Combinando agrupamento e classificação para a predição de coautorias na Plataforma Lattes
DOI:
https://doi.org/10.5335/rbca.v13i2.12493Palavras-chave:
Agrupamento, Predição de links, Redes de coautoria, Redes Sociais, Redes sociais acadêmicasResumo
As Redes Sociais Online desempenham um papel importante na sociedade moderna, são um modelo e um reflexo das redes sociais do mundo real. Com as informações disponíveis na Plataforma Lattes é possível construir uma rede social acadêmica, na qual as relações entre os pesquisadores representam, por exemplo, uma parceria na produção de uma publicação. A tarefa de predição de relacionamentos (ou links) para identificar possíveis colaboradores é uma tarefa complexa que pode favorecer a comunicação entre os usuários. O objetivo deste trabalho é propor a utilização da técnica de agrupamento e a inclusão de novos atributos que usam informações de comunidade para melhorar a previsão relações de coautoria nas redes sociais acadêmicas.
Downloads
Downloads
Publicado
Edição
Seção
Licença

Todos os artigos estão licenciados com a licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional. Autores que publicam nesta revista concordam com os seguintes termos:
a) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).