Revisão de literatura

Inteligência artificial na odontologia: uma revisão narrativa de literatura

Artificial Intelligence in dentistry: a narrative literature review

Gleica Dal' Ongaro Savegnago¹
Guilherme Vaz Pinto²
Carolina Fiorenza Snovareski³
Nathan de Oliveira Hamad³
Geraldo Fagundes Serpa⁴
Gabriela Salatino Liedke⁵

Resumo

Objetivos: analisar através de uma revisão narrativa da literatura a aplicabilidade da inteligência artificial (IA) na odontologia e proporcionar uma atualização sobre o desempenho da IA nas áreas odontológicas. Revisão de literatura: a IA tem se tornado cada vez mais integrada à saúde e tem desempenhado um papel crucial através do aumento da precisão do diagnóstico, otimização do tempo de trabalho do profissional e personalização do tratamento. Na odontologia, a IA tem sido cada vez mais presente devido à digitalização e avanços tecnológicos nessa área. Os estudos demonstraram resultados promissores da aplicação da IA em diversas áreas da Odontologia como Periodontia, Ortodontia, Cirurgia Bucomaxilofacial, Patologia, Cariologia, Implantodontia e Odontologia Forense. Considerações finais: a IA tem desempenhado um papel cada vez mais significativo na área da odontologia, com potencial para revolucionar a maneira como os profissionais de odontologia abordam o diagnóstico, planejamento e tratamento de seus pacientes. No entanto, é fundamental lembrar que embora a IA possa aprimorar a precisão e eficiência no atendimento clínico, ela não substitui a experiência e julgamento dos profissionais de saúde. A interação harmoniosa entre a capacidade da IA e o conhecimento humano é essencial para garantir uma abordagem odontológica completa e de qualidade.

Palavras-chave: Inteligência artificial. Diagnóstico. Odontologia

http://dx.doi.org/10.5335/rfo.v29i1.15733

¹ Mestre em Ciências Odontológicas - ênfase Radiologia Odontológica, pela Universidade Federal de Santa Maria. Doutoranda do Programa de Pós-Graduação em Ciências Odontológicas, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil

² Graduado em Odontologia pela Universidade Franciscana, Santa Maria, RS, Brasil

³ Graduados em Odontologia pela Universidade Federal de Santa Maria, Santa Maria, RS, Brasil

⁴ Doutor em Odontologia pela Faculdade São Leopoldo Mandic. Professor adjunto do Curso de Odontologia da Universidade Federal de Santa Maria – Santa Maria, Rio Grande do Sul, Brasil

⁵ Doutora em Clínica Odontológica - ênfase Radiologia, pela Universidade Federal do Rio Grande do Sul. Professora adjunta do Curso de Odontologia da Universidade Federal de Santa Maria – Santa Maria, Rio Grande do Sul, Brasil

Introdução

As correlações entre máquina e inteligência tiveram início em 1950. Propostas por Alan Turing, a habilidade de raciocínio e capacidade cognitiva que as máquinas eram capazes de exercer começaram a ser questionadas¹. Em 1956, John McCarthy introduziu o termo Inteligência Artificial (IA) e conceituou-o como a ciência capaz de atribuir inteligência às máquinas para fazê-las desenvolver funções cognitivas comumente realizadas por humanos como o pensamento racional, aprendizado e resolução de problemas^{2–4}.

A IA auxilia no desenvolvimento de algoritmos que aprendem com informações fornecidas e geram conclusões a partir dessas informações⁵. Atualmente, a IA está dividida em dois subconjuntos denominados *Machine Learning* (ML) e *Deep Learning* (DL). O ML tradicional refere-se à capacidade do computador de processar informações a partir de bases de dados categorizados com precisão pelo profissional⁶. Esse processamento realiza-se através de um algoritmo que, através de dados rotulados previamente postos na máquina, faz uma tomada de decisão e chega a uma conclusão⁷. Esse algoritmo aprende através da experiência, portanto quanto maior o conjunto de dados de variáveis conhecidas, mais preciso o software pode se tornar quando apresentado a variáveis desconhecidas⁸. Já no DL, o qual é um subconjunto do ML, muitas camadas de algoritmos são utilizadas para interpretação, gerando suas próprias conclusões e categorias quando expostos a um grande número de dados⁶.

Muitas tecnologias que envolvem IA têm auxiliado no cotidiano das pessoas como mecanismos de busca online, reconhecimento facial e assistentes virtuais⁹. O desenvolvimento e a aplicação da IA também surgiram no campo da medicina através, por exemplo, do diagnóstico por imagem automatizado de câncer de pulmão (acurácia de 91%), pólipos colorretais (acurácia de 94%), câncer de próstata (acurácia de 84%).

câncer de mama (acurácia de 81-82%), retinopatia diabética em fotografias do fundo da retina (acurácia de 99%) e osteoartrite do quadril (acurácia de 93%)¹⁰⁻¹⁶.

Na odontologia, a IA tem sido cada vez mais presente devido à digitalização e avanços tecnológicos nessa área. A IA pode ser utilizada como complemento ao diagnóstico profissional, tornando-o mais preciso, rápido e eficiente¹⁷. Em vista disso, este trabalho teve como objetivo analisar, através de uma revisão narrativa da literatura, a aplicabilidade da IA na odontologia e proporcionar uma atualização sobre o desempenho da IA nas áreas odontológicas.

Revisão de literatura

O uso clínico de softwares utilizando IA ganhou popularidade nos últimos anos na medicina e as possíveis aplicações desses softwares na odontologia merecem uma atenção adequada¹⁸. Na odontologia, o profissional precisa utilizar todo conhecimento adquirido para realizar o diagnóstico e decidir a melhor opção de tratamento. No entanto, em alguns casos, o cirurgião-dentista não possui conhecimento suficiente para a tomada correta de decisão clínica em um período limitado de tempo. Desse modo, os softwares de IA podem auxiliar o profissional nessa tomada de decisão, aumentando a eficácia no atendimento ao paciente¹⁹.

Periodontia

Na periodontia, a IA pode ser uma importante aliada na avaliação da perda óssea periodontal^{20,21}. A perda óssea periodontal é avaliada, clinicamente, através da mensuração da perda de inserção clínica e radiograficamente através de radiografias periapicais e panorâmicas. Esses métodos diagnósticos, porém, possuem confiabilidade e acurácia limitados, pois dependem da experiência do examinador^{17,21}.

Dessa maneira, a IA pode auxiliar o clínico minimizando erros diagnósticos¹⁷. Krois et al. (2019)²¹ avaliaram a utilização de IA para a detecção de perda óssea periodontal em radiografias panorâmicas. A IA obteve uma acurácia diagnóstica de 81%, similar à de dentistas experientes²¹. Lee et al. (2018)²⁰ avaliaram a utilização de IA para o diagnóstico de dentes periodontalmente comprometidos em radiografias periapicais. A IA demonstrou uma acurácia diagnóstica de 82,8% para dentes pré-molares e 76,6% para dentes molares. Esses resultados foram semelhantes às acurácias diagnósticas obtidas por periodontistas experientes.

Endodontia

Na endodontia, mesmo com o avanço nas modalidades de tratamento, instrumentação e materiais, pesquisas epidemiológicas demonstram altas prevalências de lesões periapicais radiográficas e a não resolução da patologia periapical em dentes com tratamento endodôntico^{22–24}. A fim de que melhores resultados sejam alcançados, é essencial a precisão no diagnóstico, planejamento e execução do tratamento²⁴. Dessa maneira, modelos de IA podem ser ferramentas úteis em diversos aspectos da terapia endodôntica, tais como: avaliação da morfologia radicular, localização do forame apical, detecção de lesões periapicais e detecção de fraturas radiculares²⁵⁻²⁸. Hiraiwa et al. (2019)²⁶ apontaram uma acurácia de 86.9% da IA para determinar se as raízes distais de primeiros molares inferiores eram únicas ou possuíam raízes extras. Saghiri et al. (2012)²⁵ desenvolveram um novo sistema de localização do forame apical através da extração de características radiográficas e processamento desses dados em um sistema de redes neurais artificiais. Foi demonstrado que em 93% dos casos o forame apical foi localizado corretamente pela IA. Na detecção de lesões periapicais, softwares utilizando IA obtiveram acurácias de 93% e 85% utilizando imagens de tomografia computadorizada de feixe cônico (TCFC) е radiografias panorâmicas,

respectivamente^{27,29}. Já na detecção de fraturas radiculares, Johari et al. (2017)²⁸ apontaram uma acurácia diagnóstica da IA de 70% e 96% utilizando imagens de radiografias periapicais e TCFC, respectivamente.

Ortodontia

Os planos de tratamento e procedimentos ortodônticos requerem cálculos e medições precisas. Desse modo, devido às avaliações quantitativas fornecidas pela IA, o trabalho do ortodontista se torna mais preciso e exato quando realizado em conjunto com essa tecnologia^{30–32}. Na cefalometria, a IA é utilizada através do uso de softwares que realizam a identificação automática dos pontos anatômicos, ao invés da identificação manual³³. Estudos avaliando sistemas automatizados para detecção de pontos cefalométricos apontaram taxas de sucesso na detecção desses pontos de 75% a 91.73%^{34–39}. Choi et al. (2019)⁴⁰, em um estudo utilizando um modelo de IA para auxiliar no diagnóstico de cirurgia ortognática, apontaram que a IA apresentou uma acurácia de 96% na avaliação da necessidade de realizar ou não a cirurgia e 91% no diagnóstico do tipo de cirurgia e na decisão de extração dentária. Esses resultados mostram que a IA pode ser utilizada por ortodontistas para a realização de planos de tratamentos mais adequados⁴¹. Além disso, Kok et al. (2021)⁴² demonstraram que a IA pode ser utilizada para determinação de crescimento e desenvolvimento esquelético, atingindo 94% de acurácia.

Cirurgia e Traumatologia Bucomaxilofacial

Na cirurgia e traumatologia bucomaxilofacial (CTBMF), a IA é frequentemente utilizada em estudos envolvendo a extração de terceiros molares^{43–45}. Choi et al. (2022)⁴³ utilizaram IA para avaliar a relação entre canal mandibular e terceiro molar em radiografias panorâmicas. Foi demonstrada uma acurácia de 72% da IA na determinação do contato entre canal mandibular e terceiro molar, e uma acurácia de

80% na determinação da posição buco-lingual do canal mandibular. Ambas as acurácias foram maiores que as obtidas por especialistas em CTBMF. Zhang et al. (2018)⁴⁵ avaliaram, através da IA, a previsibilidade de inchaço pós-operatório após a extração de terceiros molares. Foi uma apontada uma acurácia de 98% do modelo de IA. Yoo et al. (2021)⁴⁴ utilizaram a IA para predizer a dificuldade de extração de terceiros molares levando em consideração parâmetros como profundidade, posicionamento em relação ao bordo anterior do ramo mandibular e angulação desses dentes. Os autores apontaram acurácias de 78,91%, 82,03% e 90,23% para os parâmetros profundidade, relação com o ramo e angulação, respectivamente.

Patologia oral

Um dos principais potenciais papéis da IA na odontologia diz respeito ao diagnóstico de patologias. Foi demonstrado que um modelo de IA bem treinado pode atingir ou até superar o desempenho de observadores humanos. Dessa maneira, a IA poderia ser utilizada para lesões mais obscuras que podem passar despercebidas na avaliação do clínico ou como uma primeira avaliação com o objetivo de economizar tempo de interpretação radiológica, destacando possíveis patologias que mereçam uma investigação mais aprofundada⁴⁶. Poedjiastoeti e Suebnukarn et al. (2018)⁴⁷ avaliaram o uso de IA no diagnóstico de ameloblastomas e ceratocistos odontogênicos em radiografias panorâmicas. O software detectou as lesões com acurácia semelhante à do especialista em CTBMF. No entanto, o diagnóstico da IA foi realizado em 38 segundos enquanto o diagnóstico do especialista foi realizado em 23,1 minutos. Lee et al. (2019)⁴⁸ utilizaram a IA para detecção de osteoporose em radiografias panorâmicas. Os modelos de IA utilizados no estudo alcançaram acurácias de 97-99%, demonstrando alta concordância diagnóstica com radiologistas orais experientes. No estudo de Murata et al. (2019)⁴⁹, a IA foi utilizada para avaliação de sinusite maxilar em radiografias

panorâmicas, demonstrando uma acurácia de 87,5%. Esse valor não mostrou diferença estatística significativa quando comparado aos valores obtidos por radiologistas orais, porém foi maior que os valores obtidos por residentes em Odontologia.

Cariologia

A cárie dentária é uma das doenças mais comuns da cavidade oral. Para o diagnóstico de lesões de cárie, o cirurgião-dentista realiza exame clínico através de avaliação tátil e visual, observando fatores como textura e descoloração, além de exame radiográfico. O método de detecção clínico, porém, é muito subjetivo e depende da experiência do examinador¹⁷. Além disso, lesões de cárie proximais por exemplo, podem passar despercebidas ao olho humano em radiografias devido ao ruído de imagem e/ou baixo contraste⁵⁰. Assim, a IA pode ser utilizada como um instrumento para a detecção e diagnóstico de cárie dentária de maneira mais acurada. Lee et al. (2018)⁵¹, em um estudo utilizado um algoritmo de IA para detecção de cárie dentária em radiografias periapicais, apontaram uma acurácia de 89% e 88% na detecção da lesão em pré-molares e molares, respectivamente. Geetha et al. (2020)⁵⁰, em um estudo utilizando IA para detecção de cárie em radiografias digitais, demonstraram uma acurácia de 97% da IA. Devlin et al. (2021)52 demonstraram que dentistas que utilizaram a IA como um recurso auxiliar no diagnóstico de cáries proximais em radiografias intraorais obtiveram um aumento de 71% na habilidade de detecção dessas lesões em comparação com dentistas que não utilizaram a IA. Duong et al. (2021)⁵³ avaliaram a acurácia de um algoritmo de IA para a detecção e classificação de lesões de cárie oclusais precoces a partir de fotografias de dentes extraídos em smartphone. Foi apontada uma acurácia da IA de 87% na detecção de lesões de cárie e um acurácia de 88% na classificação de lesões de cárie.

Implantodontia

A colocação de implantes dentários é atualmente o método padrão para substituição de dentes perdidos⁹. No entanto, apesar de implantes dentários terem se tornado uma opção de tratamento amplamente difundida, complicações mecânicas e biológicas ocorrem com frequência⁵⁴. Como inúmeras variedades de implantes estão disponíveis no mercado, a IA pode ser uma ferramenta poderosa na identificação do sistema do implante, informação essencial para o clínico na avaliação e correção da falha do implante dentário9. Na classificação do sistema de implantes dentários, estudos apontam valores de acurácias da IA de 95% e 97% utilizando radiografias panorâmicas e periapicais respectivamente⁵⁴, e valores de acurácia da IA variando de 86-92% utilizando radiografias panorâmicas⁵⁵. Em um estudo comparando a performance da IA e de profissionais da Odontologia na classificação do sistema de implantes, Lee et al. (2020)⁵⁴ apontaram uma acurácia de 95% do algoritmo de IA, superando a acurácia de periodontistas, residentes em periodontia e residentes não especializados em periodontia. Existem diversos fatores que podem afetar a taxa de sobrevivência de implantes, como local do implante, densidade óssea, método cirúrgico utilizado e fatores individuais do paciente⁵⁶. Dessa maneira, modelos de IA foram utilizados para prever a sobrevivência de implantes utilizando diferentes variáveis coletadas de pacientes com implantes dentários^{56,57}. Foram apontadas acurácias dos modelos de IA que variaram de 62% a 95%.

Odontologia Forense

A odontologia forense pode ser definida como um ramo da odontologia responsável pela identificação do indivíduo através da avaliação de estruturas da cavidade oral⁵⁸. A aplicação desta ciência é principalmente para investigações médicolegais durante desastres em massa e identificação de indivíduos com base em restos

mortais humanos⁵⁹. O uso de informações da cavidade bucal para identificação de indivíduos é útil porque geralmente as características dentárias permanecem inalteradas após a morte⁹. Nesse sentido, a IA pode ser aplicada na odontologia forense através da detecção dentária automática em radiografias, predição de gênero baseada em características dentárias, identificação da morfologia esquelética e identificação de marcas de mordida^{59–61}. Mahasantipiya et al. (2011)⁶¹, em um estudo utilizando a IA para identificação de marcas de mordida, demonstraram uma acurácia do algoritmo de 78-86%. Niño-Sandoval et al. (2017)⁶⁰ demonstraram uma alta capacidade de predição de um modelo baseado em IA para prever a morfologia mandibular através de radiografias laterais de pacientes. Um estudo conduzido por Patil et al. (2020)⁵⁹ avaliou a utilização de IA para a determinação de gênero através de parâmetros morfométricos mandibulares em radiografias panorâmicas. Foi apontada uma acurácia de 75% do modelo de IA.

Considerações finais

A IA tem desempenhado um papel cada vez mais significativo na área da odontologia, com potencial para revolucionar a maneira como os profissionais de odontologia abordam o diagnóstico, planejamento e tratamento de seus pacientes. No entanto, é fundamental lembrar que embora a IA possa aprimorar a precisão e eficiência no atendimento clínico, ela não substitui a experiência e julgamento dos profissionais de saúde. A interação harmoniosa entre a capacidade da IA e o conhecimento humano é essencial para garantir uma abordagem odontológica completa e de qualidade. À medida que a IA continua a evoluir, espera-se que sua aplicação na odontologia continue a se expandir, proporcionando ainda mais benefícios para profissionais e pacientes.

Abstract

Objectives: to analyze, through a narrative review of the literature, the applicability of AI in

dentistry and provide an update on the performance of AI in dental areas. Literature review:

artificial intelligence has become increasingly integrated into healthcare and has played a crucial

role by increasing diagnostic accuracy, optimizing professional working time and personalizing

treatment. In dentistry, AI has been increasingly present due to digitalization and technological

advances in this area. Studies have demonstrated promising results from the application of AI in

several areas of Dentistry such as Periodontics, Endodontics, Orthodontics, Oral and

Maxillofacial Surgery, Pathology, Cariology, Implantology and Forensic Dentistry. Final

considerations: Al has played an increasingly significant role in the field of dentistry, with the

potential to revolutionize the way dental professionals approach diagnosis, planning and

treatment of their patients. However, it is essential to remember that although AI can improve

accuracy and efficiency in clinical care, it does not replace the experience and judgment of

healthcare professionals. The harmonious interaction between Al capabilities and human

knowledge is essential to guarantee a complete and quality dental approach.

Keywords: Artificial intelligence. Diagnosis. Dentistry

Referências

1. Turing AM. Computing Machinery and Intelligence. Mind. 1950;59(236):433–60.

2. Tandon D, Rajawat J. Present and future of artificial intelligence in dentistry. J Oral

Biol Craniofacial Res [Internet]. 2020;10(4):391-6.

3. Singh J, Singh S, Chandra S, Singh D, Mohammad S. Longitudinal Analysis of

Artificial Intelligence Awareness amongst Dentists in India: A Cross-Sectional

Study. J Dent Oro-facial Res. 2020;16(1):2–8.

- 4. McCarthy J, Minsky ML, Rochester N, Shannon CE. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence. Al Mag. 2006;27(4):12–4.
- Babu A, Andrew Onesimu J, Martin Sagayam K. Artificial Intelligence in dentistry:
 Concepts, Applications and Research Challenges. E3S Web Conf.
 2021;297:1074.
- 6. Ilhan B, Lin K, Guneri P, Wilder-Smith P. Improving Oral Cancer Outcomes with Imaging and Artificial Intelligence. J Dent Res. 2020;99(3):241–8.
- 7. Mintz Y, Brodie R. Introduction to artificial intelligence in medicine. Minim Invasive Ther Allied Technol. 2019;28(2):73–81.
- 8. Bini SA. Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Computing: What Do These Terms Mean and How Will They Impact Health Care?

 J Arthroplasty. 2018;33(8):2358–61.
- Putra RH, Doi C, Yoda N, Astuti ER, Sasaki K. Current applications and development of artificial intelligence for digital dental radiography.
 Dentomaxillofacial Radiol. 2022;51(1):1–12.
- 10. Becker AS, Marcon M, Ghafoor S, Wurnig MC, Frauenfelder T, Boss A. Deep learning in mammography diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Invest Radiol. 2017;52(7):434–40.
- 11. Byrne MF, Chapados N, Soudan F, Oertel C, Pérez ML, Kelly R, et al. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut. 2019;68(1):94–100.
- 12. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al.

Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. J Am Med Assoc. 2016;316(22):2402–10.

- 13. Song QZ, Zhao L, Luo XK, Dou XC. Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images. J Healthc Eng. 2017;2017(8314740):1–7.
- 14. Wang X, Yang W, Weinreb J, Han J, Li Q, Kong X, et al. Searching for prostate cancer by fully automated magnetic resonance imaging classification: Deep learning versus non-deep learning. Sci Rep. 2017;7(1):1–8.
- 15. Wang H, Zhou Z, Li Y, Chen Z, Lu P, Wang W, et al. Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18F-FDG PET/CT images. EJNMMI Res. 2017;7(1).
- 16. Xue Y, Zhang R, Deng Y, Chen K, Jiang T. A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis. PLoS One. 2017;12(6):1–9.
- 17. Ossowska A, Kusiak A. Artificial Intelligence in Dentistry Narrative Review. Int J Environ Res Public Health. 2022;19(6):1–10.
- 18. Sur J, Bose S, Khan F, Dewangan D, Sawriya E, Roul A. Knowledge, attitudes, and perceptions regarding the future of artificial intelligence in oral radiology in India: A survey. Imaging Sci Dent. 2020;50(3):193–8.
- Khanagar SB, Al-ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, et al. Developments, application, and performance of artificial intelligence in dentistry A systematic review. J Dent Sci. 2021;16(1):508–22.
- 20. Lee JH, Kim DH, Jeong SN, Choi SH. Diagnosis and prediction of periodontally

- compromised teeth using a deep learning-based convolutional neural network algorithm. J Periodontal Implant Sci. 2018;48(2):114–23.
- 21. Krois J, Ekert T, Meinhold L, Golla T, Kharbot B, Wittemeier A, et al. Deep Learning for the Radiographic Detection of Periodontal Bone Loss. Sci Rep. 2019;9(1):1–6.
- 22. Ferreira ML, Buligon MP, Sfreddo CS, Liedke GS, Morgental RD. Factors related to apical periodontitis in a southern Brazilian population: a multilevel analysis. Braz Oral Res. 2022;36:e112.
- 23. Buligon MP, Marin JA, Wolle CFB, Liedke GS, Sfreddo CS, Bier CAS, et al. Apical periodontitis and associated factors in a rural population of southern Brazil: a multilevel analysis. Clin Oral Investig. 2023;27(6):2887–97.
- 24. Boreak N. Effectiveness of Artifcial Intelligence Applications Designed for Endodontic Diagnosis, Decision-making, and Prediction of Prognosis: A Systematic Review. J Contemp Dent Pract. 2020;21(8):926–34.
- 25. Saghiri MA, Asgar K, Boukani KK, Lotfi M, Aghili H, Delvarani A, et al. A new approach for locating the minor apical foramen using an artificial neural network. Int Endod J. 2012;45(3):257–65.
- 26. Hiraiwa T, Ariji Y, Fukuda M, Kise Y, Nakata K, Katsumata A, et al. A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography. Dentomaxillofacial Radiol. 2019;48(3):1–7.
- 27. Ekert T, Krois J, Meinhold L, Elhennawy K, Emara R, Golla T, et al. Deep Learning for the Radiographic Detection of Apical Lesions. J Endod. 2019;45(7):917–922.e5.

- 28. Johari M, Esmaeili F, Andalib A, Garjani S, Saberkari H. Detection of Vertical Root Fractures in Intact and Endodontically Treated Premolar Teeth by Designing a Probabilistic Neural Network: An ex Vivo Study. Dentomaxillofacial Radiol. 2017;46(2).
- 29. Setzer FC, Shi KJ, Zhang Z, Yan H, Yoon H, Mupparapu M, et al. Artificial Intelligence for the Computer-aided Detection of Periapical Lesions in Cone-beam Computed Tomographic Images. J Endod. 2020;46(7):987–93.
- 30. Subramanian AK, Chen Y, Almalki A, Sivamurthy G, Kafle D. Cephalometric Analysis in Orthodontics Using Artificial Intelligence A Comprehensive Review. Biomed Res Int. 2022;2022.
- 31. Baig I, Azam S, Mushtaq T Bin. Artificial intelligence in dentistry: Literature Review. J Pharm Res Int. 2022;34(53B):7–14.
- 32. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18(8):500–10.
- 33. Mahto RK, Kafle D, Giri A, Luintel S, Karki A. Evaluation of fully automated cephalometric measurements obtained from web-based artificial intelligence driven platform. BMC Oral Health. 2022;22(1):132.
- 34. Schwendicke F, Chaurasia A, Arsiwala L, Lee JH, Elhennawy K, Jost-Brinkmann PG, et al. Deep learning for cephalometric landmark detection: systematic review and meta-analysis. Clin Oral Investig. 2021;25(7):4299–309.
- 35. Park JH, Hwang HW, Moon JH, Yu Y, Kim H, Her SB, et al. Automated identification of cephalometric landmarks: Part 1—Comparisons between the latest deep-learning methods YOLOV3 and SSD. Angle Orthod. 2019;89(6):903–9.

- 36. Bulatova G, Kusnoto B, Grace V, Tsay TP, Avenetti DM, Sanchez FJC. Assessment of automatic cephalometric landmark identification using artificial intelligence. Orthod Craniofacial Res. 2021;24(S2):37–42.
- 37. Jiang F, Guo Y, Yang C, Zhou Y, Lin Y, Cheng F, et al. Artificial intelligence system for automated landmark localization and analysis of cephalometry.

 Dentomaxillofacial Radiol. 2022;
- 38. Lindner C, Wang CW, Huang CT, Li CH, Chang SW, Cootes TF. Fully Automatic System for Accurate Localisation and Analysis of Cephalometric Landmarks in Lateral Cephalograms. Sci Rep. 2016 Sep 29;6(33581):1–10.
- 39. Hwang HW, Moon JH, Kim MG, Donatelli RE, Lee SJ. Evaluation of automated cephalometric analysis based on the latest deep learning method. Angle Orthod. 2021;91(3):329–35.
- 40. Choi H II, Jung SK, Baek SH, Lim WH, Ahn SJ, Yang IH, et al. Artificial Intelligent Model with Neural Network Machine Learning for the Diagnosis of Orthognathic Surgery. J Craniofac Surg. 2019;30(7):1986–9.
- 41. Li P, Kong D, Tang T, Su D, Yang P, Wang H, et al. Orthodontic Treatment Planning based on Artificial Neural Networks. Sci Rep. 2019;9(1):1–9.
- 42. Kök H, Izgi MS, Acilar AM. Determination of growth and development periods in orthodontics with artificial neural network. Orthod Craniofacial Res. 2021;24(S2):76–83.
- 43. Choi E, Lee S, Jeong E, Shin S, Park H, Youm S, et al. Artificial intelligence in positioning between mandibular third molar and inferior alveolar nerve on panoramic radiography. Sci Rep. 2022;12(1):1–7.

- 44. Yoo JH, Yeom HG, Shin WS, Yun JP, Lee JH, Jeong SH, et al. Deep learning based prediction of extraction difficulty for mandibular third molars. Sci Rep. 2021;11(1):1–9.
- 45. Zhang W, Li J, Li ZB, Li Z. Predicting postoperative facial swelling following impacted mandibular third molars extraction by using artificial neural networks evaluation. Sci Rep. 2018;8(1):1–9.
- 46. Pauwels R. A brief introduction to concepts and applications of artificial intelligence in dental imaging. Oral Radiol. 2021;37(1):153–60.
- 47. Poedjiastoeti W, Suebnukarn S. Application of convolutional neural network in the diagnosis of Jaw tumors. Healthc Inform Res. 2018;24(3):236–41.
- 48. Lee JS, Adhikari S, Liu L, Jeong HG, Kim H, Yoon SJ. Osteoporosis detection in panoramic radiographs using a deep convolutional neural network-based computer-assisted diagnosis system: A preliminary study. Dentomaxillofacial Radiol. 2019;48(1).
- 49. Murata M, Ariji Y, Ohashi Y, Kawai T, Fukuda M, Funakoshi T, et al. Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography. Oral Radiol. 2019;35(3):301–7.
- 50. Geetha V, Aprameya KS, Hinduja DM. Dental caries diagnosis in digital radiographs using back-propagation neural network. Heal Inf Sci Syst. 2020;8(1).
- 51. Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 2018;77:106–11.
- 52. Devlin H, Williams T, Graham J, Ashley M. The ADEPT study: a comparative study

- of dentists' ability to detect enamel-only proximal caries in bitewing radiographs with and without the use of AssistDent artificial intelligence software. Br Dent J. 2021;231(8):481–5.
- 53. Duong DL, Nguyen QDN, Tong MS, Vu MT, Lim JD, Kuo RF. Proof-of-concept study on an automatic computational system in detecting and classifying occlusal caries lesions from smartphone color images of unrestored extracted teeth. Diagnostics. 2021;11(7).
- 54. Lee JH, Jeong SN. Efficacy of deep convolutional neural network algorithm for the identification and classification of dental implant systems, using panoramic and periapical radiographs radiographs. Med. 2020;99(26):e20787.
- 55. Sukegawa S, Yoshii K, Hara T, Yamashita K, Nakano K, Yamamoto N, et al. Deep neural networks for dental implant system classification. Biomolecules. 2020;10(7):1–13.
- 56. Liu CH, Lin CJ, Hu YH, You ZH. Predicting the failure of dental implants using supervised learning techniques. Appl Sci. 2018;8(5):1–11.
- 57. Ha SR, Park HS, Kim EH, Kim HK, Yang JY, Heo J, et al. A pilot study using machine learning methods about factors influencing prognosis of dental implants.

 J Adv Prosthodont. 2018;10(6):395–400.
- 58. Johnson A. A Morphological Study of Tongue and its Role in Forensics Odontology. J Forensic Sci Crim Investig. 2018;7(5):1–5.
- 59. Patil V, Vineetha R, Vatsa S, Shetty DK, Raju A, Naik N, et al. Artificial neural network for gender determination using mandibular morphometric parameters: A comparative retrospective study. Cogent Eng. 2020;7(1).

60. Niño-Sandoval TC, Guevara Pérez S V., González FA, Jaque RA, Infante-

Contreras C. Use of automated learning techniques for predicting mandibular

morphology in skeletal class I, II and III. Forensic Sci Int. 2017;281:187.e1-187.e7.

61. Mahasantipiya PM, Yeesarapat U, Suriyadet T, Sricharoen J, Dumrongwanich A,

Thaiupathump T. Bite mark identification using neural networks: A preliminary

study. IMECS 2011 - Int MultiConference Eng Comput Sci 2011. 2011;1:65-8.

Endereço para correspondência:

Gabriela Salatino Liedke Av. Roraima, nº 1000, Bairro Camobi, Prédio 26F (Odontologia) CEP 97105-900 - Santa Maria, RS, Brasil Telefone: +55 (55) 3220-9268

E-mail: gabriela.liedke@ufsm.br

Recebido em: 04/04/2024. Aceito: 14/04/2024.