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Abstract

Visually impaired (VI) people face a set of challenges when trying to orient and contextualize themselves. Computer
vision and mobile devices can be valuable tools to help them improve their quality of life. This work presents
a tool based on computer vision and image recognition to assist VI people to better contextualize themselves
indoors. The tool works as follows: user takes a picture p using a mobile application; p is sent to the server; p is
compared to a database of previously taken pictures; server returns metadata of the database image that is most
similar to p; finally the mobile application gives an audio feedback based on the received metadata. Similarity
test among database images and p is based on the search of nearest neighbors in key points extracted from the
images by SIFT descriptors. Three experiments are presented to support the feasibility of the tool. We believe our
solution is a low cost, convenient approach that can leverage existing IT infrastructure, e.g. wireless networks,
and does not require any physical adaptation in the environment where it will be used.

Keywords: Android system; computer vision; SIFT; Visually impaired

Resumo

Os portadores de deficiéncia visual enfrentam inimeros obstdculos em seu processo de inclusdo na sociedade.
A visdo computacional pode ser usada para uma maior qualidade de vida aos portadores de deficiéncia visual,
contribuindo com a acessibilidade dos locais onde eles frequentam, além de auxiliar na resolugdo de dificuldades
encontradas em seu cotidiano. Este trabalho apresenta uma ferramenta baseada em visao computacional e
reconhecimento de imagem para assistir pessoas com deficiéncia visual na contextualizacdo em ambientes
fechados. A ferramenta funciona da seguinte maneira: o usudrio tira uma foto p utilizando uma aplicagdo mével; p
é enviada para o servidor; p é comparada com imagens previamente cadastradas; o servidor retorna os metadados
da foto mais parecida com p; finalmente, a aplicacdo mével retorna o dudio para o usuario baseado nos metadados.
O teste de similaridade entre as imagens do banco de dados e p é baseado na busca do vizinho mais préximos
nos pontos chaves extraidos das imagens através de descritores SIFT. Trés experimentos foram realizados para
identificar a utilidade da ferramenta. Acredita-se que a solu¢do proposta é de baixo custo e uma abordagem
conveniente que pode utilizar a infraestrutura de TI existente, e.g., redes sem fios, e ndo exige nenhuma adaptacdo
fisica no ambiente onde a aplicacdo sera utilizada.

Palavras-Chave: Android; deficiéncia visual; SIFT; visdo computacional

1 Introduction Sighted people use an influx of visual information

to obtain contextualization; however, VI people are
Visually impaired (VI) people face a set of challenges  prevented from using that information. Instead, they
when trying to orient and contextualize themselves. = must rely on different sensorial cues, e.g., sound, touch,
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and smell, to contextualize the surrounding elements
and properly navigate the environment. Context
information is essential for VI people to navigate
both familiar and unfamiliar environments (Loomis
et al., 1998, Bradley and Dunlop, 2005). Sight is
also considered an important promoter of different
activities, including motor, perceptive and mental ones,
so visual impairment might reduce or limit the capacity

of social inclusion (Bittencourt and Hoehne, 2006).

Initiatives that aim to help VI people are essential to
allow those individuals to be more independent, which

improve their quality of life and participation in society.

Two of those initiatives are tactile paving surfaces
and Braille labels. Environments present different
configuration and constraints that can prevent the use
of such technologies, including the lack of space, the
existence of obstacles, and the impossibility of applying
changes to the place, e.g., historical site. Additionally,
logistical and financial investments are required to
properly and fully equip large environments. All those
elements directly affect VI people, which compromise
their navigation and contextualization capabilities.

Technological advancements in different fields,
such as computer vision, introduced efficient and

cost-effective solutions to help the VI community.

Mobile devices equipped with cameras can be used
to help VI people without the costs and logistics of
installing tactile paving surfaces or Braille labels in
existing environments, for instance. Mobile devices
are particularly powerful because they can be used in
places where the previously mentioned aiding methods
could not be installed, e.g.
Solutions based on mobile devices and computer vision
can provide accessibility for such places, requiring
relatively simpler or no adaptations when compared to
other solutions that require the installation of physical
equipment (Helal et al., 2001). Software solutions are
often based on the acquisition and processing of photos
to provide aid, which is significantly less costly and
demanding than actually applying physical changes
to a given place. Mobile solutions have also been
reported as a way of promoting social inclusion for
VI people (Lima et al., 2017). Research conducted
on that front have shown the use of wearable audio
assistance and obstacle detection based on lasers, shoes
and smart glasses (Walimbe et al., 2017). It is clear
that a computational system running on hardware at a
reasonable cost, e.g., smartphone, can allow VI users
to navigate better and contextualize themselves. This
initiative is an essential step towards social inclusion
of VI people. In that light, we propose a tool named
Indoor Navigation for viSually ImpaireD (INSIDe), which
aims to help VI people to contextualize themselves in
indoor environments. It uses computer vision for the
recognition of images containing meta information that
were previously added during a mapping phase. Users,
who can be partially or wholly visually impaired, use
a smartphone to analyze the environment, receiving
audio feedback regarding objects ahead, e.g., doors,
news panel, among others. The tool has been
designed to work indoors, making use of existing IT
infrastructure available in the place, e.g., wireless

old or historical sites.

network. Those characteristics allow our solution to
be low cost and easily integrated into a wide variety of
places, including those unable to be physically adapted
to follow accessibility guidelines.

Differently from previous work, INSIDe does not
require marker tags to be placed in the environment,
e.g., QR codes, to provide feedback to users. The only
requirements regarding hardware are a smartphone,
a server, and a wireless network to connect them.
Recognition of objects is performed on the server
using feature extraction, i.e., Scale Invariant Feature
Transform (SIFT) descriptors (Lowe, 1999), to check
for similarity between images. As a consequence, high
processing power is not needed on the smartphone used
by the VI person. We believe INSIDe is a convenient,
low cost and easy to use solution that does not require
physical changes to be applied to the environment
where it will be used. We highlight the following
contribution of the present work: (i) an empirical
evaluation of the use of SIFT descriptors in the context
of image detection aimed for contextualization of
indoor environments; (ii) our solution is non-obtrusive
and does not require changes to the environment where
it is deployed; and (iii) it uses ordinary, low cost
hardware and is able to use already existing resources
available in the place, e.g., wifi network, as well as
being highly adaptable, since changes that eventually
happen in the place can be easily updated in the
database. Finally, the proposed tool and its architecture
are not limited to VI users; it can also help sighted
people to contextualize unfamiliar places or possibly
enhance the visual experience with contextualized
audio feedback in places like museums.

The rest of this paper is organized as follows: section
2 presents the related work, and the following section
presents the INSIDe tool, detailing its architecture and
modules. Section 4 presents the description and results
obtained with three experiments that were conducted
to validate our proposed tool. Sections 5 and 6 present a
discussion and the limitations of our tool, respectively.
Finally Section 7 presents a conclusion and future
work.

2 Related work

Use of computer vision for object recognition with the
aim of helping visually impaired people navigate is a
recurrent research topic (Jafri et al., 2014). Chaccour
and Badr (2015) propose a system to aid VI people to
navigate indoor environments by using a network of
cameras mounted in the ceiling. Images are sent to a
remote processing unit, which uses computer vision to
detect the user location. Navigation information is then
sent and read aloud in a mobile application being used
by the individual. Croce et al. (2014) also presents
a solution based on mobile devices to inform a VI
individual if the current navigation direction is correct.
The ideal navigation path is marked on the floor
using painted/printed tags. The mobile application
informs the user about the navigation by vibrating,
i.e., vibration intensifies when the user navigates away
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from the marked tags on the floor.
(2013) present a similar approach which provides indoor

navigation based on a pre-defined and marked route.

During a learning phase, images of the environment
captured at specific points of a pre-defined route are
added to a database. During the usage phase, the
images captured by the user’s smartphone (suspended
in the user’s chest) are compared in real-time to the
previously added images in the database. The matched
database image is used to calculate the current angular

deviation of the user related to the pre-defined route.

That information is provided to the user to aid the
navigation. The guidance the user receives is not based
on the objects in the surroundings, but on the angles
and the deviation from the pre-defined route.

Solutions based on custom hardware mounted on
VI users are also found in the literature. Limna
et al. (2009) present a stereo vision system that uses
computer vision to provide users with information
regarding the distance of objects. Two cameras
mounted on the user’s shoulders provide a video feed
that is processed to detect objects and their position to
the user. A sound alert is emitted when a possible
collision is imminent. A downside mentioned by
the authors is the high computational cost of the
solution, which requires parallel processing to be
feasible. Similarly Wengin et al. (2011) propose a
tool that provides users with audio feedback regarding

information about planar surfaces and obstacles ahead.

Two cameras are mounted on each of the user’s
shoulders, whose images are analyzed by computer
vision techniques to find relevant information to the
user. Tian et al. (2010) use a single, small camera
attached to a hat or pair of glasses to provide users
with information about doors. The procedure to detect
doors uses a geometric door model that contains only
lines and corners. Consequentially the method does
not rely on appearance features of the doors, e.g., color
and texture, but on its shape instead.

Other approaches found in the literature focus
on using computer vision or human help to extract
textual information from the environment. Ezaki
et al. (2004) propose the extraction of text found
in scenes to help VI people. The process relies on
image segmentation and letter recognition based on
two classifiers, namely Naive Bayes and Support Vector
Machine (SVM). Bigham et al. (2010) propose the
VizWiz system, which allows VI users to recruit help
from crowd-sourcing websites where humans quickly
perform the recognition. Using the camera of a mobile
device, the user takes a picture of an object, asks a
question about it, and within a short time interval
receives an audio answer. Dapper Vision (n.d.) also
propose a solution that uses crowd-sourced help and
the Google Glass. Users take a picture of an object
and make a question about, which is then analyzed
and replied by humans from websites like Twitter or
Amazon Mechanical Turk Platform.

Solutions based on geographical information
without image recognition are also reported in the
literature. Helal et al. (2001) present an outdoors
navigation system based on entirely automated analysis

Elloumi et al.

of geographical data. The VI user must use a portable
computer, which continually receives information from
surrounding sensors and systems, such as wireless
networks, geographic information systems (GIS), and
GPS data. Similarly, Loomis et al. (1998) present a
navigation approach based on GPS and a database
of objects and their locations. The system provides
information regarding the surrounding elements based
on the data available in the database and the current
geographical position of the user. Authors highlight
the challenges and costs of using a GPS-based system
for navigation.

Finally, approaches based on object recognition try
to overcome the limitations of previously mentioned
works. Deb et al. (2013) proposes a low-cost solution
that guides VI people to detour obstacle in outdoor
environments. However, any further information
about the objects is not given to the user. Patel
et al. (2018) propose a similar solution based on
machine learning techniques to detect obstacles which
relies on a multisensor system composed of a infrared
sensor, a web camera, a ultrasonic sensor, and a
Raspberry pi. All those sensors, however, increase
the equipment requirements for such a solution to
work, demanding a more specialized setup associated
with more expensive hardware. Bagwan and Sankpal
(2015) propose a solution called VisualPal that does
not require environment adaptations, being able to
recognize colors, brightness, and objects. VisualPal
uses an artificial neural network running on Android
systems to recognize objects, however its performance
is not discussed by the authors since processing time
for object recognition is not reported. Lastly, Matusiak
et al. (2013) also rely on object recognition to aid in VI
people navigation. In such approach, SIFT descriptors
are used to recognize objects, but it is not clear how the
descriptors are compared since previous images must
be stored for comparison.

Our solution differs from previous work in several
aspects. Firstly, we do not require physical changes
or adaptations to the environment where it will be
used, differently from approaches that rely on ceiling
cameras (Chaccour and Badr, 2015) or marks on the
floor (Croce et al., 2014). Secondly, our solution uses
the camera of an ordinary smartphone and a wifi
network to operate. No special setup or hardware is
required, such as additional mounted cameras (Limna
et al., 2009, Wengin et al., 2011), multisensors (Patel
et al., 2018), antennas (Helal et al., 2001), fluxgate
compass and batteries (Loomis et al., 1998), or crowd-
sourced help from real people (Bigham et al., 2010).
Finally, previous work focuses on the angular deviation
of users concerning a pre-defined route (Elloumi et al.,
2013), while our approach focuses on the identification
of objects in the environment based on their unique
features. As a consequence, our solution is still able
to identify objects even if they are moved from one
position to another in the environment. Similarly to
other approaches based on object recognition (Deb
et al., 2013, Bagwan and Sankpal, 2015, Matusiak et al.,
2013), our solution uses SIFT descriptors, the already
existing network infrastructure of an environment,
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Figure 1: The overall architecture of our proposed tool. 1) Mobile client captures image; 2) Client image sent to

server; 3 and 4) Check similarity of client image against images in database; 5) Fetch metadata of database image

that is most similar to client image; 6) Send metadata back to mobile client, which will provide the user with an
audio feedback

and a smartphone to provide a low-cost contextual
guidance to visually impaired users. In that light, we
clearly present the processing time and limitations
regarding the use of SIFT descriptors in our approach,
which is not clearly discussed by previous authors.

3 Tool overview

Our proposed tool, named INSIDe!, aims at helping VI
people to contextualize themselves better indoors. The
process is composed of two main phases: environment
mapping and object contextualization. In the mapping
phase, the environment where the tool will be used
has its objects mapped from pictures and metadata,
e.g., the name of the object. All mapping data is
uploaded to a web server to be accessed later by the
mobile client in the contextualization phase. In the
contextualization phase, shown in Fig. 1, a VI person
uses a mobile application and the smartphone camera

to contextualize him/herself with the environment.

The contextualization process starts when the mobile
application acquires a picture of the area in front of
the user (step 1). The picture is sent to the server
through the network (step 2), where computer vision
techniques are used to search for a similar image
stored in the database (steps 3 and 4). All images
stored in the database were previously added during
the mapping phase. When a similar image is found
in the database, its associated metadata is retrieved
(step 5), which includes a textual description of the
image, e.g., door to room 20. Finally, the metadata is
sent back to the mobile application, which reads the
textual information aloud to the user (step 6). The
contextualization process is repeated for each picture
captured by the user, which allows him/her to obtain
contextual information about the environment from
the audio cues (based on the metadata returned by the
server).

The following sections present in details the overall
architecture and components of the mapping and the

1Source code available at https://github.com/inside-project

Figure 2: Mobile application INSIDe client. Left:

application running in user mode. Right: application
running in administrative mode.

contextualization phase.

3.1 Overall architecture

INSIDe uses a client-server architecture based on
the HTTP protocol for communication. It allows
the tool to leverage existing IT infrastructure and be
easily deployed to environments with already working
networks. The INSIDe client is a mobile application
developed for Android 3.0 and above, featuring two
working modes: user (default) and administrative,
as illustrated in Fig. 2. When in user mode, the
application contains a single screen that shows what
is being captured by the device’s camera. When
the user taps any part of the screen, a picture is
captured and sent to the server for analysis (see
section 3.3). The administrative mode is intended to
be used by a sighted individual who is responsible
for providing the functionalities of the INSIDe tool
in a given environment, including the process of
updating any existing metadata when changes happen
to the place. Finally, the INSIDe server has been
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developed using PHP and the database management
system MariaDB. The role of the server module is to
provide mobile clients with contextual information
upon receiving images and having them processed by
the image recognition module (detailed in section 3.3).

3.2 Environment mapping

Environment mapping is a critical component of the
tool. It is responsible for acquiring and curating
all data required to allow our proposed solution to
properly work, i.e., recognize objects and help VI
users contextualize their navigation. The mapping
process is based on two elements: the INSIDe client
running in administrative mode, and the server
module. The mapping begins with a sighted user,
i.e., administrator, operating the mobile client in
administrative mode while navigating the environment.
The administrator must judge which objects are critical
to the environment and whose contextualization will
help VI users. For a given object of interest, the
administrator maps it by taking a picture of the object
and inputting information about it, namely: latitude,
longitude?, name, description, and name of the place
where it is. Latitude and longitude are used to geo-
reference the object, which narrows down the possible
candidates during the search performed by the image
recognition module. The name of the place is aimed
exclusively to the administrator, so one can keep
track of mapped objects and their locations when
maintaining the database of images up to date.

When the server receives a new mapped entry,
i.e., object picture and its metadata, the image is
processed. Firstly, it is converted to grayscale and
sized to have a maximum width or height of 500px
(keeping the proportion among them). Next, a set of
SIFT descriptors, i.e., key points, are extracted from
the image, which are illustrated by the yellow circles
in Fig. 3. Finally, the image, its SIFT descriptors,
and metadata are stored in the database. The SIFT
descriptors for any given mapped object are calculated
just once, which optimizes the process of the image
recognition module (section 3.3) when searching
for similar images since stored descriptors can be
used instead of recalculating them. The capacity to
find similar images in the contextualization phase is
directly related to the quality of mapping images. A
mapping image is said to be of good quality when
the administrator can adequately frame the mapped
object while capturing the least amount of information
surrounding such object, e.g., adjacent elements. If
the mapping image of an object contains artifacts,
e.g., a superposition with other objects, reflections,
or occlusion, then extracted key points might not be
unique enough to differentiate the mapped object. It
causes wrong matches in the image recognition process,
resulting in false-positive feedback to the user.

Ideally, the administrator should map the same

2Latitude and longitude can be automatically collected depending
on the device used.

object from different angles and distances. The search
for images performed in the contextualization phase
relies on the similarities of the images, so a picture
taken by the mobile client is more likely to be found
if it mimics the configuration (position and angle)
of an image in the database. As an example, if the
VI user is positioned to the left and 2m away from
a mapped object, the recognition of the picture of
that object is more likely to be found in the case the
administrator captured a mapping image relatively
close to the position where the VI user is, i.e., similar
distance and angle.

3.3 Object recognition and contextualization

Object recognition is performed with the interaction
among the mobile application, the server, and the
image recognition module. The mobile application
starts the process by capturing an image and sending it
to the server over the network. The server receives
the image and forwards it to the computer vision
module, which performs the recognition. As previously
explained, during the environment mapping phase
several objects are pictured and added to the database
along with their associated metadata. The recognition
process is based on a similarity test performed on the
image received from the mobile client and the object
images stored in the database.

The similarity test among the image sent from the
mobile client and the images stored in the database
is based on the search of nearest neighbors in sets
of key points extracted by SIFT descriptors. Given
Ic as the image captured and sent to the server by
the mobile client, and M = {lo, 1, ...,In} as the set
of images stored in the database, created during
the environment mapping phase. Firstly the SIFT
algorithm is applied to I, which extracts a set of key
points, named F.. Next, each image I; € M has its
SIFT-extracted key points retrieved, which build the
set F;. As previously mentioned, the key points of
images in M are extracted via SIFT once when the
image is added to the database. Following that step,
a kd-trees matcher with five trees is used to calculate
the similarity among the key points of F. and F;. We
used the SIFT and kd-trees implementations provided
by OpenCV and FLANN (Muja and Lowe, 2014) libraries,
respectively. A coefficient p; is calculated for each
image I; based on the percentage of matches found
between F; and F. according to the FANN kd-trees
comparison, as described by Eq. (1):

= kdtrees(F;, Fc) (1)
|F;l

where kdtrees(a,b) represents the number of
matches between the sets of key points a and b, and
|F;| represents the cardinality of set F;. As a result, p;
has a value within the range [0, 1], where 0 indicates
no match found, while 1 indicates a 100% match. After
testing the similarity of I and the images in M, the
image associated with the highest p; value is selected
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as the most similar one.

The INSIDe mobile client was designed to run on
a wide range of devices. In some cases, however,
the device’s camera might capture images with a
lower resolution compared to the images stored in
the database. Consequentially, the image sent by the
mobile client, i.e., I, produces fewer extracted key
points, i.e., F, compared to the set of key points
extracted from images stored in the database, i.e., F;. In
order to account for such problem and ensure the tool
would work even with low-end smartphones, Eq. (1)
was modified to account for the number of key points
of I in the similarity test. Eq. (2) presents the adapted
calculation:

B kdtrees(F;, Fc)
IF,l x 0.7 + IFcl x 0.3

(2)

In Eq. (2), matching key points are divided by a
weighted mean derived from the number of key points
available in both images being compared. For example,
assuming I; has 10000 key points, i.e., |F;| = 10000,
I (image to be compared) has 7000 key points, i.e.,
|[Fcl = 7000, and kdtrees(I;,Ic) = 5500, then the result
of Eq. (1) would be 0.55, while the result of Eq. (2)
would be 0.60. In our initial similarity tests with
Eq. (1), a significant number of images that should
be considered similar among each other produced low
values for p; due to small variations in the resolution of
the images involved. Empirical tests have shown that
Eq. (2) presented satisfying results for the similarity
test compared to those of Eq. (1). Additionally, it better
accounted for differences in resolution when the weight
of I; and Ic was 30% and 70%, respectively, producing
fewer false-positives.

Fig. 3 shows a visual representation of the matching
performed among the key points of I; and Ic of two
objects in the similarity test. On the left of Fig. 3
is the image sent by the mobile client, i.e., Ic, when
performing a contextualization, which in this case is
the identification of a fire extinguisher. On the right of
Fig. 3 is an image stored in the database, i.e., I;, which
has been selected as the most similar, i.e., presented
the highest number of matches among their key points
and the key points extracted from the image sent by
the mobile device. The blue lines highlight the matches
among the key points of both images.

The similarity test has a significant computational
cost, so the number of images to be tested in the
search impact the overall time the process takes
to complete. Consequently, the search for similar
images has been optimized by geo-filtering the set

of images M before performing any similarity test.

As explained in section 3.2, images stored in the
database during the environment mapping contain
metadata with its physical location, i.e., latitude and
longitude. The geographic position of the mobile client
and the images in M is taken into account to reduce the
number of images to be compared. Instead of testing
the similarity of all images in M, only those whose
Euclidean distance to the mobile client are less than D

Figure 3: Comparison of key points between two
images. Left: image sent by the mobile client
featuring a fire extinguisher. Right: database image
selected as the most similar to the mobile client image
according to the matching of key points (blue lines).

meters are considered. In the experiments presented
in this paper, a value of 10m has been used for D.

4 Experimental validation

We conducted three experiments to validate the
feasibility of our proposed tool. Experiments were
designed to test different aspects of the tool, such as
usability of the mobile application and the accuracy of
objects recognition in an environment that has been
mapped by the tool. All experiments were conducted
at the dependencies of the Federal University of
Fronteira Sul. In experiments 1 and 2, a female sighted
student of the university consented to participate in
the study after being informed of the experimental
procedure. The subject was blindfolded to simulate
the condition of a VI person, as illustrated in Fig. 4.
In order to prevent the subject of using any previous
knowledge about the environment and its objects, all
objects included in the environment mapping phase
of the tool received random names and descriptions,
e.g., the fire extinguisher was mapped as the exit
door, the news board was mapped as the elevator
door, and so on. This procedure ensures the subject
will not try to find any particular object by its real
name and position but instead will use the names
reported by the contextualization information provided
by the INSIDe mobile application. Additionally, the
researcher who conducted the experiments regularly
monitored the movements of the subject, preventing
any potentially unsafe collision against obstacles that
were not accounted for, e.g., pillar or seat along the
way. The following sections describe each one of the
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Figure 4: Blindfolded subject using the mobile client to contextualize an object, i.e., fire extinguisher.

experiments, along with its objective, methodology,
and achieved results. A discussion of the results is
presented in Section 5.

4.1 Experiment 1

4.1.1  Objective and methodology

This experiment aims to evaluate if a subject can
find a requested object in an environment of small
proportions under controlled settings, i.e., following
specific (and ideal) instructions regarding the use of the
mobile application. In the context of our experiment,
an environment of small proportions is a room with
fewer objects, e.g., a classroom or a corridor. In the
experiment, the subject must complete three tasks, i.e.,
T1 to T3. For each task, the subject was instructed to
navigate the environment and locate a requested target
object using the mobile application. The researcher
experimenting randomly selected the target object from
the pool of all mapped objects in that environment. The
researcher also instructed the subject to take frontal

pictures of the objects to be recognized/contextualized.

The subject was also encouraged to rely on physical
touch to locate potential objects to be contextualized by
the mobile application. The subject was instructed to
continue recognizing objects in the environment until
the target object was found, which would conclude
the task at hand. During each task, the following
information was collected: distance between the target
object and the subject when the task started, which
objects were recognized during the contextualization
of the environment until the task was completed,

number of pictures sent by the mobile application to
the server (which also corresponds to the number of
contextualization actions performed by the user), and
time the subject took to complete the task. Finally
to evaluate the user experience regarding the mobile
application, the subject answered with “Yes” or “No”
to questions Q1 and Q2, which were framed as “Are you
frustrated?” and “Regarding the feedback provided by
the mobile application, did it help you complete this
task?”, respectively.

4.1.2  Environment mapping

The experiment was conducted in a long corridor at
one of the university buildings. In total, 20 objects
were mapped, i.e., added to the INSIDe database for
recognition, namely: fire extinguisher, classroom doors
(4 in total, whose room number ranged from 303 to
306), exit door, bathroom doors (4 in total, 2 were
signaled special needs bathrooms), drinking fountain,
fire hose container, lab doors (2 in total), manual call
point for fire alarm activation, elevator doors, and a
news board. All objects were mapped (following the
procedure described in Section 3.2) with a single frontal
picture, which tried to frame the object entirely with
as few of its surroundings as possible.

4.1.3 Results

Table 1 presents the results of the experiment grouped
by task. Columns denote the following: T is the number
of the task, Duration is the time to complete the task,
Target (distance) refers to the requested target object and
its distance to the subject at the beginning of the task,
Pictures is the number of pictures captured throughout
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Table 1: Results of experiment 1 grouped by task (T)

Duration Target (distance) Pictures Recognitions Q1 Q2
1 6 min Fire hose (15m) 5 lab door, fire extinguisher, manual call point for fire No Yes
alarm activation, lab door
2 10 min Elevator (20m) 9 lab door, manual call point for fire alarm activation, Yes Yes
fire hose
3 5 min Exit door (10m) 3 Elevator, news wall No Yes

the task, i.e., contextualization requests, Recognitions
is the list of objects that were recognized while the
subject navigated the environment until the target
was found, and finally Q1 and Q2 present the answers
provided by the subject for the questionnaire at the
end of each task. The subject was able to successfully
locate and contextualize the requested target object in
all tasks, reporting that the received audio feedback was
helpful. However, the subject reported being frustrated
during task T2, even though the requested target object
was found in such case. Such frustration could be
attributed to the fact that task T2 requested a target
object that was away from the subject (20m) and several
contextualization requests were not successful during
the navigation. During T2, the mobile application took

nine pictures: five (55%) yield negative feedback, i.e.

object not mapped, and four (45%) correctly recognized
the objects being analyzed, among them the requested
target object. It is important to highlight that the
majority of the time used to complete the task was
not associated with waiting to receive feedback from
the mobile application. Instead, it was related to the
subject navigating the environment carefully due to
the blindfold condition.

4.2 Experiment 2

4.2.1 Objective and methodology

The objective of this experiment is to use the mobile
application to recognize as many objects as possible in
the environment. It aims to evaluate the feasibility and
accuracy of the tool when providing the subject with
contextualization about the environment in a use case
that is closer to how the tool would be used outside an
experimental setting. Differently from experiment 1,
for this experiment, the subject was less constrained
regarding how the pictures should be captured. The
subject was instructed to take pictures 1 or 2 steps away
from the objects; however, the orientation of the object
was not required to be frontal to the camera, e.g., lateral
pictures were allowed. Lateral pictures of objects, as
opposed to perfectly frontal ones, are more likely to
happen in a real use case of the mobile application,
since a user groping an object will immediately try to
contextualize it. The researcher instructed the subject
that if the mobile application informed it was unable to
recognize an object, the subject should try again after
slightly adjusting for the new picture, e.g., change the

angle of the camera or move to the right/left vaguely.

If the mobile application did not recognize the object
after three tries, the subject was instructed to ignore
the object and continue with the contextualization of

other elements.

4.2.2  Environment mapping

The experiment was conducted in a long corridor at
one of the university buildings. In total, 20 objects
were mapped, i.e., added to the INSIDe database for
recognition, namely: fire extinguishers (2 in total),
classroom doors (four in total, whose room number
ranged from 303 to 306), exit doors (two in total),
bathroom doors (four in total, two were signaled
special needs bathrooms), drinking fountain, fire hose
container (two in total), lab doors (two in total), manual
call point for fire alarm activation, elevator doors, and
a news board. All objects were mapped (following the
procedure described in Section 3.2) with 16 pictures
each, all acquired at different distances and angles
concerning the object. Fig. 5 illustrates the positioning
used by the administrator user when mapping objects
of the environment. Mapping pictures were acquired
by following half the circumference line of two circles
of 1m and 2m of radius both centered at the object.
In the inner circle, the object was photographed
from 7 different positions, which were equally spaced
among them. Similarly, in the outer circle, the object
was photographed from 9 positions equally spaced
among them. The blue block in the center of the
figure represents the object being mapped, while the
red marks are the positions where mapping pictures
were taken. When the administrator performing the
mapping was unable to stand on the desired positions,
or when his/her view towards the object was occluded,
e.g., interference caused by a pillar, the position was
adjusted until the object could be properly framed and
the offending obstacle could be ignored.

4.2.3 Results

Subject attempted to recognize and contextualize a
total of 20 objects in the experiment. A total of
13 objects (65%) were correctly recognized by the
mobile application, namely: two exit doors, two fire
extinguishers, two toilets (those of the special needs),
manual call point for fire alarm activation, news
board, elevator door, two fire hose containers, and
two lab doors. A total of six objects (30%) could not
be recognized, even after the three allowed retries.
Finally, one object (5%) was wrongly recognized (false-
positive): a fire hose container was recognized as an
exit door.

4.3 Experiment 3
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Figure 5: Visual representation of the process used to
map a given object during experiment 2. The blue box
represents the object, and the red marks are the
positions from where pictures were taken to map that
object.

4.3.1  Objective and methodology

The aim of experiment 3 is to evaluate how effective
and robust the matching of SIFT descriptors is for
the comparison of images of a given object pictured
in different angles and distances. Differently, from
previous experiments, the focus of this experiment
is not on the user experience or on testing the
full architecture of our solution. Instead, the
focus is on evaluating the impact that different

angles and distances have when matching key points.

Consequentially, the user of the mobile client during
the experiment was one of the authors, who was not
blindfolded. Three objects were randomly selected
to be used in the experiment: elevator door, fire
extinguisher, and exit door. Each object was mapped
using a single image, i.e., control image hereafter
referred to T, which was taken in a frontal position
at an ideal distance, i.e., enough to frame as much of
the object as possible without capturing the object’s
surrounding elements/environment. Each of those T
was then tested using nine images acquired from nine
test cases. In test cases 1 to 3, each testing image was
taken in front of the object (from the ideal distance),
1m away from such ideal distance, and 2m away from
such ideal distance, respectively. In test cases 4 to 6,
each testing image was taken left of the Y position,
from an ideal distance, then 1m and 2m away from
it, respectively. Similarly in test cases 7 to 9, each
testing image was taken right of the T position, also
from the ideal distance, then 1m and 2m away from it,
respectively. Each test case produced an image of the
given object being tested, which was compared solely
with the Y of that particular object, i.e., no search was
performed on the database. Images produced during
the test cases of a given object contain variations in the
angle and distance of the mobile client relative to the
angle and distance used to capture such given object’s
control image. Test case 1 reproduces the exact setup
of the control image, i.e., same angle and distance, and
can be seen as the T position. In test cases 2 and 3,
the user is in front of the object (same angle as T);

however, the distance is different from Y. In test cases
4, 5, and 6 the user is to the left of T position, aiming
at the object (angle differs from T), and standing at
various distances (including the same distance used in
T). Similarly in test cases 7, 8, and 9 the user is to the
right of T position, aiming at the object, and standing
at various distances. When performing all test cases
on T of each of the three selected objects, the user
tried to frame the target object as best as possible. The
experiment was focused on testing how robust the SIFT
descriptors are at matching an object using images at
different angles and distances from Y. To ensure the
analysis was indeed focused on the matching process,
the mapping image, i.e., T and the ones captured by the
mobile client during the test cases presented the same
resolution, i.e., width and height. Additionally, we
used Eq. (1) instead of Eq. (2) to calculate the matching
between the key points of two images precisely because
Eg. (1) assumes both images have the same resolution.
The use of Eq. (1) should maximize the focus of the
analysis on the matching of key points by eliminating
steps used to account for different resolutions between
the images being compared.

4.3.2 Results

Table 2 shows the percentage of matches found when
comparing T of a given object against the images
produced during all test cases performed on that object.
For all three objects, test case 1 (same angle and
distance as ) yield a 100% match among the key points
of the images being compared. This result is expected
since both images, i.e., control’s and test case’s, are
the same. Excluding test case 9 for the elevator door,
all other test cases presented a deterioration in the
percentage of matches as the mobile client moved away
from the target object. For the fire extinguisher and
the exit door, the percentage of matches obtained when
standing to the left or the right of the control position
(test cases 4 and 7 respectively), at the same distance
of T, were similar among each other. The elevator
door, however, presented significantly lower matching
percentage for test case 4 compared to test case 7. It
could be explained by different lighting conditions or
reflections in the target object when faced from another
angle, since both test cases 4 and 7 present the same
distance to the target. Overall all objects have shown a
higher percentage of matches for test cases 2 (frontal,
1m away from control) compared to test cases 5 (left,
1m away from 7T) and 8 (right, 1m away from ). It
supports the idea that the mobile client can acquire
images of objects with different angles and distances
relative to the one mapped in the database and still
produce matches within a specific range.

5 Discussion

Results obtained from the conducted experiments show
the feasibility of our proposed INSIDe tool. Even though
the tests were conducted in a significantly small scale
and without visually impaired subjects, our empirical
results suggest that the image recognition based on
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Table 2: Percentage of matches obtained in the
comparison between control and test case images of
different objects in experiment 3

Object

Test case Elevator door Fire extinguisher Exit door
1 100% 100% 100%
2 38,65% 26,61% 42,45%
3 26,97% 17,59% 26,26%
4 15,67% 23,31% 28,72%
5 8,74% 5,63% 11,08%
6 7,54% 5,15% 8,64%
7 41,92% 20,67% 28,81%
8 31,28% 9,31% 22,84%
9 37,83% 6,22% 16,72%

feature detection aimed at object contextualization
indoors is plausible. The proposed architecture used
by the tool has been proven functional, allowing
environments to be easily mapped without the need
of physically adapting the place, e.g., the addition
of QR code tags. However, the components of our

solution are significantly affected by different elements.

One of them is the quality of the images used during
the environment mapping phase, which is directly
related to how the mobile client captures images. As
demonstrated by the experiments, ideal images to
map an object, i.e., frame object as best as possible
without its surroundings, does not necessarily yield
an accurate object recognition. During the use of the
mobile client by a VI person, captured images can
negatively impact our proposed recognition algorithm,
i.e., similarity test of images, if the object being
contextualized is not framed correctly. The image
framing is a significant limitation of our approach,
particularly if the mobile client is capturing images
where the object is partially cropped or the angle and
distance of the picture considerably differ from the one
used in the mapping process. This limitation, however,
can be mitigated during the environment mapping
phase by ensuring that a given object being mapped
has several images taken from different angles and
distances. Observations and results obtained during
experiments 2 and 3 highlight such limitation along
with possible improvements achieved when trying to
mitigate the problem. In most of the cases during
the experiments, the user successfully received audio

feedback regarding the object being contextualized.

In other cases, however, the mobile client reported
that the object could not be recognized. Such negative
feedback also happened when the subject was in
front of the object, standing at an ideal position
after groping the target, which is notably frustrating
user experience. As mentioned, limitations regarding
object contextualization can be mitigated; however, a

definitive solution is a considerably complicated matter.

Several factors affect the recognition procedure, such
as the wrong orientation of the mobile device, which
is a challenging problem to be solved via software.
Environmental conditions, e.g., different
illumination, also affect our solution. As demonstrated
by experiment 2, which was designed to simulate
a real use case of the tool, the mobile client was

unable to recognize some objects, even after the
three allowed retries. Out of the 20 objects that
were evaluated, seven were not recognized. Objects
affected by different lighting conditions or that are
too similar to other objects, e.g., doors to rooms and
bathrooms, affect the recognition procedure. In some
extreme cases, the recognition process can be affected
to the extent that the key points extracted from the
target image are not unique enough, which leads
to false-positive results, i.e., mobile client wrongly
recognizes an object. Experiment 2 presented those
extreme conditions when the subject requested a
contextualization while in front of a fire hose container,
however, the mobile client reported the object as being
an exit door. Any system aimed at helping VI people
to navigate or contextualize themselves should not
have false-positives since those might put the user
at risk. According to the results of experiment 2,
our tool presented only a single false-positive audio
feedback. All other objects were correctly recognized
or, in the worst case, the reported audio feedback
informed the object could not be contextualized. The
ratio of false-positive detections in our solution is
significantly affected by the quality and amount of
mapping images of each object (see Section 4). If
an operator mapping a particular object in a given
location acquires pictures of such object from several
different angles, possibly mimicking the images that a
user would take of such object, then that information
is more likely to allow the tool to recognize the object
in the future correctly. This claim is supported by the
results of experiment 3, which have shown a better
percentage of matching key points between images
featuring an object pictured in similar distance and
angle. Even though a higher number of mapping
images per object in varying angles and distances
might increase the accuracy detection, it negatively
impacts the overall performance of the system, i.e.,
the time the tool takes to give audio feedback to users
after they take a picture. As described in Section 3,
the tool compares the matching points of an image
taken by the mobile client against the matching
points of several images stored in the database. Even
though geolocation information is used to limit the
number of images to compare, if an object stored in
the database has several images associated with it,
more comparisons will be performed in the search.

In order to investigate the performance impact of
comparing database images, we conducted an empirical
test focused on the time to perform comparisons
concerning the number of images stored in the
database. We stored in the database N images
of random objects captured in various angles and
distances, all with the same resolution, i.e., width and
height. One of those N images was randomly selected
and compared against such set of N images, using
the comparison procedure of matching key points as
described in Section 3.3. To account for any possible
internal optimizations performed by the database and
the operational system, e.g., page swap and different
workload, each image is compared to all other N images
25 times (Nx 25 comparisons in total). The average time
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Table 3: Mean comparison time, in seconds, of a given
image against a set of N stored images

N Time (no cache) Time (cached)

20 000.41 4+ 0.005  00.12 + 0.0002
40 000.81 + 0.022  00.24 + 0.0018
80 001.64 + 0.030  00.59 + 0.0026
160 003.35 &+ 0.034  01.36 & 0.0507
320 006.66 + 0.062  02.72 + 0.1580
640 013.34 + 0.155 05.39 + 0.1583
1280  026.62 + 0.232  10.76 + 0.2493
2560 053.26 + 1.144  21.51 + 0.5040
5120 106.63 + 3.720  43.08 + 1.2200
10240  213.38 + 9.481  86.08 & 2.1457

among all those 25 repetitions is reported as the time it
takes to compare a single image against a given set of
N images in the database. Additionally, we investigated
the impact of removing our cached key points, which is
an optimization step used to prevent the recalculation
of key points of any tracked objects/images stored
in the database. When the caching of key points is
disabled, SIFT key points must be recalculated for any
comparison among the mobile client image and the
images stored in the database. Table 3 presents the
results of such test, which was performed on a single
machine running Ubuntu Linux 16.04 (64 bits) with
8GB of RAM, Intel Core i5 processor (3470 @ 3.20 GHz)
and a disk of 1TB (7200 RPM). As observed in both
columns, Time (no cache), i.e., caching of key points is
disabled, and Time (cached), i.e., caching of key points is
enabled, the time to compare an image against a set of
stored images significantly increases relative to N. The
increase in time is linear and proportional to N. It is
also possible to observe that caching the calculation of
key points of images stored in the database drastically
impacts the performance and response time. Caching
key points of stored images in the database is essential
to reduce the search time, which helps to deliver audio
feedback to users as quickly as possible.

In light of our results, we believe that our proposed
solution can be improved with further refinement of the
image recognition procedures and adequate guidelines

to be followed during the environment mapping phase.

Our solution has low installation and maintenance
cost and does not require physical changes to the
environment where it will be used. It is a valuable
initiative to increase the independence level of VI people
in a variety of places, thus enhancing their quality of
life.

6 Limitations

Some limitations of the experimental procedure and
our tool should be noted. Firstly, our experiments
had a significantly small sample size (N = 1) who
was not a visually impaired person. It limits the
extent to which our tool could be evaluated, so
derived conclusions cannot be generalized. However,
the experiments validated the feasibility of the tool,

particularly regarding the proposed architecture and
the validity of using SIFT descriptors, i.e., key points,
to check the similarities between images. Secondly,
it could be argued that our experimental design does
not reflect a proper use case of a tool to possibly
help visually impaired people because our subject
groped for objects. A groping action could lead to
the immediate identification of an object, bypassing
the need of using a mobile application for that
matter. As previously explained, we mitigated that
problem by assigning random labels to objects in the
experiment. Consequentially, a fire extinguisher could
have been labeled as “exit door”, for instance, so
groping it still required the subject to use the mobile
client to identify the object within the context of
our experiment correctly. It is our understanding
that visually impaired people indeed use groping and
other instruments, e.g., probing cane, to contextualize
themselves with the environment and objects through
physical contact. Objects that are identical to the
groping touch, e.g., doors without Braille labels,
however, do require additional aid to be appropriately
identified and contextualized. Those are the cases
we believe our tool could be used. Another possible
limitation of our tool is the use of SIFT descriptors
instead of machine learning for the identification of
objects. We use FANN kd-trees algorithm to calculate
the similarity between the descriptors of two images
(see Eg. (2)), using a matching threshold to evaluate
similarity. Consequentially, our tool does not rely on
any machine learning algorithm to recognize or match
images (see (Wan et al., 2014, Turaga et al., 2008,
Liu et al., 2017) for more details). Machine learning
techniques are more likely to identify images accurately
and robustly under challenging circumstances, i.e.,
different illumination. Although such techniques are
powerful for computer vision and related fields, we
believe that our straightforward approach is more
suitable for a low-cost solution aiming to help visually
impaired people contextualize their navigation. Our
tool requires a mapping step that is easy to perform,
uses an ordinary smartphone, and can rely on the
existing infrastructure available in the environment,
e.g., wifi network. Additionally, it does not require any
model training time. Besides, our experiments have
shown that image descriptors and similarity algorithms
are efficient techniques for matching images for the
contextualization and aid of visually impaired users.

7 Conclusion

This paper presented a tool aimed at helping visually
impaired people to contextualize themselves during
the navigation of indoor environments. The proposed
solution is based on mapping the environment by
adding pictures of objects of interest, e.g., doors
and news boards, and their associated metadata, e.g.,
object’s name, to a database. Using an application
running on a mobile device, the visually impaired user
takes a picture of an object/place whose information
is desired. The image is then sent over the network
to a server, which uses computer vision techniques,
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i.e., feature detection using SIFT descriptors, to search
for an image previously added to the database during
the mapping phase that is similar to the one taken
by the user. The database image whose similarity
with the image sent by the user is highest is selected,
and its metadata is returned to the mobile client.
Finally, the mobile client reads the metadata aloud,
i.e., audio feedback with the name of the object in the
picture. Our proposed tool has been validated with
three experiments. The first one aimed at evaluating
the accuracy of the tool when recognizing objects
in a small environment with ideal usage conditions.
The second experiment focused on simulating the use
of the tool that is closer to a real use case, whose
conditions are more challenging. Finally, the third
experiment explored how robust and flexible is the
use of SIFT descriptors when checking for similarity
between images. Results of the experiments show the
feasibility of our tool. Further research is required
to understand the limitations and accuracy of the
proposed approach better; however, our empirical
analysis suggests the tool is a plausible and low-cost
solution to help visually impaired people. Differently,
from other tools aimed at helping visually impaired
individuals, e.g., tactile surfaces or Braille signs, our
solution does not require any physical change to the
place where it will be used. Additionally existing IT
infrastructure available in the place, e.g., wireless
network, can be leveraged by the tool, which further
reduces deployment costs. It is our understanding that
our proposed tool can be adapted to other use cases than
helping visually impaired individuals. For example,
sighted users might also use the tool to contextualize
themselves in a given environment, such a museum
or a sightseeing visit to an archaeological site. Future
work includes further validation of the tool by using
it on a larger scale than the one presented in this
paper. Contextualization and navigation of a complete
building, for instance, could be explored. Additionally,
the environment mapping phase could be improved
with the use of mapping guidelines. As presented and
discussed in this paper, the quality of the images used
in the mapping phase is an essential aspect of our
proposed tool. Further investigation of such aspect
could improve the overall accuracy of the tool, making
it more robust and less likely to produce false-positives.
Finally, field tests with real visually impaired subjects
are the next step to accurately measure and improve
the user experience of our tool.
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