Utilizacdo de Maquina de Turing aplicada a um problema de comparacao
de Listas de Palavras

Vinicius Jurinic Cassol !
Lucelene Lopes !
Aline Duarte Riva !

Resumo: Este tutorial apresenta duas abordagens distintas para a construcio de duas maquinas de
Turing dedicadas a uma mesma aplicag@o: a comparacio de listas de palavras. Ambas as maquinas
foram implementadas no software Visual Turing e recebem como entrada duas listas de palavras
sobre um alfabeto definido, gerando como saida uma lista com apenas as palavras presentes em
ambas. O propésito deste artigo € ilustrar o desenvolvimento de maquinas de Turing de uma forma
pedagogica para que estudantes de computagdo e dreas relacionadas possam ter um exemplo pratico
e relativamente complexo desta forma de processamento.

Palavras-chave: Comparagdo de Lista de Palavras, Maquina de Turing, Visual Turing.

Abstract: This tutorial presents two different approaches to build two distinct Turing machines to
a same application: a comparison between two lists of words. Both machines were implemented in
Visual Turing software and they receive as input two lists of words over a given alphabet in order to
deliver an output list with only the words present in the two input lists. The purpose of this paper
is to illustrate the Turing machine development process in a pedagogical way to allow students of
computer science and related areas the contact with a rather complex practical example of such
processing style.

Keywords: Comparison of Word List, Turing Machine, Visual Turing.

1 Introducao

Alan Mathison Turing nasceu em 23 de junho de 1912 em Londres. Em abril de 1936 concluiu a ideia que
hoje é conhecida como “maquina de Turing”, sendo publicada no final deste mesmo ano no artigo “On computable
numbers, with an application to the Entscheidungsproblem” [1]. Como o titulo sugere, era apenas uma aplicagdo
da nova ideia de computabilidade matematica, especificando o conjunto de acdes disponivel em sua maquina.

A acdo da maquina de Turing é determinada pela configuragio e pelo simbolo em que ela se encontra no
momento da verificagdo [2]. A agdo é dividida em trés passos: 1) apaga ou imprime um simbolo especificado; 2)
move-se para esquerda ou direita; 3) muda para uma configuracéo nova.

Uma acdo completa é definida por Turing como uma tabela de comportamento, ou seja, cada tabela de
comportamento € uma maquina de Turing diferente [4]. A tese de Turing é de que, mesmo sendo cada acdo restrita
em sua forma, um conjunto de a¢des pode compor todas as operacdes matemadticas possiveis, sugerindo que todas
as operacdes da mente humana poderiam ser desempenhada por computadores.

Para Turing,com sua mdquina era possivel fazer o trabalho do calculador humano, indicando haver pos-
sibilidade de maquinas computacionais serem construidas da unido da matemadtica e 1l6gica em processadores de
simbolos. Durante a I Guerra Mundial, Turing trabalhou no Departamento de Comunica¢do da Gra-Bretanha na
tentativa de quebrar cédigos da comunicagdo alema, que eram produzidos por um tipo de computador denominado
Enigma. Logo ap6s, Turing foi para os EUA para estabelecer cddigos seguros para comunicacdes entre transa-
tlanticos aliados. Quando terminou a guerra, Turing aliou-se ao National Physical Laboratory para desenvolver o

'Programa de Pés-Graduacdo em Ciéncia da Computagdo, PUCRS, Porto Alegre, Brasil
{vinicius.cassol, aline.riva}@acad.pucrs.br, lucelene.lopes@pucrs.br

doi: 10.5335/rbca.2010.013

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 2, n. 2, p. 66-80, set. 2010 66

ACE (automatic computing engine), um computador totalmente inglés. Contudo, com a demora do processo de
construcdo, decepcionado e deprimido, Turing mudou-se para Manchester e, durante uma crise, cometeu o suicidio
comendo uma maga com cianureto de potdssio em 7 junho de 1954.

A méquina de Turing é aceita na comunidade cientifica para formalizagdo de algoritmo [4]. Apesar de ser
um mecanismo simples, formaliza o processo de um humano que realiza célculos, utilizando para tanto um sistema
de escrita e um apagador. Assim, realiza tarefas de qualquer computador com propdsito geral. Formalmente, a
madaquina de Turing € similar aos computadores atuais, tendo como base uma fita, uma unidade de controle e um
programa [3].

Como referido anteriormente, a maquina € constituida de trés partes:

e Fita: Utilizada como compartimento de entrada, de saida e como dispositivo de memdria de trabalho;

e Unidade de Controle: Mostra o estado em que a maquina se encontra. Composta por um agente de leitura
e gravacdo (cabega da fita), o qual percorre uma célula da fita por vez, movimentando-se em dois sentidos
(esquerda ou direita);

e Programa ou Fung¢éo de Transi¢do: Fungfo que define e comanda as leituras, as gravagdes e em qual sentido
se movimenta a unidade de controle (cabeca da maquina).

marcador de entrada

inicio de fita L

branco

fita =—> | # a b b c a & &

cabecga
de fita >
controle

unidade de
controle

Figura 1. Descri¢do genérica de maquina de Turing [5].

A Figura 1 apresenta o exemplo de uma fita da maquina de Turing, sendo, a esquerda, seu movimento finito
e, a direita, pode ser infinito. A fita é dividida em células, cada contendo um simbolo, que geralmente pertence a
um alfabeto de entrada, a um alfabeto auxiliar, ou pode ser “branco” ou “marcador de inicio de fita” [5].

Este trabalho tem por objetivo apresentar a solu¢do para um determinado problema computacional pelo do
uso do formalismo de maquina de Turing. O problema escolhido é o de andlise de duas listas de palavras para
determinar quais estdo presentes em ambas as listas, ou seja, a intersec¢do dessas listas. Adicionalmente, apds
determinar quais s@o as palavras presentes em ambas as listas, a maquina conta o niimero de palavras presentes em
ambas, ou seja, calcula a cardinalidade da intersec¢do entre as listas.

O presente artigo estd organizado da seguinte forma: a préxima sec¢do apresenta uma breve definicdo do
software Visual Turing 2.0 utilizado para implementar a maquina de Turing proposta; a secao 3 detalha o problema
e apresenta uma tentativa inicial de implementa¢do da maquina proposta através de uma abordagem simplista;
em sequéncia, a secdo 4 apresenta a verdadeira implementacdo que soluciona o problema proposto e a secdo 5
apresenta a execucdo detalhada de um exemplo prético de aplicacdo da maquina descrita na se¢do 4; finalmente, a
conclus@o sumariza os resultados deste trabalho e sugere possiveis extensdes a0 mesmo.

2 Visual Turing 2.0

Para o desenvolvimento do presente trabalho utilizou-se o Visual Turing 2.0 [6]. Trata-se de uma ferramenta
open-source que permite a criagdo de maquinas de Turing. Para sua escolha considerou-se o fato de se tratar de
uma ferramenta gratuita e de facil manejo, o que facilita a implementa¢do do trabalho. Destaca-se, porém, que

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 2, n. 2, p. 66-80, set. 2010 67

se encontram disponiveis outras ferramentas para desenvolvimento de maquinas de Turing, como, por exemplo, o
JFLAP?.

Considerando-se o Visual Turing, observa-se que a ferramenta permite a implementacdo da maquina de
Turing, em que € possivel a definicdo de simbolos, relacionamentos e instrugdes entre os simbolos, bem como
outras miquinas ja implementadas. Além disso, esta ferramenta permite que seja definida uma fita, de tamanho
infinito, onde cada posi¢do contém um simbolo a ser verificado durante a execu¢do da maquina de Turing. A
maquina de Turing, por sua vez, durante a execugao, percorre a fita para a esquerda ou direita, conforme defini¢éo,
e pode ou ndo escrever na posicdo da fita em que se encontra.

2.1 Edicao de Maquinas de Turing

A éarea de trabalho do Visual Turing pode ser observada na Figura 2, onde se apresenta uma maquina simples
que apenas 1& uma letra do alfabeto {a, b} e escreve a letra contrdria (escreve a se ler b, ou escreve b se ler a).

B9 C:\Users\Lucelene\Desktop\muda_letrawsp o (B [
GeHRzZE Ad/»nmnsE

%] Symbols z

a
b
%, Instructions

A Left

23 Right

fdl 0o Nothing
Machines

=]
=
=
=
=
=
=
=
=
=
=
=

#
il Gl il Rl) B
A

3

I e ey e
=
=
=
=
=
=
=
=
=
v

#
#
#
Full [A
AL et W Vg W Wt ittt Tt V(e VTt Wt it Tt W Tt W Wt W Wt e W] ™

Figura 2. Exemplo do Visual Turing 2.0 que muda uma tnica letra.

Na Figura 2, a janela marcada com a letra B apresenta as primitivas da mdquina de Turing, contendo
todos os simbolos, componentes, instru¢des e outras maquinas que podem compor a maquina que estd sendo
desenvolvida. Na janela marcada com a letra A, encontra-se o painel de edicdo, onde os componentes escolhidos
em B podem ser trabalhados e conectados a fim de formar a mdquina desejada.

Nesse painel, o estado inicial da maquina (primeira instru¢do) é indicado por uma instru¢do com borda

dupla (neste caso a instru¢do move-se a direita: @). De cada instru¢do um conjunto de arcos indica as possiveis
proximas instrug¢des, podendo ser anotados por letras que indicam quando serdo o caminho adotado. De acordo
com a letra apontada pela cabeca da fita, um dos arcos serd escolhido. No exemplo apresentado, a maquina inicia
na instru¢do v para a direita. Caso a cabeca da fita aponte para a letra a, a maquina executa a instrucdo @, que

escreve a letra b nesta posicao. Caso a cabeca da fita aponte para a letra b, a maquina vai para a instrug¢ao @, que
escreve a letra a. Independentemente do caminho ou da letra apontada pela cabeca da fita, a maquina segue apds

para a instrucdo | L. |, que vai para a esquerda e retorna a cabega da fita para a posic¢ao original.

Completando a identificagdo das janelas na Figura 2, a janela marcada com a letra C contém a fita com os
simbolos que serdo utilizados durante a execu¢do da maquina.

Como mencionado anteriormente, uma maquina de Turing previamente definida pode ser usada como parte
de outra maquina. Esta possibilidade visa atender a modelagem de problemas complexos, na qual se faz necessaria

Zhttp://www.jflap.org.

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 2, n. 2, p. 66-80, set. 2010 68

a divisdo do problema em mddulos, sendo que o resultado de um processo executado por uma maquina pode ser
utilizado nas condi¢des da maquina atual.

Outras inovacdes no Visual Turing 2.0 s@o a existéncia de dois recursos inexistentes na defini¢do original de
maquina de Turing, que facilitam a utilizagdo sem criar qualquer restri¢io ou aumento do poder computacional do

formalismo. Trata-se da instrucdo ndo faz nada| ? |, que serve para centralizar fluxos de uma maquina desenhada,
ou apenas para ler a letra apontada pela cabeca da fita; e da definicdo da aplicagd@o repetida de diversas instrucdes
idénticas. Por exemplo, a Figura 3 apresenta uma mdquina simples que utiliza estes recursos adicionais. Trata-
se de uma mdaquina que troca as letras em posi¢des impares de uma palavra até encontrar o final desta palavra,
indicado por uma sequéncia das letras que representam como “branco” (em Visual Turing 2.0: #).

[C:\Users\Lucelene\ Desktop\turing\texmuds_letra.wsp i
B ERZEN AR NE @

7] Symbols

a
b
Y, Instructions
A Lot
b right
d 0o hothing
€ Machines

2] :
|l

Figura 3. Exemplo do Visual Turing 2.0 que muda letras impares de uma palavra.

Esta mdquina inicia movendo a cabeca da fita para a esquerda e, em seguida, move a cabeca da fita duas
vezes para a direita; dessa forma inicia o processo na primeira letra da palavra. Mais uma vez, caso encontre a
letra a, muda-a para b, e vice-versa. Realizada esta troca, vai para a instru¢@o ndo faz nada, que serve apenas para
reunir os fluxos e voltar para a instru¢ido que avanca duplamente para a direita. Esta maquina encerra naturalmente
seu processamento quando a palavra terminar, pois, caso encontre na cabeca da fita a letra # apds a instrug@o que
vai duplamente a direita nao existe arco com esta anotacdo; portanto, a maquina encerra sua execucao.

2.2 Execuciao de Maquina de Turing

Apés o desenvolvimento da maquina desejada, também € possivel executa-la através do Visual Turing 2.0.
A maquina serd executada com a velocidade padrdo de 100 instru¢des por segundo, a qual pode ser alterada, caso
desejado, pressionando-se F7 durante a execugdo. Dentre outras caracteristicas, € possivel pausar e reiniciar a
execucao, bem como executar a madquina manualmente, acompanhando a execucao passo a passo.

3 Problema de Comparacao de Lista e Solucao Simplista

O problema a ser resolvido por este trabalho, através de uma Maquina de Turing, € a comparacdo de duas
listas com o objetivo de manter as palavras escritas na primeira lista que se encontram presentes na segunda lista.
As palavras sao compostas pelo alfabeto a e b, ndo ultrapassando a quantidade de trés caracteres para cada palavra.
Para a marcacao de final das duas listas na fita utilizaram-se os caracteres #z#. Para esta comparacao, a maquina
1€ cada um dos elementos da primeira lista e compara com todos os elementos da segunda lista com o objetivo de
apagar, ou seja, preencher com # os elementos da primeira lista que ndo aparecem na segunda.

3.1 Formato de Entrada

O formato de entrada sdo duas listas de palavras. Nesta versao, as palavras sdo, necessariamente, de 1, 2 ou
3 letras sobre um alfabeto a,b.

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 2, n. 2, p. 66-80, set. 2010 69

Os caracteres #z# (simbolos de controle) sdo utilizados para sinalizar o final de uma lista. Logo, na fita da
maquina fica a #<primeira lista de palavras separada por #>#z#<segunda lista de palavras>#z#. Por exemplo,
dado as duas listas a seguir, a comparacdo dessas listas tem como intersec¢do as palavras aba, bbb e a.

aba ba bbb a e aa bbb b aba a bab

3.2 Formato de Saida

No formato de saida, somente a interseccao das duas listas (palavras presentes em ambas listas) permanecem
na primeira lista, sendo as demais palavras apagadas com #. Por exemplo, dadas como entrada duas listas de
palavras, a saida também serdo duas listas de palavras, sendo que a primeira lista possui a cardinalidade do conjunto
interseccao.

Entra: #aba#tba#bbbita# z#aa#bbbitbitabattattbabitz#
Sai: #aba##H#bbO#a# 2Haa#bDU#b#aba#a#ba bz #

3.3 Algoritmo de Solu¢iao Simplista

Algoritmo 1: Processo Geral da Abordagem Simplista

1 Paratodas as palavras p da primeira lista

2 Reconhece a palavra p

3 Marca o fim da palavra p e vai para o inicio da proxima lista

4 Para todas palavras q da segunda lista

5 Se p = ¢ entdo

6 Aceita a palavra p (desmarca o fim da palavra p)

7 Interrompe a busca na segunda lista

8 Se chegou até ao fim da segunda lista sem que p fosse igual a g

9 Recusa a palavra p (retorna na primeira lista e “apaga” a palavra p)

A implementagdo prética do processo descrito no algoritmo 1 é feita por meio de uma maquina de Turing
apresentada na Figura 4. Nesta maquina, o alfabeto é composto pelas letras a e b, além dos simbolos de controle #
e z.

Esta maquina tem por funcdo reconhecer repetidamente as palavras da primeira lista (linhas 1 e 2 do Algo-
ritmo 1) e chamar outras maquinas para executar as demais tarefas. Uma vez reconhecida a palavra da primeira
lista, sdo chamadas duas maquinas de Turing:

e uma submadquina genérica marca_e_vai, que marca a palavra reconhecida e vai para o inicio da segunda
lista; e

e uma submadquina especifica busca_*, que busca encontrar na segunda lista a palavra reconhecida na primeira.

3.3.1 Submaquina genérica marca_e_vai

A linha 3 do algoritmo 1 é implementada pela maquina de Turing genérica representada na Figura 5, onde a
palavra reconhecida é marcada com o simbolo z no final e o leitor da mdquina € posicionado no inicio da segunda
lista, ou seja, apds a sequéncia de simbolos #z#. Esta miquina escreve o simbolo z e depois avanga para a direita
até encontrar o simbolo 2z (que marca o fim da primeira lista) e, em seguida, anda mais uma posic¢ao para a direita,
lendo o simbolo #, posicionando o leitor no inicio da segunda lista.

3.3.2 Magquinas especificas de reconhecimento de palavras

De acordo com a palavra reconhecida no processo geral (maquina da Figura 4), apds chamar a subméquina
marca_e_vai, uma submdquina de Turing especifica é chamada para verificar as palavras da segunda lista, até

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 2, n. 2, p. 66-80, set. 2010 70

Figura 4. Principal mdquina de Turing responsavel por reconhecer repetidamente as palavras da primeira lista e
chamar outras mdquinas de Turing auxiliares ao processo.

——3

Figura 5. Miquina de Turing responsavel por marcar o final da palavra reconhecida na primeira lista e posicionar
o leitor da miquina apds a sequéncia #z #.

encontrar a palavra reconhecida (neste caso aceita esta palavra), ou encontrar o fim da lista (neste caso recusa a
palavra).

A Figura 6 apresenta todas as maquinas que buscam as possiveis 14 palavras que podem ser reconhecidas.
Basicamente, essas maquinas buscam a sequéncia com a palavra encontrada seguida do simbolo # e, caso ndo
encontrem, avancam para a proxima palavra da lista (até o simbolo #), onde tentam novamente encontrar esta
sequéncia. Caso encontre a sequéncia, a maquina “aceita palavra” é chamada e a busca € finalizada. Caso a
sequéncia nao seja encontrada até o final da segunda lista, ou seja, até encontrar a sequéncia #z#, a maquina
“rejeita palavra” € acionada.

3.4 Problemas da solucao simplista

Ainda que funcione de forma adequada, a soluc@o simplista tem um grave problema para ser generalizada
e tratar palavras em um alfabeto maior do que apenas duas letras (a e b) e com um niimero qualquer de letras (ndo
apenas 1, 2 ou 3 letras em cada palavra). Na verdade, o funcionamento desta maquina simplista estd baseado em
fazer um reconhecedor para cada palavra possivel e, portanto, dificilmente pode ser generalizado.

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 2, n. 2, p. 66-80, set. 2010 71

busca b busca aa

aceita_pal

vecusa_pal
recusa_pal it

recusa_pal

busca ab busca ba busca bb

aceita_pal aceita_pal

aceita_pal

recusa_pal recusa_pal

recusa_pal

busca aaa busca aab busca aba

recusa_pal recusa_pal

busca baa busca bab

recusa_pal

recuss_pal

busca bba

recusa_pal
rewusa_pal

Figura 6. Maquinas de Turing responséveis por buscar na segunda lista cada uma das possiveis palavras
reconhecidas na primeira lista até encontra-la ou até encontrar o fim da segunda lista.

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 2, n. 2, p. 66-80, set. 2010 72

Nesse sentido, esta abordagem foi abandonada. Em vista disso, uma solu¢io mais genérica e que possa ser
generalizada para outros alfabetos com um nimero virtualmente infinito de palavras € proposta na préxima segéo.

4 Solucao Sofisticada

O algoritmo bdsico da solug@o proposta segue a mesma linha de raciocinio do algoritmo anterior, no sentido
de que repete as tarefas de analisar cada uma das palavras da primeira lista, tentando encontra-las por passagens
repetidas pelas palavras da segunda lista. No entanto, as semelhangas das duas abordagens terminam neste ponto.
Nesta nova abordagem a comparagao das palavras se faz letra a letra, com a cabeca da fita indo e voltando repetidas
vezes de uma lista para a outra. O novo processo geral de funcionamento € descrito pelo algoritmo 2.

Algoritmo 2: Processo Geral da Solucio Proposta

1 Para todas as palavras p da primeira lista

2 Para todas as palavras ¢ da segunda lista

3 Para todas as letras m de p e n de ¢

4 Se m de péigual an deq

5 Continua (avanca as letras m e n)

6 Sendo

7 Vai para a préxima palavra da segunda lista

8 Se chegou até ao fim das letras de p e ¢

9 Aceita a palavra p e passa para a proxima palavra da primeira lista
10 Se chegou ao fim da segunda lista sem que p fosse igual a ¢
11 Rejeita a palavra p e passa para a proxima palavra da primeira lista
12 Apaga a segunda lista
13 Contabiliza o niimero de palavras

4.1 Diferencas da solucao simplista

A primeira diferenca nesta nova solugdo é uma mudanga no formato de entrada que agora marca
com a sequéncia #z# também o inicio da primeira lista. Com isso, a mesma lista exemplo, que antes era:
#aab#bbbitbba# z#bba#aab# z#, passa a ser representada por: #z#aab#bbb#bba#z#bba#aab#z#.

Também € possivel com esta segunda solugdo tratar palavras que tenham mais do que trés letras, pois faz a
comparagdo de palavras letra a letra conforme descrito no algoritmo 2. Outra diferenca € que agora foram incluidos
dois novos simbolos para “representar” versdes alteradas das letras a e b, que s@o os simbolos g, que representa
um a reconhecido, e h, que representa um b reconhecido.

A ultima diferenca é que esta nova solugido completa o objetivo do trabalho, pois, apds identificar as palavras
presentes nas duas listas, calcula a cardinalidade da interseccdo das listas. Essa alteragdo muda um pouco o formato
de saida, que agora traz, antes das palavras encontradas em ambas as listas, dois novos simbolos, resultantes do
célculo da intersecg@o (em bindrio do tamanho desta lista). Os dois novos simbolos (g e /) sdo reaproveitados para
representar em bindrio o nimero de palavras restantes na intersec¢do das listas. Para isso utiliza-se g como o valor
zero e h como o valor um. Por exemplo, a sequéncia de simbolos hgh equivale ao niimero bindrio 101, ou seja, 5
em decimal.

O resultado final é que para uma entrada:
#z#aa#bbbb#bba#z#bba#aab#bbbb#b#aaattbb#z#

teremos como saida:
hg#z####bbbb#bba#z#

onde, hg representa o nimero de palavras na intersec¢do (10 em bindrio, 2 em decimal), seguido das
palavras bbbb e bba, que estavam presentes nas duas listas.

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 2, n. 2, p. 66-80, set. 2010 73

4.2 TImplementacio

A implementac¢do do algoritmo 2 (a solucdo proposta) € feita pela mdquina de Turing apresentada na Fi-
gura 7. Nesta mdquina, faz-se uso das seguintes submdquinas:

e inicial, que inicializa as listas marcando a primeira palavra de cada uma das listas;

e prox_let, que posiciona a cabeca da fita na préxima letra da palavra que estd sendo analisada na segunda
lista;

e prox_pal, que pula para a proxima palavra da segunda lista;
e volta_pal, que retorna para a letra a ser verificada da palavra da primeira lista que estd sendo analisada;
e reinicia_pal, que retorna para a primeira letra da palavra da primeira lista que estd sendo analisada;

e aceita_pal, que marca como aceita a palavra da primeira lista encontrada na segunda lista e marca a préxima
palavra da primeira lista;

e recusa_pal, que apaga a palavra da primeira lista que nio foi encontrada na segunda lista;
e final, que apaga a segunda lista ap6s todas as palavras da primeira lista terem sido procuradas; e

e contabil, que conta quantas palavras da primeira lista foram aceitas, isto é, a cardinalidade da intersec¢do
das listas.

=+

inicial

prox_let

prox_let

reinicia_pal

X

recusa_pal

aceita_pal prox_let

Figura 7. Mdaquina de Turing que implementa a solug¢@o proposta no algoritmo 2.

4.2.1 Submaquina inicial

A submdquina inicial (Figura 8) percorre toda a primeira lista (até encontrar o seu fim, marcado pelo
simbolo 2). Os primeiros trés movimentos da cabeca da fita para a direita servem para “pular” a sequéncia #z# no
inicio da lista. Encontrado este simbolo, avanga-se a cabeca da fita e, na sequéncia, troca-se o simbolo # por um
simbolo 2, que marca entdo a primeira letra da primeira palavra da segunda lista.

Depois disso a submdaquina move, repetidamente, a cabeca da fita para a esquerda até encontrar, novamente,
o simbolo z, que marca a separagdo entre as listas, e continua movendo a cabeca da fita para a esquerda até
encontrar novamente um simbolo z que marca o inicio da primeira lista. A cabeca da fita move-se novamente para

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 2, n. 2, p. 66-80, set. 2010 74

Figura 8. Submdquina responsavel por marcar a primeira letra das primeiras palavras da primeira e segunda listas.

a direita e troca o simbolo # por um simbolo z que marca entdo a primeira letra da primeira palavra da primeira
lista. Finalmente, a cabeca da fita avanca para a direita e a comparacao da primeira palavra da primeira lista com a
primeira palavra da segunda lista poderd comecar.

4.2.2 Submaquina prox_let

Esta submdquina (Figura 9) avanca a cabeca da fita até a proxima letra a ser verificada na palavra que esta
sendo analisada na segunda lista. O funcionamento desta submdaquina consiste em mover a cabeca da fita para a
direita até encontrar o final da primeira lista (simbolo z). Em seguida, o avango da cabeca da fita continua até
encontrar a ultima letra da palavra da segunda lista que estd sendo analisada, ou seja, até encontrar a dltima letra
que vem apos a marcagdo da palavra (simbolo z) ou uma letra ja analisada (simbolos g ou h).

Figura 9. Submaquina responsavel por posicionar a cabeca da fita na préxima letra da palavra que estd sendo
analisada na segunda lista.

4.2.3 Submaquina prox_pal

A submadquina prox_pal (Figura 10) tem como objetivo “pular” para a préxima palavra da segunda lista, ou
seja, desmarcar a palavra atual, revertendo suas letras analisadas de g e h para a e b, e marcar a préxima palavra
da lista. Esse procedimento € feito movendo a cabeca da fita para a esquerda trocando os simbolos g por a e h por
b até encontrar o inicio da palavra marcada pelo simbolo z. Este simbolo é revertido para # para desmarcar esta
palavra, e a cabeca da fita avanga para a direita até o fim da palavra marcado pelo simbolo #. Este é substituido
pelo simbolo z para marcar a proxima palavra da lista.

4.2.4 Submaquina volta_pal

Esta submdquina retorna a cabeca da fita para apds a tltima letra ja verificada na palavra da primeira lista
que estd sendo analisada. O funcionamento da submaquina volta_pal consiste em mover a cabega da fita até o
inicio da palavra da segunda lista sendo analisada (indicado pelo simbolo z). Apds, a submdquina continua até
o inicio da segunda lista (indicado novamente pelo simbolo z) e segue até encontrar a Ultima letra j4 verificada

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 2, n. 2, p. 66-80, set. 2010 75

Figura 10. Submdquina responsdvel por “pular” para a proxima palavra da segunda lista.

da palavra da primeira lista analisada (simbolos g ou h) ou o seu inicio (indicado pelo simbolo z). Finalmente, a
cabeca da fita avanca para a direita para posicionar na proxima letra a analisar.

Figura 11. Submaquina responsdvel por retornar para a letra a ser verificada da palavra da primeira lista.

4.2.5 Submagquina reinicia_pal

Esta submdquina (Figura 12) reverte as letras ja verificadas da palavra da primeira lista que estd sendo
analisada e reposiciona a cabega da fita na primeira letra desta palavra. Isso € feito retornando a cabega da fita até o
inicio da palavra da segunda lista analisada (marcado pelo simbolo z), o inicio da segunda lista (marcado de novo
pelo simbolo z). A partir daf, continua-se movendo a cabeca da fita para a esquerda, trocando-se os simbolos g por
a e h por b até encontrar o inicio da palavra da primeira lista que estd sendo analisada.

Figura 12. Submaquina responsével por retornar para a primeira letra da palavra da primeira lista.

4.2.6 Submaquina aceita_pal

A submadquina ilustrada na Figura 13 é chamada quando uma palavra foi encontrada na primeira e na
segunda lista. Esta submdquina deve reverter as letras verificadas das palavras na primeira e na segunda lista,
além de indicar a proxima palavra da primeira lista e a primeira palavra da segunda lista. Assim, esta submdquina
prepara a fita para que a préxima palavra da primeira lista possa ser procurada.

Conforme indicado na Figura 13, as quatro tarefas a serem executadas sdo (1) reverter as letras da palavra
da segunda lista que estava sendo analisada, ou seja, mover a cabeca da fita para a esquerda trocando g e h por a
e b até encontrar o simbolo z, que deve ser trocado pelo simbolo #; (2) continuar movendo a cabeca da fita para a
esquerda até o inicio da segunda lista, onde o simbolo z deve ser escrito para marcar a primeira palavra da segunda
lista; (3) reverter as letras da palavra da primeira lista que estava sendo analisada, ou seja, mover a cabega da fita
para a esquerda trocando g e h por a e b até encontrar o simbolo z, que deve ser trocado pelo simbolo #; (4) mover

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 2, n. 2, p. 66-80, set. 2010 76

a cabeca da fita para a direita até o final desta palavra que estava sendo analisada e foi aceita, ou seja, avangar até
o préximo simbolo #, que deve ser trocado pelo simbolo z para apontar para a préxima palavra da primeira lista.

Figura 13. Submdquina responsdvel por marcar como aceita a palavra da primeira lista encontrada na segunda
lista, marcar a préxima palavra da primeira lista e a primeira palavra da segunda lista.

4.2.7 Submaquina recusa_pal

A submaquina recusa_pal, apresentada na Figura 14, faz uma tarefa semelhante a subméquina aceita_pal,
porém neste caso, ao invés de aceitar a palavra da primeira lista que estava sendo analisada, a palavra € recusada,
ou seja, € apagada da primeira lista. Assim, esta submdaquina também volta ao inicio da segunda lista, ou seja,
move a cabeca da fita para a esquerda até encontrar o simbolo z e aponta novamente para a primeira palavra da
segunda lista, escrevendo mais um simbolo z. Em seguida, a submdquina continua movendo a cabeca da fita para
a esquerda até chegar a palavra que estava sendo analisada (préximo simbolo z) e comega a apagar todas as letras
desta palavra, ou seja, escreve o simbolo # até encontrar, avancando para a direita, um simbolo #. Finalmente, este
simbolo # € substituido pelo simbolo z, que indica a préxima palavra da primeira lista a analisar.

Figura 14. Submaquina responséavel por apagar a palavra da primeira lista que ndo foi encontrada na segunda.

4.2.8 Submaquina final

Esta submdquina (Figura 15) é chamada quando todas as palavras da primeira lista foram analisadas e
aceitas ou recusadas. A execu¢do da submdquina final apaga toda a segunda lista, ou seja, escreve o simbolo # e
avang a cabeca da fita até encontrar o final da segunda lista (o préximo simbolo z). Depois, move a cabeca da fita
para a esquerda até o inicio da primeira lista, ou seja, até encontrar o segundo simbolo z.

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 2, n. 2, p. 66-80, set. 2010 77

Figura 15. Submaquina responséavel por apagar a segunda lista, ap6s a procura das palavras da primeira lista.

4.2.9 Submaquina contabil

Ap6s determinar as palavras componentes da intersec¢do das duas listas, a submaquina contabil (Figura 16)
conta o nimero de palavras que foram aceitas, ou seja, as palavras que nao foram apagadas. Esta maquina avanga
a cabeca da fita para a direita e a cada nova palavra encontrada, ou seja, cada vez que uma letra a ou b é encon-
trada apés um simbolo #, uma submdquina chamada mais_um € executada para incrementar um contador binério.
Finalmente, a cabeca da fita retorna para o inicio da lista.

mais_urm

Figura 16. Submaquina responsével por contar quantas palavras da primeira lista foram aceitas, isto &, a
cardinalidade da intersec¢ao das listas.

4.2.10 Submaquina mais_um

Esta submaquina (Figura 17) faz um incremento em um contador bindrio que marca onde estd a cabeca da
lista com o simbolo z. Em seguida, recua a esquerda até uma posi¢do apds o inicio da lista e soma mais a um
contador bindrio. Finalmente, retorna ao ponto original marcado pelo simbolo z e transforma-o novamente em #.
Neste contador, um digito O (representado pelo simbolo g) € incrementado, ou seja, é transformado em digito 1
(representado pelo simbolo h); ja um digito 1 € incrementado sendo transformado em 0, mas o digito da esquerda
deve ser, por sua vez, também incrementado.

Figura 17. Submaquina responsavel por somar mais um em um contador bindrio a esquerda da lista de aceitos.

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 2, n. 2, p. 66-80, set. 2010 78

S Exemplos de Aplicacao

A Tabela 1 apresenta um exemplo de utilizacdo com uma descricdo detalhada de diversos passos. Neste
exemplo recebem-se como entrada as listas:

aa bbbb ba bba e aab bbbb b aaa bb

A intersecgdo dessas listas possui apenas uma palavra: a palavra bbbb.

Tabela 1. Descricdo passo a passo do primeiro exemplo de utilizacdo.
Fita de Entrada

[eeJle e T [« [z [[a [a [# [o [o [[# b [a [#[b[b[a]# [z [¢[a]alb]#b oo o] [o]#]ala]a]# ooz [+«]

Apds a execugdo da submaquina inicial apontando para as palavras aa e aab
[l el ez Tz B2 T# Tl o TeT# o Tal# TolbTalelz Tz TalalbT#TbIbTo ToTe T T# Tala Tal# o Tb Tz Te Ta 21
Ap6s reconhecer a primeira letra da palavra aa e apds a execug@o da submaquina prox_pal
el lal# &l elz]z]alal#|blolblbl#]blal#]blblal#]z]zEXalblt|b|blblbl4]|b]#]|alalal#lele]|a]z]#]]]
Ap6s validar a primeira letra de aa e apds a execucdo da submdquina volta_pal
[e]e]#] =]z JallN# e b b]b]#]bla#]k b a]#]z]z [alalbl#]kb]kk]#]e]#]aala]# bl [#]=#]]x]
Ap6s reconhecer a segunda letra da palavra aa e apds a execugio da subméquina prox_pal
[T ez ez Talal# [oIblblbl# blal# b olal 1z = la b # [o]blb]b]# bl # alalal# blb]z £]
Ap6s validar a segunda letra de aa e apds a execucdo da submdquina volta_pal
BEARRRAANR + AR ERRAANRREBEREAARNERRRRERERARERRARABRR
Ap6s reconhecer o fim da palavra aa e ap6s a execugdo da submaquina prox_pal, aguardando #
(el]# [#]#]z 2 [allal#]e]b]e]b]#]b]a]#]e]b[al#]z]zalallN#ele]b]el]b]#alala]#]b]e]# =]
Ap6s a execugdo da submaquina prox_pal (agora apontando para bbbb)
[Tl Tz Tz TalaleTeTololbl# Toa# Tolblal# Tz [#Tala = (oo Tolo# o #Talalal# ool T2 T# T e
Ap6s a execugdo da submaquina reinicia_pal que reverte a palavra aa
(e e]l []2 [z JEM[a [# e [e o] #]b]a]#]e]b]a]#]z |#]a]a]e]z]b]e]b]e]#]b]#a]ala][b]e]# [z]]

Ap6s a execugdo da tltima chamada da submaquina prox_pal para a palavra aa

| 3223 23 23 P2 Y 2 3 5 2 3 2 2 Y N Y 1 Y Y Y Y B Y 3 EY Y EYEN Y » [E Y EN ER

Ap6s a execucgdo da submaquina recusa_pal que apaga a palavra aa e aponta para as palavras bbbb e aab
(e [z el 2 2 Tz 1080 i b e o ILa] # [[2 L 2 [z T2 l(a T # b o T Il][# [[(a2 a [i 1o e T2 e e]

Ap6s reconhecer completamente a palavra bbbb em ambas as listas, aguardando #
(el # == ez e ## [z h[h[n]h]# [klal#blelal# Tz [#alalb]z Thhihn]ENb [alallal# bl z T
Ap6s executar a submaquina aceita_pal para a palavra bbbb e apontar para as palavras a e aab
(e e Jloe Yo e]2 I Lot e)t o [o [2 BB [[# [][[a][# [[[a[[a |] # [] o) i][][¢ [bo [t [|]][¢ o [[t)2] ¢ [t]

Ap6s analisar todas as palavras da primeira lista
HABARARRRRARARRANNERBRERRARR : ARNRARRRRARNERRNARNERRERREE
Ap6s executar a submaquina final deixando apenas a primeira lista com a palavra bbbb
L 0 2 0 o o 2

Ap6s executar a submaquina contabil contando apenas uma palavra (nimero bindrio 1 - k)
0 R e + [- el el el e el 3 8 S Y X

Um outro exemplo de utiliza¢do é a comparagao das listas:

a ab aaa abab bbbb bb b ba baa e ab abab bb baa a

Este segundo exemplo tem como intersec¢do as cinco palavras da segunda lista:

ab abab bb baa a

O resultado da execu¢do na Tabela 2 mostra exatamente esse resultado, com a indicacdo do nimero bindrio
101 (5 em decimal) com os simbolos hgh e, em seguida as, palavras da interseccio.

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 2, n. 2, p. 66-80, set. 2010 79

Tabela 2. Descricdo do resultado final do segundo exemplo de utilizagdo.
Fita de Entrada
e Bz 7 ol alel7 [alalalz ale[alel# e e ool # e o [F lelz e a e lalal Lz ale[Flalelale Felelz b [alzle ala ez 2]]
Fita de Saida
AARLNAR : AARARRARARAARANAEAERARRANARNRARRRARARNANRRRANARRRARARARAGRen

6 Conclusao

A primeira maquina implementada é uma solugdo limitada que necessita que todas as palavras trataveis es-
tejam representadas nas instrugdes que identificam as palavras. Por isso esta solugd@o difilmente pode ser estendida
para um alfabeto maior.

A segunda solugdo apresentada ¢ uma maquina bastante flexivel, que pode ser estendida para um alfabeto
maior do que apenas as letras a e b; tem como vantagem também o fato de que palavras de qualquer tamanho
podem ser tratadas. Além disso, junto com a possibilidade de visualizar as palavras na intersec¢do, a maquina
implementada mostra a cardinalidade do conjunto de intersec¢do, o que facilita a interpretacio do resultado quando
as listas possuirem um nimero grande de palavras.

A Unica limitag@o de uso desta maquina é o tempo de execucdo em listas grandes. O problema proposto é
uma operacdo complexa, que muitas vezes € lenta, mesmo utilizando linguagens de programagdo. Logo, a demora
de execucao para listas grandes na maquina de Turing proposta ndo deve ser um problema de implementag¢do, mas
uma caracteristica do préprio problema escolhido.

Referéncias

[1] TURING, A. M. On computable numbers, with an application to the entscheidungsproblem. Proc. London
Math. Soc., vol. 2, no. 42, pp. 230-265, 1936.

[2] HERKEN, R. The universal Turing machine: a half-century survey. 2nd edition. Oxford Science, 1995.
[3] COHEN, D. L. A. Introduction to computer theory. 2nd edition. John Wiley & Sons, Inc, 1996.
[4] HODGES, A. Alan Turing: one of The Great Philosophers. Phoenix, London, 1997.

[S] MENEZES, P. E. B.; DIVERIO, T. A. Teoria da Computagcdo: Mdquinas Universais e Computabilidade.
2.ed. Porto Alegre: Sagra Luzzatto, 2003.

[6] Visual Turing Machine. On-line. Disponivel em: http://sourceforge.net/projects/visualturing/. Acesso em:
23/04/2010.

Revista Brasileira de Computacdo Aplicada (ISSN 2176-6649), Passo Fundo, v. 2, n. 2, p. 66-80, set. 2010 80

