O ensino por investigação na área de ciências da natureza: estudo comparativo entre Brasil, Chile e Colômbia

Andréia de Freitas Zompero*, Diana Lineth Parga Losano**, Ximena Vildosola Tibaud***, Eduarda Avani Rodrigues ****

Resumo

Este estudo teve por objetivo comparar a proposta do Ensino por Investigação em documentos curriculares do Brasil, Chile e Colômbia no intuito de estabelecer semelhanças e distinções entre ambas. É um estudo qualitativo e documental com análises realizadas em documentos normativos de ensino da área de Ciências da Natureza, Base Nacional Comum Curricular no Brasil, Bases Curriculares 7° básico a 2° médio do Chile e os Padres Básicos de Competência da área Ciências da natureza. Observamos convergências nos três países entre os elementos investigativos referentes à identificação e proposição do problema e comunicação. No Chile os elementos investigativos distintos são planejamento da investigação, processar e analisar evidências e avaliar. No documento brasileiro há ênfase na necessidade do uso da linguagem científica e importância que os estudantes façam intervenções a partir dos conhecimentos obtidos no processo investigativo; na Colômbia a formulação de perguntas e hipóteses, analisar, a capacidade de assombro, a busca de soluções; o uso das explicações a partir das teorias, e o estabelecimento de relações. Este estudo não é conclusivo, porém, os dados são relevantes para pesquisas posteriores referentes ao conteúdo dos documentos normativos de ensino quanto ao Ensino por Investigação.

Palavras-chave: Ensino por Investigação, América Latina, Educação Científica.

https://10.5335/rbecm.v6iespecial.14784 http://creativecommons.org/licenses/by-nc-nd/4.0

ISSN: 2595-7376

Doutora em Ensino de Ciências. Univeridade Estadual de Londrina. E-mail: andreiazomp@uel.br. Orcid: https://orcid.org/0000-0002-5123-8073

Doutora em Educação para a Ciência. Universidad Pedagógica Nacional, Bogotá. E-mail: dparga@pedagogica. edu.co. Orcid: https://orcid.org/0000-0002-7899-0767

Doutora em Didática das ciências. Universidad Metropolitana de Ciencias de la Educación – UMCE. E-mail: ximena.vildosola@umce.cl; Chile; https://orcid.org/0000-0001-6866-4178

Licenciada em Ciências Biológicas. Universidade Estadual de Londrina. E-mail: eduarda.rodrigues@uel.br. Orcid: https://orcid.org/0000-0001-9132-3566

Introdução

A educação científica de crianças e jovens enfrenta diversos desafios na atualidade. As transformações pelas quais as sociedades atravessam exigem mudanças no âmbito educacional no intuito de melhor preparar os estudantes para as demandas atuais. Nesse sentido, um dos desafios que se apresenta, segundo Scheid (2016), é formar cidadãos que participem inteligentemente em debates políticos sobre temas fortemente impregnados de questões científicas. Para acompanhar os impactos promovidos pelos avanços da ciência e da tecnologia, o ensino que envolve a área de Ciências da Natureza, tanto no ensino fundamental como no médio, tem se orientado por diferentes metodologias que são utilizadas como forma de contribuição no seu processo de ensino e aprendizagem (Oliveira Júnior e Silva, 2022). Dessa maneira, Carvalho *et al.* (2018) e Cunha (2012), defendem a importância de que seja atribuída atenção necessária a essa área de conhecimento no sentido de impulsionar mudanças positivas para o ensino.

Demo (2010), aponta que a educação científica implica reconstruir toda nossa proposta de educação básica, não só para realçar os desafios da preparação científica para a vida e para o mercado, mas principalmente para implantar processos de aprendizagem minimamente efetivos.

Dentre as propostas didáticas, o Ensino por Investigação apresenta-se como relevante perspectiva para atender às demandas necessárias à formação em ciência dos estudantes. Guidotti e Heckler (2017), afirmam que desde 1950, as propostas curriculares nos Estados Unidos, apoiadas pela *National Science Foundation* (NSF), já indicavam o uso da investigação científica em sala de aula como sinônimo de educação de qualidade.

Para tal finalidade, a educação escolar, por meio do currículo, tem importância fundamental nesse processo. A educação científica é essencial hoje para a formação cidadã (UNESCO, 2016), ao buscar desenvolver competências, valores, atitudes, e habilidades que os estudantes precisam para resolver problemas do contexto atual em suas diversas dimensões (PARGA, 2019, 2021). A educação em ciências ao propor currículos dinâmicos deve permitir aos alunos construir as diversas cidadanias demandadas hoje (HADJICHAMBIS *et al.*, 2021; VALLADARES, 2021) e as diversas alfabetizações.

O currículo é o veículo pelo qual um país possibilita a seus cidadãos os conhecimentos, habilidades, atitudes e valores necessários a capacitá-los para o desen-

volvimento pessoal (MBONYIRYIVUZE, 2018). No entanto, dentre as diversas definições de currículo, Sacristán (2000, p. 14-15), nos coloca como um "documento formal, com uma certa estrutura de conteúdos previstos e que sirva como orientação para os profissionais da educação em como abordá-lo". O mesmo autor afirma que por meio do currículo atende-se possibilidades sobre como analisar os processos, instrutivos e a realidade da prática a partir de uma perspectiva que lhes dota de conteúdo; estudá-lo como território de intersecção de práticas diversas e sustentar o discurso sobre a interação entre a teoria e prática em educação (SACRISTÁN, 2000).

O currículo segundo Freixo-Mariño (2002) tem sido usado para indicar o que, como e quando ensinar e avaliar, é um conceito amplo que não se limita ao plano dos conteúdos nem das disciplinas, mas inclui as metodologias, a sequência de ações do processo de ensino; é fundamental porque respalda os valores, objetivos, estratégias, recursos e outros variados componentes para a formação dos alunos. Hoje, se identificam diversos enfoques sobre o currículo (teórico, prático, transicional, sistematizado, emancipador e outros, conforme Parga (2019) e está fundamentado a partir de fontes psicopedagógica, epistemológicas e social (NIEDA; MACEDO, s.d.). No entanto, de acordo com Fensham (2016) na década de 1960 foram feitas reformas chaves nos currículos. Na área de Ciências da Natureza a ênfase nas situações de ensino e aprendizagem foram os contextos sociocientíficos e conhecimentos alternativos apresentados pelos estudantes. No momento atual são demandadas abordagens pedagógicas para possibilitar a formação de alunos que ajudem a resolver os problemas atuais do mundo, o que é desafiante (PARGA, 2022).

Não temos a pretensão de avançarmos nos diferentes conceitos sobre currículo, mas buscamos discutir alguns documentos curriculares no intuito de compreendermos seus fundamentos para educação científica com respeito ao Ensino por Investigação.

A perspectiva investigativa, que aqui denominamos como Ensino por Investigação, compõe os fundamentos dos currículos de diversos países, principalmente na Europa conforme European Comission (2015), Estados Unidos NRC (2012), países da América Latina como Chile, Argentina, Colômbia, Brasil (2018). Carvalho (2018), National Research Council (2012), Zompero e Laburú (2016) apontam elementos investigativos essenciais que necessitam ser contemplados em atividades investigativas no ensino como: problema, emissão de hipótese, organização do plano de trabalho, obtenção dos dados, priorização de evidências, conclusão e comunicação. Os marcos teóricos do Programme for International Student Assessment - PISA (2018), apontam o letramento científico como um domínio avaliado no PISA. De acordo com o documento, uma pessoa letrada cientificamente "está disposta a participar de discussão fundamentada sobre ciência e tecnologia, o que exige as competências para explicar fenômenos, avaliar e planejar investigações e interpretar dados e evidências cientificamente" (BRASIL, 2018, p. 24).

Este estudo é parte de uma pesquisa ampla que visa investigar currículos de países da América Latina na área de Ciências da Natureza. Neste estudo pretende-se responder quais as convergências e divergências nos documentos normativos de ensino para Ciências da Natureza do Brasil e do Chile, referentes ao Ensino por Investigação. Tem-se por objetivo comparar os elementos do Ensino por Investigação presente nos documentos normativos dos três países no intuito de estabelecer semelhanças e distinções entre ambas.

Elementos Investigativos e o Ensino de Ciências por Investigação

Já há uma ampla discussão na literatura que o Ensino por Investigação não se trata de um método de ensino por apresentar diferentes abordagens (ZOMPERO; LABURÚ, 2011; SOLINO; FERAZ; SASSEROM, 2015). Porém, o termo Ensino por investigação apresenta-se como polissêmico na literatura.

Constantinou, Tsivitanidou e Rybska (2018) assumem a pesquisa como um processo intencional para diagnosticar situações, formular perguntas, criticar experimentos e distinguir alternativas, planejar, pesquisar conjeturas, buscar informação, construir modelos, debater com parceiros usando evidência e representações, para propor argumentos coerentes. Este enfoque tem sido recomendado para o ensino e aprendizagem das ciências por vários anos.

A educação científica segundo Constantinou, Tsivitanidou e Rybska (2018) tem sido desenvolvida em dois enfoques: dedutivos e indutivo. No dedutivo ou de transmissão, os professores apresentam os conceitos científicos e suas implicações lógicas ou dedutivas, dão exemplos de aplicações e os alunos são receptores passivos do conhecimento (conceitos abstratos e noções). O enfoque indutivo promove espaço para a observação, a experimentação e a orientação do professor para a construção do próprio conhecimento do aluno. Esta terminologia é adequada à proposta da educação científica baseada na investigação. Embora exista ambiguidade no termo "investigação" esse conceito é apresentado na literatura como procedimentos que os

cientistas utilizam para gerar e validar conhecimento. No que se refere ao ensino por indagação que é o foco deste trabalho, e segundo a literatura, não existe uma definição operativa clara. Nessa perspectiva de ensino o professor tem destaque como orientador para apoiar a aprendizagem dos alunos e propor desafios para que pensem além dos conceitos e teorias científicas.

O National Research Council em sua publicação no ano de 2002 apresentou as características que são essenciais ao Ensino por Investigação que se denomina inquiry na língua inglesa. Essas características são engajamento no tema, observação de evidências, formulação e explicações para as evidências, conexão das explicações ao conhecimento científico, comunicação dos dados e justificativa de suas explicações para o problema inicialmente proposto, por meio da interação discursiva, pequenos textos ou desenhos. Essas características foram reafirmadas na publicação do documento na edição de 2012 (NRC, 2002; 2012).

Azevedo (2006) defende em seus estudos que as atividades de investigação devem contemplar alguns momentos como a proposição do problema em forma de pergunta que estimule a curiosidade científica do estudante; levantamento de hipóteses, que devem ser emitidas pelos alunos por meio de discussões; coleta de dados; análise dos dados, utilização de gráficos, textos, para que os alunos expliquem os dados e a conclusão na qual os estudantes formulam respostas ao problema inicial, a partir dos dados obtidos e analisados.

Pedaste et al. (2015) realizaram uma revisão sistemática na literatura sobre ciclos investigativos, no intuito de compreenderem quais são as fases e processos centrais do ensino baseado na investigação e proporem uma estrutura para essa perspectiva de ensino. Os autores identificaram nas publicações pesquisadas alguns aspectos que consideram como comuns e necessários para compor as atividades de investigação. Estes dividem as atividades em fases: orientação, na qual é feita uma introdução e motivação pelo tema; conceptualização em que se desenvolve uma pergunta e/ou hipóteses de investigação; investigação, na qual se fazem observações e experimentos e se interpretam os dados; conclusão para extrair inferências e se avaliam modelos ou hipóteses; discussão, fase em que os estudantes comunicam os resultados. Em síntese, os autores concluíram como elementos centrais que o Ensino por Investigação deve oportunizar aos estudantes a resolução de problemas; a emissão de hipóteses; coleta, análise e interpretação de dados; construção de conclusões; comunicação e reflexão acerca do processo investigativo.

Cardoso e Scarpa (2018) denominam esses aspectos essenciais às atividades de investigação como elementos do ensino por investigação e propõem uma ferramenta para auxiliar os pesquisadores na identificação desses elementos. Em síntese, esses elementos podem ser distinguidos como problema/questão; hipótese/previsão; planejamento; coleta de dados; conclusão e estágios futuros à investigação. Neste estudo utilizamos o termo elementos do Ensino por Investigação em referência aos aspectos investigativos presentes nas propostas curriculares dos três países analisados. Carvalho (2018) reitera a necessidade de esses mesmos elementos em atividades investigativas, mas salienta a necessidade da priorização de evidências. Dessa maneira, neste estudo buscou-se identificar os elementos investigativos nos documentos de ensino dos países pesquisados, na perspectiva dos autores aqui mencionados.

Khalaf e Zin (2018) realizaram uma revisão sistemática e crítica dos modelos do ensino tradicional e por investigação. A revisão foi baseada em 43 estudos empíricos reportados na literatura no período 2002-2017, mas, em estudos prévios foram identificadas desvantagens importantes para os dois enfoques. Como vantagens do Ensino tradicional é considerado que este incrementa os resultados dos alunos e os auxila a sistematizar o que foi aprendido; para o Ensino por Investigação, além de favorecer a apropriação do conhecimento envolve habilidades investigativas. Os autores apontam que é uma maneira para construir e desenvolver conhecimento por meio de processos colaborativos e comunicativos, além de motivar aos alunos a desenvolver e inspirar o trabalho em equipe para a tomada de decisões juntos e trocando conhecimentos. O Ensino por Investigação está baseado na aprendizagem construtivista, na qual os estudantes têm a possibilidade de participarem diretamente nas aulas de Ciências mais do que de forma tradicional. Os alunos fazem perguntas e participam diretamente nas atividades de laboratório. Segundo os autores, é um modelo que pode ser usado no ensino básico e universitário; favorece o desenvolvimento de habilidades para resolver problemas nos campos particulares; aprende-se fazendo ao aplicar uma compreensão aprofundada e o pensamento crítico nos problemas abordados; demanda usar uma grande e variada quantidade de informação. No caso da Europa, é um método educativo predominante pelas implicações construtivistas cognitivas e seu papel no desenvolvimento das competências.

O quadro 1 descreve uma comparação entre o enfoque tradicional e por investigação feita por Khalaf e Zin (2018) em função de pensar nos desafios da educação, da pesquisa e das reformas curriculares.

Quadro 1: Comparativo entre o ensino tradicional e por investigação.

Descrição	Ensino tradicional	Ensino por investigação
1 Perspectiva teórica	Behaviorismo cognitivo	Construtivismo cognitivo
2 Rol docente	Rol dominante	Orientação e facilitador
3 Nível do conhecimento	Conhecimento limitado	Conhecimento desenvolvido
4 Habilidades	Habilidades limitadas	Habilidades desenvolvidas
5 Nível de confiança	Baixa confiança	Alta confiança
6 Motivação	Alta motivação	Baixa motivação
7 Rendimento	Bajo rendimento	Alto rendimento
8 Resultados do aluno	Baixos resultados	Baixos resultados

Fonte. Khalaf e Zin (2018).

Em síntese, o estudo de Khalaf e Zin (2018) permite identificar que os dois modelos têm determinadas condições nas quais são eficientes. É importante salientar que o Ensino por investigação apresenta dificuldades na sua implementação em sala de aula, devido aos sistemas escolares. Porém, apesar de algumas dificuldades, Jerrim e Sims (2019) apontam que o ensino por investigação é amplamente usado por professores de diversos países; este requer apoiar aos alunos para adquirirem conhecimentos científicos indiretamente através da realização de seus próprios experimentos científico escolares e não tanto recebê-los diretamente dos professores. Cairns e Areepattamannil (2017) reiteram que o Ensino por Investigação promove o desenvolvimento de habilidades para os processos científicos e o entendimento aos estudantes sobre como os cientistas usam métodos de indagação.

Considerações sobre a escolaridade nos países pesquisados

A escolaridade no Brasil, conforme a Lei de Diretrizes e Bases da Educação de 1996, está estruturada em Educação Infantil, Ensino Fundamental, este último é organizado em Anos Iniciais e Anos Finais e após o Ensino Médio. Na Colômbia inicia-se no Pré-jardim e Jardim, Transição, Educação Primária e Secundária e Educação Média. No Chile também é diferenciado, sendo então Sala Cuna, Médio, Transição, assim como na Colômbia, Educação Primária e Educação Secundária. Portanto quando relacionamos o Brasil com os demais países, podemos concluir que as fases de escolaridade: Pré-jardim e Jardim, Transição da Colômbia e Sala Cuna, Médio e Transição do Chile equivalem a Educação Infantil do Brasil. A Educação Primária e Secundária da Co-

lômbia e Educação Primária do Chile correspondem ao Ensino Fundamental do Brasil, já Educação Secundária do Chile e Educação Média na Colômbia ao Ensino Médio do Brasil. Sobre a idade prevista para a iniciação no plano educacional/escolarização, observamos que a faixa etária vai de 0 a 17 anos. A Educação Básica nos três países corresponde no Brasil à Educação Infantil até o Ensino Médio, na Colômbia Educação Primária e Secundária e no Chile só a Educação Primária.

No Brasil, a Base Nacional Comum Curricular - BNCC é um documento normativo com a finalidade de oferecer a todos os alunos o direito de desenvolver um conjunto de aprendizagens com qualidade (BRASIL, 2018). A estrutura da BNCC, em geral, é organizada em competências gerais e competências específicas para cada área de conhecimento. As competências gerais referem-se a todas as áreas de conhecimento. Dentro da área de conhecimento das Ciências da Natureza, está por sua vez se divide em componentes curriculares. Nesse caso o componente Ciências divide-se em unidades temáticas denominadas de Matéria e Energia, Vida e Evolução e Terra e Universo. Cada unidade temática tem seu objeto de conhecimento, isto é, conceitos e conteúdos que estão relacionados a um conjunto de habilidades.

No Chile, a área de conhecimento de Ciências da Natureza está organizada em três eixos temáticos, sendo eles Biologia, Química e Física. Mesmo contendo essa organização e os objetivos de aprendizagem. Cada eixo possui o seu objetivo de conhecimento, tendo como finalidade proporcionar aos alunos o desenvolvimento de práticas, habilidades e atitudes da disciplina de forma integrada. Portanto, para que haja a aprendizagem dos alunos, os objetivos de conhecimentos possuem uma organização que permite o aluno desenvolvê-las de maneira investigativa, contendo assim as denominadas "grandes ideias", que proporcionam as ideias chaves focalizadas no conhecimento disciplinar segundo os aportes de Harlen (2010); estas ideias auxiliam as explicações de questões que aparecem no dia-dia, aplica-se também através dos objetivos de aprendizagem de competências e processos de investigação científica, que é a aquisição progressiva de competências de investigação científica.

No caso da Colômbia, o documento Padrões Básicos de Competências (PBC) nas Ciências da Natureza, de 2006, são os referentes que permitem avaliar os níveis de desenvolvimento das competências que os alunos irão conseguindo no transcorrer da vida escolar (MEN, 2006). A formação nas Ciências da Natureza está dividida em três categorias: processos biológicos, processos físicos e processos químicos; formação que demanda ter uma visão integral destes processos, ter uma

apropriação dos conceitos chaves que permitam uma aproximação explicativa dos processos da natureza. Sendo assim, os elementos investigativos são enunciados como competências marcadas por observações rigorosas, sistematização de ações e argumentação. Estas buscam desenvolver o pensamento científico, a capacidade para continuar aprendendo e valorar de forma crítica a ciência mesma. Os padrões básicos estão desenvolvidos em três eixos: como aproximação ao conhecimento como cientista natural, lidar com os conhecimentos próprios das ciências da natureza (do entorno físico, do químico e do entorno vivo, os três considerados de forma integral); e o desenvolvimento de compromissos pessoais e sociais.

Metodologia

Este estudo trata-se de uma pesquisa qualitativa de natureza documental. Os documentos analisados para tal finalidade foram a Base Nacional Comum Curricular no Brasil-BNCC (2018) para a área de Ciências da Natureza, no Chile o documento intitulado Bases Curriculares 7º básico a 2º médio (2016) e na Colômbia os Padrões Básicos de Competência (PBC) nas ciências da natureza de 2006 estabelecido pelo Ministério de Educação Nacional (MEN, 2006).

Na BNCC foram analisados os fundamentos relativos às Ciências da Natureza do Ensino Fundamental, bem como as situações de ensino que essa área deve proporcionar à aprendizagem dos alunos. Nas Bases Curriculares do Chile 7º básico a 2° médio (Ministerio de Educación de Chile, 1998) foram analisadas as habilidades e processos para investigação científica que compõem a organização curricular do referido documento e nos Padrões Básicos de Competência (PBC) da Colômbia foi analisada a fundamentação do documento em relação com seus propósitos, as metas da formação cientifica, a estrutura dos padrões de competências e as competências mesmas.

Resultados e discussões

A partir das análises realizadas nos documentos de cada país, foi possível estabelecermos algumas comparações apresentadas a seguir. No Brasil a Base Nacional Comum Curricular (2018), orienta que os estudantes tenham acesso aos "conhecimentos científicos produzidos ao longo da história, bem como a aproximação gradativa aos principais processos, práticas e procedimentos da investigação científica"

(BRASIL, 2018, p. 321). Nesse sentido, o processo investigativo deve ser entendido como elemento central na formação dos alunos nas disciplinas que envolvem as Ciências da Natureza. Conforme orientações expressas no documento as situações de ensino devem proporcionar aos estudantes contato com as práticas investigativas contempladas em tópicos apresentados no material. Esses tópicos estão organizados em: definição do problema; no qual os alunos são oportunizados a observar, problematizar e propor problemas e hipóteses; levantamento e análise de representação, para o qual os estudantes podem ter condições para planejar experimentos, utilizar ferramentas digitais para coleta de dados, avaliar informações, elaborar explicações e modelos e associá-los à evolução histórica dos conhecimentos científicos, selecionar argumentos com base em evidências, aprimorar saberes. Comunicação, com ênfase em organizar conclusões, relatar informações, apresentar dados resultantes de uma investigação, participar de discussões de caráter científico, considerar contra-argumentos para rever processos investigativos e conclusões; intervenção, desenvolver ações para resolver problemas de cotidianos e socioambientais.

As práticas investigativas na BNCC, que se apresentam nos fundamentos e situações de ensino que essa área deve proporcionar à aprendizagem dos alunos, estão indicadas mais especificamente na maneira do que se espera que as atividades de ensino proporcionem aos estudantes. Há definições de habilidades a serem desenvolvidas pelos estudantes relativas a cada objeto de conhecimento, que correspondem a um corpo amplo de conteúdo a serem ministrados em cada ano de escolaridade, organizados em unidades temáticas que se intitulam Matéria e Energia, Vida e Evolução e Terra e Universo. No entanto, as habilidades propostas para cada ano de escolaridade, bem como para os conteúdos não foram analisadas neste estudo.

No documento do Chile, os elementos investigativos são enunciados como Objetivos de Aprendizagem, no intuito de que os estudantes desenvolvam habilidades específicas para investigação científica. Esses elementos também estão organizados em tópicos, assim como no documento brasileiro. Os tópicos elencados são: observar e fazer perguntas, nesse caso, espera-se que os alunos observem fenômenos, identifiquem problemas, formulem hipóteses e façam previsões com base no conhecimento científico; planejar a investigação, para planejar a investigação e necessário ter clareza do que se deseja responder, além de considerar as variáveis envolvidas; processar e analisar evidências, refere-se a necessidade de os alunos identificarem evidências com base nos dados obtidos e organizá-los em tabelas, gráficos e demais representações; avaliar, espera-se que os alunos revisem os procedimentos que utilizaram durante toda investigação e discuta-os com seus grupos; *comunicar*, é necessário que os estudantes conheçam os resultados da investigação que realizaram e comunica-los em linguagem científica por meio de diferentes modos representacionais.

No caso da Colômbia, o documento Padrões Básicos de Competências (PBC) nas ciências da natureza, os elementos investigativos são enunciados como competências; neste é planteada a necessidade da formação científica, considerando que vivemos uma época na qual a ciência e a tecnologia são fundamentais no desenvolvimento dos povos e do cotidiano. Esta formação procura aproximar aos alunos ao conhecimento científico; sendo necessária para contribuir na consolidação de ter cidadãos e cidadãs capazes de ter assombro, observar, analisar o que acontece no seu redor, no seu próprio ser; formular perguntas, buscar explicações, coletar informações, debruçar nas suas próprias descobertas para analisá-las, estabelecendo relações, fazendo novas perguntas, tendo novas compreensões; compartilhando e debatendo, buscando soluções a problemas determinados, fazendo o uso ético dos conhecimentos científicos.

Busca desenvolver o pensamento científico, a capacidade para continuar aprendendo e valorar de forma crítica a ciência mesma. Estes aspectos são definidos nos eixos:

- Aproximação ao conhecimento como cientista natural: este eixo indica competências evidenciadas nas ações de pensamento e produção que fazem os cientistas: formular perguntas e problemas, ter curiosidade científica, observar de forma sistemática (registrando em gráficos, esquemas e tabelas), estabelecer questionamentos e relações causais, formular hipóteses e propor experimentos considerando as variáveis, explicar com teorias e modelos, reflexionar e analisar as próprios descobertas, sintetizar; buscar informação, indagar soluções; compartir e confrontar com outros os resultados e as conclusões, usar linguagem científica, responder pelas aplicações e as atuações da ciência.
- Lidar com os conhecimentos próprios das ciências da natureza: estas competências estão referidas aos conceitos próprios do entorno físico, do químico e do entorno vivo abordados de forma integral
- Desenvolvimento de compromissos pessoais e sociais: envolve ações de pensamento e produção e as responsabilidades como membros de uma sociedade quando conhece e valora as descobertas e os avanços da ciência considerando o uso ético dos conhecimentos científicos.

Esses eixos concebem metodologias e processos que podem usar os alunos para que se aproximem aos conhecimentos próprios das ciências da natureza com os métodos, rigor, atitudes próprias do trabalho dos cientistas e por sua vez, para valorar e usar os conhecimentos necessários com compromisso individual e social.

O quadro 1, apresenta uma síntese dos elementos investigativos apresentados nos currículos de cada país. É necessário destacar que os elementos apresentados no quadro são os que aparecem evidenciados nos documentos de cada país, porém, na descrição de cada um deles surgem novos elementos, como já exposto acima.

Quadro 1: Elementos investigativos presentes nos documentos do Brasil, Chile e Colômbia

BRASIL	Elementos Investigativos
	Definição do problema
	Levantamento e análise de representação
	Comunicação
	Intervenção
CHILE	Elementos Investigativos
	Observar e fazer perguntas
	Planejar a investigação
	Processar e analisar evidências
	Avaliar
	Comunicar
COLÔMBIA	Elementos Investigativos
	Formular perguntas, Problematizar, Questionar, Propor soluções
	Observar (registrando dados), Buscar, coletar e Analisar dados e informações, ter Curiosidade científica
	Explicar, Usar teorias, Formular hipóteses, Propor experimentos e modelos
	Reflexionar e Analisar nas próprias descobertas Estabelecer relações (conexão das explicações)
	Comunicação (Compartilhar informações, debater, usar linguagem cientifica)
	Concluir, sintetizar

Fonte: Autores.

Observamos convergências nos três países entre os elementos investigativos referentes à identificação e proposição do problema e comunicação dos resultados, elemento que se refere também à elaboração/divulgação de conclusões. Além desses elementos convergentes, o Chile contempla como elementos distintos, em relação ao Brasil, o planejamento da investigação, processar e analisar evidências e avaliar. Esses três elementos investigativos são habilidades avaliadas em exames inter-

nacionais como o Programme for International Student Assessment (PISA, 2015; BRASI, 2018).

Consideramos que a proposta do Chile contém mais elementos investigativos na perspectiva de Carvalho (2018), Cardoso e Scarpa (2018), Zompero e Laburú (2016), National Research Council (2002; 2012), bem como de outras propostas curriculares como, por exemplo, European Comission (2015). Nesse caso, os elementos investigativos planejar a investigação e processar e analisar evidências estão presentes apenas no documento do Chile. Esses elementos são considerados essenciais para uma proposta investigativa, conforme enfatizam NRC (2002; 2012) e Carvalho (2018).

Por outro lado, o documento curricular brasileiro, além de contemplar elementos investigativos enfatiza a necessidade do uso da linguagem científica e de seus diferentes modos representacionais, como também a importância que os estudantes façam intervenções a partir dos conhecimentos obtidos no processo investigativo. Admitimos que o uso correto da linguagem é essencial ao processo do letramento científico.

Na Colômbia tem destaque os aspectos éticos da produção e do uso da ciência; com a formulação de hipóteses, a capacidade de perguntar, questionar e problematizar; buscar soluções; propor experimentos, considerar o papel das teorias e dos modelos, e estabelecer de relações. Entre Chile e Colômbia são comuns os elementos investigativos comum observar, formular perguntas, comunicar; entre Brasil e Colômbia a intervenção entendida como buscar, coletar e analisar informações e as descobertas, estabelecer relações. Nos documentos curriculares de Brasil e Chile é mencionado o uso de representações como elemento pertinente à linguagem científica, no caso da Colômbia o uso de modelos.

No documento do PCC na Colômbia, em termos da NRC (2012), Pedaste et al. (2015), Cardoso e Scarpa (2018) e Carvalho (2018) são consideradas a formulação de perguntas, problematizar, questionar e propor soluções, observar, buscar, coletar e analisar dados e informações, ter curiosidade científica; explicar, usar teorias, formular hipóteses. Segundo Acevedo (2006), Pedaste et al. (2015) e o NRC (2012), é manifesto o reflexionar e analisar as próprias descobertas, estabelecer relações (conexão das explicações); segundo Pedaste et al. (2015), a comunicação expressada como compartilhar informações e debater; além de concluir e sintetizar como o propõem Acevedo (2006) e Pedaste et al. (2015).

Considerando os autores referenciados para as análises dos elementos do Ensino por Investigação, Azevedo (2006), NRC (2002,2012) Pedaste et al. (2015) e Carvalho (2018) é possível afirmar que no Brasil os pontos que foram analisados na BNCC não apresentam como elementos investigativos o planejamento da investigação, formulação e explicações para as evidências e conexão das explicações ao conhecimento científico. No Chile está ausente conexão das explicações ao conhecimento científico e na Colômbia não é considerado o planejamento das pesquisas, mas chama a atenção que considera o uso ético dos conhecimentos científicos o que hoje é fundamental na formação cidadã.

É relevante mencionar que os elementos investigativos no documento do Chile fazem parte dos objetivos de aprendizagem que se desdobram e avançam em todos os anos de escolaridade, porém, neste estudo apresentamos os aspectos gerais referentes a esses objetivos e não aqueles por ano de escolaridade. No Brasil, esses elementos estão presentes nas orientações necessárias aos docentes ressaltando quais aspectos são necessários nas atividades de ensino para torná-lo investigativo. No caso da Colômbia os elementos investigativos estão definidos no contexto das competências que os alunos devem desenvolver ao longo de sua formação e que os professores devem orientar.

Considerações finais

Este estudo foi desenvolvido a partir de uma análise documental realizada em documentos normativos de ensino que trazem propostas curriculares no Brasil, no Chile e na Colômbia para a área de Ciências da Natureza. Importante ressaltar que a análise foi realizada em pontos específicos dos documentos estabelecendo-se comparações entre os elementos do ensino por investigação. Não houve, até o momento, uma análise mais avançada em termos de competências e habilidades investigativas que se espera que os estudantes desenvolvam em cada fase de escolaridade. Por isso, o estudo não é conclusivo. No entanto, os dados aqui apresentados são relevantes para pesquisas posteriores referentes ao conteúdo dos documentos normativos de ensino nos três países no que se refere ao Ensino por Investigação.

Inquiry in the field of nature sciences: a comparative study between Brazil, Chile and Colombia

Abstract

This study aimed to compare the Teaching by Investigation proposal in curricular documents from Brazil, Chile, and Colombia to establish similarities and distinctions between both. It is a qualitative and documental study with analyzes carried out in normative teaching documents in the area of Natural Sciences, Base Nacional Comum Curricular in Brazil, Curricular Bases 7th basic to 2nd medium in Chile and the Basic Competence Standards in the area of Natural Sciences. We observed convergences in the three countries between the investigative elements referring to the identification and proposition of the problem and communication. In Chile the distinct investigative elements are investigation planning, processing, and analyzing evidence, and evaluating. In the Brazilian document, there is an emphasis on the need to use scientific language and the importance that students make interventions based on the knowledge obtained in the investigative process; in Colombia, the formulation of questions and hypotheses, analysis, the capacity for astonishment, the search for solutions; the use of explanations from theories, and the establishment of relationships. This study is not conclusive however, the data are relevant for further research regarding the content of normative teaching documents regarding Teaching by Investigation.

Keywords: Teaching by Investigation, Latin America, Science Education

Referências

AZEVEDO, M. C. P. S. Ensino por investigação: problematizando as atividades em sala de aula. In: CARVALHO, A. M. P. (Org.). **Ensino de ciências: unindo a pesquisa e a prática**. São Paulo: Thomson, 2006. p. 19-33.

BRASIL. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. **Brasil no Pisa 2018** [recurso eletrônico]. – Brasília: Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira, 2020.

BRASIL. Ministério da Educação. Base Nacional Comum Curricular. Brasília. 2018.

CAIRNS, D.; AREEPATTAMANNIL, S. Exploring the relations of inquiry-based teaching to science achievement and dispositions in 54 countries. **Research in Science Education**, p. 1-23, 2017.

CARDOSO, Milena Jansen Cutrim; SCARPA, Daniela Lopes. Diagnóstico de Elementos do Ensino de Ciências por Investigação (DEEnCI): Uma ferramenta de análise de propostas de ensino investigativas. **Revista Brasileira de Pesquisa em Educação em Ciências**, p. 1025-1059, 2018.

CARVALHO, H. N. Experimentação no ensino de ciências: utilizando a química como proposta para experimentação no mestrado de ensino de ciências. **Revista Ambiente: Gestão e Desenvolvimento**, v.11, n. 1, p. 52-64. 2018. Disponível em: https://periodicos.uerr.edu.br/index.php/ambiente/article/view/130. Acesso em: 13 fev. 2022.

CONSTANTINOU, C.P.; TSIVITANIDOU, O.E.; RYBSKA, E. What Is Inquiry-Based Science Teaching and Learning? In: O. E. Tsivitanidou et al. (eds.). Professional Development for Inquiry-Based Science Teaching and Learning, Contributions from Science Education Research 5. Springer International Publishing AG, part of Springer Nature. https://doi. org/10.1007/978-3-319-91406-0 1, 2018

CUNHA, M. B. Jogos no Ensino de Química: Considerações Teóricas para sua utilização em Sala de Aula. Química Nova na Escola, v. 34, n. 2, p. 92-98. 2012. Disponível em: http://gnesc.sbq. org.br/online/gnesc34 2/07-PE-53-11.pdf. Acesso em: 13 fev. 2022.

DEMO, P. Educação científica. Boletim Técnico do Senac, v. 36, n. 1, p. 15-25, 2010.

EUROPEAN COMISSION. Key competences for lifelong learning: a European reference framework. Commission of the European Communities. 2007. Disponível em: http://www.britishcouncil.org/sites/britishcouncil.uk2/files/youth-in-action-keycomp-en.pdf Acesso em: 13 fev. 2022.

FENSHAM, P. The Future Curriculum for School Science: What Can Be Learnt from the Past? Res Sci Educ, Disponível em: DOI 10.1007/s11165-015-9511-9.

FREIXO-MARIÑO, Ma. X. La historia del curriculum en la investigación histórica educativa actual. Ensayos pedagógicos, 63-74.

GUIDOTTI, C.; HECKLER, V. Investigação na educação em ciências: concepções e aspectos históricos. Revista Thema, v.14, n.3, p. 191-209. 2017. Disponível em: https://periodicos.ifsul.edu. br/index.php/thema/article/view/545. Acesso em 15 fev. 2022.

HADJICHAMBIS, A.; REIS, P.; PARASKEVA-HADJICHAMBI, D.; ČINČERA, J.; BOEVE-DE, J.; GERICKE, N.; KNIPPELS, M. Conceptualizing Environmental Citizenship for 21st Century Education. Springer Open. 2020. Disponível em: https://doi.org/10.1007/978-3-030-20249-1

HARLEN, W. Principios y grandes ideas de la ciencia. Ed. W. Harlen. Publicado por Association for Science Education, 2010.

JERRIM, J.; OLIVER, M.; SIMS, S. The relationship between inquiry based teaching and students' achievement. New evidence from a longitudinal PISA study in England. Learning and Instruction, 61, 35-44. https://doi.org/10.1016/j.learninstruc.2018.12.004, 2019.

KHALAF, B. K.; ZIN, Z. B M. Traditional and Inquiry-Based Learning Pedagogy: A Systematic Critical Review. International Journal of Instruction, 11(4), 545-564. https://doi.org/10.12973/ iji.2018.11434a, 2018.

MBONYIRYIVUZE, A.; KANAMUGIRE, L. L.; YADAV, C.; NTIVUGURUZWA. Reforms in science curricula in last six decades: Special reference to physics. African Journal of Educational Studies in Mathematics and Sciences, v. 14, p. 153-165, 2018.

MEN. MINISTERIO DE EDUCACIÓN NACIONAL. Estándares básicos de competencias en ciencias naturales. MEN. 2006

MINISTERIO DE EDUCACION DE CHILE. Bases Curriculares 7º básico a 2º médio. Santiago, República do Chile. 1998.

NATIONAL RESEARCH COUNCIL. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. The National Academies Press. 2012. https://doi. org/10.17226/13165

NIEDA, J.; MACEDO, B. **Un currículo científico para estudiantes de 11 a 14 años**. Biblioteca Virtual Organización de Estados Iberoamericanos: OEI. Disponivel em: http://edu.jalisco.gob.mx/cepse/sites/edu.jalisco.gob.mx.cepse/files/el_curriculo_científico_para_estudiantes._quimica_4.pdf

OLIVEIRA, J. W. B.; SILVA, H. H. N. Educação de jovens e adultos na 4ª etapa e a importância da experimentação no ensino de ciências. **Brazilian Journal of Science**, v. 1, n. 2, p. 21-27. 2022

PARGA, D.L. Conhecimento didático do conteúdo ambientalizado na formação inicial do professor de química na Colômbia [**Tesis de Doctorado**, UNESP]. Repositório Institucional UNESP. 2019. Disponível em: http://hdl. handle.net/11449/190931.

PARGA, D.L. **Desafios atuais da educação química e da formação de professores: pesquisas sobre ambientalização do conteúdo**. Universidad Pedagógica Nacional. 2021. Disponível em: https://doi.org/10.17227/td.2021.8186.

PARGA, D.L. Del CTSA educativo a la ambientalización del contenido y la formación ciudadana ambiental. **Revista Iberoamericana de ciencia, tecnología y sociedad, CTS**, v. 17, n. 51, p. 117-140. 2022. Disponível em: texhttp://ojs.revistacts.net/index.php/CTS/article/view/322/283to.

PEDASTE, M., MÄEOTS, M., SIIMAN, L. A., JONG, T., RIESEN, S. A. N., KAMP, E. T., ... & TSOURLIDAKI, E. PHASES of inquiry-based learning: Definitions and the inquiry cycle. **Educational Research Review**, v. 14, p. 47-61, 2015. https://doi.org/10.1016/j.edurev.2015.02.003.

PROGAMME FOR INTERNATIONAL STUDENT ASSESSMENT PISA. Organização Cooperação e Desenvolvimento Econômico-OECD. Draft Science Framework. Paris, 2013. Disponível em: http://www.oecd.org/pisa/pisaproducts/Draft%20PISA%202015%20Science%20 Framewor k%20.pdf. Acesso em: 10 fev. 2022.

SACRISTÁN, J. G. O currículo: uma reflexão sobre a prática. 3. ed. Porto Alegre: Artmed, 2000.

SOLINO, A. P. Ensino por investigação como abordagem didática: desenvolvimento de práticas científicas. XXI Simpósio Nacional de Ensino de Física-SNEF, 2015.

SCHEID, Neusa Maria John. Os desafios da docência em ciências naturais no século XXI. **Tecné, Episteme y Didaxis: TED**, n. 40, 2016.

UNESCO. Educación para la ciudadanía mundial. Preparar a los educandos para los retos del siglo XXI. Unesco. 2016.

VALLADARES, L. Scientific Literacy and Social Transformation. *Science & Education*, v. 30, p. 557-587, 2021. Disponível em: https://doi.org/10.1007/s11191-021-00205-2.

ZOMPERO, A. F.; LABURÚ, C. E. Atividades Investigativas para aulas de Ciências: um diálogo com a teoria da Aprendizagem Significativa. Appris, 1^a ed. 2016.

