ISSN on-line: 2238-0302



# Ensino, Aprendizagem e Cognição em Trabalhos do Ensino de Ciências

Teaching, Learning and Cognition in Works of Science Teaching

## Enseñanza, aprendizaje y cognición en las obras de Enseñanza de las Ciencias

Viviane Terezinha Koga¹ Ademir José Rosso²

#### Resumo

O artigo explicita as relações encontradas entre ensinar, aprender e cognição em trabalhos publicados em cinco edições do ENPEC, que incluem esses termos em seus descritores. Foram localizados 154 trabalhos, analisados com o auxílio dos *softwares* ALCESTE e Nvivo, coadjuvados pela análise de conteúdo. Entre as características, destaca que a maioria é procedente da região Sudeste, de natureza empírica e têm, nos questionários e nos alunos, respectivamente, os principais instrumentos para a coleta de dados e os sujeitos de pesquisa. O referencial teórico nem sempre é definido de forma clara e aprofundada. O ensino, a aprendizagem e a cognição são expressos em métodos, conteúdos e técnicas didático-pedagógicas, e não nos fundamentos epistemológicos e cognitivos dos quais são decorrentes. Ressalta-se que a complexidade envolvida no ato de ensinar e aprender ciências deveria estar no estudo, na pesquisa e no aprofundamento dos fundamentos pedagógicos, epistemológicos, cognitivos e sociais envolvidos nesses processos.

Palavras-chave: ensino de ciências; cognição; enpec.

#### Abstract

The paper makes explicit relations found among teaching, learning and cognition in works published on five editions of ENPEC which include these terms within their describers. With software ALCESTE and Nvivo, 154 works found were analyzed, supported by the content analysis. Amongst characteristics, it detaches that most of works come from the Southeast region, and they have the main instruments for data collection and research subjects in questionnaires and students, respectively. Theoretical reference is not always clearly and deepen defined. Teaching, learning and cognition are expressed in methods, contents and didactic-pedagogical techniques, and not in the epistemological and cognitive foundations from which they derive. It is emphasized that the complexity involved in the act of teaching and learning science should be in the study, research and deepening of the pedagogical, epistemological, cognitive and social foundations involved in these processes.

**Keywords:** science teaching; cognition; enpec.

#### Resumen

El artículo explica las relaciones encontradas entre enseñanza, aprendizaje y cognición en trabajos publicados en cinco ediciones de la ENPEC, que incluyen estos términos en sus descriptores. Se localizaron 154 trabajos, analizados con la ayuda del software ALCESTE y Nvivo, asistidos por análisis de contenido. Entre las características, destaca que la mayoría son de la región Sudeste, de carácter empírico y tienen, en los cuestionarios y en los estudiantes, respectivamente, los principales instrumentos de recolección de datos y sujetos de investigación. El marco teórico no siempre está

<sup>&</sup>lt;sup>1</sup> UEPG, Ponta Grossa/PR – Brasil. E-mail: <u>vivianekoga@gmail.com</u>. ORCID: <u>0000-0003-0726-3906</u>.

<sup>&</sup>lt;sup>2</sup> UEPG, Ponta Grossa/PR – Brasil. E-mail: ajrosso@uepg.br. ORCID: 0000-0002-7143-0433.

definido de forma clara y profunda. La enseñanza, el aprendizaje y la cognición se expresan en métodos, contenidos y técnicas didáctico-pedagógicos, y no en los fundamentos epistemológicos y cognitivos de los que se derivan. Se enfatiza que la complejidad involucrada en el acto de enseñar y aprender ciencias debe estar en el estudio, investigación y profundización de los fundamentos pedagógicos, epistemológicos, cognitivos y sociales involucrados en estos procesos.

Palabras clave: enseñanza de las ciencias; cognición; enpec.

## Introdução

Os inventários sobre os problemas do Ensino de Ciências convergem para a falta de interlocução entre as dimensões do ensino-aprendizagem e da natureza da ciência (TEIXEIRA, 2019) ou das dimensões pedagógica e epistemológica (SILVA; WARTHA, 2018). Essas análises argumentam que não se trata apenas do ensino de um corpo de conhecimentos a ser transmitido e acumulado, *dos* conteúdos de ciência, mas com mesma importância, também do saber *sobre* ciência (SILVA; MOURA, 2008), da construção do conhecimento científico e de habilidades científicas (ZÔMPERO; LABURÚ, 2011).

A dimensão epistemológica está em estreita conexão com a especificidade do conhecimento científico e da sua produção, distinta das formas de conhecimentos derivados da experiência cotidiana (CACHAPUZ et al. 2005). A ciência, como objeto de interação/ensino em suas áreas de conhecimento, apresenta epistemologias e metodologias muito específicas e diversas entre si, sinalizando certos percursos de pensamento que são percorridos até se tornarem teorias. No contexto escolar, o sujeito da aprendizagem é simultaneamente epistêmico, ao ascender a conhecimentos mais avançados; e psicológico, ao mobilizar sua cognição na compreensão conceitual (PIAGET, 1998). Nessa dupla interface se desenrola a ação pedagógica em uma epistemologia, não da ciência produzida, mas dos percursos possíveis em suas ontogêneses cognitivas, que se inscrevem na história e na complexidade dos objetos de ensino.

A dimensão pedagógica nas interações professor-aluno-conhecimento está orientada: aos alunos, pelos mecanismos intelectuais utilizados na compreensão/reformulação dos conceitos científicos, dos obstáculos a serem vencidos e das etapas seguidas em busca do equilíbrio funcional/operacional desse saber; e na ação docente, organizando condições necessárias para a compreensão/reformulação desses conceitos, dialogando com a ação cognitiva e o contexto dos alunos em relação à dinâmica científica (SILVA; WARTHA, 2018). Essas interações que perpassam o Ensino de Ciências exigem "a colaboração estreita entre epistemólogos, historiadores, educadores de ciências e psicólogos cognitivos" (FRANCO; COLINVAUX-DE DOMINGUEZ,1992, p. 267).

Esse entendimento ultrapassa a compreensão estrita dos conceitos científicos, integrando, também, as habilidades no uso desses conhecimentos, as estratégias de conhecimento e a construção de novos conhecimentos científicos (CARRAHER *et al.*, 1985, p. 889) como aprendizagem em sentido lato (PIAGET; GRÉCO, 1974). Essa meta, entre outras denominações, é chamada de educação (CACHAPUZ *et al.*, 2005), letramento (SUISSO; GALIETA, 2015) ou alfabetização (PIZARRO; LOPES JUNIOR, 2017) científicas, que ultrapassam a simples reprodução de conhecimentos estabelecidos.

A aprendizagem caracteriza-se por ser processual e transversal, encontra-se nas vivências e sofre influência das mediações e das equilibrações progressivas, que equivalem ao aprendizado global. Eis de onde decorrem as necessidades de considerar: a ação pedagógica que emerge de pressupostos teóricos educativos, cognitivos, contexto social e científico; os limites das lições, demonstrações ou projetos ocasionais *sobre* produtos da ciência acabada; e a necessidade da vivência e discussão das iniciativas e esforços dos alunos *com* os problemas da ciência em ação (ROSSO, 2007). Essa aprendizagem está associada às estruturas de pensamento, aos conhecimentos anteriores e às disposições dos alunos ante as suas ações sucessivas ao interagirem com os problemas da ciência (PIAGET; GRÉCO, 1974). Os pressupostos são de que a lógica de pensamento dos alunos difere daquela dos docentes, limitando o que podem aprender, seus saberes anteriores, como possibilidades e obstáculos, e a natureza do conhecimento científico que resultam na necessária aproximação entre ensino-aprendizagem e cognição (CACHAPUZ *et al.*, 2005).

Pesquisadores com os mais variados enfoques teóricos vêm fornecendo significativas contribuições conceituais e metodológicas no que concerne a esses aspectos no Ensino de Ciências (CARRAHER et al., 1985; SCHNETZLER, 1992). Na diversidade dos objetos de pesquisa predominam as temáticas: conteúdo e método, recursos didáticos, currículos e programas, formação de professores, e características do professor e do aluno. A partir da segunda metade da década de 1990 também se integram história e filosofia da ciência, educação em espaços não formais, estudos de linguagem, ciência, tecnologia e sociedade, e educação ambiental, entre outros (TEIXEIRA; MEGID NETO, 2012). Mais recentemente acrescentam-se a eles ensino-aprendizagem, recursos didáticos e questões ligadas à linguagem e ao discurso (TEIXEIRA, 2021)

No Ensino de Ciências, o crescimento das pesquisas e dos objetos investigados vem acompanhado de estudos que inventariam e analisam essa produção (DELIZOICOV, SLONGO; LORENZETTI, 2013). Neles destacam-se as pesquisas que analisam artigos de periódicos (SAUERWEIN, 2008; SILVA; SILVA FILHO; PADILHA, 2020), teses e dissertações (SALEM, 2012; TEIXEIRA; MEGID NETO, 2012, 2017; TEIXEIRA, 2021), os que se dedicam à análise de trabalhos publicados em eventos da área (SLONGO; DELIZOICOV; ROSSET, 2010; COSTA *et al.*, 2021) e ainda aqueles que analisam pesquisas do tipo Estado da Arte no ensino de Ciências e Biologia (SILVA; ZUCOLOTTO, 2020). Ainda que com ênfases diferentes, tais pesquisas utilizam critérios de análise que, de algum modo, se sobrepõem e se complementam, trazendo contribuições acerca da evolução da produção científica ao longo do tempo; sua distribuição geográfica; as linhas de investigação; as características teórico-metodológicas, dentre outros aspectos.

No que se refere ao conteúdo-método, foco temático que concentra o maior número de trabalhos publicados no Ensino de Ciências e em eventos da área, como o ENPEC (Encontro Nacional de Pesquisas em Educação em Ciências), prevalecem pesquisas relacionadas ao que e como ensinar, mas há uma carência de pesquisas relativas a como se aprende. Transitando entre esses elementos e detendo-se principalmente no último, este texto tem como objetivo explicitar as relações encontradas entre ensinar, aprender e

cognição em trabalhos publicados no ENPEC que incluem esses termos em seus descritores.

## O Ensino e a aprendizagem em ciências e a cognição

O ensino e a aprendizagem em ciências, ao longo do tempo, foram permeados por teorias cognitivas e seus fundamentos epistemológicos. Até meados da década de 1950, a aprendizagem decorria da transmissão. As aulas de ciências, em sua maioria, eram expositivas; e os alunos, expectadores que memorizavam o conhecimento imutável e inquestionável. A partir do final da década de 1950, a aprendizagem passou a integrar, em suas metas, a modalidade por descoberta. Aos alunos é prevista uma nova forma de participação, seguindo as etapas do método científico, mas ainda há uma confusão entre o método e a metodologia do Ensino de Ciências (SCHNETZLER, 1992). Após a década de 1970, ganharam força as concepções alternativas de ensino. A partir do princípio de que o aluno não apenas reproduz, mas produz e refaz conhecimentos associados ao contexto e a história pessoal. Nessa compreensão, passam a ser levados em consideração os conhecimentos prévios dos alunos e a necessidade da interação entre o sujeito e o objeto, inspirado em estudos da Psicologia. A partir da década de 1980, a aprendizagem passou a ser entendida pela mudança conceitual baseada na incorporação de novos conceitos, ou ainda, pela reorganização de concepções prévias (SCHNETZLER, 1992).

Mesmo com as alterações conceituais no ensino-aprendizagem, o Ensino de Ciências se manteve pragmático, pautado na utilização acrítica de livros-didáticos, baseado na cópia e na memorização, muitas vezes desconsiderando a compreensão e a atividade docente associadas ao desenvolvimento cognitivo dos alunos em suas diferentes etapas (CARRAHER et al., 1985). A Sociedade Brasileira para o Progresso da Ciência (SBPC, 2003), em carta aberta, assinala para os mesmos problemas, sugerindo que, mesmo após mais de três décadas, com toda a evolução nas teorias cognitivas, essas questões ainda permanecem. Aliados a isso, a evasão, o abandono escolar, os altos índices de analfabetismo científico (SILVA FILHO; ARAÚJO, 2017) e os resultados de avaliações externas, como o Programa Internacional de Avaliação de Estudantes (PISA), apontam para uma baixa proficiência e para a inexistência de conhecimentos e habilidades básicos exigidos em ciências na maioria dos estudantes brasileiros, se comparada a alunos de outros países (INEP, 2019).

Diante desse panorama, faz sentido o alerta de Piaget (1998, p. 13), para uma necessária "revisão dos métodos e do espírito do Ensino de Ciências", que não envolva, apenas a didática e os programas, mas o seu papel como um todo, da escola e do aluno, bem como da utilização dos fundamentos psicológicos do desenvolvimento cognitivo do sujeito. Ao considerar a cognição como condição necessária para a prática docente, vale ressaltar a sua necessidade de estar centrada na atividade do aluno, valorizando o diálogo e a transformação dos meios de avaliação (BECKER, 2003).

A cognição, embora esteja ligada à sobrevivência e ao equilíbrio, refere-se a um estado em que as estruturas cognitivas produzem os resultados esperados, trazendo à

superfície conflitos ou contradições conceituais. Em nenhum caso esse equilíbrio é estático, mas pode ser e, muitas vezes, é dinâmico. De tal modo, pode ser entendida a partir de uma concepção metafísica processual, em que o processo de mudança e de passagem são fundamentais, a exemplo da atividade do aluno, enquanto interação social, da novidade, da heterogeneidade e da instabilidade durante o processo de ensino e aprendizagem de ciências (COUTINHO et al., 2013). O aspecto social é, obviamente, de fundamental importância, ao considerar o processo ou as situações em que as ações têm por objetivo gerar ou modificar os aspectos cognitivos. Assim, a cognição jamais pode ser entendida a partir de uma concepção clássica essencialista, como uma condição necessária e suficiente, uma estrutura fechada e estável (COUTINHO et al., 2013).

Ao tratar da construção de conhecimentos, somos remetidos à ação, à "participação ativa do aluno" (SCHNETZLER, 1992, p. 18), de tal modo que a ênfase deve estar em suas tentativas, dificuldades e em contradições do raciocínio (PIAGET; GRÉCO, 1974). "Conhecer um objeto é atuar sobre ele para o transformar e transformar-se" (ROSSO; TAGLIEBER, 1992, p. 40). A ação é, portanto, encaminhada para que o conhecimento seja reinventado e reconstruído. A natureza e a extensão do envolvimento do aluno em uma atividade, por sua vez, são medidas pelo tanto que ele se sente desafiado por ela. Parte desse envolvimento, interesse e motivação é cognitivo; logo, voltado para a obtenção de um conhecimento mais elaborado e aprofundado.

A ação, então, ocorre no sentido da experiência, uma "experiência que não é submissão passiva aos objetos, mas a ação sobre eles a fim de modificá-los ou transformá-los" (BECKER, 2003, p. 70). A essa ação também se dá o nome de operação, no sentido de ela propiciar a transformação de uma estrutura em outra. Cognitivamente, significa construir, transformar, incorporar, modificar (ROSSO; TAGLIEBER, 1992, p. 39). Há que se diferenciar dois tipos de ação ou experiência, a lógico-matemática e a física. A primeira consiste na ação do sujeito sobre o objeto, a fim de descobrir as propriedades abstratas a esse objeto. A segunda diz respeito à ação do sujeito sobre o objeto, mas com a finalidade de descobrir as propriedades que são abstratas às ações do sujeito. Existem, portanto, duas variedades distintas de aprendizagem: "a primeira aprendizagem é sobre a forma e a segunda sobre o conteúdo" (PIAGET; GRÉCO, 1974, p. 37-38). "Na primeira, o sujeito busca obter êxito na ação ou na operação; na segunda, ele procura descobrir uma lei física" (PIAGET; GRÉCO, 1974, p. 57). "Uma coisa é o aluno inventar na ação e aplicar de forma prática as operações; outra é tomar consciência das mesmas para extrair delas um conhecimento reflexivo e, sobretudo, teórico" (PIAGET, 1998, p. 16).

Interagir com o objeto é "bem mais do que simplesmente manipular, é envolvimento pessoal, interesse; experimentação" (ROSSO, 1998, p. 9). Nesse sentido, é imperativo que o Ensino de Ciências seja constituído por meio de métodos ativos e situações-problemas e/ou conflitos que levem os alunos a construírem contraexemplos capazes de propiciar a ação, a reflexão, a experiência e, consequentemente, a aprendizagem (SCHNETZLER, 1992). Esses métodos não se reduzem a procedimentos técnicos/experiências que apresentam o conteúdo ao qual o aluno será submetido, mas meios "para 'fazer fluir' naturalmente o ímpeto e a energia própria do desenvolvimento cognitivo e o interesse

natural de aprender do aluno, direcionando-o à aprendizagem" (ROSSO; TAGLIEBER, 1992, p. 37). A questão que se coloca, portanto, ao Ensino de Ciências, consiste nos meios para a construção do conhecimento científico; em outras palavras, a necessária e onipresente cognição.

## Metodologia

Optou-se por analisar as publicações do ENPEC, pois este se caracteriza como um evento nacional, realizado desde o ano de 1997, pela Associação Brasileira de Pesquisa em Educação em Ciências (ABRAPEC), o qual até o ano de 2020, momento da realização da busca dos artigos para esta pesquisa, teve doze edições realizadas, tendo, assim, tradição e regularidade constituídas. Caracteriza-se, portanto, como lócus de disseminação da produção acadêmica, reunindo pesquisadores do Ensino de Ciências (Física, Química e Biologia), o que justifica o interesse em compreender as características de suas publicações e estimular a reflexão referente à cognição.

Foram selecionadas as produções que continham as palavras-chave "aprendizagem", "ensino" e "ensino-aprendizagem" presentes na VIII, IX, X, XI e XII edição do ENPEC, realizadas, respectivamente, nos anos de 2011, 2013, 2015, 2017 e 2019. Optou-se por fazer a pesquisa considerando apenas essas cinco edições dado o grande número de trabalhos publicados. A busca foi realizada nos anais presentes no site da ABRAPEC, utilizando o índice das palavras-chave, considerando as palavras acima, a partir da quais foram localizados 154 trabalhos, excluídos aqueles que se repetiam em mais de uma palavra-chave. Portanto, foram considerados para a análise 38 trabalhos na oitava edição, 28 na nona, 42 na décima, 27 na décima primeira e 19 na décima segunda edição, conforme pode ser visualizado no quadro 1:

Quadro 1- Lista dos trabalhos analisados

|             | <b>Q</b> 00         | dio i Eista dos trabalitos arialisados                                                                                                                |
|-------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Edições     | Foco                | Link para o acesso aos trabalhos analisados                                                                                                           |
|             | Aprendizagem        | [55-2], [141-1], [334-1], [335-1], [475-1], [524-1], [668-3], [672-1], [690-1], [1012-1], [1097-1], [1146-1], [1199-2], [1214-1], [1217-1], [1382-1], |
|             |                     | [1557-1], [1566-1], [1650-1]                                                                                                                          |
| VIII Edição | Ensino              | [72-1], [72-2], [201-2], [230-2], [449-1], [683-3], [758-1], [793-2], [828-                                                                           |
|             |                     | <u>5</u> ], [836-1], [898-1], [997-2], [1034-1], [1123-1], [1170-2], [1290-1],                                                                        |
|             |                     | [1453-1]                                                                                                                                              |
|             | Ensino aprendizagem | [1301-5], [790-3]                                                                                                                                     |
|             | Aprendizagem        | [ <u>232-1</u> ], [ <u>333-1</u> ], [ <u>443-3</u> ], [ <u>476-1</u> ], [ <u>608-1</u> ], [ <u>616-1</u> ], [ <u>821-1</u> ], [ <u>863-1</u> ],       |
|             |                     | [994-1], [1034-1], [1045-1], [1263-1], [1505-1], [1525-1], [1558-1]                                                                                   |
| IX Edição   | Ensino              | [209-1], [439-1], [533-1], [668-2], [721-1], [947-1], [959-1], [1238-1],                                                                              |
|             |                     | [1277-1], [1351-1], [1633-1], [1696-1]                                                                                                                |
|             | Ensino aprendizagem | [ <u>514-1</u> ]                                                                                                                                      |
|             | Aprendizagem        | [CC-02-], [EA-38-5], [EA-31-3], [EA-01-1], [TIC-04-3], [POL-04-2],                                                                                    |
| V           |                     | [EA-30-5], [ENF-01-5], [EA-11-6], [PME-05-3], [EA-24-3], [EA-29-5],                                                                                   |
|             |                     | [EA-30-1], [EA-24-4], [ENF-13-6], [EA-20-3], [CUR-08-3], [PME-08-4],                                                                                  |
|             |                     | [TIC-10-1], [CC-03-], [FP-40-5], [AVL-02-5], [ESD-05-5], [ENF-12-6],                                                                                  |
| X Edição    |                     | [FP-04-5], [EA-41-6], [ENF-05-7], [EA-32-1], [EA-05-1], [EA-33-2]                                                                                     |
|             | Ensino              | [EA-37-4], [FP-21-1], [FP-08-4], [ACT-04-2], [LIN-08-3], [ENF-06-5],                                                                                  |
|             |                     | [AVL-04-3], [EAM-07-6], [DVM-06-4], [ESD-04-5], [EA-13-5]                                                                                             |
|             | Ensino aprendizagem | [ <u>PME-04-5</u> ]                                                                                                                                   |

| -            | Aprendizagem        | [1429-1] [784-1] [1555-1] [1140-1] [1602-1] [918-1] [675-1] [1750-1]                                                                 |
|--------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|              |                     |                                                                                                                                      |
| VI = 4:- 2 - | Ensino              | [2507-1]                                                                                                                             |
| XI Edição    | Ensino aprendizagem | [66-1], [235-1], [260-1], [429-1], [640-1], [990-1], [1214-1], [1315-1],                                                             |
|              |                     | [ <u>1361-1</u> ], [ <u>1475-1</u> ], [ <u>1696-1</u> ], [ <u>1729-1</u> ], [ <u>1744-1</u> ], [ <u>1907-1</u> ], [ <u>1921-1</u> ], |
|              |                     | [2203-1], [2325-1], [2482-1]                                                                                                         |
|              | Aprendizagem        | https://abrapec.com/enpec/xii-enpec/anais/resumos/1/R0821-1.pdf                                                                      |
|              |                     | https://abrapec.com/enpec/xii-enpec/anais/resumos/1/R0095-1.pdf                                                                      |
|              |                     | https://abrapec.com/enpec/xii-enpec/anais/resumos/1/R2105-1.pdf                                                                      |
|              |                     | https://abrapec.com/enpec/xii-enpec/anais/resumos/1/R0727-1.pdf                                                                      |
|              |                     | https://abrapec.com/enpec/xii-enpec/anais/resumos/1/R2032-1.pdf                                                                      |
|              |                     | https://abrapec.com/enpec/xii-enpec/anais/resumos/1/R0479-1.pdf                                                                      |
|              |                     | https://abrapec.com/enpec/xii-enpec/anais/resumos/1/R0166-1.pdf                                                                      |
|              |                     | https://abrapec.com/enpec/xii-enpec/anais/resumos/1/R0852-1.pdf                                                                      |
|              |                     | https://abrapec.com/enpec/xii-enpec/anais/resumos/1/R1471-1.pdf                                                                      |
| XII Edição   | Ensino              |                                                                                                                                      |
| Ali Eulçau   | Ensino aprendizagem | https://abrapec.com/enpec/xii-enpec/anais/resumos/1/R0076-1.pdf                                                                      |
|              |                     | https://abrapec.com/enpec/xii-enpec/anais/resumos/1/R0361-1.pdf                                                                      |
|              |                     | https://abrapec.com/enpec/xii-enpec/anais/resumos/1/R0193-1.pdf                                                                      |
|              |                     | https://abrapec.com/enpec/xii-enpec/anais/resumos/1/R0810-1.pdf                                                                      |
|              |                     | https://abrapec.com/enpec/xii-enpec/anais/resumos/1/R0723-1.pdf                                                                      |
|              |                     | https://abrapec.com/enpec/xii-enpec/anais/resumos/1/R0063-1.pdf                                                                      |
|              |                     | https://abrapec.com/enpec/xii-enpec/anais/resumos/1/R0016-1.pdf                                                                      |
|              |                     | https://abrapec.com/enpec/xii-enpec/anais/resumos/1/R1083-1.pdf                                                                      |
|              |                     | https://abrapec.com/enpec/xii-enpec/anais/resumos/1/R0546-1.pdf                                                                      |
|              |                     | https://abrapec.com/enpec/xii-enpec/anais/resumos/1/R0722-1.pdf                                                                      |

Fonte: <a href="https://abrapec.com/enpec-edicoes-anteriores/">https://abrapec.com/enpec-edicoes-anteriores/</a>

Para a análise, os trabalhos foram organizados em dois bancos de dados. O primeiro foi composto apenas pelos elementos indexadores: título, resumo e palavras-chave; e o segundo, pelos textos na íntegra. Em ambos os casos, cada produção foi antecedida por uma linha de identificação, considerando: número da produção, foco da pesquisa (aprendizagem, ensino ou ensino-aprendizagem), natureza (teórica ou empírica), referencial teórico adotado (Piaget, outros, indefinido) e sujeitos investigados (sim ou não).

A análise dos bancos de dados foi auxiliada pelos softwares ALCESTE (Analyse Lexicale par Contexte d'un Ensemble de Segments de Texte) e QSR Nvivo (LAGE, 2011). O emprego de ambos se justifica pela sua aproximação aos pressupostos da análise de conteúdo, que consiste em "um conjunto de técnicas de análise textual, por meio de procedimentos sistemáticos e objetivos de descrição do conteúdo" (BARDIN, 2004, p. 44). A sua utilização não está apenas na descrição das informações e características, mas no entendimento delas, a fim de realizar inferências sobre as produções, seus sentidos e significados.

O primeiro banco de dados passou por uma análise lexicográfica no software ALCESTE e evidenciou as unidades de contexto elementar (UCEs), caracterizadas pelas palavras e segmentos de textos que compartilham essas palavras. A leitura e a classificação das palavras foram feitas de acordo com suas ocorrências, agrupando-as em classes que podem indicar agrupamentos de conteúdos sobre determinados objetos.

Já o segundo banco de dados, analisado com o auxílio do Nvivo, evidenciou a formação de nós, denominados *Tree Node* (árvore de nós), que se caracterizam como estruturas de armazenamento de informações codificadas, concentrando as referências

reunidas sobre um determinado tema (LAGE, 2011). Para o reagrupamento dos itens na construção categorial, foram criados os nós *cognitivo* e *cognitiva*, e o *software* fez a reunião das referências, possibilitando a visualização de árvores, com os sentidos e significados adotados pelos textos. Ainda foi realizada uma busca ao substantivo *cognição*, com o auxílio da ferramenta de pesquisa do programa *Adobe Acrobat*.

## Resultados e Discussão

Nas cinco edições foram publicados um total 6019 trabalhos, dos quais 154 foram selecionados para a análise. A distribuição destes trabalhos, considerando os focos de pesquisa, encontra-se abaixo na tabela 1.

Tabela 1 - Distribuição dos trabalhos nos focos de pesquisa analisados

| Edição                    | Total de<br>trabalhos<br>publicados | Trabalhos<br>selecionados<br>para a<br>análise | Foco da pesquisa    | N     | %      |
|---------------------------|-------------------------------------|------------------------------------------------|---------------------|-------|--------|
|                           |                                     |                                                | Aprendizagem        | 19    | 12,25  |
| VIII ENPEC (2011) 1235 38 |                                     | Ensino                                         | 17                  | 10,96 |        |
|                           |                                     |                                                | Ensino-aprendizagem | 2     | 2 1,29 |
|                           |                                     |                                                | Aprendizagem        | 15    | 9,67   |
| IX ENPEC (2013)           | 923                                 | 28                                             | Ensino              | 12    | 7,77   |
|                           |                                     |                                                | Ensino-aprendizagem | 1     | 0,64   |
|                           |                                     |                                                | Aprendizagem        | 30    | 19,35  |
| X ENPEC (2015)            | 1272                                | 42                                             | Ensino              | 11    | 7,09   |
|                           |                                     |                                                | Ensino-aprendizagem | 1     | 0,64   |
|                           |                                     |                                                | Aprendizagem        | 8     | 5,16   |
| XI ENPEC (2017)           | 1335                                | 27                                             | Ensino              | 1     | 0,64   |
|                           |                                     |                                                | Ensino-aprendizagem | 18    | 11,6   |
|                           |                                     |                                                | Aprendizagem        | 9     | 5,80   |
| XII ENPEC (2019)          | 1254                                | 19                                             | Ensino              | 0     | 0      |
|                           |                                     |                                                | Ensino-aprendizagem | 10    | 6,45   |

Fonte: <a href="https://abrapec.com/enpec-edicoes-anteriores/">https://abrapec.com/enpec-edicoes-anteriores/</a>

Quanto ao foco de pesquisa, considerando os 154 trabalhos localizados nas cinco edições, 52,23% das produções estão relacionadas à aprendizagem; 26,46% ao ensino; e 20,62 à interface existente entre o ensino e a aprendizagem. Portanto, na maioria dos trabalhos analisados, os elementos ensino e aprendizagem aparecem nas palavras-chave separados, evidenciando que, por mais que o foco com maior número de trabalhos publicados seja o conteúdo-método, na maioria deles não se relaciona, nas palavras-chave, "como auxiliar o aluno a aprender (ensino) a como o aluno aprende (aprendizagem)" (SCHNETZLER, 1992, p. 18).

No que diz respeito à natureza das pesquisas, 59,25% caracterizam-se como pesquisas empíricas e 40,74% como ensaios teóricos. Quanto aos referenciais teóricos, em

80,55% das produções analisadas não há uma definição clara e aprofundada do referencial teórico adotado. Situação similar já foi observada por Greca (2002) em trabalhos do ENPEC. Segundo ele, os autores passam por alto ou omitem as relações existentes entre o objeto, a teoria e a abordagem metodológica.

No que diz respeito às teorias relacionadas a cognição, 16,66% dos artigos analisados, adotam Vygotsky, Piaget, Freire e Ausubel. Em Vygotsky, discute-se a importância do aspecto social para o desenvolvimento e a aprendizagem humana. Em Freire, abordam-se os conceitos da formação crítica, da pedagogia da transmissão ou educação bancária. Em Ausubel discute-se a aprendizagem significativa. No caso das produções associadas a Piaget, que somam 2,77% do total de textos analisados, há um esvaziamento teórico ainda maior, uma vez que se faz a alusão ao construtivismo sem fazer referência às obras do autor.

Convém ressaltar que, ainda que com ênfases diferentes, entre esses trabalhos existe uma tendência no sentido de enfatizar a construção do conhecimento de forma ativa, por meio da interação entre o sujeito e o objeto. Essa interação diverge em seus aspectos, podendo ser social ou por meio da organização de esquemas de ação. Contudo, o fato é que, independentemente da perspectiva teórica adotada, em 16% dos trabalhos analisados, a aprendizagem é entendida como um processo construtivo em suas diferentes vertentes.

Com relação às discussões teóricas, verificou-se, ainda, que elas são feitas de forma breve. O referencial teórico fica circunscrito, em média, a quatro parágrafos do texto, citando-se apenas os autores e os seus conceitos, sem maiores aprofundamentos. Isso pode ser ocasionado pelo fato de os trabalhos publicados se constituírem, em geral, como recortes de pesquisas mais amplas. Esse fato ainda pode ser decorrente das normas estipuladas para a submissão, do limite de páginas, e dos filtros de avaliação que orientam os pareceristas. No entanto, é imprescindível, independentemente das circunstâncias, definições mais precisas, no que diz respeito aos aspectos teóricos, evitando, assim, a dispersão e o relativismo das pesquisas da área.

Entre os instrumentos utilizados para a coleta de dados destacam-se, em ordem decrescente, questionários, observação e entrevistas. Há 13 produções que associaram mais de um instrumento para a coleta de dados. As associações mais comuns são entre o questionário e a entrevista, corroborando com os achados de Teixeira e Megid Neto (2012). Não obstante, convém ressaltar que são ausentes discussões sobre a fidedignidade e a validade dos instrumentos utilizados para a coleta de dados, assim como evidenciado por Greca (2002). Em 26% das produções são apresentadas análise da aplicação de atividades para os alunos como, por exemplo, a análise de uma prática e da aplicação de materiais didáticos, em especial jogos didático-pedagógicos.

Os sujeitos, em sua maioria, são alunos oriundos de todos os segmentos, em ordem decrescente do Ensino Médio (23,14%), Anos Finais do Ensino Fundamental (9,25%) e Ensino Superior (6,48%). Há, portanto, uma prevalência do Ensino Médio, mesmo que tenha uma diminuição, em comparação aos dados da pesquisa realizada por Delizoicov, Slongo e Lorenzetti (2013), em que esse segmento era priorizado em 36% das produções do ENPEC. Esse predomínio se justifica pelo fato da biologia – em termos de Educação

Básica no Brasil – aparecer como uma disciplina específica desse segmento de ensino, estando diluída no Ensino Fundamental.

Em relação à origem das produções, há uma grande discrepância. O Sudeste concentra 38,88% dos textos localizados. Esse percentual deve-se ao fato de três edições (VII, IX e X) do ENPEC analisadas terem sido realizadas no estado de São Paulo. Para Teixeira e Megid Neto (2012), essa concentração é ocasionada, em especial, pelas Universidades de São Paulo (USP) e de Campinas (UNICAMP), que se caracterizam como grandes produtoras de pesquisas da área.

A região Sul concentrou 20,37% das produções (região em que foi realizada a XI edição); o Nordeste, 17,59% (região em que foi realizada a XII edição); e as regiões Centro-Oeste e Norte tiveram cada uma 6,48% das produções. Foram localizadas apenas três produções internacionais – uma do Chile e outra da Colômbia na IX edição; e uma da Argentina, na X edição – e ainda não foi possível localizar a região de origem de oito trabalhos.

No relatório fornecido pelo ALCESTE, o banco de dados foi dividido em 1468 UCEs (unidades de contexto elementar), das quais 92,5% foram consideradas na classificação hierárquica descendente (CHD). A Figura 1 apresenta a organização do *corpus* em quatro classes distintas e evidencia as relações entre essas classes (CAMARGO, 2005). Nessa figura também pode ser visualizado o número de UCEs que compõem cada classe, bem como a porcentagem em relação ao número total de UCEs selecionadas. A denominação das classes foi feita de acordo com as principais palavras que nelas se faziam presentes.

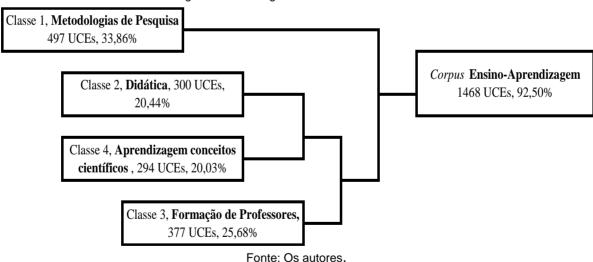



Figura 1 - Dendrograma ilustrando as classes

A leitura do dendrograma da direita para a esquerda mostra que, em um primeiro momento, o banco de dados foi dividido (1ª partição) em dois: de um lado origina a classe 1, *Metodologias de Pesquisa*; e do outro, sofre uma nova divisão (2ª partição), que forma a classe 3 *Formação de Professores* de um lado, e do outro se subdivide (3ª partição),

formando as classes 2 e 4, denominadas, respectivamente, Didática e Aprendizagem de

Conceitos Científicos. Nesse momento, a divisão é finalizada, pois as classes se mostraram estáveis (CAMARGO, 2005).

Ao analisar as classes em separado, verifica-se que a classe 1 foi a mais significativa, concentrando 33,86% do total de informações analisadas. Denominada *Metodologias de pesquisa*, teve maior contribuição dos trabalhos de natureza empírica. Nela descrevem-se os aspectos metodológicos, os instrumentos da coleta de dados, bem como os segmentos e as instituições em que são realizadas as pesquisas. De tal modo, seus elementos aproximam-se dos aspectos já discutidos anteriormente, na caracterização dos trabalhos analisados. Essa classe ainda mostra estreita ligação com a estrutura do *corpus* recortado para a análise, indicando o contexto empírico das pesquisas.

Entre os substantivos dessa classe, destacam-se: investigação, levantamento, pesquisa, trabalho, rede, escola, anos, série, turma, ensino fundamental, ensino médio, coleta, dados, questionário, entrevistas, análise e resultados. Já no que diz respeito aos adjetivos, têm-se qualitativa, quantitativa, federal, estadual e pública. Os sujeitos são estudantes e universitários. Entre as ações, incluem-se realizada, procuramos, responderam, pretende e trata.

Em seguida, a classe 3, denominada *Formação de professores* (377 UCEs, 25,68%), teve maior contribuição dos trabalhos de natureza teórica. Nela discutem-se questões pertinentes à formação inicial, destacando alguns aspectos, como a identidade, os saberes docentes, e a inclusão de alunos com necessidades especiais. Ela ainda traz temas como a sustentabilidade, a saúde, ciência, tecnologia e sociedade. Dentre os elementos indicados, destaca-se o substantivo *filosofia*, que remete à importância de construir uma filosofia da ciência, interdisciplinar, que supere a fragmentação e a especialização do conhecimento científico.

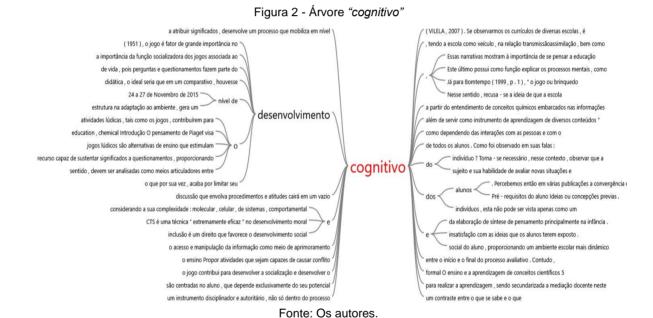
Como sujeito característico dessa classe, têm-se os professores; e entre os substantivos estão: importância, formação, docente, currículo, educação, ensino, ciências, curso, licenciatura, internet, identidade, filosofia, sociedade, sustentabilidade, ensino-aprendizagem, tecnologia e saúde. Entre os adjetivos aparecem: ambiente, semipresencial, profissionais, educacional e moral. Já entre as ações destacam-se: saber, fazer, pensar e contribuir. Contudo, mesmo destacando aspectos importantes da formação e atuação docente no Ensino de Ciências, não há, nessa classe, nenhum elemento que aponte para aspectos da cognição.

Logo em seguida, a classe 2 (300 UCEs, 20,44%) – denominada *Didática* – teve maior contribuição dos trabalhos sem explicitação do referencial teórico adotado. Esse dado pode indicar que a didática nesses trabalhos é entendida como uma técnica/estratégia de ensino dissociada dos aspectos teóricos que a fundamentam, corroborando com os elementos já discutidos na caracterização dos trabalhos, em que 80,55% das produções não definem o referencial teórico adotado de forma clara e aprofundada.

Entre os substantivos dessa classe, destacam-se: sala, aula, jogos, filmes, fotografia, desenvolvimento, atividades práticas, laboratório, blogs, jornal, debate, interesse, modelagem, matemática, construção, aprendizagens, elaboração, conhecimento e aplicação. Entre os adjetivos, têm-se: lúdico, materiais, didáticos, digitais, experimentais,

diferente e significativa. Já entre as ações, estão: permitem, auxiliam, perceber, identificar, criar e despertar. De tal modo, essa classe evidencia a didática no Ensino de Ciências, principalmente relacionada a métodos, estratégias de ensino e recursos didáticos empregados em aulas práticas, em experimentos em laboratório, em jogos didático-pedagógicos, dentre outros.

A didática é expressa como uma forma prática de motivar os alunos e despertar o seu interesse pelo conhecimento científico, bem como auxiliar na aprendizagem significativa. Destaca-se que o foco não deveria estar no *método* ou no *conteúdo*, mas no *processo cognitivo* do qual seria decorrente. A inversão dessa perspectiva expõe um ensino de ciências instrumental, que apresenta os produtos científicos ao aluno, silenciando a aquisição e a construção de conhecimentos, bem como os processos cognitivos dos quais deveriam surgir as descobertas dos alunos (ROSSO, 2007).


Ressalta-se, ainda, que conteúdos e métodos devem ser meios para o Ensino de Ciências, pois estão a serviço do aumento da capacidade de aprendizagem dos alunos e não como fins em si mesmos, uma vez que não é a manipulação de objeto concreto (jogo, material didático, roteiro de aula prática) que leva à aprendizagem propriamente dita. A ação só é produtiva e efetiva quando vier acompanhada da reflexão (ROSSO; TAGLIEBER, 1992, p. 38). O aluno, de tal modo, é ativo quando *pensa*, e não necessariamente quando *faz/manipula* alguma coisa. Pode-se afirmar, portanto, que a atividade cognitiva rima com aprendizagem, organização e reestruturação das informações recebidas. Em outras palavras, a ação, no processo cognitivo, não significa ação prática, mas ação intelectual, que permite ao aluno ir além do que lhe é dado e percebido (ROSSO, 1998, p. 14).

Por fim, a classe 4 (294 UCEs, 20,03%), denominada *Aprendizagem de Conceitos Científicos*, teve maior contribuição dos trabalhos que têm como foco a aprendizagem e a interface ensino e aprendizagem. Entre os substantivos, destacam-se: *aprendizagem, conceito, instrumento, ferramenta, compreensão, fenômeno, sistema, significação, problematização e complexificação*. Já entre as ações estão: *proporcionar, relacionar, compreender e favorecer.* Como adjetivos, têm-se: *científicos, social e cultural.* Essa classe aborda a aprendizagem de conceitos científicos ao apontar para o desafio de trabalhar com conhecimentos em construção. A natureza do conhecimento científico é um imperativo ao Ensino de Ciências. Logo, ele não pode "se limitar ao conhecimento da sua ciência, mas também das peculiaridades do desenvolvimento psicológico da inteligência dos alunos" (PIAGET, 1998, p. 15). É preciso haver uma estreita colaboração entre a psicologia e a experimentação pedagógica metodológica (PIAGET, 1998). Um Ensino de Ciências processual, a partir de uma pluralidade de metodologias que ultrapassem a ideia de um conhecimento pronto, filosoficamente correto, confere a ele um sentido de temporalidade, maleabilidade, abertura e construção e não apenas de justificação (ROSSO, 2007).

As classes 2 e 4 demonstram proximidade no dendrograma e evidenciam que, nos textos analisados, a aprendizagem de conceitos científicos é pensada bastante próxima das questões relativas à didática. Entretanto, como já discutido, a didática, da forma como está expressa, na aplicação de um método ou do conteúdo, por si só, não é suficiente ao processo de ensino e aprendizagem de conceitos científicos. Esses processos se

caracterizam como ações complexas, que demandam aspectos da cognição, como experimentação, compreensão, dentre outros, na medida em que ultrapassam a compreensão estrita dos conceitos científicos. Assim, também integram as habilidades no uso desses conhecimentos e as estratégias de construção de novos conhecimentos científicos. A redução do ensino-aprendizagem de ciências e conceitos científicos a simples aplicação de procedimentos técnicos caracteriza-se como uma compreensão reducionista e pouco aprofundada da complexidade envolvida nesses processos. Além disso, centra-se em uma pedagogia de base memorística, uniforme, estando muito próxima de uma motivação extrínseca ao aluno.

A fim de aprofundar as inferências e explicitar o que integra a cognição nos trabalhos analisados, foi realizada a análise com o auxílio do *software* Nvivo, construindo as árvores *cognitivo* e *cognitiva*, visualizadas, respectivamente, nas figuras 2 e 3.



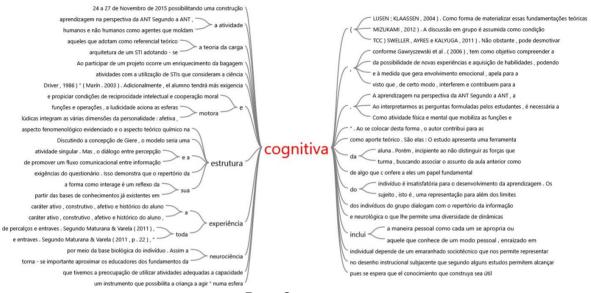



Figura 3 - Árvore "cognitiva"

Fonte: Os autores.

Na figura 2 observa-se a formação da categoria *desenvolvimento cognitivo*, com fragmentos de textos adjacentes às características já discutidas nas classes 2 e 4. Tem-se a importância do jogo, sua função socializadora e a contribuição das atividades lúdicas para o desenvolvimento cognitivo, apontadas pelos textos como alternativas de ensino que estimulam o desenvolvimento cognitivo. Próxima a essa categoria, ainda aparecem: a) a CTS como uma técnica extremamente eficaz no desenvolvimento moral e cognitivo; e b) a contribuição do jogo para a socialização e para o desenvolvimento cognitivo. Portanto, o foco dos trabalhos está em métodos e conteúdos e não nas dimensões epistemológicas e pedagógicas.

Já na figura 3, formaram-se duas categorias distintas: estrutura cognitiva e experiência cognitiva. Em *estrutura cognitiva* há fragmentos de texto relativos ao diálogo entre a percepção e a estrutura cognitiva, à interação como reflexo da estrutura cognitiva, e ainda, à base de conhecimentos que serve de arcabouço a estrutura cognitiva. Já na categoria *experiência cognitiva*, menciona-se o caráter ativo, construtivo e histórico do aluno. Ambas evidenciam alguns pressupostos cognitivos, como a ação, o diálogo, a interação e a utilização de conhecimento prévios no Ensino de Ciências. Contudo, próximo a eles, novamente aparecerem fragmentos de texto bastante ligados ao método, colocando a participação de alunos em projetos e atividades lúdicas como caminhos para, respectivamente, enriquecer a bagagem cognitiva e acionar as esferas motora e cognitiva. Esses fragmentos de textos nos remetem novamente aos aspectos já discutidos anteriormente.

Por fim, foi realizada uma busca ao substantivo *cognição*, com o auxílio da ferramenta de pesquisa do programa *Adobe Acrobat*. Nos 154 trabalhos localizados, ele foi citado 20 vezes, estando presente uma ou mais vezes em 12 trabalhos. Essa busca orientou a construção de um banco de dados no *Excel* contendo a referência desses

trabalhos, com os extratos em que aparecia o termo "cognição", o sentido e a concepção em que era empregado, além de algumas considerações adicionais. A partir da análise desse banco de dados, constatou-se que havia três sentidos distintos atribuídos à cognição – menção genérica, condição necessária e situação especificada; e duas concepções: essencialista e processual (COUTINHO *et al.*, 2013). Esta análise está sistematizada, no quadro 2.

Quadro 2 - Sentidos e Concepções atribuídos à cognição nos artigos analisados

| Artigo    | Sentidos           |                        |                          | Concepção     |            |
|-----------|--------------------|------------------------|--------------------------|---------------|------------|
|           | Menção<br>genérica | Condição<br>necessária | Situação<br>especificada | Essencialista | Processual |
| t107e10f2 |                    | Х                      |                          | Χ             |            |
| t107e10f2 |                    | Х                      |                          | Χ             |            |
| t48e9f1   |                    | Х                      |                          | Χ             |            |
| t48e9f1   | Х                  |                        |                          |               |            |
| t48e9f1   | X                  |                        |                          |               |            |
| t50e9f1   | X                  |                        |                          |               |            |
| t50e9f1   |                    | Х                      |                          | Х             |            |
| t50e9f1   |                    | Х                      |                          | Х             |            |
| t50e9f1   |                    | Х                      |                          | Χ             |            |
| t56e9f2   |                    | Х                      |                          | Х             |            |
| t58e9f2   |                    |                        | Х                        | Χ             |            |
| t61e9f2   |                    | Х                      |                          | Χ             |            |
| t61e9f2   |                    | Х                      |                          | Χ             |            |
| t64e9f2   | Х                  |                        |                          |               |            |
| t67e10f1  | Х                  |                        |                          |               |            |
| t67e10f1  | Х                  |                        |                          |               |            |
| t67e10f1  |                    |                        | Х                        |               | Х          |
| t77e10f1  |                    | Х                      |                          | Χ             |            |
| t78e10f1  |                    | Х                      |                          | Χ             |            |
| t86e10f1  | Х                  |                        |                          |               |            |

Legenda: "t" corresponde a texto; "e", à edição do ENPEC; e "f" foco da pesquisa, onde "1" aprendizagem, "2" ensino e "3" ensino-aprendizagem. Fonte: Os autores

No que se refere aos sentidos, há sete extratos de texto em que a cognição é mencionada de forma genérica, em meio às palavras-chave (N=6) e referências bibliográficas (N=1). Em 11 extratos ela aparece como uma condição necessária, alcançada por meio da aplicação de um método, material ou estratégia didático-pedagógica. Três dessas menções estão em pesquisas de campo que envolvem a aplicação de jogos didáticos para alunos da Educação Básica (Jogo de Golfe sobre o Corpo humano e o Jogo Dominó para a Química). O texto que trata do Jogo de Golfe (Texto 107, X edição) traz uma análise das narrativas de estudantes da pós-graduação sobre a experiência didática de construção e aplicação do referido jogo. Já o texto do Jogo de Dominó (Texto 48, IX edição) expõe a discussão sobre a elaboração, aplicação e a avaliação do jogo com alunos do 2º ano do Ensino Médio, em duas escolas. Em ambos os textos, a cognição associa-se à

eficácia dos jogos e não à atividade dos alunos durante sua utilização. Nessa lógica instrucional, realça-se mais o saber fazer dos alunos – utilizar o material didático – ou a aquisição e manutenção de respostas, em que a cognição dos professores se sobrepõe a dos alunos. Em outras palavras, declina-se da atividade dos alunos como transformadores do conhecimento e da intervenção deles no seu próprio processo de aprendizagem. Podese afirmar que essa lógica ignora os mecanismos intelectuais utilizados pelos alunos na compreensão/reformulação dos conceitos científicos, bem como as dificuldades e as etapas seguidas em busca do equilíbrio funcional/operacional desses saberes.

As outras oito menções à cognição como condição necessária estão em pesquisas de natureza teórica, e discutem: a) o papel de não humanos nas interações escolares (Texto 50, IX edição); b) a utilização de níveis macroscópio e microscópio no Ensino de Ciências (Texto 56, IX edição); c) o uso de analogias (Texto 61, IX edição); d) a aplicação da metodologia de projetos para alunos (Texto 77, X edição); e) a neurociência no Ensino de Ciências (Texto 78, X edição). Essas discussões teóricas são construídas a partir dos alunos, em especial os da Educação Básica. Da mesma forma, como já ressaltado anteriormente nessas pesquisas, as metodologias ou estratégias também são apontadas como alternativas que estimulam a cognição, auxiliando no processo de ensino e aprendizagem de ciências. Contudo, há uma escassez de informações psicológicas, o que as torna, por vezes, otimistas nessa interpretação de êxito (PIAGET, 1998). Há, ainda, uma dispersão nas bases teóricas utilizadas, as quais, por vezes, afastam-se da Psicologia, na medida em que buscam embasamento em autores como Latour (texto 50), Bakhtin (texto 56), Maturana e Varela, Bachelard (texto 77), etc.

Vale, ainda, destacar que nesses 11 extratos de texto em que a cognição é citada como condição necessária, ela é apresentada a partir de uma concepção clássica essencialista, como um conjunto de qualidades necessárias e suficientes, algo que faz parte da essência dos alunos e, portanto, possui estrutura definida, fechada e estável, que depende única e exclusivamente das propriedades intrínsecas; ou seja, uma visão estática da cognição.

Por fim, há dois extratos de texto em que a cognição é discutida como uma situação especificada; isto é, discute-se o fenômeno cognitivo em si. Esses dois extratos estão presentes em pesquisas teóricas que têm como sujeitos professores da Educação Básica e graduandos do curso de Licenciatura em Ciências da Natureza. A primeira discute a metodologia de projetos como estratégia para a qualificação do ensino e da docência de Ciências e Biologia (Texto 58, IX edição); e a segunda investiga a aprendizagem como um fenômeno decorrente da existência de uma organização biológica específica dos seres vivos (Texto 67, X edição).

Portanto, pode-se afirmar que, dos 154 trabalhos analisados, a cognição enquanto fenômeno em si, uma situação especificada, aparece em apenas duas pesquisas, e somente em apenas uma delas (texto 67, da X edição) é percebida a partir de uma concepção processual, que depende da atividade e dos aspectos biológicos dos indivíduos; portanto, é temporal, heterogênea e está em constante processo de transformação. Contudo, chama atenção o fato de que, ao relacionar os sentidos desses trabalhos com os

sujeitos investigados, nota-se que, quando a cognição é percebida como condição necessária, os sujeitos são sempre os alunos. Nessas pesquisas, a cognição é algo a ser alcançado por meio da aplicação de métodos/metodologias de ensino e materiais didáticos. Os trabalhos em que a cognição é apresentada como uma situação especificada não têm alunos como sujeitos, mas professores formados ou em processo de formação inicial. Fazendo uma analogia ao teatro, pode-se afirmar que, nos trabalhos publicados no ENPEC, que incluem em seus descritores o ensinar, o aprender e a cognição, os alunos não aparecem como autores do enredo, mas como intérpretes que reproduzem um roteiro préestabelecido a partir de suas características intrínsecas.

## Considerações finais

O artigo explicitou as relações entre o ensino, a aprendizagem e a cognição em trabalhos publicados em cinco edições do ENPEC, que incluem esses termos em seus descritores. O mapeamento teve 154 trabalhos analisados, dos quais 81 têm a aprendizagem como foco de pesquisa; 41, o ensino; e 32, a interface existente entre o ensino e a aprendizagem.

Na caracterização, viu-se que a maioria são pesquisas empíricas, têm nos alunos do Ensino Médio os principais sujeitos, e nos questionários os instrumentos mais utilizados para a coleta de dados. Em sua maioria, são procedentes da região sudeste e não têm uma definição clara e aprofundada do referencial teórico utilizado.

A análise dos elementos indexadores – título, resumo e palavras-chave –evidenciou a formação de quatro classes distintas que, em ordem decrescente, apontam para a metodologia das pesquisas, a formação de professores, a didática e a aprendizagem de conceitos científicos. No que se refere ao ensino, à aprendizagem e à cognição, destacamse as classes 2 e 4, que juntas tratam, respectivamente, da *didática* empregada no Ensino de Ciências e dos desafios intrínsecos à *aprendizagem de conceitos científicos*. A análise dessas classes evidencia aspectos, sobretudo, expressos em métodos e materiais didático-pedagógicos utilizados no ensino e aprendizagem de ciências.

Esse achado é corroborado pela análise dos trabalhos na íntegra, que teve a formação de árvores compostas pelas categorias desenvolvimento cognitivo, estrutura e experiência cognitiva, as quais, associadas aos seus fragmentos de texto, indicam que o ensino, a aprendizagem e a cognição confluem para as questões didáticas, expressas na elaboração e na aplicação de materiais didático-pedagógicos, como jogos, atividades práticas e lúdicas. São ausentes discussões epistemológicas acerca dos aspectos cognitivos que esses materiais demandariam.

Ao analisar os sentidos e concepções atribuídos ao termo cognição viu-se que ele é descrito como uma condição necessária dos alunos, algo a ser alcançado por meio da aplicação de um método. Há, ainda, uma visão essencialista da cognição, como algo estável e dependente única e exclusivamente das propriedades intrínsecas dos alunos. A cognição enquanto situação especificada, fenômeno cognitivo em si, aparece somente em

dois extratos de pesquisas teóricas que têm como sujeitos professores da Educação Básica e graduandos do curso de Licenciatura em Ciências da Natureza.

A partir desses achados, destaca-se que o foco do Ensino de Ciências nos trabalhos analisados situa-se em métodos e técnicas didático-pedagógicas e não nos fundamentos epistemológicos e cognitivos dos alunos. Quando esses fundamentos aparecem, a discussão é feita a partir dos professores. De igual modo, são ausentes considerações sobre a lógica e os problemas de raciocínio dos alunos, que interferem nas possibilidades de assimilação e acomodação do conhecimento (ROSSO, 1998), bem como acerca dos aspectos cognitivos relativos à mudança conceitual, à transformação e à substituição de concepções prévias por ideias e conceitos científicos (SCHNETZLER, 1992).

Destaca-se que o foco deveria estar na cognição enquanto processo de construção desses conhecimentos, compreendendo o sujeito aprendente como um ser complexo e social, que está em constante processo de transformação. Caso contrário, continuaremos tendo um Ensino de Ciências que privilegia o produto científico e silencia a aquisição, o que se faz na ciência, os processos que fazem emergir novas descobertas.

Diante dos aspectos analisados, ressalta-se que o escopo deste artigo não foi discutir ou questionar a relevância ou a qualidade das pesquisas analisadas. O fato é que a superação de questões que perduram há décadas no Ensino de Ciências – evasão de alunos e professores; analfabetismo científico; baixos níveis de conhecimentos e habilidades de alunos em ciências; pragmatismo e conteudismo – integram os fundamentos epistemológicos e pedagógicos implícitos no ato de ensinar e aprender ciências, bem como os papéis do aluno, do professor e do próprio objeto de conhecimento.

É unanime a condenação do ensino tradicional, conteudista, que transmite soluções prontas. Contudo, a partir das análises realizadas, vê-se que as alternativas para o ultrapassar nem sempre vêm acompanhadas dos fundamentos cognitivos necessários. Para além da importância formativa dos métodos, há que se ater às estruturas subjacentes a eles, a fim de reconstruí-los. Uma coisa é o aluno aprender utilizando um material didático concreto, aplicando de forma prática o seu conhecimento; outra é levar o aluno a reinventar, "tomar consciência das mesmas operações para extrair delas um conhecimento reflexivo e, sobretudo, teórico" (PIAGET, 1998, p. 16).

A complexidade envolvida no ensino e na aprendizagem de ciências não estão, em formas exclusivas, no método ou na elaboração de estratégias didático-pedagógicas, mas no estudo, na pesquisa e no aprofundamento dos fundamentos pedagógicos, epistemológicos, cognitivos e sociais envolvidos nos processos que subsidiam esse ensino e aprendizagem. Há que se pensar, portanto, na cognição do aluno, na sua interação, no objeto de conhecimento, nas experiências resultantes desse processo, bem como nos conflitos e contradições conceituais, dentre outros aspectos indispensáveis à construção do conhecimento. Isto porque um método, por melhor que ele seja, não é, por si só, suficiente para que os alunos construam conhecimentos, se o professor não compreender os pressupostos intrínsecos ao desenvolvimento cognitivo dos alunos e à própria elaboração e utilização do método em si. Nesse sentido, destaca-se a hipótese desta pesquisa, de que os aspectos cognitivos relativos ao ensino e aprendizagem de ciências

ainda são pouco explorados e aprofundados em cursos de licenciatura, e que somente na Pós-Graduação os licenciados vão se confrontar com esses conceitos.

Conclui-se, portanto, que o ensino, a aprendizagem e a cognição, em trabalhos publicados em cinco edições do ENPEC, mesmo que criticamente refletidos e orientados, apresentam limites quando avaliados do ponto de vista cognitivo. Há que ampliar, portanto, as pesquisas sobre o tema a fim de que se possa repensar o papel da escola, do aluno e do próprio ensino e a aprendizagem de ciências como processos dinâmicos que têm relação com as faixas etárias dos sujeitos, e que ocorrem a partir da interação social e dos aspectos psicológicos. Caso contrário, corre-se o risco de continuarmos tendo um Ensino de Ciências, fartamente denunciado.

### Referências

BARDIN, L. *Análise de conteúdo*. Tradução de Pinheiro, A.; Antero, L. 3. ed. Lisboa: Edições 70, 2004.

BECKER, F. Sujeito do Conhecimento e Ensino de Matemática. *Schème*, set., 2003, v. 5, n. especial, p. 65-86. 2003. Disponível em: <a href="https://doi.org/10.36311/1984-1655.2013.v5n0.p65-86">https://doi.org/10.36311/1984-1655.2013.v5n0.p65-86</a>. Acesso em: 15 maio 2022.

CACHAPUZ, A.; GIL-PEREZ, D.; PESSOA DE CARVALHO, A. M.; PRAIA, J; VILCHES, A. Problema, Teoria e Observação em Ciência: Para uma reorientação epistemológica da Educação em Ciência. In: CACHAPUZ, A.; GIL-PEREZ, D.; PESSOA de CARVALHO, A. M.; PRAIA, J; VILCHES, A. (org.) *A Necessária renovação do ensino das ciências*. São Paulo: Cortez. 2005. p. 71-92.

CAMARGO, B. V. ALCESTE: um programa informático de análise quantitativa de dados textuais. In: MOREIRA, A. S. P.; CAMARGO, B.; JESUÍNO, J. (org.). *Perspectivas teórico-metodológicas em Representações Sociais.* João Pessoa: Ed. Universitária da UFPB. 2005. p. 513-539.

CARRAHER, D. W.; CARRAHER, T. N.; SCHLIEMANN, A. D. Caminhos e descaminhos no ensino de Ciências. *Ciência e Cultura*, 1985, v.37, n.6, p. 889-896. 1985.

COSTA, J. C.; ALVES M. C.; SANTOS, R. O. dos; MICHELLAN, N. M.K.; A formação de Professores em eventos da área De Ensino de Ciências no Brasil. *Tecné, Episteme y Didaxis: TED,* n. especial, p. 938-946, 2021. Disponível em: <a href="https://revistas.pedagogica.edu.co/index.php/TED/article/view/15217/10016">https://revistas.pedagogica.edu.co/index.php/TED/article/view/15217/10016</a>. Acesso em: 02 ago. 2023.

COUTINHO, F. A.; MORTIMER, E. F.; MATOS, S. A. DE; MARTINS, R. P. Modelos de categorização, metafísica e cognição: aspectos teórico-metodológicos. *Revista Brasileira de Pesquisa em Educação em Ciências*, v.13, n.1, p. 87-109, 2013. Disponível em: <a href="https://periodicos.ufmg.br/index.php/rbpec/article/view/4253">https://periodicos.ufmg.br/index.php/rbpec/article/view/4253</a>. Acesso em: 15 maio 2022.

DELIZOICOV, D.; SLONGO, I. I. P.; LORENZETTI, L. Um panorama da pesquisa em educação em ciências desenvolvida no Brasil de 1997 a 2005. *Revista Electrónica de* 

Enseñanza de las Ciencias, v.12, n.3, p. 459-480, 2013. Disponível em: <a href="http://reec.uvigo.es/volumenes/volumen12/REEC\_12\_3\_5\_ex718.pdf">http://reec.uvigo.es/volumenes/volumen12/REEC\_12\_3\_5\_ex718.pdf</a>. Acesso em: 15 maio 2022.

FRANCO, C.; COLINVAUX-DE DOMINGUEZ, D. Genetic Epistemology, History of Science and Science Education. *Science Education*, v.1, p.255-271, 1992.

GRECA, I. M. Discutindo Aspectos metodológicos da Pesquisa em Ensino de Ciências: algumas questões para refletir. *Revista Brasileira de Pesquisa em Educação em Ciências*, v. 2, n. 1, p. 73-82, 2002. Disponível em: https://periodicos.ufmg.br/index.php/rbpec/article/view/4152. Acesso em: 15 maio 2022.

INSTITUTO NACIONAL DE ESTUDOS E PESQUISAS ANÍSIO TEIXEIRA. *Relatório Brasil no Pisa 2018*. Versão preliminar. Brasília: Inep/MEC, 2019. Disponível em: <a href="http://download.inep.gov.br/acoes\_internacionais/pisa/documentos/2019/relatorio\_PISA\_2">http://download.inep.gov.br/acoes\_internacionais/pisa/documentos/2019/relatorio\_PISA\_2</a> 018 preliminar.pdf. Acesso em: 15 maio 2022.

LAGE, M. C. Utilização do software NVivo em pesquisa qualitativa: uma experiência em EaD. *Educação Temática Digital*, v. 12, n. esp., p.198-226, mar. 2011. Disponível em <a href="https://periodicos.sbu.unicamp.br/ojs/index.php/etd/article/view/1210">https://periodicos.sbu.unicamp.br/ojs/index.php/etd/article/view/1210</a>. Acesso em: 15 maio 2022.

PIAGET, J.; GRÉCO, P. *Aprendizagem e conhecimento*. Tradução Livraria Freitas Bastos, Rio de Janeiro: Freitas Bastos, 1974.

PIAGET, J. Para onde vai a educação? 14. ed. Rio de Janeiro: José Olympio, 1998.

PIZARRO, M. V.; LOPES JUNIOR, J. Os sistemas de avaliação em larga escala e seus resultados: o pisa e suas possíveis implicações para o ensino de ciências. *Ensaio:* Pesqui. Educ. Ciênc., v. 19, p.1-24. 2017. Disponível em: <a href="https://doi.org/10.1590/1983-21172017190119">https://doi.org/10.1590/1983-21172017190119</a>. Acesso em: 15 maio 2022.

ROSSO, A. J.; TAGLIEBER J. E. Métodos ativos e atividades de ensino. *Perspectiva*, v. 17, p. 37-46, 1992. Disponível em: <a href="https://periodicos.ufsc.br/index.php/perspectiva/article/view/9147">https://periodicos.ufsc.br/index.php/perspectiva/article/view/9147</a>. Acesso em: 15 maio 2022.

ROSSO, A. J. *A correlação no contexto do ensino de Biologia*: implicações psicopedagógicas e epistemológicas. Tese de Doutorado, Programa de Pós Graduação em Educação, Universidade Federal de Santa Catarina, Florianópolis, SC, 1998.

ROSSO, A. J. A distância entre o projeto da Educação Ambiental e a forma como se efetiva o Ensino de Ciências. In: GUERRA, A. F. S.: TAGLIEBER, J. E. (ed.). *Educação ambiental*: fundamentos, práticas e desafios. Itajaí: Universidade do Vale do Itajaí, 2007, p. 125-141.

SALEM, S. *Perfil, evolução e perspectivas da pesquisa em ensino de Física no Brasil.* Tese de doutorado, Programa de Pós Graduação em Ensino de Ciências, Universidade de São Paulo, São Paulo/SP. 2012.

- SILVA FILHO, R. B.; ARAÚJO, R. M. de L. Evasão e abandono escolar na educação básica no Brasil: fatores, causas e possíveis consequências. *Educação Por Escrito*, v. 8, n.1, p. 35–48, 2017. Disponível em: <a href="https://doi.org/10.15448/2179-8435.2017.1.24527">https://doi.org/10.15448/2179-8435.2017.1.24527</a>. Acesso em: 31 jul. 2023.
- SILVA, W. L. da; SILVA FILHO, W. V. da; PADILHA I.T. Revisão de literatura com foco em História e Filosofia da Ciência: a contribuição do Caderno Brasileiro de Ensino de Física entre 2010 e 2020. *Revista ibero-americana de Humanidades, Ciências e Educação*. São Paulo, v.7.n.12.dez. 2021.
- SILVA, R. F.; ZUCOLOTTO, A. M. Pesquisas sobre o Estado da Arte no Ensino de Ciências e Biologia: um estudo a partir de teses e dissertações. *Revista Thema*, Pelotas, v. 17, n.1, p. 221-232, 2020. Disponível em: http://dx.doi.org/10.15536/thema.V17.2020.221-232.1580. Acesso em: 02 ago. 2023.
- SAUERWEIN, I. P. S. *A formação continuada de professores de Física*: natureza, desafios e perspectivas. Tese de Doutorado, Programa de Pós Graduação em Educação Científica e Tecnológica, Universidade Federal de Santa Catarina, Florianópolis, SC. 2008.
- SBPC SOCIEDADE BRASILEIRA PARA O PROGRESSO DA CIÊNCIA. *Os 20 maiores problemas a enfrentar para melhorar o ensino de ciências no Brasil*. Disponível em: <a href="http://www.waltenomartins.com.br/ecn\_atv01\_jornal\_da\_ciencia.pdf">http://www.waltenomartins.com.br/ecn\_atv01\_jornal\_da\_ciencia.pdf</a>. Acesso em: 15 maio 2022.
- SCHNETZLER, R. P. Construção do conhecimento e ensino de ciências. *Em aberto*, v.11, n. 55, p. 16-23, jul. 1992. Disponível em: <a href="http://rbep.inep.gov.br/ojs3/index.php/emaberto/article/view/2155">http://rbep.inep.gov.br/ojs3/index.php/emaberto/article/view/2155</a>. Acesso em: 15 maio 2022.
- SILVA, C. C.; MOURA, B. A. A natureza da ciência por meio do estudo de episódios históricos: o caso da popularização da ótica newtoniana. *Revista Brasileira de Ensino de Física*, v. 30, n. 1, 2008. Disponível em: <a href="https://doi.org/10.1590/S1806-11172008000100016">https://doi.org/10.1590/S1806-11172008000100016</a>. Acesso em: 15 maio 2022.
- SILVA, E. L.; WARTHA, E. J. Estabelecendo relações entre as dimensões pedagógica e epistemológica no Ensino de Ciências. *Ciênc. Educ.* v. 24, n. 2, p. 337-354, 2018. Disponível em: <a href="https://doi.org/10.1590/1516-731320180020006">https://doi.org/10.1590/1516-731320180020006</a>. Acesso em: 15 maio 2022.
- SLONGO, I. I. P.; DELIZOICOV, N.; ROSSET, J. A Formação de Professores enunciada pela pesquisa na área de Educação em Ciências. *Alexandria Revista de Educação em Ciência e Tecnologia*, v. 3, n. 3, p. 97-121. 2010. Disponível em: <a href="https://periodicos.ufsc.br/index.php/alexandria/article/view/38138">https://periodicos.ufsc.br/index.php/alexandria/article/view/38138</a>. Acesso em: 15 maio 2022.
- SUISSO, C.; GALIETA, T. Relações entre leitura, escrita e alfabetização/ letramento científico: um levantamento bibliográfico em periódicos nacionais da área de ensino de

ciências. *Ciênc. educ.*, v.21, n. 4, p.991-1009, dez. 2015. Disponível, em: http://dx.doi.org/10.1590/1516-731320150040013. Acesso em: 15 maio 2022.

TEIXEIRA, O. P. B. A Ciência, a Natureza da Ciência e o Ensino de Ciências. *Ciênc. Educ.*, v. 25, n. 4, p. 851-854, 2019. Disponível em: <a href="https://doi.org/10.1590/1516-731320190040001">https://doi.org/10.1590/1516-731320190040001</a>. Acesso em: 15 maio 2022.

TEIXEIRA, P. M. M.; MEGID NETO, J. A Produção Acadêmica em Ensino de Biologia no Brasil – 40 anos (1972–2011): Base Institucional e Tendências Temáticas e Metodológicas. *Revista Brasileira De Pesquisa Em Educação Em Ciências*, v. *17*, n. 2, p. 521–549, 2017. Disponível em: <a href="https://doi.org/10.28976/1984-2686rbpec2017172521">https://doi.org/10.28976/1984-2686rbpec2017172521</a>. Acesso em: 02 ago. 2023.

TEIXEIRA, P. M. M.; Produção acadêmica em ensino de biologia: análise sobre dissertações e teses e derivações reflexivas para a área de educação em ciências. *Revista Brasileira de Educação*, v. 26 e. 260097, p.1-25, 2021. Disponível em: <a href="https://www.scielo.br/j/rbedu/a/w8jCJGBRNb6xF7kjZ8wjqNr/?format=pdf&lang=pt">https://www.scielo.br/j/rbedu/a/w8jCJGBRNb6xF7kjZ8wjqNr/?format=pdf&lang=pt</a>. Acesso em: 01 ago. 2023.

TEIXEIRA, P. M. M.; MEGID NETO, J. O estado da arte da pesquisa em ensino de Biologia no Brasil: um panorama baseado na análise de dissertações e teses. *Revista Electrónica de Enseñanza de las Ciencias*, v. 11, n. 2, p. 273-297. 2012. Disponível em: <a href="http://reec.uvigo.es/volumenes/volumen11/REEC\_11\_2\_2\_ex500.pdf">http://reec.uvigo.es/volumenes/volumen11/REEC\_11\_2\_2\_ex500.pdf</a>. Acesso em: 15 maio 2022.

ZÔMPERO, A. F.; LABURÚ, C. E. Atividades investigativas no ensino de ciências: aspectos históricos e diferentes abordagens. *Ensaio*: Pesquisa Educação em Ciências, setembro v. 13, n. 3, p. 67-80, 2011. Disponível em: <a href="https://doi.org/10.1590/1983-21172011130305">https://doi.org/10.1590/1983-21172011130305</a>. Acesso em: 15 maio 2022.

#### Como citar este documento:

KOGA, Viviane Terezinha; ROSSO, Ademir José. Ensino, Aprendizagem e Cognição em Trabalhos do Ensino de Ciências. *Revista Espaço Pedagógico*, v. 30, e14778, 2023. Disponível em: <a href="https://doi.org/10.5335/rep.v30i0.14778">https://doi.org/10.5335/rep.v30i0.14778</a>