Previsão de intervalos de preço no mercado de ações brasileiro usando cadeias de Markov de tempo discreto
DOI:
https://doi.org/10.5335/rbca.v15i1.13400Palavras-chave:
Cadeias de Markov de Tempo Discreto, machine learning, previsão do mercado de açõesResumo
As Cadeias de Markov de tempo discreto tem sido preferencialmente usadas para fazer previsão de tendencia de preços de ações e de índices utilizando três estados (preço subir, preço baixar, preço ficar estável) e análise de estado estável. Em quanto que a previsão de intervalos de preço tem sido pouco explorada. Neste trabalho realiza-se a implementação de três maneiras diferentes de construir a matriz de probabilidade de transição para previsão de intervalos de preço, compara-se a previsão com dados reais e mede-se a porcentagem de acertos. Além disso, calcula-se a relação entre a porcentagem de acertos e o período de construção da matriz de transição de probabilidade e também a relação entre a porcentagem de acertos e o número de intervalos de preço ou estados. A análise foi feita utilizando 10 ações aleatórias da bolsa de valores de São Paulo com dados de 2010 até 2019. Um dos métodos avaliados que consistiu em intervalos de tamanho fixo, usando matriz de transição de 12 meses e 5 intervalos, foi o que melhor desempenho apresentou, obtendo média total de porcentagem de acertos acima de 81%. Ademais, quatro estratégias de investimento foram implementadas levando em consideração os resultados deste método de previsão, mostrando que é possível incrementar os investimentos com os resultados do método.
Downloads
Downloads
Publicado
Edição
Seção
Licença

Todos os artigos estão licenciados com a licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional. Autores que publicam nesta revista concordam com os seguintes termos:
a) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).