Uso de técnicas de aprendizado de máquina para predição do tempo de graduação dos discentes de Engenharia da Computação na região Sudeste do Brasil
DOI:
https://doi.org/10.5335/rbca.v16i1.14456Palavras-chave:
Engenharia da Computação, ENADE, Grid Search, Aprendizagem de MáquinaResumo
O Exame Nacional de Desempenho de Estudantes (ENADE) foi criado para avaliar o rendimento dos estudantes nos cursos das instituições superiores. Através do desempenho dos estudantes estima a qualidade dos cursos. O abandono ou atraso do curso acarreta uma ruim gestão universitária, já que o orçamento que as graduações recebem tem como fator o número de alunos formandos. Analisar dados do ENADE pode gerar insights sobre o tempo que os discentes permanecem na graduação. Como os dados do ENADE contém um número elevado de informações realizar análises visualmente é algo inviável. Para contornar essa situação, técnicas de aprendizado de máquina podem ser utilizadas com intuito de automatizar essa tarefa e apresentar os resultados. Nesse contexto, o objetivo deste trabalho é determinar, através da base do ENADE 2019, o tempo de permanência dos estudantes na graduação, tendo em vista os cursos de Engenharia da Computação na região Sudeste do Brasil. A metodologia envole o pré-processamento, a seleção de características, balanceamento dos dados, abordagem de seleção de parâmetros Grid-Search, validação cruzada e classificação. Os resultados mostram que o Random Forest teve bom desempenho nos experimentos realizados e que a aplicação do SMOTE para balanceamento dos dados se faz necessária.
Downloads
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2024 Camila Martins Saporetti

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Todos os artigos estão licenciados com a licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional. Autores que publicam nesta revista concordam com os seguintes termos:
a) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).