Um estudo empírico de um sistema de reconhecimento facial utilizando o classificador KNN
DOI:
https://doi.org/10.5335/rbca.2015.5227Palavras-chave:
Estudo Empírico, Reconhecimento Facial, Eigenfaces, K-Nearest NeighborsResumo
Neste artigo, apresenta-se um estudo empírico de otimização das taxas de acurácias resultantes de um sistema de reconhecimento facial baseado nas técnicas Eigenfaces e K-Nearest Neighbors. Foram investigadas as seguintes variáveis: imagens com três dimensões distintas, número de características (Eigenfaces), valores de k da técnica K-Nearest Neighbors e três medidas de distância (euclidiana, Manhattan e euclidiana normalizada). Os estudos foram importantes para entender empiricamente quais parâmetros são os mais relevantes para as técnicas analisadas e que resultam em melhores taxas de acurácias de reconhecimento facial. Os resultados dos experimentos comprovaram que as imagens com dimensões 12x9 pixels produzem as melhores taxas de acurácias de reconhecimento facial, combinando com a medida de distância euclidiana normalizada e um número de Eigenfaces igual a vinte.Downloads
Os dados de download ainda não estão disponíveis.
Downloads
Publicado
30-04-2016
Edição
Seção
Artigo Original
Licença

Todos os artigos estão licenciados com a licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional. Autores que publicam nesta revista concordam com os seguintes termos:
a) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).
Como Citar
[1]
2016. Um estudo empírico de um sistema de reconhecimento facial utilizando o classificador KNN. Revista Brasileira de Computação Aplicada. 8, 1 (abr. 2016), 50–63. DOI:https://doi.org/10.5335/rbca.2015.5227.