of testingthe similarity of all images in M, only those whoseEuclidean distance to the mobile client are less than D

Figure 3: Comparison of key points between twoimages. Left: image sent by the mobile clientfeaturing a �re extinguisher. Right: database imageselected as the most similar to the mobile client imageaccording to the matching of key points (blue lines).

meters are considered. In the experiments presentedin this paper, a value of 10m has been used for D.

4 Experimental validation

We conducted three experiments to validate thefeasibility of our proposed tool. Experiments weredesigned to test di�erent aspects of the tool, such asusability of the mobile application and the accuracy ofobjects recognition in an environment that has beenmapped by the tool. All experiments were conductedat the dependencies of the Federal University ofFronteira Sul. In experiments 1 and 2, a female sightedstudent of the university consented to participate inthe study after being informed of the experimentalprocedure. The subject was blindfolded to simulatethe condition of a VI person, as illustrated in Fig. 4.In order to prevent the subject of using any previousknowledge about the environment and its objects, allobjects included in the environment mapping phaseof the tool received random names and descriptions,e.g., the �re extinguisher was mapped as the exitdoor, the news board was mapped as the elevatordoor, and so on. This procedure ensures the subjectwill not try to �nd any particular object by its realname and position but instead will use the namesreported by the contextualization information providedby the INSIDe mobile application. Additionally, theresearcher who conducted the experiments regularlymonitored the movements of the subject, preventingany potentially unsafe collision against obstacles thatwere not accounted for, e.g., pillar or seat along theway. The following sections describe each one of the
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Figure 4: Blindfolded subject using the mobile client to contextualize an object, i.e., �re extinguisher.

experiments, along with its objective, methodology,and achieved results. A discussion of the results ispresented in Section 5.

4.1 Experiment 1

4.1.1 Objective and methodology
This experiment aims to evaluate if a subject can�nd a requested object in an environment of smallproportions under controlled settings, i.e., followingspeci�c (and ideal) instructions regarding the use of themobile application. In the context of our experiment,an environment of small proportions is a room withfewer objects, e.g., a classroom or a corridor. In theexperiment, the subject must complete three tasks, i.e.,T1 to T3. For each task, the subject was instructed tonavigate the environment and locate a requested targetobject using the mobile application. The researcherexperimenting randomly selected the target object fromthe pool of all mapped objects in that environment. Theresearcher also instructed the subject to take frontalpictures of the objects to be recognized/contextualized.The subject was also encouraged to rely on physicaltouch to locate potential objects to be contextualized bythe mobile application. The subject was instructed tocontinue recognizing objects in the environment untilthe target object was found, which would concludethe task at hand. During each task, the followinginformation was collected: distance between the targetobject and the subject when the task started, whichobjects were recognized during the contextualizationof the environment until the task was completed,

number of pictures sent by the mobile application tothe server (which also corresponds to the number ofcontextualization actions performed by the user), andtime the subject took to complete the task. Finallyto evaluate the user experience regarding the mobileapplication, the subject answered with “Yes” or “No”to questions Q1 and Q2, which were framed as “Are youfrustrated?” and “Regarding the feedback provided bythe mobile application, did it help you complete thistask?”, respectively.
4.1.2 Environment mappingThe experiment was conducted in a long corridor atone of the university buildings. In total, 20 objectswere mapped, i.e., added to the INSIDe database forrecognition, namely: �re extinguisher, classroom doors(4 in total, whose room number ranged from 303 to306), exit door, bathroom doors (4 in total, 2 weresignaled special needs bathrooms), drinking fountain,�re hose container, lab doors (2 in total), manual callpoint for �re alarm activation, elevator doors, and anews board. All objects were mapped (following theprocedure described in Section 3.2) with a single frontalpicture, which tried to frame the object entirely withas few of its surroundings as possible.
4.1.3 Results
Table 1 presents the results of the experiment groupedby task. Columns denote the following: T is the numberof the task, Duration is the time to complete the task,
Target (distance) refers to the requested target object andits distance to the subject at the beginning of the task,
Pictures is the number of pictures captured throughout
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Table 1: Results of experiment 1 grouped by task (T)
T Duration Target (distance) Pictures Recognitions Q1 Q2
1 6 min Fire hose (15m) 5 lab door, �re extinguisher, manual call point for �realarm activation, lab door No Yes
2 10 min Elevator (20m) 9 lab door, manual call point for �re alarm activation,�re hose Yes Yes
3 5 min Exit door (10m) 3 Elevator, news wall No Yes

the task, i.e., contextualization requests, Recognitionsis the list of objects that were recognized while thesubject navigated the environment until the targetwas found, and �nally Q1 and Q2 present the answersprovided by the subject for the questionnaire at theend of each task. The subject was able to successfullylocate and contextualize the requested target object inall tasks, reporting that the received audio feedback washelpful. However, the subject reported being frustratedduring task T2, even though the requested target objectwas found in such case. Such frustration could beattributed to the fact that task T2 requested a targetobject that was away from the subject (20m) and severalcontextualization requests were not successful duringthe navigation. During T2, the mobile application tooknine pictures: �ve (55%) yield negative feedback, i.e.
object not mapped, and four (45%) correctly recognizedthe objects being analyzed, among them the requestedtarget object. It is important to highlight that themajority of the time used to complete the task wasnot associated with waiting to receive feedback fromthe mobile application. Instead, it was related to thesubject navigating the environment carefully due tothe blindfold condition.
4.2 Experiment 2

4.2.1 Objective and methodology
The objective of this experiment is to use the mobileapplication to recognize as many objects as possible inthe environment. It aims to evaluate the feasibility andaccuracy of the tool when providing the subject withcontextualization about the environment in a use casethat is closer to how the tool would be used outside anexperimental setting. Di�erently from experiment 1,for this experiment, the subject was less constrainedregarding how the pictures should be captured. Thesubject was instructed to take pictures 1 or 2 steps awayfrom the objects; however, the orientation of the objectwas not required to be frontal to the camera, e.g., lateralpictures were allowed. Lateral pictures of objects, asopposed to perfectly frontal ones, are more likely tohappen in a real use case of the mobile application,since a user groping an object will immediately try tocontextualize it. The researcher instructed the subjectthat if the mobile application informed it was unable torecognize an object, the subject should try again afterslightly adjusting for the new picture, e.g., change theangle of the camera or move to the right/left vaguely.If the mobile application did not recognize the objectafter three tries, the subject was instructed to ignorethe object and continue with the contextualization of

other elements.
4.2.2 Environment mapping
The experiment was conducted in a long corridor atone of the university buildings. In total, 20 objectswere mapped, i.e., added to the INSIDe database forrecognition, namely: �re extinguishers (2 in total),classroom doors (four in total, whose room numberranged from 303 to 306), exit doors (two in total),bathroom doors (four in total, two were signaledspecial needs bathrooms), drinking fountain, �re hosecontainer (two in total), lab doors (two in total), manualcall point for �re alarm activation, elevator doors, anda news board. All objects were mapped (following theprocedure described in Section 3.2) with 16 pictureseach, all acquired at di�erent distances and anglesconcerning the object. Fig. 5 illustrates the positioningused by the administrator user when mapping objectsof the environment. Mapping pictures were acquiredby following half the circumference line of two circlesof 1m and 2m of radius both centered at the object.In the inner circle, the object was photographedfrom 7 di�erent positions, which were equally spacedamong them. Similarly, in the outer circle, the objectwas photographed from 9 positions equally spacedamong them. The blue block in the center of the�gure represents the object being mapped, while thered marks are the positions where mapping pictureswere taken. When the administrator performing themapping was unable to stand on the desired positions,or when his/her view towards the object was occluded,e.g., interference caused by a pillar, the position wasadjusted until the object could be properly framed andthe o�ending obstacle could be ignored.
4.2.3 Results
Subject attempted to recognize and contextualize atotal of 20 objects in the experiment. A total of13 objects (65%) were correctly recognized by themobile application, namely: two exit doors, two �reextinguishers, two toilets (those of the special needs),manual call point for �re alarm activation, newsboard, elevator door, two �re hose containers, andtwo lab doors. A total of six objects (30%) could notbe recognized, even after the three allowed retries.Finally, one object (5%) was wrongly recognized (false-positive): a �re hose container was recognized as anexit door.
4.3 Experiment 3
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Figure 5: Visual representation of the process used tomap a given object during experiment 2. The blue boxrepresents the object, and the red marks are thepositions from where pictures were taken to map thatobject.

4.3.1 Objective and methodology
The aim of experiment 3 is to evaluate how e�ectiveand robust the matching of SIFT descriptors is forthe comparison of images of a given object picturedin di�erent angles and distances. Di�erently, fromprevious experiments, the focus of this experimentis not on the user experience or on testing thefull architecture of our solution. Instead, thefocus is on evaluating the impact that di�erentangles and distances have when matching key points.Consequentially, the user of the mobile client duringthe experiment was one of the authors, who was notblindfolded. Three objects were randomly selectedto be used in the experiment: elevator door, �reextinguisher, and exit door. Each object was mappedusing a single image, i.e., control image hereafterreferred to Υ, which was taken in a frontal positionat an ideal distance, i.e., enough to frame as much ofthe object as possible without capturing the object’ssurrounding elements/environment. Each of those Υwas then tested using nine images acquired from ninetest cases. In test cases 1 to 3, each testing image wastaken in front of the object (from the ideal distance),1m away from such ideal distance, and 2m away fromsuch ideal distance, respectively. In test cases 4 to 6,each testing image was taken left of the Υ position,from an ideal distance, then 1m and 2m away fromit, respectively. Similarly in test cases 7 to 9, eachtesting image was taken right of the Υ position, alsofrom the ideal distance, then 1m and 2m away from it,respectively. Each test case produced an image of thegiven object being tested, which was compared solelywith the Υ of that particular object, i.e., no search wasperformed on the database. Images produced duringthe test cases of a given object contain variations in theangle and distance of the mobile client relative to theangle and distance used to capture such given object’scontrol image. Test case 1 reproduces the exact setupof the control image, i.e., same angle and distance, andcan be seen as the Υ position. In test cases 2 and 3,the user is in front of the object (same angle as Υ);

however, the distance is di�erent from Υ. In test cases4, 5, and 6 the user is to the left of Υ position, aimingat the object (angle di�ers from Υ), and standing atvarious distances (including the same distance used in
Υ). Similarly in test cases 7, 8, and 9 the user is to theright of Υ position, aiming at the object, and standingat various distances. When performing all test caseson Υ of each of the three selected objects, the usertried to frame the target object as best as possible. Theexperiment was focused on testing how robust the SIFTdescriptors are at matching an object using images atdi�erent angles and distances from Υ. To ensure theanalysis was indeed focused on the matching process,the mapping image, i.e., Υ and the ones captured by themobile client during the test cases presented the sameresolution, i.e., width and height. Additionally, weused Eq. (1) instead of Eq. (2) to calculate the matchingbetween the key points of two images precisely becauseEq. (1) assumes both images have the same resolution.The use of Eq. (1) should maximize the focus of theanalysis on the matching of key points by eliminatingsteps used to account for di�erent resolutions betweenthe images being compared.
4.3.2 Results
Table 2 shows the percentage of matches found whencomparing Υ of a given object against the imagesproduced during all test cases performed on that object.For all three objects, test case 1 (same angle anddistance asΥ) yield a 100%match among the key pointsof the images being compared. This result is expectedsince both images, i.e., control’s and test case’s, arethe same. Excluding test case 9 for the elevator door,all other test cases presented a deterioration in thepercentage of matches as the mobile client moved awayfrom the target object. For the �re extinguisher andthe exit door, the percentage of matches obtained whenstanding to the left or the right of the control position(test cases 4 and 7 respectively), at the same distanceof Υ, were similar among each other. The elevatordoor, however, presented signi�cantly lower matchingpercentage for test case 4 compared to test case 7. Itcould be explained by di�erent lighting conditions orre�ections in the target object when faced from anotherangle, since both test cases 4 and 7 present the samedistance to the target. Overall all objects have shown ahigher percentage of matches for test cases 2 (frontal,1m away from control) compared to test cases 5 (left,1m away from Υ) and 8 (right, 1m away from Υ). Itsupports the idea that the mobile client can acquireimages of objects with di�erent angles and distancesrelative to the one mapped in the database and stillproduce matches within a speci�c range.

5 Discussion

Results obtained from the conducted experiments showthe feasibility of our proposed INSIDe tool. Even thoughthe tests were conducted in a signi�cantly small scaleand without visually impaired subjects, our empiricalresults suggest that the image recognition based on



68 E. Fank et al. | Revista Brasileira de Computação Aplicada (2019), v.11, n.3, pp.59–71

Table 2: Percentage of matches obtained in thecomparison between control and test case images ofdi�erent objects in experiment 3
Object

Test case Elevator door Fire extinguisher Exit door
1 100% 100% 100%2 38,65% 26,61% 42,45%3 26,97% 17,59% 26,26%4 15,67% 23,31% 28,72%5 8,74% 5,63% 11,08%6 7,54% 5,15% 8,64%7 41,92% 20,67% 28,81%8 31,28% 9,31% 22,84%9 37,83% 6,22% 16,72%

feature detection aimed at object contextualizationindoors is plausible. The proposed architecture usedby the tool has been proven functional, allowingenvironments to be easily mapped without the needof physically adapting the place, e.g., the additionof QR code tags. However, the components of oursolution are signi�cantly a�ected by di�erent elements.One of them is the quality of the images used duringthe environment mapping phase, which is directlyrelated to how the mobile client captures images. Asdemonstrated by the experiments, ideal images tomap an object, i.e., frame object as best as possiblewithout its surroundings, does not necessarily yieldan accurate object recognition. During the use of themobile client by a VI person, captured images cannegatively impact our proposed recognition algorithm,i.e., similarity test of images, if the object beingcontextualized is not framed correctly. The imageframing is a signi�cant limitation of our approach,particularly if the mobile client is capturing imageswhere the object is partially cropped or the angle anddistance of the picture considerably di�er from the oneused in the mapping process. This limitation, however,can be mitigated during the environment mappingphase by ensuring that a given object being mappedhas several images taken from di�erent angles anddistances. Observations and results obtained duringexperiments 2 and 3 highlight such limitation alongwith possible improvements achieved when trying tomitigate the problem. In most of the cases duringthe experiments, the user successfully received audiofeedback regarding the object being contextualized.In other cases, however, the mobile client reportedthat the object could not be recognized. Such negativefeedback also happened when the subject was infront of the object, standing at an ideal positionafter groping the target, which is notably frustratinguser experience. As mentioned, limitations regardingobject contextualization can be mitigated; however, ade�nitive solution is a considerably complicated matter.Several factors a�ect the recognition procedure, suchas the wrong orientation of the mobile device, whichis a challenging problem to be solved via software.
Environmental conditions, e.g., di�erentillumination, also a�ect our solution. As demonstratedby experiment 2, which was designed to simulatea real use case of the tool, the mobile client was

unable to recognize some objects, even after thethree allowed retries. Out of the 20 objects thatwere evaluated, seven were not recognized. Objectsa�ected by di�erent lighting conditions or that aretoo similar to other objects, e.g., doors to rooms andbathrooms, a�ect the recognition procedure. In someextreme cases, the recognition process can be a�ectedto the extent that the key points extracted from thetarget image are not unique enough, which leadsto false-positive results, i.e., mobile client wronglyrecognizes an object. Experiment 2 presented thoseextreme conditions when the subject requested acontextualization while in front of a �re hose container,however, the mobile client reported the object as beingan exit door. Any system aimed at helping VI peopleto navigate or contextualize themselves should nothave false-positives since those might put the userat risk. According to the results of experiment 2,our tool presented only a single false-positive audiofeedback. All other objects were correctly recognizedor, in the worst case, the reported audio feedbackinformed the object could not be contextualized. Theratio of false-positive detections in our solution issigni�cantly a�ected by the quality and amount ofmapping images of each object (see Section 4). Ifan operator mapping a particular object in a givenlocation acquires pictures of such object from severaldi�erent angles, possibly mimicking the images that auser would take of such object, then that informationis more likely to allow the tool to recognize the objectin the future correctly. This claim is supported by theresults of experiment 3, which have shown a betterpercentage of matching key points between imagesfeaturing an object pictured in similar distance andangle. Even though a higher number of mappingimages per object in varying angles and distancesmight increase the accuracy detection, it negativelyimpacts the overall performance of the system, i.e.,the time the tool takes to give audio feedback to usersafter they take a picture. As described in Section 3,the tool compares the matching points of an imagetaken by the mobile client against the matchingpoints of several images stored in the database. Eventhough geolocation information is used to limit thenumber of images to compare, if an object stored inthe database has several images associated with it,more comparisons will be performed in the search.
In order to investigate the performance impact ofcomparing database images, we conducted an empiricaltest focused on the time to perform comparisonsconcerning the number of images stored in thedatabase. We stored in the database N imagesof random objects captured in various angles anddistances, all with the same resolution, i.e., width andheight. One of those N images was randomly selectedand compared against such set of N images, usingthe comparison procedure of matching key points asdescribed in Section 3.3. To account for any possibleinternal optimizations performed by the database andthe operational system, e.g., page swap and di�erentworkload, each image is compared to all other N images25 times (N×25 comparisons in total). The average time
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Table 3: Mean comparison time, in seconds, of a givenimage against a set of N stored images
N Time (no cache) Time (cached)
20 000.41 ± 0.005 00.12 ± 0.000240 000.81 ± 0.022 00.24 ± 0.001880 001.64 ± 0.030 00.59 ± 0.0026160 003.35 ± 0.034 01.36 ± 0.0507320 006.66 ± 0.062 02.72 ± 0.1580640 013.34 ± 0.155 05.39 ± 0.15831280 026.62 ± 0.232 10.76 ± 0.24932560 053.26 ± 1.144 21.51 ± 0.50405120 106.63 ± 3.720 43.08 ± 1.220010240 213.38 ± 9.481 86.08 ± 2.1457

among all those 25 repetitions is reported as the time ittakes to compare a single image against a given set of
N images in the database. Additionally, we investigatedthe impact of removing our cached key points, which isan optimization step used to prevent the recalculationof key points of any tracked objects/images storedin the database. When the caching of key points isdisabled, SIFT key points must be recalculated for anycomparison among the mobile client image and theimages stored in the database. Table 3 presents theresults of such test, which was performed on a singlemachine running Ubuntu Linux 16.04 (64 bits) with8GB of RAM, Intel Core i5 processor (3470 @ 3.20 GHz)and a disk of 1TB (7200 RPM). As observed in bothcolumns, Time (no cache), i.e., caching of key points isdisabled, and Time (cached), i.e., caching of key points isenabled, the time to compare an image against a set ofstored images signi�cantly increases relative to N. Theincrease in time is linear and proportional to N. It isalso possible to observe that caching the calculation ofkey points of images stored in the database drasticallyimpacts the performance and response time. Cachingkey points of stored images in the database is essentialto reduce the search time, which helps to deliver audiofeedback to users as quickly as possible.
In light of our results, we believe that our proposedsolution can be improved with further re�nement of theimage recognition procedures and adequate guidelinesto be followed during the environment mapping phase.Our solution has low installation and maintenancecost and does not require physical changes to theenvironment where it will be used. It is a valuableinitiative to increase the independence level of VI peoplein a variety of places, thus enhancing their quality oflife.

6 Limitations

Some limitations of the experimental procedure andour tool should be noted. Firstly, our experimentshad a signi�cantly small sample size (N = 1) whowas not a visually impaired person. It limits theextent to which our tool could be evaluated, soderived conclusions cannot be generalized. However,the experiments validated the feasibility of the tool,

particularly regarding the proposed architecture andthe validity of using SIFT descriptors, i.e., key points,to check the similarities between images. Secondly,it could be argued that our experimental design doesnot re�ect a proper use case of a tool to possiblyhelp visually impaired people because our subjectgroped for objects. A groping action could lead tothe immediate identi�cation of an object, bypassingthe need of using a mobile application for thatmatter. As previously explained, we mitigated thatproblem by assigning random labels to objects in theexperiment. Consequentially, a �re extinguisher couldhave been labeled as “exit door”, for instance, sogroping it still required the subject to use the mobileclient to identify the object within the context ofour experiment correctly. It is our understandingthat visually impaired people indeed use groping andother instruments, e.g., probing cane, to contextualizethemselves with the environment and objects throughphysical contact. Objects that are identical to thegroping touch, e.g., doors without Braille labels,however, do require additional aid to be appropriatelyidenti�ed and contextualized. Those are the caseswe believe our tool could be used. Another possiblelimitation of our tool is the use of SIFT descriptorsinstead of machine learning for the identi�cation ofobjects. We use FANN kd-trees algorithm to calculatethe similarity between the descriptors of two images(see Eq. (2)), using a matching threshold to evaluatesimilarity. Consequentially, our tool does not rely onany machine learning algorithm to recognize or matchimages (see (Wan et al., 2014, Turaga et al., 2008,Liu et al., 2017) for more details). Machine learningtechniques are more likely to identify images accuratelyand robustly under challenging circumstances, i.e.,di�erent illumination. Although such techniques arepowerful for computer vision and related �elds, webelieve that our straightforward approach is moresuitable for a low-cost solution aiming to help visuallyimpaired people contextualize their navigation. Ourtool requires a mapping step that is easy to perform,uses an ordinary smartphone, and can rely on theexisting infrastructure available in the environment,e.g., wi� network. Additionally, it does not require anymodel training time. Besides, our experiments haveshown that image descriptors and similarity algorithmsare e�cient techniques for matching images for thecontextualization and aid of visually impaired users.

7 Conclusion
This paper presented a tool aimed at helping visuallyimpaired people to contextualize themselves duringthe navigation of indoor environments. The proposedsolution is based on mapping the environment byadding pictures of objects of interest, e.g., doorsand news boards, and their associated metadata, e.g.,object’s name, to a database. Using an applicationrunning on a mobile device, the visually impaired usertakes a picture of an object/place whose informationis desired. The image is then sent over the networkto a server, which uses computer vision techniques,
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i.e., feature detection using SIFT descriptors, to searchfor an image previously added to the database duringthe mapping phase that is similar to the one takenby the user. The database image whose similaritywith the image sent by the user is highest is selected,and its metadata is returned to the mobile client.Finally, the mobile client reads the metadata aloud,i.e., audio feedback with the name of the object in thepicture. Our proposed tool has been validated withthree experiments. The �rst one aimed at evaluatingthe accuracy of the tool when recognizing objectsin a small environment with ideal usage conditions.The second experiment focused on simulating the useof the tool that is closer to a real use case, whoseconditions are more challenging. Finally, the thirdexperiment explored how robust and �exible is theuse of SIFT descriptors when checking for similaritybetween images. Results of the experiments show thefeasibility of our tool. Further research is requiredto understand the limitations and accuracy of theproposed approach better; however, our empiricalanalysis suggests the tool is a plausible and low-costsolution to help visually impaired people. Di�erently,from other tools aimed at helping visually impairedindividuals, e.g., tactile surfaces or Braille signs, oursolution does not require any physical change to theplace where it will be used. Additionally existing ITinfrastructure available in the place, e.g., wirelessnetwork, can be leveraged by the tool, which furtherreduces deployment costs. It is our understanding thatour proposed tool can be adapted to other use cases thanhelping visually impaired individuals. For example,sighted users might also use the tool to contextualizethemselves in a given environment, such a museumor a sightseeing visit to an archaeological site. Futurework includes further validation of the tool by usingit on a larger scale than the one presented in thispaper. Contextualization and navigation of a completebuilding, for instance, could be explored. Additionally,the environment mapping phase could be improvedwith the use of mapping guidelines. As presented anddiscussed in this paper, the quality of the images usedin the mapping phase is an essential aspect of ourproposed tool. Further investigation of such aspectcould improve the overall accuracy of the tool, makingit more robust and less likely to produce false-positives.Finally, �eld tests with real visually impaired subjectsare the next step to accurately measure and improvethe user experience of our tool.
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